25.12.2012 Views

The Fourier Transform and its applications goals: present the Fourier ...

The Fourier Transform and its applications goals: present the Fourier ...

The Fourier Transform and its applications goals: present the Fourier ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> <strong>applications</strong><br />

<strong>goals</strong>:<br />

<strong>present</strong> <strong>the</strong> <strong>Fourier</strong> <strong>The</strong>ory <strong>and</strong> <strong>its</strong> <strong>applications</strong> in a concise overview<br />

show <strong>its</strong> fundamental relevance for many field of physics<br />

encourage use of FT-based reasoning <strong>and</strong> approaches<br />

addresses:<br />

students of advanced semesters (post Vordiplom, master-level)<br />

literature:<br />

Jean Baptiste Joseph <strong>Fourier</strong>,<br />

* March 21st, 1768, + May 16th, 1830<br />

Bracewell, <strong>The</strong> <strong>Fourier</strong> <strong>The</strong>ory <strong>and</strong> Its Applications, McGraw-Hill<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

Page 1


<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> <strong>applications</strong><br />

contents:<br />

● ma<strong>the</strong>matical basis<br />

● signal processing: filtering, sampling, reconstruction<br />

● statistics: mean/variance,central limit <strong>the</strong>orem, noise, correlation <strong>and</strong> drift<br />

● optics: diffraction, antenna <strong>the</strong>orem, interferometry<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

Page 2


<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> <strong>applications</strong><br />

contents:<br />

● ma<strong>the</strong>matical basis<br />

– definition, properties, cos-, sine-transform<br />

– convolution, autocorrelation, power spectrum<br />

– often used functions (hat, sinc, ...), δ-function<br />

– FT <strong>the</strong>orems, properties of moments<br />

– periodic functions, <strong>Fourier</strong> series<br />

– discrete <strong>Fourier</strong> transform, FFT<br />

– FT in higher dimensions, cylinder-, spherical coordinates<br />

● signal processing: filtering, sampling, reconstruction<br />

● statistics: mean/variance,central limit <strong>the</strong>orem, noise, correlation <strong>and</strong> drift<br />

● optics: diffraction, antenna <strong>the</strong>orem, interferometry<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

Page 3


<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> <strong>applications</strong><br />

contents:<br />

● ma<strong>the</strong>matical basis<br />

– definition, properties, cos-, sine-transform<br />

– convolution, autocorrelation, power spectrum<br />

– often used functions (hat, sinc, ...), δ-function<br />

– FT <strong>the</strong>orems, properties of moments<br />

– periodic functions, <strong>Fourier</strong> series<br />

– discrete <strong>Fourier</strong> transform, FFT<br />

– FT in higher dimensions, cylinder-, spherical coordinates<br />

● signal processing: filtering, sampling, reconstruction<br />

● statistics: mean/variance,central limit <strong>the</strong>orem, noise, correlation <strong>and</strong> drift<br />

● optics: diffraction, antenna <strong>the</strong>orem, interferometry<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

Page 4


<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> <strong>applications</strong><br />

contents:<br />

● ma<strong>the</strong>matical basis<br />

● signal processing<br />

– filtering<br />

– sampling (Nyquist <strong>the</strong>orem)<br />

– reconstruction<br />

● statistics: mean/variance,central limit <strong>the</strong>orem, noise, correlation <strong>and</strong> drift<br />

● optics: diffraction, antenna <strong>the</strong>orem, interferometry<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

Page 5


<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> <strong>applications</strong><br />

contents:<br />

● ma<strong>the</strong>matical basis<br />

● signal processing: filtering, sampling, reconstruction<br />

● statistics<br />

– mean/variance in time <strong>and</strong> frequency domain,<br />

– Heisenberg relation<br />

– central limit <strong>the</strong>orem<br />

– noise, correlation <strong>and</strong> drift<br />

● optics: diffraction, antenna <strong>the</strong>orem, interferometry<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

