28.12.2012 Views

The Use of Disposable and Alternative Purification Technologies for ...

The Use of Disposable and Alternative Purification Technologies for ...

The Use of Disposable and Alternative Purification Technologies for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Use</strong> <strong>of</strong> <strong>Disposable</strong> <strong>and</strong> <strong>Alternative</strong><br />

<strong>Purification</strong> <strong>Technologies</strong> <strong>for</strong><br />

Biopharmaceuticals<br />

Tom Ransoh<strong>of</strong>f<br />

BioProcess Technology Consultants<br />

July 22, 2005<br />

IIR Biopharmaceutical Production Conference


Presentation outline<br />

� Driving <strong>for</strong>ces <strong>for</strong> use <strong>of</strong> disposable <strong>and</strong> alternative<br />

purification technologies<br />

� Examples <strong>of</strong> current technologies<br />

� Obstacles to implementation<br />

� Future possibilities


Driving Forces


Driving <strong>for</strong>ces <strong>for</strong> disposable <strong>and</strong> alternative<br />

purification technologies<br />

� Business drivers <strong>for</strong> alternative approaches to biopharmaceutical<br />

manufacturing:<br />

• Need to reduce capital investment in high-risk projects<br />

• Speed to clinical pro<strong>of</strong>-<strong>of</strong>-concept <strong>and</strong> commercial launch<br />

� Operational trends favoring disposables:<br />

• Increasing focus on cleaning <strong>and</strong> cleaning validation<br />

• Increasing availability <strong>of</strong> suitable disposable processing equipment<br />

throughout the biopharmaceutical flowpath:<br />

− Flexible bioreactors<br />

− Media <strong>and</strong> buffer bags<br />

− <strong>Disposable</strong> aseptic filling equipment<br />

� Trend towards large volume monoclonal antibody processes:<br />

• Increasing productivity <strong>and</strong> scale <strong>of</strong> upstream processes<br />

• <strong>Purification</strong> increasingly becoming a bottleneck


<strong>The</strong> majority <strong>of</strong> manufacturing costs <strong>for</strong> most<br />

biopharmaceuticals are fixed costs<br />

Overhead/Indirect<br />

Labor<br />

22%<br />

Utilities & Waste<br />

9%<br />

Materials &<br />

Consumables<br />

13%<br />

100 kg/year<br />

Direct Labor<br />

16%<br />

Capital<br />

40%<br />

Quality & Indirect<br />

20%<br />

Utilities & Waste<br />

6%<br />

Materials<br />

29%<br />

1000 kg/year<br />

Capital<br />

29%<br />

Direct Labor<br />

16%<br />

Data from a process economic model <strong>of</strong> a typical<br />

mammalian cell culture-derived monoclonal antibody


Project risk <strong>and</strong> capital cost decrease<br />

significantly as development progresses<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Preclin<br />

Phase I<br />

Phase II<br />

Phas e III<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Time (yr)<br />

Probability <strong>of</strong> Success Cost <strong>of</strong> Capital *<br />

BLA Approval<br />

* - Cost <strong>of</strong> Capital estimate based on discount factors<br />

from a risk-adjusted NPV analysis


<strong>Technologies</strong> that<br />

• reduce capital investment <strong>and</strong>/or<br />

• increase speed to risk-reduction milestones<br />

are inherently more valuable in high-risk projects<br />

⇒<strong>The</strong>re is a compelling<br />

financial <strong>and</strong> risk-management argument <strong>for</strong><br />

disposable manufacturing technologies in<br />

early-stage biopharmaceutical development


Examples <strong>of</strong> Process <strong>Use</strong> <strong>of</strong> <strong>Disposable</strong><br />

Bioreactors<br />

� <strong>Use</strong> <strong>of</strong> disposable bioreactors <strong>for</strong> production at 100L+ scale:<br />

• Pierce, LN <strong>and</strong> Shabram PW, “Scalability <strong>of</strong> a <strong>Disposable</strong> Bioreactor from 25 L – 500 L<br />

Run in Perfusion Mode with a CHO-Based Cell Line: A Tech Review,” BioProcessing<br />

Journal, July/Aug 2004.<br />

• Zhang, S et al, “Large Scale Production <strong>of</strong> Clinical Grade Adenovirus Vectors – Introgen’s<br />

Experience,” presentation at WilBio Viral Vectors <strong>and</strong> Vaccines Conference (2004).<br />

