29.12.2012 Views

The Mount Costigan Zn–Pb–Ag Deposit, West-Central New ...

The Mount Costigan Zn–Pb–Ag Deposit, West-Central New ...

The Mount Costigan Zn–Pb–Ag Deposit, West-Central New ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MRR 2012-1: Paper 2<br />

(CD-ROM)<br />

Mineral Resource Report<br />

James A. Walker and Douglas Clark<br />

2012<br />

Energy and Mines<br />

Geological Surveys<br />

<strong>The</strong> <strong>Mount</strong> <strong>Costigan</strong> <strong>Zn–Pb–Ag</strong><br />

<strong>Deposit</strong>, <strong>West</strong>-<strong>Central</strong> <strong>New</strong><br />

Brunswick, Canada: Stratigraphic<br />

Setting and Evolution of Felsic<br />

Intrusion-Related Mineralization


MADAWASKA<br />

Edmundston<br />

Maine,<br />

U.S.A.<br />

Report<br />

area<br />

Figure preparation<br />

Editing, layout<br />

Translation<br />

Campbellton<br />

RESTIGOUCHE<br />

VICTORIA<br />

CARLETON<br />

Fredericton<br />

YORK<br />

CHARLOTTE<br />

Recommended citation<br />

Report prepared by<br />

NORTHUMBERLAND<br />

SUNBURY<br />

Saint<br />

John<br />

Bathurst<br />

GLOUCESTER<br />

Miramichi<br />

QUEENS<br />

KINGS<br />

KENT<br />

Sussex<br />

SAINT JOHN<br />

Moncton<br />

WESTMORLAND<br />

ALBERT<br />

NEW<br />

BRUNSWICK<br />

Terry Leonard, Gwen L. Martin<br />

Gwen L. Martin<br />

Mineral Resource Report 2012-1:<br />

Paper 2 (CD-ROM)<br />

<strong>The</strong> <strong>Mount</strong> <strong>Costigan</strong> <strong>Zn–Pb–Ag</strong><br />

<strong>Deposit</strong>, <strong>West</strong>-<strong>Central</strong> <strong>New</strong><br />

Brunswick, Canada: Stratigraphic<br />

Setting and Evolution of Felsic<br />

Intrusion-Related Mineralization<br />

CD-ROM Edition<br />

ISBN 978-1-55471-778-1<br />

ISSN 1911-7582<br />

Online Edition<br />

ISBN 978-1-55471-779-8<br />

ISSN 1717-1237<br />

Le Bureau de traduction, Ministère de l’Approvisionnement et des<br />

Services du Nouveau-Brunswick (Translation Bureau, <strong>New</strong> Brunswick<br />

Department of Supply and Services)<br />

Walker, J.A., and Clark, D. 2012.<strong>The</strong><strong>Mount</strong> <strong>Costigan</strong> <strong>Zn–Pb–Ag</strong><br />

deposit, west-central <strong>New</strong> Brunswick, Canada: stratigraphic setting and<br />

evolution of felsic intrusion-related mineralization. <strong>New</strong> Brunswick<br />

Department of Energy and Mines; Geological Surveys Branch, Mineral<br />

Resource Report 2012-1: Paper 2 (CD-ROM), 50 p.<br />

Geological Surveys Branch<br />

<strong>New</strong> Brunswick Department of Energy and Mines<br />

Hon. Craig Leonard<br />

Minister of Energy and Mines<br />

October 2012


i<br />

TABLE OF CONTENTS<br />

LIST OF FIGURES AND TABLES.......................................................................................................... i<br />

ABSTRACT..................................................................................................................................... iii<br />

RÉSUMÉ........................................................................................................................................ iv<br />

INTRODUCTION ...............................................................................................................................1<br />

EXPLORATION HISTORY ..................................................................................................................1<br />

REGIONAL GEOLOGY ......................................................................................................................3<br />

DEPOSIT STRATIGRAPHY ................................................................................................................8<br />

LITHOGEOCHEMISTRY ...................................................................................................................11<br />

<strong>Mount</strong> <strong>Costigan</strong> <strong>Deposit</strong>..........................................................................................................12<br />

Felsic Volcanic Rocks .........................................................................................................12<br />

Mafic Dyke ..........................................................................................................................16<br />

Sedimentary Rocks .............................................................................................................16<br />

Lewis Brook Occurrence.........................................................................................................16<br />

Felsic Volcanic Rocks .........................................................................................................16<br />

Mafic Volcanic Rocks..........................................................................................................17<br />

Redstone <strong>Mount</strong>ain Granite ....................................................................................................17<br />

HYDROTHERMAL ALTERATION .......................................................................................................18<br />

MINERALIZATION...........................................................................................................................22<br />

SAMPLE ANALYSES.......................................................................................................................25<br />

Sulphur Isotope Analysis ........................................................................................................25<br />

Radiogenic Lead Isotope Analysis..........................................................................................27<br />

DISCUSSION .................................................................................................................................30<br />

CONCLUSIONS..............................................................................................................................34<br />

ACKNOWLEDGEMENTS ..................................................................................................................44<br />

REFERENCES ...............................................................................................................................44<br />

LIST OF FIGURES AND TABLES<br />

Figure 1 Location of the <strong>Mount</strong> <strong>Costigan</strong> deposit and other significant base metal<br />

sulphide deposits within the Chaleur Bay Synclinorium of west-central <strong>New</strong><br />

Brunswick. ............................................................................................................ 2<br />

Figure 2 Geology map of the <strong>Mount</strong> <strong>Costigan</strong> deposit, showing the distribution<br />

of diamond-drillhole collars and traces, trenches, and mineralization. ................... 4<br />

Figure 3 Cross-section A–A’ through the <strong>Mount</strong> <strong>Costigan</strong> deposit....................................... 5<br />

Figure 4 Samples of the Redstone <strong>Mount</strong>ain Granite. ........................................................ 7<br />

Figure 5 Rhyolitic host rocks of the <strong>Mount</strong> <strong>Costigan</strong> deposit. ............................................. 9<br />

Figure 6 Pyroclastic volcanic rocks intersected during drilling at the <strong>Mount</strong> <strong>Costigan</strong><br />

deposit. .............................................................................................................. 10<br />

Figure 7 Sedimentary rocks and peperite from the <strong>Mount</strong> <strong>Costigan</strong> area. ......................... 11


ii<br />

Figure 8 Major-element lithogeochemical discrimination diagrams for rocks from the<br />

<strong>Mount</strong> <strong>Costigan</strong>–Lewis Brook area . ................................................................... 13<br />

Figure 9 Trace-element lithogeochemical discrimination diagrams for rocks from the<br />

<strong>Mount</strong> <strong>Costigan</strong>–Lewis Brook area...................................................................... 14<br />

Figure 10 Rare-earth-element data for rocks from the <strong>Mount</strong> <strong>Costigan</strong>–Lewis Brook<br />

area. ................................................................................................................... 15<br />

Figure 11 Graphic presentation of mass balance data for host rocks from the <strong>Mount</strong><br />

<strong>Costigan</strong> deposit. ................................................................................................ 20<br />

Figure 12 Hydrothermal alteration in rocks from the <strong>Mount</strong> <strong>Costigan</strong> deposit. .................... 21<br />

Figure 13 Mineralization and alteration in drill core samples from the <strong>Mount</strong> <strong>Costigan</strong><br />

deposit. .............................................................................................................. 23<br />

Figure 14 a) Pb–Cu–Zn ternary diagram for assay data from the <strong>Mount</strong> <strong>Costigan</strong><br />

deposit. b) W versus Sn diagram for data from the <strong>Mount</strong> <strong>Costigan</strong> deposit,<br />

Lewis Brook occurrence, and Redstone <strong>Mount</strong>ain Granite. ................................. 25<br />

Figure 15 Seawater sulphur isotope curve through time, showing the δ 34 S content of<br />

marine evaporites, barite, and pyrite from the Selwyn Basin. ............................. 28<br />

Figure 16 Radiogenic lead isotope diagrams for host rocks and mineralization from<br />

the <strong>Mount</strong> <strong>Costigan</strong>, Shingle Gulch, and Sewell Brook deposits. ........................ 29<br />

Figure 17 Schematic diagram showing the inferred relationship between the <strong>Mount</strong><br />

<strong>Costigan</strong> deposit and the Lewis Brook occurrence, and the similarity of the<br />

<strong>Mount</strong> <strong>Costigan</strong> deposit to part of the Cordilleran epithermal Au–Ag deposit<br />

model of Panteleyev (1988)................................................................................ 32<br />

Note: Tables 1 to 3 contained multi-page lithogeochemical data and are compiled<br />

at the end of this report. Tables 4 to 6 appear in the text, where cited.<br />

Table 1 Lithogeochemical data for SLAM Exploration Ltd. drill cores and trenches at<br />

the <strong>Mount</strong> <strong>Costigan</strong> deposit. ............................................................................... 36<br />

Table 2 Lithogeochemical data for the Lewis Brook occurrence (<strong>Costigan</strong><br />

<strong>Mount</strong>ain Formation), and average values for the River Dee rhyolite and<br />

River Dee basalt (Wapske Formation)................................................................. 40<br />

Table 3 Lithogeochemical data for the Redstone <strong>Mount</strong>ain Granite collected during<br />

this investigation and compiled from previously published data of Whalen<br />

(1993).................................................................................................................. 43<br />

Table 4 Microprobe analyses for points on sample CM08-8-54 m. ................................... 19<br />

Table 5 Sulphur isotope data for bulk sulphides, and sphalerite and galena separates,<br />

from the <strong>Mount</strong> <strong>Costigan</strong> deposit......................................................................... 26<br />

Table 6 Temperatures of formation calculated from δ 34 S data for sphalerite and galena<br />

separates from the <strong>Mount</strong> <strong>Costigan</strong> deposit. ........................................................... 27


iii<br />

ABSTRACT<br />

<strong>Mount</strong> <strong>Costigan</strong> is the largest of several <strong>Zn–Pb–Ag</strong> sulphide deposits hosted by Early<br />

Devonian felsic volcanic rocks of the Tobique Group in the Chaleur Bay Synclinorium<br />

of west-central <strong>New</strong> Brunswick. <strong>The</strong> host sequence at <strong>Mount</strong> <strong>Costigan</strong> consists of high<br />

silica (70–76% SiO2), sparsely feldspar–phyric to aphyric rhyolite flows and breccia,<br />

intercalated felsic lithic- and crystal–lithic-lapilli tuff, and subordinate fine-grained<br />

clastic sedimentary rocks. <strong>The</strong> mineralized zone has a strike length of ~200 m and a<br />

width of up to 300 m, and has been intersected up to 300 m below surface. A historical<br />

resource estimate suggests a mass of mineralized rock of 6–8 Mt. Recent work has<br />

shown that, within this envelope, a subvertical to very steeply east-dipping zone<br />

contains a geological resource of ~0.9 Mt of 4–5% Zn + Pb.<br />

Mineralization is entirely epigenetic. It occurs as stratabound, finely disseminated grains<br />

and coarse patches within lithic tuff, and as massive sulphide veins and veinlets crosscutting<br />

rhyolitic flows. Sulphide mineralogy is dominated by reddish brown to pale<br />

yellow sphalerite (without chalcopyrite inclusions) and subordinate galena, with Zn/Pb<br />

~2. Pyrite is subordinate to sphalerite, and trace chalcopyrite is present. Elevated<br />

levels of silver (up to 132 g/t) and gold (up to 1.88 g/t), as well as anomalous Sn, Sb,<br />

and W, are present within the mineralized zone; however, no minerals have been<br />

identified in which these elements are primary constituents. <strong>The</strong> δ 34 S for bulk sulphide<br />

in the upper 100 m of the deposit is tightly constrained between 9.2‰ and 9.9‰ and is<br />

coincident with sulphide in equilibrium with Early Devonian seawater. A slightly lower<br />

δ 34 S (7.38‰) from deeper in the system (187 m) implies a larger percentage of<br />

magmatic sulphur at depth.<br />

<strong>The</strong> <strong>Mount</strong> <strong>Costigan</strong> mineralization is interpreted to have formed below the seafloor as<br />

a result of mixing metal-rich, magmatically derived ascending fluids with seawater that<br />

moved laterally through permeable pyroclastic rocks. <strong>The</strong> source of these metal-rich<br />

fluids may have been the nearby subvolcanic Redstone <strong>Mount</strong>ain Granite. <strong>The</strong><br />

subsurface precipitation of sulphides at temperatures of ~200°C allowed the<br />

development of a relatively coarse grain size. <strong>The</strong> relative lack of brecciation in<br />

deeper parts of the system implies that confining pressure inhibited separation of a<br />

gas phase (i.e., boiling). This model is supported by the recognition of undisrupted and<br />

unmineralized sedimentary units that crossed the core of the mineralized zone, units<br />

that apparently behaved as local barriers to upward egress of mineralizing fluids.<br />

However, the flow of fluids to shallower levels and the concomitant decrease in<br />

confining pressure did allow boiling in the upper part of the system, as indicated by the<br />

development of hydrothermal breccias.


iv<br />

RÉSUMÉ<br />

Le mont <strong>Costigan</strong> abrite le plus important de plusieurs gisements de sulfures de <strong>Zn–Pb–Ag</strong><br />

que renferment les roches felsiques du groupe de Tobique du début du Dévonien, dans le<br />

synclinorium du Centre-Ouest du Nouveau-Brunswick. La succession de roches<br />

encaissantes du mont <strong>Costigan</strong> comprend des unités à haute teneur en silice (70 à 76 % de<br />

SiO2), des coulées et des brèches rhyolitiques éparses à phénocristaux de feldspath<br />

aphyrique, ainsi que des strates de tuf felsique lithique et cristallin lithique et à lapilli, et des<br />

roches clastiques sédimentaires à grains fins subordonnées. La direction de la zone<br />

minéralisée s’étend sur un axe de plus ou moins 200 m et a une largeur qui peut atteindre<br />