Page 6


<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

drift, natural shapes:<br />

fractional Brownian motion<br />

Page 7


<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> <strong>applications</strong><br />

contents:<br />

● ma<strong>the</strong>matical basis<br />

● signal processing: filtering, sampling, reconstruction<br />

● statistics: mean/variance,central limit <strong>the</strong>orem, noise, correlation <strong>and</strong> drift<br />

● optics<br />

– diffraction <strong>the</strong>ory<br />

– antenna <strong>the</strong>orem<br />

– interferometry<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

Page 8


diffraction image of<br />

circular aperture<br />

interferometry:<br />

left: baseline-tracks of telescope array with earth rotation<br />

right: point-spread-function<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007 Page 9


1. Ma<strong>the</strong>matical Basics<br />

Note: no rigorous proofs here, ra<strong>the</strong>r a “pragmatic” approach<br />

1.1. Definition of <strong>the</strong> <strong>Fourier</strong> <strong>Transform</strong> (FT)<br />

Function f �x�<br />

<strong>Fourier</strong> <strong>Transform</strong> F �s�=∫ −∞<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

∞<br />

f �x� e −2� i xs dx (“ minus-i ” transform)<br />

note on notation: function f lower capital; <strong>Fourier</strong> transform F upper capital<br />

spatial: x �� s f � x� �� F �s�<br />

time: t �� � f �t � �� F ���<br />

Backtransform, inverse <strong>Fourier</strong> <strong>Transform</strong><br />

Interpretation:<br />

∞<br />

f �x �=∫ F �s� e<br />

−∞<br />

2� i xs ds (“ plus-i “-transform) (prove given below)<br />

<strong>Fourier</strong> <strong>Transform</strong>: filters out <strong>the</strong> (complex) amplitude F �s�=∣F �s�∣e i � s of<br />

e −2� i xs -component, i..e. oscillation with frequency s<br />

Back-<strong>Transform</strong>: express f �x � as sum over e 2�i xs -oscillations with (complex) amplitudes,<br />

i.e. amplitudes <strong>and</strong> phase F �s�=∣F �s�∣e i � s<br />

1<br />

math_ground_1.odt<br />

Page 10


Remark: usual abbreviation: �=2�� (time: angular frequency) or<br />

gives FT:<br />

<strong>and</strong> back-Trafo f �t � = ∫ −∞<br />

k =2�s (spatial: wavenumber)<br />

F� �<br />

��� =F �<br />

2� �= ∞<br />

∫ −∞<br />

�<br />

−2� i<br />

2�<br />

f �t � e t<br />

∞<br />

dt = ∫<br />

−∞<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

∞<br />

∞<br />

F ��� e 2�i �t d �=∫ −∞<br />

F � �<br />

2� � ei� t d �<br />

2�<br />

f �t� e −i �t dt<br />

1<br />

=<br />

2� ∫ ∞<br />

−∞<br />

�F ��� e i �t d �<br />

2<br />

math_ground_1a.odt<br />

Page 11


or, for symmetry, define: �F ���= 1<br />

� 2� ∫ ∞<br />

−∞<br />

f �t � e −i�t dt <strong>and</strong> back-transform f �t�= 1<br />

�2� ∫ ∞<br />

−∞<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

�F ��� e i�t d � .<br />

All 1 , 2 , <strong>and</strong> 3<br />

are common notations, used in different fields <strong>and</strong> contexts; we prefer <strong>the</strong> first one.<br />

O<strong>the</strong>r notations often used:<br />

● instead of F �s� : �f �s� or � f �s� .<br />

This is useful to note down certain relations, e.g.� f ⋅g= � f ∗�g (FT of convolution, see below)<br />

● F �s� = FT � f � x �� , operator FT generates <strong>Fourier</strong>-Trafo of function f �x �<br />

3<br />

math_ground_2.odt<br />

Page 12


1.2. Existence of <strong>the</strong> FT<br />

intuitively, <strong>and</strong> from physical insight: each time series has spectrum,<br />

i.e. contains a distribution of frequencies<br />

this applies to all functional dependencies occurring in <strong>the</strong> real world physics<br />

but: even simple examples (which don't as such occur in <strong>the</strong> real world) show problems<br />