� <strong>Use</strong> <strong>of</strong> disposable bioreactors <strong>for</strong> production at smaller scales:<br />

• Jenderek, S et al, “Development <strong>of</strong> a Production <strong>and</strong> <strong>Purification</strong> Method <strong>for</strong> Type 5<br />

Adenovirus,” BioProcessing Journal, May/June 2005.<br />

� <strong>Use</strong> <strong>of</strong> disposable bioreactors to replace conventional<br />

bioreactors in the inoculum train <strong>of</strong> large scale processes:<br />

• Knevelman, C et al, “Characterisation <strong>and</strong> Operation <strong>of</strong> a <strong>Disposable</strong> Bioreactor as a<br />

Replacement <strong>for</strong> Conventional Steam in Place Inoculum Bioreactors <strong>for</strong> Mammalian Cell<br />

Culture Processes,” ACS poster presentation (2002).


<strong>Disposable</strong> products* exist across most <strong>of</strong><br />

the biopharmaceutical manufacturing flowpath<br />

Wave Bioreactors<br />

Fermentation<br />

Media Prep/<br />

Storage<br />

Limited<br />

<strong>Purification</strong><br />

Buffer Prep/<br />

Storage<br />

Stedim Bags, Hynetics Mixers<br />

Formulation/<br />

Fill<br />

Stedim Celsius<br />

* - Suppliers listed are examples, not<br />

an endorsement <strong>of</strong> any specific company or technology


Downstream processing unit operations<br />

� Normal Flow Filtration<br />

• Depth filtration <strong>for</strong><br />

clarification<br />

• Nan<strong>of</strong>iltration <strong>for</strong> virus<br />

removal<br />

• Sterile filtration<br />

� Tangential Flow Filtration<br />

• Ultrafiltration <strong>for</strong><br />

concentration <strong>and</strong> buffer<br />

exchange<br />

• Micr<strong>of</strong>iltration <strong>for</strong><br />

clarification<br />

� Centrifugation<br />

• Clarification<br />

• Inclusion body isolation<br />

� Cell Breakage/Homogenization<br />

• For recovery <strong>of</strong> products<br />

expressed intracellularly<br />

� Refolding<br />

• For some E. coli products<br />

� Crystallization/Precipitation<br />

� Chromatography <strong>and</strong> adsorptive<br />

separations<br />

• Typical downstream process<br />

includes 3 – 4 chromatography<br />

<strong>and</strong>/or membrane adsorber steps<br />

− Ion exchange<br />

− Hydrophobic interaction<br />

− Affinity<br />

− Size exclusion<br />

− Reverse phase


Commercial product requirement trends -<br />

biopharmaceuticals<br />

Microbial<br />

rProtein, $15.4<br />

2004 Sales by Mfg Technology/Prod Type<br />

Mammalian<br />

rProtein, $17.8<br />

Mammalian Mab,<br />

$13.1<br />

Mammalian Products<br />

• Fastest growing commercial biopharmaceutical segment is<br />

monoclonal antibodies at 40%+/year<br />

• Trend <strong>for</strong> commercial products is from agonists to antagonists -><br />

larger volume, less expensive ($/g) products<br />

3000.0<br />

2500.0<br />

2000.0<br />

1500.0<br />

1000.0<br />

500.0<br />

0.0<br />

Amount Required (kg/yr) N Ave. Sales Price ($/mg)<br />

Source: BPTC 2004 Annual Manufacturing Capacity Analysis<br />

rProteins<br />

MAbs


Number <strong>of</strong> Products<br />

Clinical biopharmaceutical pipeline is weighted<br />

towards antibody-based products<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Pipeline Number <strong>of</strong> Products<br />

Market BLA Phase III Phase II Phase I<br />

Stage<br />

Mammalian<br />

Microbial<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Pipeline Fraction MAb-based<br />