300 m. La minéralisation a été interceptée à une profondeur qui peut atteindre 300 m sous<br />

la surface. Une ancienne estimation des ressources a établi un volume de roches<br />

minéralisées qui se situe entre 6 et 8 Mt. Des travaux récents ont indiqué que dans cette<br />

enveloppe, une zone caractérisée par un pendage subvertical à un angle abrupt vers l’est<br />

contiendrait une ressource géologique de 4 à 5 % de Zn-Pb de plus ou moins 0,9 Mt.<br />

La minéralisation est d’origine entièrement épigénétique. Elle se présente sous forme de grains<br />

fins stratoïdes et de bancs à grains grossiers encaissés dans du tuf lithique et sous forme de<br />

filons de sulfures massifs, et de filonnets de coulées rhyolitiques transversales. La minéralogie<br />

des sulfures se caractérise principalement par de la sphalérite brun rouge à jaune pâle<br />

(sans inclusion de chalcopyrite) et de la galène subordonnée, accompagnée de plus ou<br />

moins 2 éléments de Zn/Pb. La pyrite est subordonnée à la sphalérite et de la chalcopyrite<br />

est présente à l’état de trace. Des teneurs élevées d’argent (jusqu’à 132 g/t) et d’or (jusqu’à<br />

1,88 g/t), et des anomalies de Sn, Sb et de W sont observées dans la zone minéralisée.<br />

Toutefois, aucun minéral dont ces éléments seraient les principaux composants n’a été relevé.<br />

La valeur de δ 34 S du sulfure massif pour les premiers 100 m du gisement à partir de la surface<br />

se situe très exactement entre 9,2 ‰ et 9,9 ‰ et elle correspond à la présence équilibrée de<br />

sulfure dans l’eau de mer du début du Dévonien. Une valeur légèrement plus faible de δ 34 S<br />

(7,38 ‰) observée plus en profondeur dans la minéralisation (187 m) laisse présager un<br />

pourcentage plus important de sulfure d’origine magmatique en profondeur.<br />

La minéralisation du mont <strong>Costigan</strong> serait apparue sous le fond de l’océan et résulterait d’un<br />

mélange entre, d’une part, de l’eau de mer en déplacement latéral à travers des roches<br />

pyroclastiques perméables et, d’autre part, des fluides ascendants métallifères d’origine<br />

magmatique. Ces fluides ont pu provenir du granite subvolcanique voisin du mont<br />

Redstone. La précipitation de subsurface des sulfures à une température de plus ou moins<br />

200 °C a provoqué l’apparition de grains relativement grossiers. L’absence relative de<br />

bréchification dans les zones plus profondes du système porte à croire que la pression de<br />

confinement a empêché une séparation de phase gazeuse (c’est-à-dire l’ébullition). Ce<br />

modèle d’interprétation est corroboré par la reconnaissance d’unités sédimentaires intactes<br />

et non minéralisées qui ont traversé le coeur de la zone minéralisée, et d’unités qui ont<br />

semble-t-il agi par endroits comme une barrière et bloqué la migration vers la surface des<br />

fluides de minéralisation. Par ailleurs, l’écoulement de fluides vers des zones moins<br />

profondes et la pression de confinement plus faible qui l’accompagnait ont permis l’ébullition<br />

dans la partie supérieure de la minéralisation, comme l’atteste l’apparition de brèches<br />

hydrothermales.


INTRODUCTION<br />

1<br />

<strong>The</strong> <strong>Mount</strong> <strong>Costigan</strong> deposit, Unique Reference Number (URN) 720 in the <strong>New</strong> Brunswick<br />

Department of Natural Resources (NBDNR) Mineral Occurrence Database (Rose and<br />

Johnson 1990; NBDNR 2011), is located approximately 30 km east-northeast of the village of<br />

Plaster Rock, on the east slope of <strong>Costigan</strong> <strong>Mount</strong>ain in west-central <strong>New</strong> Brunswick (Fig. 1).<br />

<strong>The</strong> deposit is the largest <strong>Zn–Pb–Ag</strong> sulphide accumulation recognized within the southern<br />

Chaleur Bay Synclinorium (Fig. 1, inset). <strong>The</strong> synclinorium also contains the Shingle Gulch<br />

and Sewell Brook deposits (URN 102 and URN 986, respectively; Fig. 1) and has a reported<br />

historical (non-NI 43-101-compliant) tonnage estimate of 6–8 Mt (Fyffe and Pronk 1985).<br />

Although the deposit was discovered in the early 1970s, it has not previously benefitted from<br />

detailed mineral deposit studies, primarily because of the lack of sufficient, good-quality drill<br />

core. However, recent drilling by SLAM Exploration (Clark 2004, 2008) has provided cores<br />

sufficient for the stratigraphic and metallogenic assessment presented herein.<br />

<strong>The</strong> purpose of this investigation is three-fold: 1) to document the position of the deposit within<br />

the volcanosedimentary stratigraphy of the Tobique Group, 2) to document the style of<br />

mineralization and related hydrothermal alteration, and 3) to formulate a model explaining<br />

deposit genesis in order to aid industry in the search for similar deposits.<br />

EXPLORATION HISTORY<br />

<strong>The</strong> first documented indication of mineralization in the <strong>Costigan</strong> <strong>Mount</strong>ain area occurred in<br />

1954, when the area was highlighted for its anomalous Pb and Zn in a regional stream<br />

sediment survey (<strong>Mount</strong> <strong>Costigan</strong> Mines 1955). Follow-up work, including soil geochemical<br />

and self-potential surveys, outlined anomalous areas but failed to identify in situ mineralization<br />

(MacLean 1963). Likewise, soil geochemical surveys conducted by Silcan Mines Ltd. failed to<br />

identify in situ mineralization (Riddell 1971).<br />

<strong>The</strong> <strong>Mount</strong> <strong>Costigan</strong> deposit (Fig. 2, 3) was discovered by Amoco Ltd. in 1973 while the<br />

company conducted induced-polarization (IP) surveys as a follow-up to earlier work (Maingot<br />

1974). In 1975 Amoco established a grid, conducted soil geochemical and IP surveys, and<br />

drilled holes NBTO-1 to NBTO-5 (Bjornson 1975). Drillholes NBTO-6 to NBTO-25 were put<br />

down in 1976 (Fig. 2), but only holes NBTO-22 through NBTO-25 were filed for assessment<br />

(Bjornson 1976). Holes NBTO-26 to NBTO-28 were drilled in 1977 (Bjornson 1977). Lac<br />

Minerals optioned the <strong>Mount</strong> <strong>Costigan</strong> property in the early 1980s and conducted<br />

magnetometer and electromagnetic (VLF) surveys (Lavoie 1982), followed by the relogging of<br />

Amoco’s previously drilled cores, additional magnetometer and VLF surveys, trenching, and<br />

mapping (Crevier 1983). Lac Minerals drilled holes LCO-1 to LCO-10, totalling 1977 m in and<br />

around the area of mineralization in 1983 (Crevier and Gravel 1983; Crevier 1984). Collar<br />

locations for all the above holes are given in Fyffe and Pronk (1985). Later drilling by Lac<br />

Minerals consisted of five drillholes (LCO84-1 through LCO84-5) that totalled 996 m (Crevier<br />

1985). Geochemical samples collected from previously reported drill cores were assayed for<br />

Cu, Pb, Zn, Ag, and Au (Lac Minerals 1989).


Map<br />

area<br />

Maine,<br />

U.S.A.<br />

o<br />

46 59’00”<br />

Campbellton<br />

CVGS<br />

0 100 km<br />

APA<br />

BMC<br />

Saint<br />

John<br />

CARBONIFEROUS<br />

Terrestrial<br />

sedimentary rocks<br />

EARLY DEVONIAN<br />

Redstone <strong>Mount</strong>ain<br />

Granite<br />

Mafic intrusions<br />

Rocky Brook–<br />

Millstream<br />

Fault<br />

Bathurst<br />

Miramichi<br />

Moncton<br />

Fredericton<br />

CVGS<br />

Connecticut Valley–<br />

Gaspé Synclinorium<br />

APA<br />

Miramichi<br />

Anticlinorium<br />

(Ganderia)<br />

Elmtree Inlier<br />

DW<br />

Chaleur Bay<br />

Synclinorium<br />

BMC<br />

Bathurst<br />

Mining Camp<br />

Aroostook–Percé<br />

Anticlinorium<br />

Plaster Rock<br />

0 8 km<br />

Area of<br />

Figure 2<br />

Tobique Group<br />

Wapske Formation<br />

2<br />

Sewell<br />

Brook<br />

Marine sedimentary rocks<br />

Mainly felsic volcanic rocks<br />

Mainly mafic volcanic rocks<br />

<strong>Costigan</strong> <strong>Mount</strong>ain Formation<br />

Mainly felsic volcanic rocks<br />

Mainly mafic volcanic rocks<br />

Shingle<br />

Gulch<br />

412.5 ± 2 Ma<br />

<strong>Mount</strong><br />

<strong>Costigan</strong><br />

Lewis<br />

Brook<br />

LATE SILURIAN<br />

North Pole Stream Granite<br />

CAMBRO–ORODOVICIAN<br />

Miramichi Anticlinorium<br />

Unconformity, fault<br />

Base metal sulphide deposit<br />

Syncline, anticline<br />

Figure 1. Location of the <strong>Mount</strong> <strong>Costigan</strong> deposit in west-central <strong>New</strong> Brunswick, showing other<br />

significant base metal sulphide deposits within the Chaleur Bay Synclinorium (see inset). (Geology<br />

modified from Fyffe and Pronk 1985; Wilson 1990; Smith and Fyffe 2006a, 2006b.)<br />

67 00’00”<br />

o<br />

River Dee<br />

volcanic<br />

rocks<br />

Shingle<br />

Gulch East<br />

Trousers<br />

Lake<br />

U–Pb (zircon) radiometric<br />

age (Wilson et al. 2004)


3<br />

Taylor and Associates acquired the property in 1984 and carried out a VLF survey on the<br />

deposit (Taylor 1995). Chapleau Resources optioned the property in 1996 and conducted a<br />

soil geochemical survey (Turner 1996a), magnetometer and VLF surveys, and geological<br />

mapping (Turner 1996b). In 1998 previously unreported diamond drilling by Chapleau<br />

Resources (drillholes MC97-1 through MC97-3, totalling 750.1 m) and results of a soil<br />

geochemical survey and geological mapping were filed by Taylor and Associates (Walker<br />

1998). <strong>The</strong> current (2012) property holder, SLAM Exploration Ltd., acquired the property in<br />

2003. That company drilled 475.2 m of core in three diamond drillholes (CM03-1 through<br />

CM03-3) (Clark 2004) and in 2008 drilled an additional 11 holes (CM08-04 through CM08-14),<br />

totalling 2768 m (Clark 2008). In addition to being described in the assessment files cited<br />

above, the <strong>Mount</strong> <strong>Costigan</strong> deposit was briefly discussed in Fyffe and Pronk (1985) and was<br />

the subject of a M.Sc. thesis by Cox (1990).<br />

Most of the core drilled during the early exploration campaigns (i.e., those conducted by<br />

Amoco Ltd. and Lac Minerals) has been lost, and only a few of the smaller diameter, handsplit<br />

cores from the LCO series of holes are preserved at the Provincial Government core<br />

storage facility in Madran, northeast <strong>New</strong> Brunswick. However, the larger diameter (NQ) cores<br />

obtained by SLAM Exploration are stored at Madran and at the SLAM Exploration core shed<br />

in Beresford. <strong>The</strong> present report is based on the material collected from, and observations<br />

made using, these drill cores as well as on information compiled from the assessment data.<br />

REGIONAL GEOLOGY<br />

<strong>The</strong> <strong>Mount</strong> <strong>Costigan</strong> area is underlain by rocks that are part of the Chaleur Bay Synclinorium,<br />

which extends from the south shore of the Gaspé Peninsula (Québec) for approximately 250<br />

km to the southwest. <strong>The</strong> Chaleur Bay Synclinorium is divided into northern and southern<br />

parts by the Rocky Brook–Millstream Fault (Fig. 1, inset). North of this structure, the<br />

synclinorium contains sequences of Silurian clastic and carbonate sedimentary rocks, and<br />

felsic and mafic volcanic rocks, which are included in the Quinn Point, Dickie Cove, Petit<br />

Rocher, and Chaleurs groups (Irrinki 1990; Wilson and Kamo 2012). <strong>The</strong>se sequences are<br />

overlain by Early Devonian mafic and felsic volcanic and sedimentary rocks of the Dalhousie<br />

Group. Silurian rocks are largely absent to the south of the Rocky Brook–Millstream Fault,<br />

where the Chaleur Bay Synclinorium instead is underlain mainly by Early Devonian volcanic<br />

and sedimentary rocks of the Tobique Group (St. Peter 1978a, 1978b; Fyffe and Pronk 1985;<br />

Wilson 1990, 1992).<br />

<strong>The</strong> volcanic and sedimentary rocks of the Chaleur Bay Synclinorium are interpreted to have<br />

been deposited in a transtensional tectonic setting initiated by sinistral and dextral oblique<br />

convergence of the microcontinents of Ganderia (Miramichi Anticlinorium; Fig 1, inset) and<br />

Avalonia (located along the Bay of Fundy, southern <strong>New</strong> Brunswick) with the continental<br />

margin of Laurentia in the Silurian to Early Devonian, respectively (Dostal et al. 1989; van<br />