● Sine,Cosine: a 0 sin �2��t � , a 0 cos�2�� t� s (needs to be switched on <strong>and</strong> off!)<br />

●<br />

0,<br />

Heavyside Step-Function: H �t �={ 1,<br />

t�0<br />

t�0<br />

●<br />

0,<br />

delta-Funktion, Impuls-Fkt.: � �t �={ ∞ ,<br />

t≠0<br />

t=0 (more specifically �∞<br />

∫ −∞<br />

do not have FT in <strong>the</strong> proper sense<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

(needs to be switched off!)<br />

��t� dt=1 )<br />

(never gets infinitely sharp!)<br />

<strong>Fourier</strong> transform in <strong>the</strong> proper sense<br />

<strong>the</strong> <strong>Fourier</strong>-<strong>Transform</strong> exists (i.e. <strong>the</strong> <strong>Fourier</strong>-Integral converges for all values of s) if:<br />

∞<br />

1. ∣ f � x �∣ is integrable, i.e. ∫ ∣ f � x�∣ dx exists<br />

−∞<br />

2. f �x � has only finite discontinuities<br />

3. <strong>and</strong> f �x � shows “limited variations” (Lipshitz-Bedingung)<br />

math_ground_3.odt<br />

Page 13


improper <strong>Fourier</strong> <strong>Transform</strong><br />

Many functions allow FT only in <strong>the</strong> “improper” sense: FT in <strong>the</strong> limit:<br />

∞<br />

if ∫ −∞<br />

∞<br />

if ∫ −∞<br />

−� x2<br />

∣f � x�∣ dx does not exist, one considers a modified function f �� x�=e<br />

−� x2<br />

∣e<br />

note: lim<br />

��0<br />

<strong>and</strong> name lim<br />

��0<br />

f ��x�= f � x � ; �≪1 : slowly switching f �x � on <strong>and</strong> off<br />

f � x�∣ dx exists, consider <strong>the</strong> series of varying � , � �0<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

∞<br />

F ��s�=∫ −∞<br />

e −2� i xs 2<br />

−� x<br />

e<br />

f � x � dx<br />

F ��s�=F �s� <strong>the</strong> (improper) <strong>Fourier</strong> <strong>Transform</strong><br />

Note: such improper FTs are not really functions, but distributions (see below).<br />

f � x� .<br />

math_ground_4.odt<br />

Page 14


1.3 properties of <strong>the</strong> FT<br />

1.3.0 linearity<br />

with h � x �=a f � x ��b g � x � , we get H �s�=a F �s��b G �s�<br />

(proof: linearity of integration)<br />

1.3.1 symmetries<br />

e.g. f �x � real valued, i.e. f * �x �= f �x � , <strong>and</strong> with <strong>the</strong> FT F �s�=∫ e −2� ixs f �x� dx<br />

we get: F * �s� =∫e 2� i xs f * −2� i x �−s�<br />

� x � dx=∫e f � x� dx= F �−s� ,i.e. F �s� is hermitean.<br />

or, more specifically, separating F �s� into real <strong>and</strong> imaginary part:<br />

F �s� = ℜ F �s��i ℑ F �s�<br />

F * �s� = ℜ F �s�−i ℑ F �s�<br />

F �−s� = ℜ F �−s��i ℑ F �−s�<br />

<strong>and</strong> hence<br />

ℜ F �s�=ℜ F �−s� , i.e. ℜ F �s� is even<br />

ℑ F �s�=−ℑ F �−s � , i.e. ℑ F �s� is odd; q.e.d.<br />

Thus: f �x � real valued ⇔ F �s� hermitean<br />

<strong>and</strong> vice versa: f �x � hermitean ⇔ F �s� real valued<br />

Similarly: f �x � imaginary, i.e. f * � x �=− f �x � :<br />

we get F * �s� =∫ e 2� i xs f * � x� dx=−∫ e −2� i x �− s� f �x� dx= −F �−s� ,<br />