Market BLA Phase III Phase II Phase I<br />

• Biopharmaceutical pipeline is 70% mammalian cell culture<br />

• Significant trend towards antibody-based products is ~ 85%<br />

<strong>of</strong> mammalian cell culture pipeline<br />

• This analysis covers recombinant protein <strong>and</strong> monoclonal<br />

antibody product c<strong>and</strong>idates only<br />

Percent MAb-based<br />

Stage<br />

Source: BPTC 2004 Annual Manufacturing Capacity Analysis<br />

Mammalian<br />

Microbial


Typical material requirements – clinical<br />

development<br />

� Pre-clinical development 0.1 - 2 kg<br />

� Phase I 0.1 – 1 kg<br />

� Phase II 0.5 – 5 kg<br />

� Phase III 1 – 20 kg


Material requirements – commercial<br />

biopharmaceuticals<br />

� Highly product dependent<br />

� For microbial fermentation-derived products,<br />

commercial requirements range from:<br />

• ~10 g/yr (e.g., Infergen) to…<br />

• ~5,000 kg/yr (Novolin)<br />

• Most products require 0.5-50 kg/yr<br />

� For mammalian cell culture-derived products,<br />

commercial requirements range from:<br />

• ~10 g/yr (e.g., Bexxar/Zevalin) to…<br />

• ~750 kg/yr (Rituxan)<br />

• Most non-antibody products require


2004 bulk product requirements (kg/yr) –<br />

mammalian commercial products<br />

� Total estimated bulk product requirements <strong>for</strong> mammalian cell<br />

culture commercial products (2004):<br />

• All mammalian products – 2,875 kg/yr<br />

• Monoclonal antibodies – 2,810 kg/yr<br />

• rProteins – 65 kg/yr<br />

� Significant growth in bulk requirements over recent years due to<br />

successful MAbs:<br />

Bulk Reqmts 2004 (kg/yr)<br />

900.0<br />

800.0<br />

700.0<br />

600.0<br />

500.0<br />

400.0<br />

300.0<br />

200.0<br />

100.0<br />

0.0<br />

Rituxan<br />

Remicade<br />

Enbrel<br />

Herceptin<br />

Product<br />

Avastin<br />

Erbitux<br />

All others (38)<br />

Source: BPTC 2004 Annual Manufacturing Capacity Analysis


Current Approaches


Examples <strong>of</strong> current “disposable <strong>for</strong>mat”<br />

purification products <strong>and</strong> technologies<br />

� Membrane adsorbers<br />

� Pre-packed chromatography columns or cartridges<br />

� <strong>Disposable</strong> flow-path system concepts


Membrane Adsorbers<br />

18<br />

Remember when...<br />

Things change - now<br />

Sartobind ® Membrane Adsorbers<br />

Biotechnology Division<br />

•Matrix: stabilized <strong>and</strong> cross-linked cellulose >3µm<br />

pore size<br />

•Q,S,C,D <strong>and</strong> affinity lig<strong>and</strong>s (ProtA, IDA, pABA, etc)<br />

•Very low unspecific adsorption<br />

•High chemical resistance against solvents,acids <strong>and</strong><br />

caustic solutions <strong>and</strong> autoclaving


Membrane Adsorbers<br />

DNA removal<br />

...clears the DNA<br />

below detection limit<br />

.<br />

J. K. Walter,<br />

Boehringer-Ingelheim<br />

Pharma in:<br />

Bioseparation <strong>and</strong><br />

Bioprocessing, G.<br />

Subramanian (ed.)<br />

Wiley VCH, 1998, Vol.<br />

II p. 447-460<br />

19<br />

Remember when...<br />

Things change - now<br />

DNA (pg/mg<br />

protein)<br />

200<br />

100<br />

0<br />

After<br />

Affinity<br />

Step<br />

After DNA<br />

removal<br />

step<br />

Biotechnology Division<br />

Average <strong>of</strong> eight 2,000 liter batches using 70 ml Sartobind<br />

Average <strong>of</strong> three 12,500 liter batches using 500 ml Sartobind


Other examples <strong>of</strong> process use <strong>of</strong> membrane<br />

adsorbers<br />

� Martin J, “Case Study – Orthogonal Membrane <strong>Technologies</strong><br />

<strong>for</strong> Viral <strong>and</strong> DNA Clearance,” presented at SCI Membrane<br />

Chromatography Conference (2004).<br />

� Haber C et al, “Membrane chromatography <strong>of</strong> DNA:<br />

con<strong>for</strong>mation-induced capacity <strong>and</strong> selectivity,” Biotechnol<br />

Bioeng, 88(1) (2004).<br />

� Slepushkin V et al, “Large-scale <strong>Purification</strong> <strong>of</strong> a Lentiviral<br />

Vector by Size Exclusion Chromatography or Mustang Q Ion<br />

Exchange Capsule,” Bioprocessing Journal, Sep/Oct 2003.