Staal and de Roo 1995; van Staal et al. 2009). This interpretation is supported by the overall<br />

bimodal nature of volcanism, although volumetrically significant volcanic rocks of intermediate<br />

composition occur locally. <strong>The</strong> observation that felsic rocks are most abundant near the base


o<br />

46 59’00”<br />

67 01’00”<br />

67 03’00”<br />

o<br />

o<br />

LCO-6<br />

NBTO-20<br />

NBTO-19<br />

NBTO-21<br />

<strong>Mount</strong> <strong>Costigan</strong><br />

671 m above<br />

sea level<br />

NBTO-18<br />

CM03-1<br />

LCO84-3<br />

A<br />

LCO84-1<br />

LCO84-5<br />

A’<br />

LCO84-2<br />

LCO84-4<br />

Area of<br />

inset map<br />

MC97-1<br />

NBTO-5<br />

o<br />

flat or 90 dip<br />

LCO-2<br />

MC97-2<br />

LCO-1<br />

CM03-3<br />

some volcanic<br />

fragments<br />

LCO-10<br />

NBTO-2<br />

4<br />

NBTO-1<br />

CM03-2<br />

LCO-3<br />

NBTO-4<br />

NBTO-3<br />

LCO-4<br />

NBTO -1 to -28: Amoco (1975–78)<br />

Porphyritic felsic flows<br />

LCO-1 to -10: Lac Minerals (1983)<br />

Felsic lithic-lapilli tuff<br />

NBTO-23<br />

NBTO-26<br />

NBTO-7<br />

CM03-1 to -3: SLAM Expl. (2003)<br />

NBTO-12<br />

LCO-8<br />

CM08-4 to -14: SLAM Expl. (2008)<br />

Felsic crystal tuff<br />

NBTO-28<br />

CM08-13<br />

CM03-1<br />

CM08-05<br />

NBTO-15<br />

NBTO-25<br />

Line of section,<br />

drillhole<br />

Grey to black siltstone<br />

and sandstone; locally<br />

fossiliferous<br />

NBTO-22<br />

CM08-8NBTO-14<br />

CM08-9<br />

CM08-10<br />

NBTO-9<br />

CM08-7<br />

NBTO-6<br />

CM08-4<br />

TNB79-4<br />

NBTO-10<br />

NBTO-11<br />

TNB79-1<br />

CM08-14<br />

CM08-6<br />

Mafic volcanic rocks<br />

TNB79-2<br />

Stream, road<br />

Area of mineralization<br />

125 m<br />

LCO-9<br />

NBTO-24<br />

NBTO-13<br />

NBTO-16<br />

TNB79-3<br />

NBTO-27<br />

o<br />

46 58’00”<br />

NBTO-17<br />

NBTO-8<br />

Figure 2. Geology map of the <strong>Mount</strong> <strong>Costigan</strong> deposit, with diamond-drillhole collars and traces, trenches, and limits of surface mineralization.<br />

Figure 1 shows the location of this figure; Figure 3 shows cross-section A–A'. (Geology adapted from Fyffe and Pronk 1985; Clark 2008.)


A’<br />

Zone of quartz–<br />

carbonate veining<br />

A<br />

CM08-9<br />

NBTO-9<br />

NBTO-6<br />

NBTO-17<br />

NBTO-10<br />

CM08-10<br />

NBT0-11<br />

CM03-1<br />

NBTO-25<br />

Projected<br />

from south<br />

NBTO-22<br />

Projected<br />

from north<br />

LCO84-2<br />

LCO84-1<br />

NBTO-5<br />

LCO84-3<br />

5<br />

LCO-9<br />

0 200 m<br />

Drillhole in plane of section<br />

Overburden Coarse lithic tuff<br />

Pyroclastic<br />

tuffs<br />

Core Zone (>4% Zn + Pb)<br />

Crystal–lithic tuff<br />

Drillhole projected<br />

Fine-grained clastic sedimentary rocks<br />

Rhyolitic flows<br />

Drillhole interval projected<br />

Limit of mineralization<br />

Fragmental rocks associated with<br />

massive flows (carapace/sole breccia)<br />

Figure 3. Cross-section A–A’ through the <strong>Mount</strong> <strong>Costigan</strong> deposit, looking north-northeasterly (modified from Clark 2008). Figure 2 shows the<br />

location of this cross-section.


6<br />

but give way upsection to dominantly mafic volcanic rocks is interpreted to reflect the<br />

transition from 1) initial rifting with low percentage partial melting of lower crust followed by<br />

magma generated from higher percentage partial melts, to 2) mafic magmas generated in the<br />

upper mantle.<br />

<strong>The</strong> Tobique Group is divided into two formations: 1) the <strong>Costigan</strong> <strong>Mount</strong>ain Formation, which<br />

hosts the <strong>Mount</strong> <strong>Costigan</strong> deposit and the Lewis Brook <strong>Zn–Pb–Ag</strong> occurrence (Fig. 1), and<br />

2) the gradationally overlying Wapske Formation (St. Peter 1978a). <strong>The</strong>se formations contain<br />

similar rock types but differ in their relative proportion of sedimentary and volcanic strata. <strong>The</strong><br />

<strong>Costigan</strong> <strong>Mount</strong>ain Formation comprises ~3000 m of dominantly felsic volcanic rock consisting<br />

of pink, light grey, or light green quartz–feldspar porphyry, rhyolitic ash-flow tuff, lapilli tuff and<br />

breccia, and flow-layered rhyolite. <strong>The</strong> felsic volcanic rocks are intercalated with lesser marine<br />

shale, siltstone, and quartzose to lithic sandstone, and subordinate mafic volcanic rocks. <strong>The</strong><br />

Wapske Formation comprises a 7900 m thick sequence of locally pillowed mafic lavas and<br />

related volcanic rocks interlayered with abundant marine sedimentary rocks (shale, siltstone,<br />

and quartzose to lithic sandstone) and minor felsic volcanic rocks<br />

As originally defined by St. Peter (1978a), an isochronous contact between the <strong>Costigan</strong><br />

<strong>Mount</strong>ain and Wapske formations was inferred, but later faunal evidence showed that they<br />

were only partly coeval: that is, they had a diachronous relationship (Han and Pickerill 1994).<br />

Mapping by Wilson (1990) indicates that the felsic volcanic rocks of the <strong>Costigan</strong> <strong>Mount</strong>ain<br />

Formation can be traced only as far north as Trousers Lake (Fig. 1). <strong>The</strong> current report places<br />

the contact between these two formations on the west side of the large felsic volcanic pile that<br />

hosts the <strong>Mount</strong> <strong>Costigan</strong> deposit, approximately 6 km west of the Tobique Group–Redstone<br />

<strong>Mount</strong>ain Granite contact. Assuming an average westerly dip of 35° for the Tobique Group,<br />

the contact is approximately 3.4 km stratigraphically above the base of the Tobique Group<br />

(Fig. 1).<br />

Age control on the Tobique Group is based on paleontological data that consistently yield an<br />

Early Devonian age (St Peter 1978a; Wilson 1990; Boucout and Wilson 1994). A U–Pb<br />

(zircon) age of 412.5 ± 2.0 Ma (Wilson et al. 2004) was obtained from a rhyolite located<br />

approximately 3.5 km along strike to the north-northwest of the <strong>Mount</strong> <strong>Costigan</strong> deposit (Fig.<br />

1). Silicified felsic lapilli tuff collected from trenches on the west side of the <strong>Mount</strong> <strong>Costigan</strong><br />

deposit yielded a K–Ar age of 373 ± 19 Ma (Fyffe and Pronk 1985). This younger age<br />

estimate likely reflects a later thermal resetting of the radiometric clock attributable to<br />

Devonian pluton emplacement.<br />

<strong>The</strong> felsic volcanic rocks hosting the <strong>Mount</strong> <strong>Costigan</strong> deposit are part of the <strong>Costigan</strong><br />

<strong>Mount</strong>ain Formation and therefore are considered to be among some of the oldest felsic<br />

volcanic rocks in the Tobique Group. Regional mapping suggests that the lowermost strata of<br />

the Tobique Group lie with faulted unconformity against Cambro–Ordovician rocks of the<br />

Miramichi Anticlinorium (Fig. 1). However, immediately east and for some distance south of<br />

the deposit, the contact relationship between the Tobique Group and the Cambro–Ordovician


7<br />

Figure 4. Samples of the Redstone <strong>Mount</strong>ain Granite, showing the porphyritic phase (left and<br />

right) and the microgranitic phase (centre). Pen is 14.5 cm long.<br />

rocks is obscured by the Redstone <strong>Mount</strong>ain Granite, which apparently sutures this contact<br />

(Fyffe and Pronk 1985).<br />

<strong>The</strong> Redstone <strong>Mount</strong>ain Granite is a pink to scarlet red, medium-grained, biotite–amphibole<br />

granite that has been traced some 15 km along the boundary between the Miramichi<br />

Anticlinorium and Chaleur Bay Synclinorium (Whalen 1993). However, within the intrusion<br />

there is significant variation in grain size. Work during this investigation suggests the<br />

occurrence of at least three distinct phases, but outcrop distribution is insufficient to delineate<br />

phase boundaries. <strong>The</strong> three phases are 1) a fine-grained red microgranite, 2) a fine-grained<br />

intermediate phase bordering mafic dikes, and 3) a quartz–feldspar porphyry<br />

(Fig. 4). Both<br />

the red microgranite and the quartz–feldspar porphyry contain a small percentage of<br />

ferromagnesian minerals (mostly biotite). Near the southern limit of the pluton, in the vicinity<br />

of Redstone <strong>Mount</strong>ain, the intrusion becomes coarser grained and contains a much higher<br />

percentage of ferromagnesian minerals.<br />

This intrusion has yielded a Rb–Sr age of 409 ± 25 Ma (Fyffe and Pronk 1985); however,<br />

apparent hornfelsing of the intrusion in proximity to the North Pole Stream Granite (417<br />

± 1 Ma) suggests an emplacement age of not younger than 417 Ma (Fyffe and Pronk 1985;<br />

Whalen 1993).


DEPOSIT STRATIGRAPHY<br />

8<br />

<strong>The</strong> <strong>Mount</strong> <strong>Costigan</strong> deposit is hosted by rocks of the Early Devonian <strong>Costigan</strong> <strong>Mount</strong>ain<br />

Formation (Fig. 1). <strong>The</strong> lower part of the stratigraphic section is dominated by mafic volcanic<br />

and marine sedimentary rocks, and the upper part, by felsic volcanic and very minor<br />

sedimentary rocks. <strong>The</strong>se strata strike roughly north–south and dip moderately (~45°) to the<br />

west, similar to adjacent parts of the Chaleur Bay Synclinorium (Fyffe and Pronk 1985; Wilson<br />

1990; Walker 2005). Results of this investigation and that of Clark (2008) suggest that the<br />

local deposit stratigraphy is much flatter than the general regional trend, with dips generally<br />

≤20°W (Fig. 3). <strong>The</strong> flatter stratigraphy in the immediate vicinity of the deposit could be the<br />

result of local block faulting. Alternatively, the shallower dips may be the result of interference<br />

of a moderate structural dip with steep paleotopographic variation such as would be expected<br />

with the emplacement of cryptodomes.<br />

<strong>The</strong> <strong>Mount</strong> <strong>Costigan</strong> deposit occurs within the felsic volcanic sequence (Fig. 2, 3) at and near<br />

the contact between a lower unit of felsic crystal tuff (chloritic) and overlying felsic lithic-lapilli<br />

tuff (Fyffe and Pronk 1985). According to Fyffe and Pronk (1985), these units are overlain by<br />

massive porphyritic rhyolite; a sample collected along strike from this stratigraphically higher<br />

rhyolite yielded the 412.5 ± 2.0 Ma age mentioned above. This simplified stratigraphic<br />

interpretation was based on a limited number of small-diameter drill cores and on limited<br />

outcrop distribution. However, Clark (2008) and the present investigation indicate a more<br />

complex volcanosedimentary stratigraphy, one marked by rapid facies changes and the<br />

absence of definitive marker horizons (Fig. 3).<br />

<strong>The</strong> host rocks at the <strong>Mount</strong> <strong>Costigan</strong> deposit consist of massive rhyolitic flows and<br />

pyroclastic tuffs. <strong>The</strong> rhyolitic flows are light to medium grey to black, locally bleached, and<br />

aphyric to very sparsely feldspar-phyric. <strong>The</strong>y commonly exhibit primary devitrification<br />

textures such as perlitic fractures (Fig. 5a) and spherulites (Fig. 5b) that range in size from<br />


Figure 5. Rhyolitic host rocks of<br />

the <strong>Mount</strong> <strong>Costigan</strong> deposit.<br />

a) Photomicrograph of perlitic<br />

fractures in feldspar-phyric rhyolite<br />

from diamond drillhole (DDH)<br />

CM08-8 at 78.7 m. Photograph was<br />

taken under plain polarized light.<br />

Field of view is 3 mm.<br />

Figure 5. b) Large spherulites<br />

developed in sparsely feldsparphyric<br />

rhyolite from DDH CM08-4 at<br />

151 m. Core diameter is ~4.7 cm.<br />

Figure 5. c) Grey, sparsely feldsparphyric,<br />

flow-layered rhyolite from<br />

DDH CM08-4 at 69 m. Core<br />

diameter is ~4.7 cm.<br />

9<br />

CM08-4<br />

a<br />

b<br />

c


CM08-4<br />

Granitoid<br />

clast<br />

10<br />

a<br />

b<br />

c<br />

Figure 6. Pyroclastic volcanic rocks<br />

intersected during drilling at the<br />

<strong>Mount</strong> <strong>Costigan</strong> deposit. a) Coarse<br />

lithic-lapilli tuff from DDH CM08-10<br />

at 11–18.5 m. Core diameter is<br />

4.7 cm.<br />

Figure 6. b) Lithic tuff with granitoid<br />

clast from DDH CM08-4 at 42 m.<br />

Core diameter is 4.7 cm.<br />

Figure 6. c) Rhyolitic flow with<br />

carapace breccia (bottom two runs)<br />

and overlying hyaloclastite (top run)<br />

from DDH CM08-10 at 196–199 m.<br />

Core diameter is 4.7 cm.