Thus: f �x � imaginary ⇔ F �s� anti-hermitean<br />

<strong>and</strong> vice versa f �x � anti-hermitean ⇔ F �s� imaginary<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

math_ground_5.odt<br />

Page 15


<strong>and</strong> last: f �x � even, i.e. f �x�= f �−x� :<br />

we get<br />

F �s�=∫ e<br />

−∞<br />

−2� i x s f � x� d x =<br />

�<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

�∞<br />

�∞<br />

=∫ e<br />

−∞<br />

−2� i u�−s � Thus:<br />

f �u� du=F �−s�<br />

f �x � even ⇔ F �s� even<br />

<strong>and</strong> vice versa f �x � odd ⇔ F �s� odd<br />

−∞ �∞<br />

�∞|<br />

u=−x |−∞ ;du=−dx<br />

−∞<br />

−∫ e<br />

�∞<br />

2� i us f �u� d u<br />

,<br />

math_ground_6.odt<br />

Page 16


Note:<br />

any function f �x � can be separated into <strong>its</strong> odd <strong>and</strong> even parts, o � x� <strong>and</strong> e � x � :<br />

with e � x �=e �−x � , o � x�=−o�−x � we have:<br />

f � x� = e� x ��o �x �<br />

f �−x� = e� x �−o �x �<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

, <strong>and</strong> hence e �x � = 1<br />

2<br />

similarly: separation into real <strong>and</strong> imaginary part:<br />

f �x� = ℜ f � x��i ℑ f � x�<br />

f * �x� = ℜ f � x�−i ℑ f � x�<br />

o � x � = 1<br />

2<br />

� f �x �� f �−x��<br />

.<br />

� f �x �− f �−x��<br />

, <strong>and</strong> ℜ f � x� = 1<br />

2 � f � x�� f * � x��<br />

ℑ f � x� = 1<br />

2i � f � x�− f * � x��<br />

With this, we can separate <strong>the</strong> hermitean <strong>and</strong> anti-hermitean parts:<br />

so that<br />

f �x �=e � x ��o� x �=ℜe � x��i ℑ e � x ��ℜ o� x ��i ℑo � x �<br />

=[ ℜe � x ��i ℑo � x �]<br />

hermitean<br />

anti−hermitean<br />

�[ ℜo �x ��i ℑ e � x� ]<br />

=h� x ��a � x �<br />

f * �−x �= =[ ℜe � x �−�−�i ℑ o �x �]�[−ℜ o� x �−i ℑ e �x �]=h � x �−a �x �<br />

h� x� = 1<br />

2 � f � x�� f * �−x��<br />

a� x� = 1<br />

2 � f � x�− f * �−x��<br />

math_ground_7.odt<br />

Page 17


to summarize:<br />

Symmetry properties of FT<br />

or<br />

f �x � = e � x � � o� x � = ℜ f � x � � i ℑ f �x � = h � x � � a � x �<br />

�<br />

�<br />

�<br />

�<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

�<br />

�<br />

�<br />

�<br />

F �s� = E �S � � O �s� = H �s� � A �s� = ℜ F �s� � i ℑ F �s�<br />

proof: e.g.<br />

f �x � = ℜe � x � � i ℑ e � x � � ℜ o� x � � i ℑo � x �<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

F �s� = ℜ E �s� � i ℑ E �s� � i ℑO �S � � ℜO�s�<br />

FT �e� x��= � e� x�= 1�<br />

1<br />

� f �x�� f �−x��=<br />

2<br />

2 ��f � x���f �−x��<br />

= 1<br />

�∞<br />

2 [∫ e<br />

−∞<br />

−2�i xs �∞<br />

f � x� dx�∫ e<br />

−∞<br />

−2� i xs ] f �−x� dx<br />

= 1 [ 2 F �S ��∫<br />

�∞<br />

e<br />

−∞<br />

−2� i u�−s� u] f �u� d<br />

= 1 [ F �s��F �−s�]=E �s�<br />

2<br />

�<br />

�<br />

�<br />

�<br />

� �<br />

�<br />

�<br />

q.e.d.<br />

�<br />

�<br />

math_ground_8.odt<br />

Page 18


1.3.2 FT of <strong>the</strong> complex conjugate function<br />

for <strong>the</strong> <strong>Fourier</strong> <strong>Transform</strong> of f * � x � we get:<br />