BIOFLASH 12 <strong>and</strong> BIOFLASH 80<br />

Prepacked Columns<br />

Column Specifications<br />

Pressure Rating 10-20 bar<br />

w/ module 33 bar<br />

Diameters 1.2, 8, <strong>and</strong> 20 cm<br />

Bed Length 5 – 30 cm<br />

Bed Volume 5 mL – 5+ L<br />

Courtesy <strong>of</strong> BioSepTec, Inc.


High per<strong>for</strong>mance packing in a disposable<br />

<strong>for</strong>mat<br />

CM Toyopearl 650<br />

BioFlash 80<br />

(10 cm H)<br />

Efficiency measured using<br />

5% acetone in 0.1M NaCl<br />

as mobile phase.<br />

2.0 4.0 6.0 8.0<br />

minutes<br />

Courtesy <strong>of</strong> BioSepTec, Inc.<br />

Ret. Time 4.77<br />

Efficiency 823<br />

Assym. 1.03


Scale-up <strong>of</strong> recombinant protein separation on<br />

BioFlash pre-packed column<br />

A280<br />

A280<br />

70 80 90 100<br />

Peak <strong>of</strong> Interest<br />

Peak <strong>of</strong> Interest<br />

Ransoh<strong>of</strong>f, T et al, “Evaluation <strong>of</strong> BIOFLASH Prepacked Chromatography<br />

Columns <strong>for</strong> the Large-Scale <strong>Purification</strong> <strong>of</strong> EPI-HNE-4 Protein over<br />

MacroPrep High S Media,” Purdue Chrom. Workshop (1999)<br />

1M NaCl<br />

300<br />

200<br />

MM NaCl<br />

100<br />

1M NaCl<br />

300<br />

200<br />

MM NaCl<br />

100<br />

1 cm (D) x 10 cm (H)<br />

column<br />

BioFlash 80 (8 cm D) x<br />

10 cm (H)<br />

<strong>Purification</strong> <strong>of</strong> EPI-HNE-4 on<br />

Macroprep 25S at 100 cm/hr.


Introducing…<br />

<strong>The</strong> Millipore Pod Filter Plat<strong>for</strong>m<br />

� Improves process flexibility<br />

� Decreases processing time<br />

� More robust <strong>and</strong> scalable<br />

� Easier to setup <strong>and</strong> use<br />

� Minimizes product loss<br />

� Enhances operator safety<br />

� Reduces cleaning<br />

requirements<br />

� Improves process economics


Improved H<strong>and</strong>ling <strong>and</strong> Ease <strong>of</strong> <strong>Use</strong><br />

� Improved CIP <strong>of</strong> Hardware<br />

� Self-contained, disposable<br />

Pods<br />

� <strong>Disposable</strong> feed ports <strong>and</strong><br />

fittings<br />

� No product contact with<br />

endplates or process skid<br />

� Improved H<strong>and</strong>ling<br />

� No messy spent filters<br />

� Lightweight, easy to set up<br />

<strong>and</strong> use<br />

� No hoist or high ceiling<br />

required


Impact <strong>of</strong> increasing cell culture titer <strong>and</strong> scale<br />

on downstream processes<br />

� Cell culture titers <strong>of</strong> 4 g/L are now achievable <strong>for</strong> monoclonal<br />

antibodies:<br />

• Wurm F, “Production <strong>of</strong> recombinant protein therapeutics in cultivated<br />

mammalian cells,” Nature Biotechnology, 22(11) (2004).<br />

• Smith M, “Strategies <strong>for</strong> the purification <strong>of</strong> high titre, high volume mammalian<br />

cell culture batches,” presented at BioProcess International European<br />

Conference <strong>and</strong> Exhibition (2005).<br />

� New facilities are increasing bioreactor scale to 20+ m 3 to<br />

meet requirements <strong>of</strong> large volume products:<br />

• Lonza Portsmouth: 3 x 20,000 L (on-line) + 1 x 20,000 L (2006)<br />

• Genentech Vacaville CCP-2: 8 x 25,000 L (2009)<br />

� At 4 g/L, a 25,000 L bioreactor will yield 100 kg per batch<br />

� Increasing production scale <strong>and</strong> titers present challenges <strong>and</strong><br />

opportunities <strong>for</strong> downstream process operation


Current approaches to managing high volume<br />

processes<br />

� At 4 g/L, a 25,000 L bioreactor yields 100 kg per batch<br />

• At a loading capacity <strong>of</strong> 20 g/L during capture chromatography,<br />