Figure 7. Sedimentary rocks<br />

and peperite from the <strong>Mount</strong><br />

<strong>Costigan</strong> area. a) Blue-grey<br />

siltstone–sandstone with<br />

volcanic debris from DDH<br />

CM08-4 at 192–194 m. Core<br />

diameter is 4.7 cm.<br />

Figure 7. b) Peperitic texture<br />

resulting from interaction<br />

between sparsely feldsparphyric<br />

rhyolite and siltstone–<br />

mudstone. Photograph is from<br />

DDH CM08-4 at 262 m. Core<br />

diameter is 4.7 cm.<br />

LITHOGEOCHEMISTRY<br />

11<br />

Whole-rock lithogeochemical data were obtained in order to ascertain primary rock types and<br />

to document the effects of mineralization-related alteration processes. Twenty samples<br />

(Table 1) were collected from SLAM Exploration drill cores from the <strong>Mount</strong> <strong>Costigan</strong> deposit,<br />

including 17 felsic volcanic, one mafic dyke, and two sedimentary samples. An additional<br />

seven samples of felsic volcanic rocks were collected from surface trenches at the deposit<br />

(Table 1). Fifteen core samples (six felsic and nine mafic volcanic) were collected from the<br />

Lewis Brook <strong>Zn–Pb–Ag</strong> occurrence (Table 2). This deposit is hosted by rocks that occur 1–1.5<br />

km stratigraphically higher than, and approximately 4 km south-southwest along strike from,<br />

the <strong>Mount</strong> <strong>Costigan</strong> deposit (Fig. 1). For comparison, Table 2 includes the average compositions<br />

of rhyolitic and basaltic rocks of the Wapske Formation to the north of the <strong>Mount</strong> <strong>Costigan</strong><br />

deposit (i.e., the River Dee rhyolite and River Dee basalt of Wilson 1992: see Fig. 1).<br />

a<br />

b


12<br />

Six samples were collected from various phases of the Redstone <strong>Mount</strong>ain Granite (Table 3);<br />

data for four samples of this granite from Whalen (1993) are also included in Table 3. It should<br />

be noted that one of the samples assigned to the Redstone <strong>Mount</strong>ain Granite by Whalen<br />

(1993; his sample G15-138) is not from this intrusion but more likely is from the North Pole<br />

Stream Granite and has been omitted from the geochemical variation diagrams in the current<br />

report. [Please note: Tables 1 to 3 are compiled at the end of this report, starting on p. 36.]<br />

<strong>Mount</strong> <strong>Costigan</strong> <strong>Deposit</strong><br />

Felsic Volcanic Rocks<br />

<strong>The</strong> host sequence at <strong>Mount</strong> <strong>Costigan</strong> is dominated by aphyric to very sparsely feldspar- phyric,<br />

high-silica (70–76% SiO2) rhyolite. Most of the rhyolite samples contain 7–11% total alkalis<br />

(Na2O + K2O) and plot in the rhyolite field on the total alkalis versus SiO2 diagram (Fig. 8a).<br />

However, in general the Na2O contents of these rocks are very low (at or below the analytical<br />

detection limit), and most of the samples contain 6–11% K2O (Fig. 8b). <strong>The</strong> more chloritic<br />

samples collected from <strong>Mount</strong> <strong>Costigan</strong> generally have lower silica (57–70% SiO2) and 7–12%<br />

alkalis, and they plot in the trachyte–trachydacite field (Fig. 8a). Given that most samples show<br />

evidence of extensive alkali mobility (Fig. 8c), classification of rock type should be based on<br />

immobile high-field-strength elements (HFSE) rather than on traditional alkali elements, which<br />

are known to be mobile under hydrothermal conditions and therefore are less reliable.<br />

On the Zr/TiO2 versus Nb/Y discrimination diagram, almost all <strong>Mount</strong> <strong>Costigan</strong> samples plot<br />

well within the rhyolite field and fall in a tight cluster that has Zr/TiO2 values between 0.1 and<br />

0.2, and Nb/Y values between 0.25 and 0.8 (Fig. 9a). <strong>The</strong> very tightly constrained Zr/TiO2<br />

values of the felsic rocks imply that all rocks were sourced from a single magma (Fig. 9b). In<br />

contrast, felsic volcanic samples from the Lewis Brook occurrence are slightly less evolved<br />

and plot in the rhyodacite–dacite field with a lower Zr/TiO2 (Fig. 9a). Data from the Redstone<br />

<strong>Mount</strong>ain Granite collected during this investigation and data compiled from Whalen (1993)<br />

show varied Zr/TiO2 values, with data falling on both the <strong>Mount</strong> <strong>Costigan</strong> and Lewis Brook<br />

arrays (Fig. 9b); however, the absolute Zr and TiO2 contents are closer to those of the Lewis<br />

Brook rocks. <strong>The</strong> Zr/Hf value, which is considered to be a reliable gauge of the degree of<br />

fractionation, indicates that samples from <strong>Mount</strong> <strong>Costigan</strong> have values >35, typical of most<br />

felsic rocks (Watson and Harrison 1983). In contrast, samples from the Lewis Brook occurrence<br />

and the Redstone <strong>Mount</strong>ain Granite have Zr/Hf values ranging from 20 to 34 (Fig. 9c),<br />

suggesting that both have undergone a higher degree of fractionation than the felsic rocks from<br />

the <strong>Mount</strong> <strong>Costigan</strong> deposit.<br />

<strong>The</strong> profiles of rare earth elements (REEs) for analyzed rocks in the <strong>Costigan</strong> <strong>Mount</strong>ain area<br />

are given on Figures 10a to 10f. REE profiles for samples of the <strong>Mount</strong> <strong>Costigan</strong> rhyolite are<br />

characterized by elevated light-REE (LREE) contents, negative Eu anomalies, and relatively<br />

flat heavy-REE (HREE) profiles, all of which are typical of felsic volcanic rocks ( Fig. 10a).<br />

<strong>The</strong> contents of base metals, granophile elements, and precious metals in felsic volcanic rocks<br />

from the <strong>Mount</strong> <strong>Costigan</strong> deposit are summarized as follows (see Table 1 for details).


a<br />

Na O + K O<br />

b<br />

KO<br />

c<br />

Na O + K O<br />

2 2<br />

2<br />

2 2<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

tephrite basaltic<br />

trachyandesite<br />

basanite<br />

trachybasalt<br />

picrobasalt<br />

basalt<br />

basaltic<br />

andesite<br />

phonotephrite<br />

basalt<br />

tephriphonolite<br />

andesite<br />

trachyandesite<br />

basaltic<br />

andesite<br />

phonolite<br />

dacite<br />

trachyte<br />

andesite<br />

trachydacite<br />

High-K calc-alkaline series<br />

Calc-alkaline series<br />

SiO 2<br />

dacite<br />

Arc tholeiite series<br />

rhyolite<br />

13<br />

0<br />

45 50 55 60 65 70 75 80 85<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

40 45 50 55 60 65 70 75 80 85 90<br />

Na-metasomatism<br />

SiO 2<br />

Igneous<br />

spectrum<br />

0 20 40 60 80 100<br />

100 K O/(Na O + K O)<br />

2 2 2<br />

rhyolite<br />

K-metasomatism<br />

<strong>Mount</strong> <strong>Costigan</strong> <strong>Deposit</strong><br />

Felsic volcanic rocks (from surface)<br />

Felsic volcanic rocks (from drill core)<br />

Chloritic fragmental volcanic rocks<br />

Mafic dyke<br />

Sedimentary rocks<br />

Lewis Brook Occurrence<br />

Felsic volcanic rocks<br />

Mafic volcanic rocks<br />

River Dee felsic/mafic volcanic rocks<br />

(Wilson 1992)<br />

Redstone <strong>Mount</strong>ain Granite<br />

(this investigation)<br />

Redstone <strong>Mount</strong>ain Granite<br />

(Whalen 1993)<br />

Figure 8. Major-element<br />

lithogeochemical discrimination<br />

diagrams for rocks from the <strong>Mount</strong><br />

<strong>Costigan</strong>–Lewis Brook area.<br />

a) Na2O + K2Oversus SiO 2,<br />

with<br />

field boundaries from Le Bas et al.<br />

(1986). Values recalculated to<br />

100%-free LOI basis. b) K2O versus<br />

SiO 2,<br />

with field boundaries from Le<br />

Maitre et al. (1989). c) Na2O + K2O versus 100*K2O/(Na2O + K2O), with<br />

field boundaries from Hughes<br />

(1972).


TiO (wt %)<br />

Zr/TiO 2<br />

Zr (ppm)<br />

a<br />

2<br />

1<br />

0.1<br />

0.01<br />

3<br />

2<br />

1<br />

0<br />

Zr/Hf<br />

14<br />

0.001<br />

0.01 0.1 1 10<br />

b<br />

200<br />

100<br />

rhyodacite/dacite<br />

andesite<br />

andesite/basalt<br />

Mass<br />

gain<br />

rhyolite<br />

subalkaline basalt<br />

Mass loss<br />

Nb/Y<br />

comendite/<br />

pantellerite<br />

trachyandesite<br />

alkaline<br />

basalt<br />

phonolite<br />

trachyte<br />

Alteration array<br />

Alteration array<br />

0 100 200 300 400 500 600 700<br />

Zr (ppm)<br />

c<br />

600<br />

Figure 9. Trace-element<br />

lithogeochemical discrimination<br />

diagrams for rocks from the <strong>Mount</strong><br />

500<br />

<strong>Costigan</strong>–Lewis Brook area.<br />

a) Zr/TiO2 versus Nb/Y, with field<br />

400<br />

boundaries from Winchester and<br />

Floyd (1977). b) TiO2<br />

versus Zr.<br />

300<br />

c) Zr versus Zr/Hf.<br />

basanite/<br />

nephelinite<br />

Fractionation curve<br />

0<br />

20 30 40 50<br />

Fractionation curve<br />

<strong>Mount</strong> <strong>Costigan</strong> <strong>Deposit</strong><br />

Felsic volcanic rocks (from surface)<br />

Felsic volcanic rocks (from drill core)<br />

Chloritic fragmental volcanic rocks<br />

Mafic dyke<br />

Sedimentary rocks<br />

Lewis Brook Occurrence<br />

Felsic volcanic rocks<br />

Mafic volcanic rocks<br />

River Dee felsic/mafic volcanic rocks<br />

(Wilson 1992)<br />

Redstone <strong>Mount</strong>ain Granite<br />

(this investigation)<br />

Redstone <strong>Mount</strong>ain Granite<br />

(Whalen 1993)


sample/chondrite<br />

sample/chondrite<br />

sample/chondrite<br />

!<br />

!<br />

!<br />

1000<br />

100<br />

10<br />

1<br />

1000<br />

100<br />

10<br />

1<br />

1000<br />

100<br />

10<br />

1<br />

15<br />

1000<br />

a b<br />

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Figure 10. Rare-earth-element data for rocks from the <strong>Mount</strong> <strong>Costigan</strong>–Lewis Brook area. a) <strong>Mount</strong><br />

<strong>Costigan</strong> felsic volcanic rocks. b) <strong>Mount</strong> <strong>Costigan</strong> mafic dyke. c) Lewis Brook felsic volcanic rocks.<br />

d) Lewis Brook mafic volcanic rocks. e) Redstone <strong>Mount</strong>ain Granite. f) <strong>Mount</strong> <strong>Costigan</strong> sedimentary<br />

rocks. Normalization factors in a) to e) are from Nakamura (1974); normalization factors in f) are for the<br />

North American Shale composite (NASC) from Gromet et al. (1984).<br />

sample/NASC<br />

sample/chondrite<br />

Base metals: Cu is 1 ppm to 143 ppm, Zn is 31 ppm to 7950 ppm, Pb is 7 ppm to 2980 ppm.<br />

Granophile elements: Sn is 1 ppm to 20.6 ppm, W is below the detection limit to 25 ppm,<br />

Sb is 1 ppm to 10.5 ppm, Mo is below the detection limit to 3 ppm.<br />

Precious metals: Au is below the detection limit to 90 ppb, Ag is below the detection limit to<br />

3.8 ppm.<br />

sample/chondrite<br />

100<br />

10<br />

1<br />

1000<br />

c d<br />

100<br />

10<br />

10<br />

e f<br />

1<br />

1<br />

0.1<br />

0.01<br />

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

La Ce Nd Sm Eu Gd Tb Dy Er Yb Lu


Mafic Dyke<br />

16<br />

One sample of a mafic dyke was collected from the SLAM Exploration drill cores at <strong>Mount</strong><br />

<strong>Costigan</strong>. This sample (CM08-8-48 m; Table 1) from drillhole 8 at a depth of 48 m plots in the<br />

basaltic trachyandesite field on the Na2O + K2O versus SiO2 diagram (Fig. 8a), and in the basalt<br />

field on the K2O versus SiO2 diagram (Fig. 8b). However, like most samples in this investigation,<br />

there is evidence of alkali-element mobility, specifically K2O gain and Na2O loss (Fig. 8c). In<br />

terms of HFSE composition, sample CM08-8-48 m plots in the subalkaline basalt field (Fig. 9a)<br />

and has a Zr/TiO2 value of ~0.01, similar to basalts from the Lewis Brook occurrence (Fig. 9a).<br />

<strong>The</strong> REE profile for this sample (Fig. 10b) is slightly LREE-enriched and has no significant Eu<br />

anomaly. This is similar to the Lewis Brook mafic volcanic rocks (Fig. 10d), except that the<br />

absolute REE content is somewhat higher in the <strong>Mount</strong> <strong>Costigan</strong> sample.<br />