FT � f * � x ��= � f * �x �=∫e −2�i xs f * �x � dx<br />

−2� i x �−s<br />

=∫<br />

�]<br />

*<br />

[e f * � x � dx=F * �−s�<br />

with this, <strong>and</strong> with FT � f �−x ��=F �−s� , we can derive all <strong>the</strong> above symmetry relations:<br />

e.g.<br />

FT � ℜ f � x ��=FT� 1<br />

2 [ f � x �� f * 1<br />

� x �]� =<br />

2 [ F �S ��F * �−s�]=H �s� ,<br />

or<br />

etc.<br />

FT �a� x��=FT � 1<br />

2 [ f � x�− f * �−x�]� =1<br />

2 [ F �S�− F* �s�]=i ℑ F �s�<br />

Thus, all symmetry relations above can be derived from <strong>the</strong> (easy to memorize) three<br />

relations:<br />

1) FT � f � x ��=F �s�<br />

2) FT � f �−x ��=F �−s�<br />

3) FT � f * � x ��=F * �−s�<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

math_ground_9.odt<br />

Page 19


1.4 Sine- <strong>and</strong> Cosine-<strong>Transform</strong>ation<br />

Recall Euler's relation: e i � =cos ��i sin � . Inserting this into <strong>the</strong> definition of <strong>the</strong> FT, we get:<br />

�∞<br />

F �s�=FT � f �x��=∫ e<br />

−∞<br />

−2� i xs f �x� dx=∫ cos�2� xs� f � x � dx – i ∫ sin�2� xs� f �x� dx<br />

−∞<br />

−∞<br />

∞<br />

=∫ 0<br />

f � x�cos�2� xs� dx�∫ −∞<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

0<br />

�∞<br />

f � x�cos�2� x s� d x<br />

∞<br />

−i∫<br />

0<br />

f � x�sin�2� xs� dx−i ∫<br />

−∞<br />

f � x�sin�2� x s� d x<br />

Substituting in <strong>the</strong> second <strong>and</strong> forth expression:<br />

0 0<br />

| x �−u|∞ ; dx �−du , we get:<br />

∞<br />

=∫ 0<br />

∞<br />

=∫ 0<br />

f � x�cos�2� xs� dx�∫ 0<br />

∞<br />

−∞<br />

f �−u�cos�2�u s� d u<br />

∞<br />

−i∫ 0<br />

[ f � x�� f �−x�] cos�2� xs� dx−i∫ 0<br />

∞<br />

=2∫ 0<br />

e� x� cos�2� xs� dx −i 2∫ 0<br />

∞<br />

�∞<br />

f � x�sin�2� xs� dx� i∫ 0<br />

∞<br />

[ f �x�− f �−x�]sin�2� xs� dx<br />

o� x� sin�2� xs� dx<br />

We define: Cosine-<strong>Transform</strong>ation CT � f � x ��=2∫ 0<br />

Sine-<strong>Transform</strong>ation<br />

∞<br />

∞<br />

0<br />

∞<br />

f �−u�sin�2�u s� d u<br />

f � x � cos�2� xs� dx , <strong>and</strong><br />

ST � f � x��=2∫ f � x� sin�2� xs� dx<br />

0<br />

note: only x�0 counts in CT <strong>and</strong> ST !<br />

math_ground_10.odt<br />

Page 20


F �s�=FT � f � x ��=CT �e �x �� – i ST �o �x ��<br />

i.e. <strong>Fourier</strong> <strong>Transform</strong> ⇔<br />

Cosine-<strong>Transform</strong> of <strong>the</strong> even <strong>and</strong> Sine-<strong>Transform</strong> of <strong>the</strong> odd part of f �x �<br />

Note: as e � x � <strong>and</strong> o � x� need to be defined only for x�0 , <strong>the</strong> continuation to x�0 being<br />

given by symmetry ( e �−x �=e � x � ; o �−x �=−o� x � ), <strong>the</strong> <strong>Fourier</strong> transform carries <strong>the</strong><br />

full information on f �x � , both for x�0 <strong>and</strong> x�0 , although <strong>the</strong> integration in <strong>the</strong> CT<br />