− 8 cycles on a 2 m (ID) x 20 cm (H) column (CV ~ 630 L) are required<br />

− At 15 CV buffer per cycle, 75,000 L <strong>of</strong> buffer are needed per batch per<br />

chromatography step<br />

� Current approaches based on maximizing value <strong>of</strong> existing<br />

conventional technology approaches (cf Smith*):<br />

• On-line dilution to reduce buffer storage requirements<br />

• Move to more rigid capture media to achieve higher velocities on<br />

chromatography steps<br />

• Multiple chromatography cycles (5-20) per batch<br />

• Load chromatography columns at/near break-through<br />

• Optimize UF steps to improve utilization <strong>of</strong> membranes<br />

� <strong>The</strong>se approaches work, but may have a limited lifespan -><br />

parallel track investment in novel technologies<br />

* - Smith, M, “Strategies <strong>for</strong> the purification <strong>of</strong> high titre, high volume mammalian cell culture<br />

processes,” presented at BioProcess International European Conference <strong>and</strong> Exhibition (2005)


Obstacles <strong>and</strong> Future Possibilities


Potential obstacles to implementation <strong>of</strong><br />

disposable or alternative technologies<br />

� Cost<br />

� Extractables <strong>and</strong> Leachates<br />

� Inertia


Cost impact <strong>of</strong> disposable technologies<br />

� <strong>The</strong> use <strong>of</strong> disposable-<strong>for</strong>mat purification<br />

technology will generally:<br />

• Reduce capital costs<br />

• Reduce labor requirements <strong>for</strong> setup/cleaning/cleaning<br />

validation<br />

• Increase direct materials costs<br />

� <strong>The</strong> magnitude <strong>of</strong> the direct material cost impact<br />

<strong>for</strong> disposable chromatography is assessed <strong>for</strong> two<br />

situations:<br />

• Clinical manufacturing <strong>for</strong> an outsourced early-stage product<br />

• Commercial large-scale manufacturing


Typical project costs – development <strong>and</strong><br />

clinical manufacturing (CMO)<br />

Clinical Process <strong>and</strong> Analytical Development<br />

Activity Time Approximate Cost<br />

Cell Line Development (includes Vector<br />

Construction, Transfection, Selection,<br />

Identification <strong>of</strong> Final Clone)*<br />

4 – 6 months $150,000 – 500,000<br />

Master <strong>and</strong> Working Cell Bank Generation* 4 – 6 months $75,000 – 200,000<br />

Process Development 8 months $500,000 – 1,500,000<br />

Process Scale-up 3 months $300,000<br />

Analytical Development <strong>and</strong> Qualification 9 months $150,000<br />

Viral Clearance Validation* – (1-3 model<br />

virus)<br />

6 – 12 months $150,000 - $250,000<br />

TOTAL - ~ $1.5-3 million<br />

cGMP Manufacturing<br />

• Clinical engineering <strong>and</strong> cGMP mfg lots ~$400k – 600k per batch (bulk)<br />

• cGMP aseptic filling* <strong>of</strong> clinical lots ~$75k – 125k per lot<br />

* - Activities that are frequently sub-contracted to other service providers


Cost impact <strong>for</strong> disposable chromatography<br />

in clinical manufacturing<br />

Total Project Costs - Clinical Manufacturing Min Max<br />

Process/Analytical Development Costs $1,500 $3,000<br />

Total Manufacturing Costs $475 $2,525<br />

Cost per lot $400 $600<br />

# <strong>of</strong> bulk lots $1 $4<br />

Cost <strong>of</strong> DP mfg $75 $125<br />

TOTAL COSTS $1,975 $5,525<br />

Process Assumptions<br />

Scale 500 L<br />

Titer 1 g/L<br />

Yield 50%<br />

Output 0.5 g/L<br />

Clinical Requirements (g) 100 1000<br />

# <strong>of</strong> batches 1 4<br />

Media cost <strong>of</strong> using disposable capture affinity chromatography<br />

Assumptions<br />

Cost <strong>of</strong> media $10,000 per L<br />

# <strong>of</strong> cycles per lot 10<br />

Binding capacity 20 g/L<br />

Volume <strong>of</strong> media 2.5 L<br />

Cost <strong>of</strong> use as a disposable $25,000 $100,000<br />

As a % <strong>of</strong> Total Costs 1.3% 1.8%<br />

As a % <strong>of</strong> Manufacturing Costs 5.3% 4.0%<br />

Media cost <strong>of</strong> using disposable ion exchange chromatography<br />