Sedimentary Rocks<br />

<strong>The</strong> two samples of sedimentary rock from the <strong>Mount</strong> <strong>Costigan</strong> drill cores (CM08-4-222a,<br />

CM08-4-222b) have high K (up to 11%) and moderate SiO2 (57–59%) contents. <strong>The</strong> North<br />

American Shale Composite (NASC)-normalized REE data for both samples plot close to parity<br />

for all REEs (Fig. 10f). <strong>The</strong>se rocks have Zr/TiO2 values of ~0.02 (Fig. 9a, 9b), similar to<br />

compositions of sedimentary rocks from elsewhere in the Tobique Group (Walker 2005).<br />

Lewis Brook Occurrence<br />

Felsic Volcanic Rocks<br />

<strong>The</strong> felsic volcanic rocks from the Lewis Brook <strong>Zn–Pb–Ag</strong> vein system plot within the rhyolite<br />

field on major-element discrimination diagrams (Fig. 8a). With the exception of one<br />

anomalously low sample, these rocks have SiO2 contents of 70–75%, total alkali contents of<br />

8–9%, and K2O contents of 5–9% (Fig. 8a, 8b). Like the rhyolite from <strong>Mount</strong> <strong>Costigan</strong>, most<br />

Lewis Brook samples have alkali-element contents that lie outside the range of normal<br />

volcanic rocks, suggesting they have undergone hydrothermal alteration (Fig. 8c).<br />

<strong>The</strong> Lewis Brook felsic volcanic rocks have Zr/TiO2 values of ~0.08, consistent with a<br />

rhyodacitic composition (Fig. 9a) and similar to most samples from the Redstone <strong>Mount</strong>ain<br />

Granite (see below). <strong>The</strong> Zr contents of these rocks range between 92 ppm and 186 ppm,<br />

considerably lower than most rhyolite samples from the <strong>Mount</strong> <strong>Costigan</strong> deposit. Similarly, the<br />

TiO2 contents of the Lewis Brook rhyodacite (average 0.18%) are marginally lower than those<br />

of the <strong>Mount</strong> <strong>Costigan</strong> rhyolite, which average 0.29% (Fig. 9b).<br />

<strong>The</strong> Zr/Hf values of the Lewis Brook rhyodacite range between 26 and 34 and are similar to<br />

the range of Zr/Hf values from the Redstone <strong>Mount</strong>ain Granite (see below; Fig. 9c). <strong>The</strong>se<br />

ratios are lower than those of the <strong>Mount</strong> <strong>Costigan</strong> rhyolite and may represent a marginally<br />

more fractionated source magma. <strong>The</strong> Lewis Brook rhyodacite samples are divisible into two<br />

populations on the basis of REE content (Fig. 10c). <strong>The</strong> first population contains three samples<br />

that are LREE-enriched and have moderate negative Eu anomalies. <strong>The</strong> second population


17<br />

contains two samples that have flatter profiles (less LREE enrichment) and more prominent<br />

negative Eu anomalies (Fig. 10c).<br />

<strong>The</strong> contents of base metals, granophile elements, and precious metals in samples of the<br />

Lewis Brook rhyodacite are summarized as follows (see Table 2 for details).<br />

� Base metals: Cu is 4 ppm to 1452 ppm, Zn is 9 ppm to 30 062 ppm, Pb is 22 ppm to 770 ppm.<br />

� Granophile elements: W is at or below the detection limit, Sn is 3 ppm to 7 ppm, Mo is<br />

1.7 ppm to 6.9 ppm, Sb is 1.3 ppm to 3.9 ppm.<br />

� Precious metals: Au is below the detection limit to 211 ppb, Ag is at the detection limit to<br />

5.2 ppm.<br />

Mafic Volcanic Rocks<br />

Mafic volcanic rocks from the Lewis Brook <strong>Zn–Pb–Ag</strong> vein system have typical to slightly<br />

elevated (Na2O + K2O) contents of 6–10%, and SiO2 contents of 41–60%. <strong>The</strong>y plot across the<br />

basaltic trachyandesite and phonotephrite fields on the Na2O + K2O versus SiO2 diagram (Fig.<br />

8a). As with felsic volcanic rocks from the Lewis Brook occurrence, some of these mafic<br />

volcanic rocks show evidence (high K2O relative to Na2O) of alkali-element mobility (Fig. 8b, 8c).<br />

In terms of HFSE contents (Zr/TiO2 and Nb/Y), these samples plot near the boundary between<br />

the subalkaline basalt and andesite–basalt fields (Fig. 9a). <strong>The</strong> Zr/Y versus Zr values of these<br />

rocks are typical of within-plate basalts (Pearce and Norry 1979) and are consistent with those<br />

of mafic volcanic rocks elsewhere in the Tobique Group (Dostal et al. 1989; Wilson 1992;<br />

Walker 2005). Chondrite-normalized REE profiles for these rocks have gentle negative slopes<br />

and Eu/Eu* values of near unity: that is, they show no appreciable Eu anomaly (Fig. 10d). <strong>The</strong><br />

absence of a Eu anomaly suggests that the magma from which the basalt erupted did not<br />

undergo significant crystal fractionation of plagioclase.<br />

Redstone <strong>Mount</strong>ain Granite<br />

Samples of the Redstone <strong>Mount</strong>ain Granite contain 72–78% SiO2 and 6–9% total alkalis (Fig.<br />

8a), with K2O contents ranging from the detection limit to 5.5% (Fig. 8b). In contrast with the<br />

felsic volcanic rocks described above, the alkali-element contents of the Redstone <strong>Mount</strong>ain<br />

Granite fall near the spectrum of typical felsic igneous rocks, indicating that they have not<br />

undergone significant alkali-element metasomatism related to hydrothermal alteration (Fig. 8c).<br />

In terms of their HFSE content, samples of the Redstone <strong>Mount</strong>ain Granite show some<br />

variation. Three fall in the rhyolite field (Fig. 9a, 9b) and have Zr/TiO2 values of ~0.2,<br />

overlapping the majority of rhyolite samples from <strong>Mount</strong> <strong>Costigan</strong>; the remaining samples fall in<br />

the rhyodacite–dacite field (Fig. 9a, 9b) and have Zr/TiO2 values of ~0.08, overlapping the field<br />

of Lewis Brook samples. Most samples of Redstone <strong>Mount</strong>ain Granite have Zr/Hf values ≤35,<br />

similar to those of the Lewis Brook rhyodacite. <strong>The</strong>se data suggest that the Redstone <strong>Mount</strong>ain<br />

Granite is chemically more similar to rhyodacite from the stratigraphically higher Lewis Brook area<br />

than to rhyolite from <strong>Mount</strong> <strong>Costigan</strong>. <strong>The</strong> Redstone <strong>Mount</strong>ain Granite may have undergone a


18<br />

greater degree of fractionation than the source magma of the <strong>Mount</strong> <strong>Costigan</strong> rhyolite. REE<br />

profiles of the Redstone <strong>Mount</strong>ain Granite are LREE-enriched and display moderately<br />

negative Eu anomalies (Fig. 10e). Overall, REE profiles of the granite are similar to those of<br />

rhyolite from the <strong>Mount</strong> <strong>Costigan</strong> deposit and of the three LREE-enriched rhyodacite samples<br />

from the Lewis Brook occurrence (Fig. 10a, 10c).<br />

<strong>The</strong> contents of base metals and granophile elements in samples of the Redstone <strong>Mount</strong>ain<br />

Granite are summarized as follows (see Table 3 for details).<br />

� Base metals: Pb is low (several samples lie below the detection limit), Zn is relatively low<br />

(5–28 ppm), Cu content is very low (1–6 ppm).<br />

� Granophile elements: W is low (


19<br />

Results of mass change calculations are presented on Figures 11a to 11g. <strong>The</strong> majority of<br />

felsic volcanic rocks hosting the <strong>Mount</strong> <strong>Costigan</strong> deposit have undergone addition of K2O<br />

(+1 wt % to +6 wt %) and varied loss or gain of CaO (-0.02 wt % to +0.35 wt %). Most<br />

samples have gained MnO (0 wt % to +0.3 wt %). Some samples have undergone MgO loss<br />

with many more gaining MgO (-1 wt % to +3 wt %). Mass addition of MgO is associated with<br />

the more permeable fragmental units and with the margins of larger sulphide veins, and is<br />

coincident with the development of chlorite. All samples exhibit mass losses of Na2O (-2.0 wt<br />

% to -3.5 wt %), Al2O3 (0 wt % to -5 wt %), and SiO2 (0 wt % to -50 wt %). Although some<br />

samples show mass gain of Fe2O3 (total) , most exhibit mass loss with overall mass change<br />

ranging between +1 wt % and -1.8 wt %.<br />

All of the samples analyzed, regardless of their proximity to visible alteration or mineralization,<br />

have lost Na2O and gained K2O. Such widespread alteration is attributed to relatively low-<br />

temperature (


ΔCaO wt %<br />

ΔFe O wt %<br />

2 3<br />

ΔKOwt %<br />

ΔAl O wt %<br />

2<br />

2 3<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

1<br />

0<br />

-1<br />

-2<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

10<br />

5<br />

0<br />

-5<br />

Calcite formation<br />

Pyrite<br />

precipitation<br />

K-feldspar<br />

(adularia)<br />

formation<br />

Fe-leaching<br />

-10<br />

-100 -50 0 50 100<br />

SiO 2<br />

20<br />

ΔMnO wt %<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

RDR = 0.05 wt % RDR = 0.05 wt %<br />

RDR = 2.68 wt %<br />

RDR = 4.02 wt %<br />

RDR = 12.57 wt %<br />

RDR = 75.6 wt %<br />

ΔMgO wt %<br />

ΔNa O wt %<br />

2<br />

-0.1<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

Mn-carbonate<br />

formation<br />

a b<br />

c<br />

Chlorite<br />

formation<br />

Feldspardestructive<br />

alteration<br />

Si-leaching<br />

-4<br />

-100 -50 0 50 100<br />

SiO 2<br />

RDR = 1.17 wt %<br />

e f<br />

g<br />

RDR = 3.47 wt %<br />

<strong>Mount</strong> <strong>Costigan</strong> felsic volcanic rocks (from surface)<br />

<strong>Mount</strong> <strong>Costigan</strong> felsic volcanic rocks (from drill core)<br />

RDR<br />

River Dee rhyolite<br />

Figure 11. Graphic presentation of mass<br />

balance data for host rocks from the <strong>Mount</strong><br />

<strong>Costigan</strong> deposit. <strong>The</strong> diagrams show SiO2 on<br />

the x-axis plotted against a) CaO, b) MnO,<br />

c) Fe2O 3, d) MgO, e) K2O, f) Na2O, or g) Al2O3 on the y-axis.<br />

d


200 μm<br />

21<br />

Rhodochrosite<br />

(Mn-carbonate)<br />

Quartz.<br />

a<br />

Adularia<br />

(K-feldspar)<br />

Figure 12. Hydrothermal alteration in rock samples from the <strong>Mount</strong> <strong>Costigan</strong> deposit.<br />

a) Photomicrograph showing alteration minerals (adularia and rhodochrosite) in sample of felsic<br />

volcanic rock from DDH CM08-8 at 54 m. Field of view is ~350 μm.<br />

b) Backscatter electron microprobe<br />

image of hydrothermal alteration (adularia, rhodochrosite, and chlorite) in sample CM08-8-54 m.<br />

Microprobe data for sample points 1 to 5 are presented in Table 4.<br />

b


22<br />

Despite the abundance of quartz-veining associated with near-surface base metal<br />

mineralization, all but two samples have undergone SiO2 loss (0 wt % to -40 wt %). It is<br />

hypothesized that SiO2 was leached from the host rocks during ascent of base metal-bearing<br />

fluids and subsequently precipitated as quartz along with base metal sulphides upon cooling<br />

and possible mixing with seawater in shallower parts of the system.<br />

MINERALIZATION<br />

Base metal mineralization at <strong>Mount</strong> <strong>Costigan</strong> is epigenetic and hosted dominantly by<br />

heterolithic, matrix-supported felsic lapilli tuff containing fragments that range from 3 mm to<br />

>10 cm in long axis. Fragment content is varied, at 5–20 volume %; however, this<br />

percentage may be higher in some sections, as alteration may obscure primary textures<br />

(Fig. 13a–13c). Surface exposures, where these rocks are cut by numerous quartz veins,<br />

were referred to as ‘vent breccia’ by Fyffe and Pronk (1985). Less commonly, mineralization<br />

occurs as massive sulphide veins that transect rhyolitic flows and locally parallel flowlayering<br />

(Fig. 5c, 13a).<br />

According to earlier workers (Crevier 1984; Fyffe and Pronk 1985), the <strong>Mount</strong> <strong>Costigan</strong><br />

deposit contains a non-NI 43-101-compliant resource of 6–8 Mt of mineralized rock. Within<br />

this envelope of mineralization, a higher grade ‘Core Zone’ was identified (Clark 2008). This<br />

zone comes to surface along its entire length and in section is irregularly shaped (Fig. 3). It is<br />

a tabular body with a north–south strike length of ~150 m, an east–west thickness that ranges<br />

from 4 m to 36 m, and a depth that extends to 200 m. It is not clear what, if any, role structural<br />

breaks exert on the deposit orientation or on the mineralization in the Core Zone, as there is<br />

no evidence for north–south faulting. Furthermore, the absence of north–south-directed<br />

drilling precludes the identification of an east–west-oriented fault, should one be present.<br />

Although no formal tonnages or grade estimates have been published for the Core Zone, a<br />

non-NI 43-101-compliant resource of ~0.9 Mt grading 4–5% Zn + Pb was estimated by Clark<br />

(2008). Drill-core logging and petrographic examination indicate that the mineralogy of the<br />