<strong>and</strong> ST only use e � x � <strong>and</strong> o � x� for x�0 .<br />

We can thus, like always, get f �x � back from F �s� through <strong>the</strong> "+i" transform, giving:<br />

f �x�=FT �i � F �s��=CT � E �s���i ST �O�s��<br />

i.e. <strong>Fourier</strong> Backtransform ⇔<br />

Cosine-<strong>Transform</strong> of <strong>the</strong> even <strong>and</strong> Sine-<strong>Transform</strong> of <strong>the</strong> odd part of F �s�<br />

Note: in <strong>the</strong> CT , ST -world (no FT known),<br />

given F �s� , calculate E �s� <strong>and</strong> O�s� , from this, throughCT resp. ST , calculate<br />

f �x �<br />

Symmetries of Cosine- <strong>and</strong> Sine-<strong>Transform</strong>: with F C �s�=CT � f �x �� , F S �s�=ST � f �x�� ,<br />

we have: F C �−s�=F C �s� Cosine-<strong>Transform</strong> is even in s,<br />

F S �−s�=−F S � s� Sine-<strong>Transform</strong> is odd in s<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

math_ground_11.odt<br />

Page 21


● only <strong>the</strong> behaviour of f �x� for x�0 enters into to Cosine- <strong>and</strong> Sine-<strong>Transform</strong><br />

● <strong>the</strong> symmetries of F C �s� <strong>and</strong> F S �s� imply that <strong>the</strong>y are fully determined by <strong>the</strong>ir s�0<br />

behavior<br />

Thus, only <strong>the</strong> x�0 behavior of an arbitrary function f �x � determines <strong>its</strong> F C �s� <strong>and</strong> F S �s�<br />

Consider a new function f H � x � :<br />

f � x � , x �0<br />

f H � x �={<br />

= f � x� H �x � ,<br />

0, x �0<br />

obtained by "cutting-off" <strong>the</strong> negative<br />

part of f �x � , i.e. by multiplying f �x � with <strong>the</strong> Heavyside step-function defined above.<br />

Obviously, it has <strong>the</strong> same Cosine- <strong>and</strong> Sine transform as f �x � <strong>its</strong>elf:<br />

F S , H �s�=ST � f H � x ��=2∫ 0<br />

∞<br />

=2∫ 0<br />

<strong>and</strong> similarly F C , H �s�=F C �s� .<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

∞<br />

f H �x � sin �2� xs� dx<br />

f � x � sin �2� xs� dx=ST � f � x ��=F S �s�<br />

Now, e H � x�= 1<br />

2<br />

2 [ f H �x�� f H �−x�]={1<br />

<strong>and</strong> oH �x�= 1<br />

2<br />

2 [ f H � x�− f H �−x�]={1<br />

1<br />

2<br />

− 1<br />

2<br />

f � x� , x�0<br />

f �−x� , x�0<br />

f � x� , x�0<br />

f �−x� , x�0<br />

math_ground_12.odt<br />

Page 22


FT � f � x � H � x ��=CT �e H �x ��−i ST �o H � x ��<br />

= 1<br />

2 [CT � f � x��−i ST � f � x�� ] .<br />

Backtransform of Cosine- <strong>and</strong> Sine-transform<br />

With this, we now consider an arbitrary function f �x � , defined only at x�0 <strong>and</strong> with<br />

CT � f � x ��=F C �s�<br />

ST � f � x��=F S �s�<br />

Note that F C �s� <strong>and</strong> F S �s� , given <strong>the</strong>ir symmetry, have to be taken into account only at<br />

positive frequencies s�0 .<br />

We claim that<br />

<strong>the</strong> back-transform of <strong>the</strong> Cosine transform is <strong>the</strong> Cosine transform:<br />

f � x �=2∫ F C�s� cos �2� xs� ds<br />

0<br />

<strong>and</strong> <strong>the</strong> back-transform of <strong>the</strong> Sine transform is <strong>the</strong> Sine transform:<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