Assumptions<br />

Cost <strong>of</strong> media $1,000 per L<br />

# <strong>of</strong> cycles per lot 10<br />

Binding capacity 30 g/L<br />

Volume <strong>of</strong> media 1.25 L<br />

Cost <strong>of</strong> use as a disposable $1,250 $5,000<br />

As a % <strong>of</strong> Total Costs 0.1% 0.1%<br />

As a % <strong>of</strong> Manufacturing Costs 0.3% 0.2%<br />

• With non-disposable approach, initial investment in media will be at least<br />

equivalent to single lot cost.<br />

• Benefits <strong>of</strong> using disposable chromatography approach may be significant<br />

enough in this application to justify modest additional operating costs:<br />

•Improved manufacturing efficiency<br />

•Improved process portability<br />

•Reduced risk <strong>of</strong> cross-contamination


Summary <strong>of</strong> COG estimates <strong>for</strong> a “typical”<br />

commercial-scale monoclonal antibody process<br />

Cost <strong>of</strong> Goods ($/g)<br />

$450.00<br />

$400.00<br />

$350.00<br />

$300.00<br />

$250.00<br />

$200.00<br />

$150.00<br />

$100.00<br />

$50.00<br />

$0.00<br />

Mam Cell (Mab) Process Cost v. Scale<br />

0 200 400 600 800 1000 1200<br />

Scale (kg/yr)


Cost impact <strong>for</strong> disposable chromatography<br />

in large-scale manufacturing<br />

Commercial Manufacturing Costs Min Max<br />

Total Manufacturing Costs ($M/yr) $40 $150<br />

Cost per gram $400 $150<br />

Annual requirements (kg/yr) 100 1,000<br />

Total Materials Costs ($M/yr) $5 $44<br />

Materials Costs as % <strong>of</strong> Total Costs 13% 29%<br />

Process Assumptions<br />

Scale 15000 L<br />

Titer 1.5 g/L<br />

Yield 60%<br />

Output 0.9 g/L<br />

# <strong>of</strong> batches/yr 8 75<br />

Media cost <strong>of</strong> using disposable capture affinity chromatography<br />

Assumptions<br />

Cost <strong>of</strong> media $10,000 per L<br />

# <strong>of</strong> cycles per lot 10<br />

Binding capacity 20 g/L<br />

Volume <strong>of</strong> media per batch 112.5 L<br />

Cost <strong>of</strong> use as a disposable ($M/yr) $9.0 $84.4<br />

Cost per g product produced ($/g) $90 $84<br />

As a % <strong>of</strong> Total Mfg Costs 22.5% 56.3%<br />

As a % <strong>of</strong> Total Matl Costs 173.1% 194.0%<br />

Media cost <strong>of</strong> using disposable ion exchange chromatography<br />

Assumptions<br />

Cost <strong>of</strong> media $1,000 per L<br />

# <strong>of</strong> cycles per lot 10<br />

Binding capacity 30 g/L<br />

Volume <strong>of</strong> media per batch 56.25 L<br />

Cost <strong>of</strong> use as a disposable ($M/yr) $0.5 $4.2<br />

Cost per g product produced ($/g) $5 $4<br />

As a % <strong>of</strong> Total Mfg Costs 1.1% 2.8%<br />

As a % <strong>of</strong> Total Matls Costs 8.7% 9.7%<br />

• Operating cost impact <strong>of</strong> disposable chromatography approach far greater<br />

in this application.<br />

• <strong>Alternative</strong> approaches required to significantly impact costs in large-scale<br />

commercial manufacturing


Extractables <strong>and</strong> leachates<br />

� Extractables <strong>and</strong> leachates are a potential concern with any<br />

disposable technology.<br />

� Level <strong>of</strong> concern increases as product purity increases.<br />

� Weidner presented work at Biogen Idec to address regulatory<br />

requests related to extractables:<br />

• Risk-based assessment <strong>of</strong> extractables based on<br />

− Process step<br />

− Contact time<br />

− Temperature<br />

− Solvent<br />

− Stage <strong>of</strong> development<br />

− Vendor provided in<strong>for</strong>mation on extractables <strong>and</strong> toxicological testing<br />