<strong>Mount</strong> <strong>Costigan</strong> deposit is relatively simple and dominated by sphalerite and subordinate<br />

galena. Pyrite is present but not in significant amounts, and chalcopyrite occurs as a trace<br />

phase.<br />

Some results of the present investigation are consistent with those of earlier workers (Crevier<br />

1984; Fyffe and Pronk 1985; Cox 1990), who have described a roughly elliptical mineralized<br />

area with a short axis extending for ~200 m along a north-northeast to south-southwest line<br />

and a long axis extending ~340 m east–west, at a high angle to regional strike. Mineralization<br />

has been intersected at depths of up to 300 m below surface (Fig. 3). However, in contrast to<br />

previous interpretations of an eastward-plunging zone of mineralization (Fyffe and Pronk<br />

1985; Cox 1990), this investigation suggests that the zone of alteration and mineralization,<br />

although irregular, is more or less subvertical to a depth of 300 m. This irregularity is attributed<br />

to stratigraphic variations in primary permeability, which exert significant control on the<br />

distribution of sulphide mineralization (Fig. 3). Sedimentary units intercalated with the volcanic<br />

rocks are commonly barren and may have acted as barriers to mineralizing fluids during


Figure 13. Mineralization and<br />

alteration in drill core samples from<br />

the <strong>Mount</strong> <strong>Costigan</strong> deposit. a) Vein<br />

galena–sphalerite and minor pyrite<br />

cutting chlorite-altered rhyolite from<br />

DDH CM08-4 at 75 m.<br />

Figure 13. b) Chlorite–silica–<br />

carbonate-altered breccia with patchy<br />

sphalerite and galena from DDH<br />

CM08-4 at 24 m.<br />

Figure 13. c) Rhyolite-clast breccia<br />

with quartz and minor Fe-carbonate<br />

(siderite) cement from DDH CM08-8<br />

at 120 m.<br />

23<br />

Galena<br />

Galena<br />

Galena<br />

Sphalerite<br />

Fe-carbonate<br />

a<br />

Sphalerite<br />

CM08-4<br />

b<br />

c<br />

Sphalerite


24<br />

their egress to the seafloor. Base metal zoning at <strong>Mount</strong> <strong>Costigan</strong> exists only in terms of a<br />

higher grade (>4% Zn + Pb) Core Zone and a lower grade periphery.<br />

Sulphide mineralization occurs in two forms: 1) as finely disseminated grains (


W ppm<br />

30<br />

20<br />

10<br />

25<br />

0<br />

0 5 10 15 20<br />

Sn ppm<br />

Figure 14. a) Pb–Cu–Zn ternary diagram for assay data from the <strong>Mount</strong> <strong>Costigan</strong> deposit. b) W versus<br />

Sn diagram for data from the <strong>Mount</strong> <strong>Costigan</strong> deposit, Lewis Brook occurrence, and Redstone<br />

<strong>Mount</strong>ain Granite.<br />

also anomalous and range from 1 ppm to 15.1 ppm. Au contents range from below the<br />

detection limit to a maximum of 90 ppb, whereas Ag contents range from 0.8 ppm to 3.4 ppm<br />

(Table 1).<br />

SAMPLE ANALYSES<br />

Sulphur Isotope Analysis<br />

Cu %<br />

Pb % Zn %<br />

Part of this investigation involved collecting a limited number of samples for sulphur isotope<br />

analysis (Table 5). Sampling included mineral separates (sphalerite and galena) as well as<br />

bulk sulphide samples (pyrite + galena + sphalerite). <strong>The</strong> purpose of this work was to estimate<br />

the temperature of formation for mineralization and to determine what, if any, systematic<br />

sulphur zoning occurs in the <strong>Mount</strong> <strong>Costigan</strong> deposit.<br />

Although few samples were analyzed, the data show that S for bulk sulphur increases<br />

slightly with depth. In the near-surface samples (20.9 m, 73.0 m, and 111.5 m), bulk sulphur<br />

ranges between +9.2‰ and +9.72‰, consistent with sulphide in equilibrium with seawater,<br />

δ 34<br />

a<br />

<strong>Mount</strong> <strong>Costigan</strong> chloritic<br />

fragmental volcanic rocks<br />

<strong>Mount</strong> <strong>Costigan</strong> felsic volcanic<br />

rocks (from drill core)<br />

Lewis Brook felsic<br />

volcanic rocks<br />

Lewis Brook mafic<br />

volcanic rocks<br />

Redstone <strong>Mount</strong>ain Granite


26<br />

according to the global seawater curve for the Early Devonian (Fig. 15; Goodfellow et al.<br />

1993). Likewise, the δ 34 S values for sphalerite and galena separates (Table 5) are coincident<br />

with the global seawater curve and define the maxima and minima, respectively, of the bulk<br />

data. At depth (187.2 m), the δ 34 S for bulk sulphur is lower (7.38‰; Table 5) and falls off the<br />

global seawater curve (Fig. 15). This may be interpreted to suggest a greater magmatic<br />

component in mineralizing fluids deeper in the system; however, results of a single analysis<br />

preclude a conclusive determination. Similar δ 34 S values were reported for sulphide separates<br />

from the Shingle Gulch East deposit (URN 878) (Fig. 1; Walker 2005), located approximately<br />

10 km along strike to the north-northeast of the <strong>Mount</strong> <strong>Costigan</strong> deposit, and were interpreted<br />

to reflect the mixing of magmatic fluid (80%) with seawater (20%).<br />

Table 5. Sulphur isotope data for bulk sulphides, and for sphalerite and galena separates, from the<br />

<strong>Mount</strong> <strong>Costigan</strong> deposit.<br />

Sample Number Bulk Sulphides or Mineral Separates δ 34 S δ 34 Ssph–δ 34 Sga<br />

CM08-11-20.9-B bulk 9.72<br />

CM08-11-20.9-Ga galena 9.05<br />

CM08-11-20.9-Zn sphalerite 10.71 1.66<br />

CM08-4-73-B bulk 9.91<br />

CM08-4-73-Ga galena 7.57 2.49<br />

CM08-4-73-Zn sphalerite 10.06<br />

CM08-8-111.5-B bulk 9.20<br />

CM08-8-111.5-B bulk 9.58<br />

CM08-8-111.5-Ga galena 7.32 2.75<br />

CM08-8-111.5-Zn sphalerite 10.07<br />

CM08-4-178.4-B bulk 7.38<br />

CM08-4-178.4-Ga galena 5.92 0.78<br />

CM08-4-178.4-Zn sphalerite 6.70<br />

Note: Sulphur isotope analysis conducted by Alison Pye, Stable Isotope Laboratory, Memorial University of<br />

<strong>New</strong>foundland, St. John’s, <strong>New</strong>foundland and Labrador.<br />

Although no comprehensive set of bulk sulphur or δ 34 S data exists for Siluro–Devonian<br />

intrusions in the report area, similar Late Silurian to Early Devonian felsic intrusions in<br />

southwestern <strong>New</strong> Brunswick display a wide range of δ 34 S values (-7.1‰ to +13‰) and<br />

average +2.2‰ ± 0.5‰ (Yang and Lentz 2010). Assuming similar values for the Redstone<br />

<strong>Mount</strong>ain Granite, the moderately positive δ 34 S contents of bulk sulphur (+9.2‰ to +9.72‰) in<br />

the sulphides suggest that the fluids (or fluid) involved in the mineralizing system were not<br />

dominated by magmatic sulphur, contrary to what would be expected for a magmatically<br />

derived mineralized vent breccia system. <strong>The</strong> consistency with seawater sulphide values for<br />

the Early Devonian (i.e., the age of the host sequence) leads to the conclusion that<br />

mineralizing fluids interacted with seawater directly, or acquired sulphur from sulphide<br />

minerals that were deposited in equilibrium with seawater.


27<br />

Four pairs of coexisting galena and sphalerite grains were collected for δ 34 S isotopic analysis<br />

in order to calculate temperature of formation. Two of these pairs (from 73.0 m and 111.5 m)<br />

yielded temperatures of formation, based on the calculation of Grootenboer and Schwarcz<br />

(1969), of 242°C and 217°C, respectively, although a higher (≤294°C) temperature can be<br />

calculated using the equilibrium equations of other authors (Table 6). <strong>The</strong>se temperatures are<br />

consistent with mineralogical constraints on the temperature of formation presented later in<br />

this report. Two other sphalerite–galena pairs (from 20.9 m and 178.4 m) returned calculated<br />

temperatures of formation of 357°C and 647°C, respectively. <strong>The</strong>se temperatures are<br />

considerably higher than those calculated from the other samples and likely reflect sampling<br />

from sulphide pairs that were not coprecipitated (i.e., were not in isotopic equilibrium).<br />

Table 6. Temperatures of formation calculated from δ 34 S data for sphalerite and galena separates from<br />

the <strong>Mount</strong> <strong>Costigan</strong> deposit (see Table 5).<br />

∆ 34 S = 34 Ssph– 34 Sga<br />

Kajiwara and<br />

Krouse (1971)<br />

o C<br />

Czamanske and<br />

Rye (1974)<br />

o C<br />

Grootenboer and<br />

Schwarcz (1969)<br />

1.66 421 376 357<br />

2.49 294 257 242<br />

2.75 266 231 217<br />

0.78 740 674 647<br />

Radiogenic Lead Isotope Analysis<br />

Lead isotope studies can be effective tools for determining the various sources of Pb and<br />

relative contributions of these sources to mineralizing systems and host rocks. This is possible<br />

because Th and U behave similarly in the magmatic environment in that, during partial melting<br />

and fractional crystallization, both are concentrated in the fluid phase relative to the residuum<br />

(Faure 1986). However, in the realm of aqueous hydrothermal fluids, U is concentrated in the<br />

fluid phase, whereas Th is highly insoluble and remains in the residuum. Likewise, under<br />

oxidizing conditions, U is highly soluble and is easily fractionated from Th (Faure 1986).<br />

<strong>The</strong> <strong>Mount</strong> <strong>Costigan</strong> galena separates display high 207 Pb/ 204 Pb values and plot above the<br />

upper crust evolutionary curve of Zartman and Doe (1981) on a 207 Pb/ 204 Pb versus 206 Pb/ 204 Pb<br />

diagram (Fig. 16a), close to the fields of Avalonian basement (Ayuso and Bevier 1991) and<br />

Siluro–Devonian Ganderian plutons (Whalen et al. 1996). All but one of the galena separates<br />

from the Sewell Brook and Shingle Gulch deposits cluster around the <strong>Mount</strong> <strong>Costigan</strong><br />

samples, suggesting that Pb in all three deposits shares a common source. <strong>The</strong> array defined<br />

by the galena separates (n = 7) has a Spearman Rank Correlation coefficient (r’) of 0.86, a<br />

slope of 1.09, and an x-intercept of 4.18. In contrast to the galena separates, host rocks from<br />

the <strong>Mount</strong> <strong>Costigan</strong> deposit have lower 207 Pb/ 204 Pb values and plot between the orogene and<br />

mantle curves, overlapping the field of the Grenvillian basement (Ayuso and Bevier 1991).<br />

Host volcanic rocks from Sewell Brook and Shingle Gulch lie more or less along the same<br />

array as the <strong>Mount</strong> <strong>Costigan</strong> samples. <strong>The</strong> array defined by the host rock samples (n = 16)<br />

has an r’ value of 0.79 and falls on a line with a slope of 0.18 and an x-intercept of 1.23. This<br />

o C


Tertiary<br />

Cretaceous<br />

Jurassic<br />

Triassic<br />

Permian<br />

Pennsylvanian<br />

Mississippian<br />

Devonian<br />

Silurian<br />

Ordovician<br />

Cambrian<br />

Proterozoic<br />

U<br />

M<br />

L<br />

U<br />

M<br />

L<br />

U<br />

M<br />

L<br />

*<br />

0 +10 +20 +30 +40<br />

Galena<br />

28<br />

(Diagram modified from<br />

Goodfellow et al. 1993.)<br />

Sphalerite<br />

Bulk<br />

Stratified water column<br />

with anoxic waters<br />

<strong>Deposit</strong>ion time<br />

of the Tobique Group<br />

Range of bulk<br />

sulphur analyses<br />

δ 34 S (CDT)<br />

‰<br />

Marine Evaporites<br />

(Claypool et al. 1980)<br />

Barite, Selwyn Basin<br />

(Goodfellow and Jonasson 1984)<br />

Bulk = mixture of pyrite, galena, and sphalerite<br />

Pyrite, Selwyn Basin<br />

(Goodfellow and Jonasson 1984;<br />

Shanks et al. 1987)<br />

34<br />

Figure 15. Seawater sulphur isotope curve through time, showing the δ S contents of marine evaporites,<br />

34<br />

barite, and pyrite from the Selwyn Basin. Diagram indicates the approximate δ S contents of galena and<br />

sphalerite (red dots), and bulk sulphur (blue bar) from the Shingle Gulch East deposit.<br />

trend is interpreted to reflect mixing of orogenic and upper crustal Pb. <strong>The</strong> overlap with both<br />

Grenvillian and Avalonian basement fields might be explained by magma generation in<br />

Grenvillian rocks and subsequent crustal contamination by Avalonian rocks during the<br />

magma ascent.<br />

208 204 206 204<br />

On a Pb/ Pb versus Pb/ Pb diagram (Fig. 16b), galena separates from the <strong>Mount</strong><br />

<strong>Costigan</strong>, Shingle Gulch, and Sewell Brook deposits fall well above the orogene curve, close<br />

to the intersection of the fields of Avalonian and Grenvillian basement. <strong>The</strong> felsic and mafic<br />

volcanic and sedimentary rock samples plot along an array that begins below the upper crust<br />

evolutionary curve and extends above the curve where it overlaps the lower part of the field<br />

defined by the galena separates. All samples overlap, in part, the field of Grenvillian<br />

basement and the field of Humber Zone and Dunnage Zone plutons (Whalen et al. 1994).<br />