∞<br />

∞<br />

f � x �=2∫ 0<br />

F S �s� sin�2 � xs� ds<br />

math_ground_13.odt<br />

Page 23


Proof:<br />

1) for <strong>the</strong> Cosine back-trafo:<br />

define an even function for all x : f 1� x �= f �∣x∣�={<br />

Its FT is<br />

FT � f 1 � x ��=F 1 �s�=CT �e 1 � x��<br />

� CT� f 1� x��<br />

−i ST � �o1 �x ��=CT<br />

� f � x��=F C �s�<br />

,<br />

=0<br />

which is also even, being a pure cosine transform:<br />

F 1 �−s�=F 1 �s� , resp. E 1 �s�=F 1 �s � , O 1 �s�=0<br />

Its back-transform reproduces f 1 � x � :<br />

f 1� x �=FT �i � F 1 �s��=CT � E 1�s��<br />

� CT� F 1 �s��<br />

�i ST �O 1 �s��<br />

� =0<br />

� �<br />

=0<br />

ST�F 2 �s��<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

f � x � , x�0<br />

f �−x � , x�0 , i.e. e 1 � x �= f 1 � x� , o 1 �x �=0 .<br />

=CT �CT � f �∣x∣���<br />

<strong>and</strong> for<br />

x�0 , where f �x � is defined: f � x �= f 1 � x �=CT �CT � f � x �� �=CT � F C � s� � q.e.d.<br />

2) similarly for <strong>the</strong> Sine backtrafo, but with <strong>the</strong> odd function f 2 �x �={ f � x � , x�0<br />

− f �−x � , x�0 :<br />

FT � f 2� x��=F 2�s�=CT � �e 2� x��<br />

=0<br />

−i ST ��o 2� x ��<br />

ST � f 2�x�� =−i ST � f �x ��=−i F S�s� , <strong>and</strong><br />

f 2�x�=FT �i � F 2�s��=CT � E2�s�� �i ST �O 2�s�� =i �−i�ST � F s�s��=ST �ST � f �∣x∣�� �<br />

q.e.d.<br />

Page 24


<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

pltfour.py<br />

Page 25


Summary:<br />

<strong>The</strong> <strong>Fourier</strong> <strong>Transform</strong> <strong>and</strong> <strong>its</strong> Applications, Jürgen Stutzki, Sommersemester 2007<br />

∞<br />

● <strong>Fourier</strong>-<strong>Transform</strong> F �s�=∫ f �x� e<br />

−∞<br />

−2� i xs ●<br />

dx (“ minus-i ” transform)<br />

∞<br />

<strong>Fourier</strong>-Backtransform f �x �=∫ F �s� e<br />

−∞<br />

2� i xs ●<br />

ds (“ plus-i “-transform)<br />

symmetry relations:<br />

f �x � = e � x � � o� x � = ℜ f � x � � i ℑ f �x � = h � x � � a � x �<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

F �s� = E �S � � O �s� = H �s� � A �s� = ℜ F �s� � i ℑ F �s�<br />

f �x � = ℜe � x � � i ℑ e � x � � ℜ o� x � � i ℑo � x �<br />

● Cosine-, <strong>and</strong> Sine-<strong>Transform</strong><br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

F �s� = ℜ E �s� � i ℑ E �s� � i ℑO �S � � ℜO�s�<br />

∞<br />

CT � f � x ��=2∫ 0<br />

∞<br />

�<br />

�<br />

f � x � cos�2� xs� dx<br />

ST � f � x ��=2∫ f � x� sin�2� xs� dx<br />

0<br />

which are <strong>the</strong>ir own back-transforms<br />

● <strong>Fourier</strong> <strong>Transform</strong> ⇔<br />

Cosine-<strong>Transform</strong> of <strong>the</strong> even <strong>and</strong> Sine-<strong>Transform</strong> of <strong>the</strong> odd part of f �x �<br />

F �s�=FT � f � x ��=CT �e �x �� – i ST �o �x ��<br />

�<br />

�<br />

� �<br />

�<br />

�<br />

�<br />

�<br />

math_ground_15.odt<br />

Page 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!