• Conduct extractable tests where warranted based on potential risk<br />

− Mass transfer principles guide test design<br />

− Analytical methods <strong>for</strong> quantification <strong>and</strong> identification appropriate to situation<br />

− Results assessed against acceptance criteria or by evaluation <strong>of</strong> toxicological risk<br />

Source: Weidner J “Validation Considerations <strong>for</strong> <strong>Disposable</strong> Components Components<br />

<strong>and</strong> Systems,” presented at the<br />

NC Biotech Symposium, RTP, NC Nov 18, 2004


Inertia: driving <strong>for</strong>ces against use <strong>of</strong> novel<br />

technology <strong>and</strong> approaches<br />

� <strong>The</strong>re are significant costs <strong>and</strong> risks associated with process<br />

innovation in any highly regulated industry<br />

• Conservative approach to implementation <strong>of</strong> new technologies<br />

• Security <strong>of</strong> supply is a concern that must be addressed<br />

� <strong>The</strong> complexity <strong>of</strong> biopharmaceutical processes provide<br />

additional challenges<br />

� <strong>The</strong>re is no good time to innovate: significant obstacles to<br />

implementation <strong>of</strong> new technologies exist at every stage <strong>of</strong><br />

development<br />

Result: New technologies <strong>of</strong>ten take longer than anticipated to<br />

implement, even when a compelling need exisits


Future trends<br />

� Increased use <strong>of</strong> disposable purification technologies,<br />

particularly in smaller volume processes, driven by:<br />

• Continued advances in <strong>and</strong> increased use <strong>of</strong> disposable systems across the<br />

biopharmaceutical manufacturing flowpath<br />

• Implementation <strong>of</strong> new materials that significantly reduce per liter costs <strong>and</strong> allow<br />

increased throughput, potentially including:<br />

− Cost-effective affinity media<br />

− Novel membrane materials <strong>and</strong> adsorptive separation supports<br />

� Increasing interest in alternative technologies <strong>and</strong> operating<br />

approaches <strong>for</strong> large-volume processes as optimization <strong>of</strong><br />

conventional technologies matures, including:<br />

• Operationg approaches that move away from “big batch” <strong>and</strong> towards continuous<br />

purification processes (e.g., SMB-like processes)<br />

• Integration <strong>of</strong> unit operations (i.e., semi-continuous capture <strong>and</strong> clarification)<br />

• Implementation <strong>of</strong> novel (to biotech) technologies <strong>and</strong> unit operations


Summary<br />

� Current existing technology meets some <strong>of</strong> the requirements<br />

<strong>for</strong> cost-effective disposable purification solutions<br />

• Membrane adsorbers<br />

• Pre-packed columns<br />

• <strong>Disposable</strong>-<strong>for</strong>mat systems<br />

� Trends in biopharmaceutical manufacturing are increasing the<br />

need <strong>for</strong> disposable or alternative purification technologies:<br />

• Increasing use <strong>of</strong> disposable technologies to reduce capital investment<br />

<strong>and</strong> product development times<br />

• Increasing titer <strong>and</strong> scale <strong>of</strong> monoclonal antibody cell culture production<br />

� <strong>The</strong> use <strong>of</strong> disposable <strong>and</strong> alternative purification technologies<br />

will increase as:<br />

• <strong>The</strong> trends towards disposable equipment <strong>and</strong> large volume processes<br />

continue<br />

• New technology <strong>and</strong> viable solutions are introduced that provide<br />

solutions more broadly <strong>for</strong> purification unit operations


Thank you!<br />

BioProcess Technology Consultants, Inc.<br />

289 Great Road, Suite 303<br />

Acton, MA 01720<br />

978 266-9154<br />

www.bioprocessconsultants.com


Carousel-type SMB evaluation <strong>of</strong> Protein A<br />

separation<br />

� Columns are mounted on a slowly rotating carousel<br />

� <strong>The</strong> columns on the carousel are connected to the pumps <strong>and</strong> vessels via a<br />

rotary valve<br />

� Switching mode simulates continuous adsorbent flow<br />

Courtesy <strong>of</strong> J. Thommes (Biogen Idec), from “Protein A Affinity Simulated Bed Chromatography <strong>for</strong> Continuous Monoclonal Antibody <strong>Purification</strong>,”<br />

Presented at Recovery <strong>of</strong> Biological Products XI Conference, Banff Canada (2003)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!