208 204<br />

However, the host rocks from <strong>Mount</strong> <strong>Costigan</strong> have lower Pb/ Pb values, at or below the<br />

field of Grenvillian basement, and some samples from the Shingle Gulch deposit have higher<br />

208 204<br />

Pb/ Pb values and plot in the fields of Avalonian basement and Gander Zone plutons.<br />

*


Pb/ Pb<br />

Pb/ Pb<br />

207 204<br />

208 204<br />

15.9<br />

15.8<br />

15.7<br />

15.6<br />

15.5<br />

15.4<br />

15.3<br />

39<br />

38<br />

37<br />

sedimentary<br />

felsic volcanic<br />

mafic volcanic<br />

mineralization<br />

upper crust<br />

Grenvillian<br />

basement<br />

lower crust<br />

orogene<br />

Grenvillian<br />

basement<br />

mantle<br />

100<br />

700<br />

1000<br />

0<br />

900<br />

mantle<br />

Field of Siluro–Devonian Gander<br />

Zone plutons (Whalen et al. 1996)<br />

18 206 204<br />

19<br />

100<br />

1000<br />

500<br />

Pb/ Pb<br />

300<br />

Avalonian<br />

basement<br />

200<br />

100<br />

400<br />

0<br />

Field of Humber Zone and Dunnage<br />

Zone plutons (Whalen et al. 1994)<br />

200<br />

18 206 204<br />

19<br />

100<br />

Pb/ Pb<br />

Shingle Gulch Sewell Brook<br />

0<br />

Field of Siluro–Devonian Gander<br />

Zone plutons (Whalen et al. 1996)<br />

Field of Humber Zone and Dunnage<br />

Zone plutons (Whalen et al. 1994)<br />

300<br />

39.25 39.70<br />

upper crust 200<br />

<strong>Mount</strong> <strong>Costigan</strong><br />

29<br />

600<br />

Avalonian<br />

basement<br />

400<br />

100<br />

orogene<br />

BMC sulphide standard<br />

Redstone <strong>Mount</strong>ain Granite<br />

Age along curve in<br />

100 Ma increments<br />

Figure 16. Radiogenic lead isotope diagrams for host rocks and mineralization from the <strong>Mount</strong><br />

207 204 206 204 208 204<br />

<strong>Costigan</strong>, Shingle Gulch, and Sewell Brook deposits. a) Pb/ Pb versus Pb/ Pb. b) Pb/ Pb<br />

206 204<br />

versus Pb/ Pb. Fields of Avalonian and Grenvillian basement are from Ayuso and Bevier (1991).<br />

Lead evolutionary curves are from Zartman and Doe (1981).<br />

0<br />

a<br />

b


30<br />

<strong>The</strong> lead isotope data presented herein suggest that the host volcanic rocks at <strong>Mount</strong><br />

<strong>Costigan</strong> are less radiogenic (i.e., have lower 207 Pb/ 204 Pb values) than most rocks from<br />

elsewhere in the Chaleur Bay Synclinorium, implying that their magmas were sourced from<br />

material similar to Grenvillian crust. Grenvillian basement is not known to underlie the Chaleur<br />

Bay Synclinorium; however, Late Ordovician to Early Silurian clastic and carbonate<br />

sedimentary rocks of the Matapedia Group, which conformably underlies the Chaleur Bay<br />

Synclinorium to the west and north of the Rocky Brook–Millstream Fault (Fig. 1, inset), were<br />

sourced from Laurentia and potentially contain a large component of Grenville-derived<br />

sediment. This Grenvillian detritus would have retained the 208 Pb/ 204 Pb value of the parent<br />

material but presumably would have lower 207 Pb/ 204 Pb values because of U loss during the<br />

weathering process (oxidation and aqueous transport). <strong>The</strong> array defined by the host rock<br />

data (Fig. 16a) may be interpreted to represent contamination of the source magmas by upper<br />

crustal material having Grenville-like lead isotope signatures. It is noteworthy that sedimentary<br />

rocks from stratigraphically higher units, such as the Shingle Gulch deposit, have higher<br />

uranogenic ( 207 Pb/ 204 Pb) and thorogenic ( 208 Pb/ 204 Pb) Pb contents. This trend can be<br />

explained by an increasing percentage of Avalon-sourced sedimentary input over time.<br />

<strong>The</strong> lead isotope data from sulphide mineralization contrast sharply with those of the host<br />

rocks. <strong>The</strong> more uranogenic (higher 207 Pb/ 204 Pb) Pb in galena separates is similar to values in<br />

Avalonian basement and/or Siluro–Devonian Ganderian plutons (Fig. 16a). For example, the<br />

Redstone <strong>Mount</strong>ain Granite has 207 Pb/ 204 Pb values similar to those in galena from the <strong>Mount</strong><br />

<strong>Costigan</strong> deposit. It is possible that the higher uranogenic Pb in sulphide minerals is due to<br />

addition of U from hydrothermal fluids. If the mineralizing hydrothermal fluids were sourced<br />

from a felsic magma such as the Redstone <strong>Mount</strong>ain Granite, then the fluid and any<br />

mineralization precipitated from it would have a higher 207 Pb/ 204 Pb value. In contrast, the<br />

208 Pb/ 204 Pb in sulphide minerals would be lower than that of the source intrusion, because the<br />

solubility of Th in hydrothermal fluid is lower than that of U. Consistency in the isotopic ratios<br />

displayed by mineralization from all three deposits implies that the Pb source was the same<br />

and suggests no indication of a mixed-source Pb.<br />

Given the much higher values of 208 Pb/ 204 207 204 206 204<br />

Pb, Pb/ Pb, and Pb/ Pb for the Redstone<br />

<strong>Mount</strong>ain Granite, it is unlikely that this intrusion was the source magma for the host volcanic<br />

rocks at <strong>Mount</strong> <strong>Costigan</strong>. However, no lead isotope data have been reported for the Lewis<br />

Brook area, so no comparison can be made with the Redstone <strong>Mount</strong>ain Granite.<br />

DISCUSSION<br />

<strong>The</strong> sulphide mineralogy at <strong>Mount</strong> <strong>Costigan</strong> is dominated by sphalerite and galena with a<br />

Zn:Pb ratio of ~2. In most mineralized intervals, pyrite is volumetrically subordinate to Zn and<br />

Pb sulphides, and chalcopyrite occurs only in trace amounts. <strong>The</strong> relatively light colour of<br />

sphalerite, which ranges from reddish brown to pale yellow, is attributed to a low Fe content<br />

and is consistent with the low concentration of pyrite in the system. In addition to containing<br />

Zn and Pb, many of the analyzed samples (Table 1) have anomalous concentrations of the<br />

granophile elements W, Sn, Sb, and Au. During petrographic analysis, neither Au nor primary


31<br />

W, Sn, Sb, and Au. During petrographic analysis, neither Au nor primary W, Sn, and Sb<br />

minerals were recognized. <strong>The</strong>refore, it is assumed that these elements occur as trace<br />

constituents in sulphide phases (sphalerite, galena, pyrite), although the microanalytical work<br />

necessary to confirm this has not been completed. <strong>The</strong> elevated granophile-element content<br />

is consistent with a felsic source.<br />

Copper is notable by its almost complete absence at the <strong>Mount</strong> <strong>Costigan</strong> deposit. Only a few tiny<br />

grains were identified in thin section, and ‘chalcopyrite disease’ (microscale inclusions of<br />

chalcopyrite in sphalerite) is all but absent. Although the genesis of chalcopyrite disease is still open<br />

to debate, the generally accepted hypothesis is that it results, not from exsolution, but instead<br />

from the interaction of early-formed sphalerite with later Cu-rich hydrothermal fluid (Barton and<br />

Bethke 1987). Consequently, assuming that mineralizing fluids have access to Cu in their source<br />

area, the absence of chalcopyrite disease is generally taken as evidence of low-temperature<br />

sphalerite formation, without subsequent interaction with higher temperature Cu-bearing fluids.<br />

Assuming 1) that the hydrothermal fluid responsible for generating the <strong>Mount</strong> <strong>Costigan</strong> deposit<br />

was Cl-rich (ΣCl = one molar), which is likely, given the shallow marine setting in which the<br />

host rocks were deposited, and 2) that a minimum concentration of 1 ppm of each ore metal is<br />

required in the fluid to form a deposit, then a fluid with a temperature of ≤200°C and a pH of<br />


Cordilleran Epithermal Au–Ag <strong>Deposit</strong><br />

Model (Panteleyev 1988)<br />

<strong>Mount</strong> <strong>Costigan</strong> <strong>Deposit</strong><br />

and Lewis Brook Occurrence<br />

Silica cap<br />

Clay alunite cap<br />

Argillic to Phyllic Zone:<br />

clays (illite, sericite at depth)<br />

4 km<br />

silica (banded<br />

and brecciated)<br />

Propylitic Zone: chlorite, illite,<br />

montmorillonite, carbonate, epidote<br />

<strong>Mount</strong> <strong>Costigan</strong> deposit:<br />

present erosional level<br />

boiling<br />

zone<br />

Lewis Brook <strong>Zn–Pb–Ag</strong><br />

occurrence<br />

quartz, adularia, pyrite, sericite,<br />

calcite, chlorite, rhodochrosite,<br />

fluorite, argentite, electrum<br />

precious<br />

metal<br />

zone<br />

boiling<br />

level<br />

quartz, pyrite, chlorite,<br />

hematite,<br />

fluorite, galena, sphalerite,<br />

chalcopyrite,<br />

argentite<br />

base<br />

metal<br />

zone<br />

350 m<br />

quartz, siderite, pyrite,<br />

pyrrhotite,<br />

arsenopyrite, fluorite,<br />

chalcopyrite,<br />

argentite<br />

<strong>Costigan</strong> <strong>Mount</strong>ain Formation<br />

silica, adularia,<br />

albite<br />


33<br />

circulated through permeable volcanic units toward a hydrothermal upflow zone (Fig. 15, 17),<br />

similar to those invoked for the formation of VMS deposits (Franklin 1995). As this fluid was<br />

heated to temperatures of up to 150°C and reacted with the host volcanic rocks, quartz was<br />

dissolved, and K-feldspar formed at the expense of plagioclase. Sulphide deposition occurred<br />

when seawater sulphate was reduced by interaction with upwelling magmatic fluid, and/or the<br />

pH changed by reaction with host rocks. This model requires that sulphur was sourced from<br />

shallowly circulating seawater, whereas metals (± minor sulphur) were transported in<br />

magmatic fluid, with sulphide precipitation occurring upon mixing of these two fluids in the<br />

subsurface. In contrast with typical VMS systems in which rapid fluid mixing and cooling result<br />

in the rapid precipitation of very fine-grained sulphide (Barnes 1979), the mineral kinetics of<br />

fluid mixing and sulphide precipitation at temperatures of ~200°C at <strong>Mount</strong> <strong>Costigan</strong> allowed<br />

for slower sulphide precipitation and resulted in the formation of relatively coarse-grained<br />

sulphides.<br />

It is possible that the intrusion from which the hypothesized metal-bearing magmatic fluid<br />

was sourced contained anomalously heavy sulphur (i.e., δ 34 S = +9.2‰ to +9.7‰). However,<br />

this model requires that both metals and sulphur (as bisulphide) are transported in the same<br />

fluid. In the neutral to moderately low-pH hydrothermal fluid hypothesized for <strong>Mount</strong><br />

<strong>Costigan</strong>, and assuming ΣS = 1 molal, such a fluid should contain significant Cu and Zn<br />

(Cu/Zn is ≥2 and ≤10) and very little Pb at the estimated maximum temperature of formation<br />

of 220°C (Lydon 1988). However, this is not consistent with the metal ratios exhibited at<br />

<strong>Mount</strong> <strong>Costigan</strong> (sphalerite and galena show a 2:1 ratio: Fig. 14a) or with the absence of Cu<br />

mineralization.<br />

Given the apparent stratigraphic control on the distribution of mineralization and alteration<br />

along with the limited development of cross-cutting hydrothermal breccia, it seems likely that,<br />

at the margins of the system, most fluid flow was focused laterally within permeable strata,<br />

whereas at depth in the central part of the system, fluids flowed vertically through existing<br />

fractures at confining pressures that were high enough to prevent boiling. In the central part of<br />

the system at shallow levels, abundant quartz ± carbonate veining and breccia-fill textures<br />

may mark the lower boundary of a boiling zone. In typical epithermal deposits in which a<br />

boiling zone is developed, precious metals (Au and Ag) accumulate above the boiling zone. At<br />

<strong>Mount</strong> <strong>Costigan</strong>, Au and Ag are encountered in the higher sections of the system, suggesting<br />

that part of the system may have been lost to erosion.<br />

<strong>The</strong> salient characteristics of the <strong>Mount</strong> <strong>Costigan</strong> deposit can be compared with those of the<br />

Cordilleran epithermal Au–Ag deposits (Panteleyev 1988). Although not a perfect match, the<br />

<strong>Mount</strong> <strong>Costigan</strong> deposit does share several attributes of this deposit type (Fig. 17). In<br />

particular, the mineral assemblage quartz–adularia–pyrite–sericite–calcite–chlorite–rhodochrosite<br />

–fluorite ± Au–Ag, which occurs at or immediately above the boiling zone in Panteleyev’s<br />

model, strongly resembles the shallower part of the <strong>Mount</strong> <strong>Costigan</strong> deposit. Also, the<br />

sphalerite–galena–pyrite–quartz–chlorite veins that are abundant below the boiling zone in his<br />

model are similar to the massive base metal veins at <strong>Mount</strong> <strong>Costigan</strong>.


34<br />

<strong>The</strong> Redstone <strong>Mount</strong>ain Granite is proposed as a likely source of the metals at <strong>Mount</strong><br />

<strong>Costigan</strong>. Although similar in HFSE contents (Fig. 9a–c) to volcanic rocks at the top of the<br />

<strong>Costigan</strong> <strong>Mount</strong>ain Formation (Lewis Brook area), the granite is characterized by very low<br />

contents of Zn, Pb, Cu, W, Mo, Sn, Sb, and Au compared with the felsic rocks hosting the<br />

deposit. Likewise, similarities in the uranogenic ( 207 Pb/ 204 Pb) Pb contents of the <strong>Mount</strong><br />

<strong>Costigan</strong> mineralization and Redstone <strong>Mount</strong>ain Granite suggest a possible genetic link (Fig.<br />

16). <strong>The</strong> anomalously low metal content of the granite may be due to metal sequestration into<br />

a fluid phase during cooling of the intrusion. This fluid phase was introduced into the host<br />

sequence, where it mixed with seawater convecting through the volcanic rocks, and<br />

precipitated sulphide mineralization at temperatures of ~200°C.<br />

Similar, high-level, metal-depleted intrusions within and coeval with the footwall succession of<br />

VMS deposits in the Bathurst Mining Camp of northeastern <strong>New</strong> Brunswick (Fig. 1, inset)<br />

have been interpreted to reflect depletion following separation of a metal-laden, depositgenerating<br />

fluid phase (McCutcheon and Walker 2008). At a shallower level in the system,<br />

where confining pressure was surpassed by an exsolving gas phase, the fluid would undergo<br />

phase separation (boiling). Boiling promotes sulphide saturation and a decrease in the<br />

solubility of carbonate phases. This explains the high-grade massive sulphide breccia cement<br />

as well as increased quartz–carbonate veining in the shallower parts of the deposit.<br />

CONCLUSIONS<br />

<strong>The</strong> <strong>Mount</strong> <strong>Costigan</strong> <strong>Zn–Pb–Ag</strong> sulphide deposit is hosted by intercalated heterolithic felsic<br />

lithic- and crystal–lithic-lapilli tuff, massive to flow-layered, aphyric to very sparsely feldsparphyric<br />

rhyolite, and minor intervals of siltstone and sandstone within the <strong>Costigan</strong> <strong>Mount</strong>ain<br />

Formation. Most of the fragmental textures observed at the deposit are pyroclastic in origin,<br />

rather than hydrothermal breccia as reported by previous authors (Fyffe and Pronk 1985; Cox<br />

1990).<strong>The</strong> deposit comprises epigenetic mineralization of base metal sulphides that formed<br />

within fragmental volcanic rock in a setting beneath the seafloor. Mineralization occurred at<br />

temperatures below 220°C and involved the interaction of shallowly circulating seawater and<br />

metal-rich, magmatically derived hydrothermal fluid. <strong>The</strong> deposit displays characteristics of<br />

both subsurface VMS- and Cordilleran-type epithermal Au–Ag systems.<br />

Overall, the mineralized zone is subvertical but highly irregular and strongly dependant on<br />

permeability of primary fragmental (pyroclastic) rocks. It has been intersected to depths of<br />

300 m. Pyroclastic rocks acted as conduits for later circulating hydrothermal fluids and were<br />

the locus for subsequent mineralization and local development of hydrothermal breccia. This<br />

interpretation is supported by the observation that units of unbrecciated sedimentary rock can<br />

be traced through the mineralized zone (Fig. 3). <strong>The</strong>se sedimentary units are generally<br />

unmineralized, although they may be locally cut by massive sulphide veins. <strong>The</strong> relative<br />

absence of mineralization in these units suggests that sedimentary beds may have acted as<br />

barriers to fluid migration and implies that, for the most part, mineralizing fluids remained<br />

below their boiling point and were channelled through zones (strata) of higher primary<br />

permeability/porosity.


35<br />

<strong>The</strong> consistency and range (from +7.4‰ to +9.7‰) in δ 34 S of bulk sulphide samples suggests<br />

that Early Devonian seawater was the most likely source of sulphur in this deposit; however,<br />

there is evidence at depth for a component of magmatic sulphur. <strong>The</strong> metal assemblage (Zn–<br />

Pb ± Sn, W, Ag, Au) was likely derived from a hydrothermal fluid generated during the cooling<br />

of a felsic magma, possibly from the Redstone <strong>Mount</strong>ain Granite. Although no direct link can<br />

be drawn, similarities in the uranogenic ( 207 Pb/ 204 Pb) Pb content of the <strong>Mount</strong> <strong>Costigan</strong><br />

mineralization and the Redstone <strong>Mount</strong>ain Granite suggest a possible link. Likewise, the<br />

atypically low metal content of the Redstone <strong>Mount</strong>ain Granite suggests that, at some point<br />

during its crystallization, its ore metals were effectively sequestered into an evolving<br />

hydrothermal fluid. Such a fluid may have contributed to the <strong>Mount</strong> <strong>Costigan</strong> and/or Lewis<br />

Brook mineralizing systems.<br />

Several lines of evidence, including sulphur isotope ratios of coexisting sulphide pairs, the<br />

presence of rhombohedral adularia, and the Zn–Pb-rich, Cu-poor nature of the mineralization,<br />

suggest formation at relatively low temperatures of below 220°C.<br />

Three distinct alteration types are recognized.<br />

� Zone 1 is the most distal alteration type and consists of low-temperature (


36<br />

Table 1. Lithogeochemical data for SLAM Exploration Ltd. drill cores and trenches at the <strong>Mount</strong> <strong>Costigan</strong> deposit.<br />

Detection<br />

Limit<br />

Sample<br />

Analytical<br />

Method<br />

CM08-4-<br />

73.8 m<br />

Grey flb<br />

rhy<br />

CM08-10-<br />

60 m<br />

Sparse fsparphyric<br />

rhy with<br />

chloritic<br />

fragments<br />

CM08-4-<br />

145.2 m<br />

Grey aphyric<br />

rhy<br />

CM08-4-<br />

209.8 m<br />

Sparse fspar-<br />

phyric rhy<br />

(grey)<br />

CM08-4-<br />

230.7 m<br />

Fspar-phyric<br />

rhy<br />

CM08-11-<br />

194.2 m<br />

Med. grey sparsely<br />

pink fspar-phyric rhy<br />

(minor ZnS veins)<br />

SiO2 0.01% FUS-ICP 60.35 57.39 62.19 74.44 65.52 73.2<br />

Al2O3 0.01% FUS-ICP 15.27 14.83 14.28 11.9 14.01 11.59<br />

Fe2O3 (total) 0.01% FUS-ICP 3.33 6.25 4.52 2.09 4.76 3.22<br />

MnO 0.001% FUS-ICP 0.158 0.256 0.24 0.112 0.309 0.124<br />

MgO 0.01% FUS-ICP 2.27 5.12 2.42 1 3.9 1.05<br />

CaO 0.01% FUS-ICP 0.21 0.22 0.41 0.14 0.15 0.1<br />

Na2O 0.01% FUS-ICP 0.19 0.18 0.2 0.17 0.15 0.17<br />

K2O 0.01% FUS-ICP 11.18 9.28 10.73 9.54 8.57 8.8<br />

TiO2 0.001% FUS-ICP 0.194 0.788 0.811 0.195 0.298 0.17<br />

P2O5 0.01% FUS-ICP < 0.01 0.14 0.14 < 0.01 0.03 0.02<br />

LOI 0.01% FUS-ICP 2.6 3.45 2.33 1.15 2.7 1.83<br />

Au 1 ppb INAA 90 < 2 22 20 22 24<br />

Ag 0.5 MULT INAA / TD-ICP 3.4 1 0.9 0.8 1.2 0.8<br />

As 1 INAA 8 15.2 45 21 39 23<br />

Ba 1 FUS-ICP 632 482 730 720 521 628<br />

Bi 0.1 FUS-MS 1.9 0.1 < 0.1 < 0.1 1.7 0.3<br />

Cd 0.5 TD-ICP 26.1 15.3 3.7 11.5 < 0.5 19.1<br />

Co 0.1 INAA 1.3 7 8.5 2.3 3.5 1.2<br />

Cr 0.5 INAA < 0.5 37 36.6 22.1 21.9 20.1<br />

Cs 0.1 FUS-MS 0.7 1.9 1.3 0.8 1 0.6<br />

Cu 1 TD-ICP 38 8 143 48 4 73<br />

Ga 1 FUS-MS 24 20 19 16 22 17<br />

Ge 0.5 FUS-MS 1.2 1.3 1.3 1.2 1.2 1.4<br />

Hf 0.1 FUS-MS 10.2 8.7 9 8.1 12.5 7.4<br />

Mo 2 FUS-MS < 2 < 2 < 2 2 3 3<br />

Nb 0.2 FUS-MS 28.1 23.1 17.9 22.9 31.4 18.7<br />

Ni 1 TD-ICP 1 11 6 2 8 3<br />

Pb 5 TD-ICP > 5000 2980 838 1790 1460 621<br />

Rb 1 FUS-MS 339 280 320 270 294 241<br />

S 0.001% TD-ICP 1.14 0.598 0.635 0.385 0.423 1.27<br />

Sb 0.1 INAA 7.6 3.3 5.1 3.2 4 5.2<br />

Sc 0.01 INAA 10.1 15 15.3 7.67 10.4 7.46<br />

Se 0.5 INAA < 0.5 < 3 < 0.5 < 0.5 5.9 < 0.5<br />

Sn 1 FUS-MS 11 14.2 8 5 6 8<br />

Sr 2 FUS-ICP 27 20 46 33 23 29<br />

Ta 0.01 FUS-MS 2.29 1.25 1.49 1.51 1.83 1.57<br />

Th 0.05 FUS-MS 26.9 17.2 18.8 20.8 21.7 19.2<br />

U 0.01 FUS-MS 6.73 4.38 5.25 5.42 5.87 5.24<br />

V 5 FUS-ICP < 5 75 81 8 20 10<br />

W 1 INAA 10 24.3 25 3 7 < 1<br />

Y 1 FUS-ICP 65 55.1 52 55 58 59<br />

Zn 1 INAA / TD-ICP 7950 4500 1340 4380 157 6710<br />

Zr 1 FUS-MS 365 371 385 295 513 280<br />

La 0.05 FUS-MS 47.8 55 31.5 55.6 37.7 67.1<br />

Ce 0.05 FUS-MS 109 111 63.9 108 78.4 132<br />

Pr 0.01 FUS-MS 13.6 11.1 7.98 12.6 9.71 14<br />

Nd 0.05 FUS-MS 50.4 41.6 30.4 48.1 40.8 49.7<br />

Sm 0.01 FUS-MS 11.9 8.89 6.96 10.6 10 11.9<br />

Eu 0.005 FUS-MS 2.47 1.38 0.873 1.12 1.21 1.78<br />

Gd 0.01 FUS-MS 10.9 8.79 6.98 10.2 9.47 11.6<br />

Tb 0.01 FUS-MS 2.07 1.44 1.3 1.79 1.67 1.98<br />

Dy 0.01 FUS-MS 12.4 8.39 8.39 10.7 10.6 11<br />

Ho 0.01 FUS-MS 2.59 1.63 1.84 2.18 2.39 2.17<br />

Er 0.01 FUS-MS 7.45 4.76 5.4 6.12 6.88 5.9<br />

Tl 0.05 FUS-MS 1.45 1.48 1.54 1.37 2.01 1.22<br />

Tm 0.005 FUS-MS 1.2 0.713 0.876 0.948 1.09 0.918<br />

Yb 0.01 FUS-MS 7.86 4.69 5.43 6.11 7.04 5.7<br />

Lu 0.002 FUS-MS 1.12 0.752 0.799 0.853 1 0.795<br />

Notes: 1. All detection limits are in ppm unless otherwise stated. All analyses were conducted by Activation Laboratories Ltd.<br />

2. FUS-ICP = metaborate/tetraborate fusion-inductively coupled plasma emission spectrometry, INAA = instrumental neutron activation analysis,<br />

FUS-MS = metaborate/tetraborate fusion-mass spectrometry, TD-ICP = total digestion-inductively coupled plasma mass spectrometry.<br />

3. rhy = rhyolite, flb = flow-banded, fspar = feldspar, xl = crystal.


Table 1 (cont’d). Lithogeochemical data for SLAM Exploration Ltd. drill cores and trenches at the <strong>Mount</strong> <strong>Costigan</strong> deposit.<br />

Sample<br />

CM08-4-<br />

264 m<br />

Rhy fragment<br />

from xl lithic<br />

tuff with<br />

alkali granite<br />

fragment<br />

CM08-4-<br />

90.7 m<br />

Sil-K fspar cement<br />

from rhy fragmental<br />

containing<br />

dissem’nated<br />

sulphides<br />

CM08-4-<br />

254.8 m<br />

Highly altered<br />

felsic<br />

fragmental<br />

37<br />

CM08-11-<br />

148.4 m<br />

Mottled/altered<br />

grey flb rhy<br />

very sparse<br />

fspars<br />

CM08-11-<br />

74.5 m<br />

Green-grey<br />

flb rhy with<br />

minor fspar<br />

phenocrysts<br />

CM08-12-<br />

175 m<br />

Fsparphyric<br />

rhy<br />

with minor<br />

sulphide<br />

CM08-12-<br />

252.2 m<br />

Massive<br />

grey rhy<br />

CM08-12-<br />

273.5 m<br />

Massive<br />

grey rhy<br />

with pink<br />

fspar<br />

phenocrysts<br />

SiO2 69.82 84.92 57.37 76.24 60.82 74.74 74.76 71.54<br />

Al2O3 11.82 5.96 16.12 11.34 17.35 11.9 11.35 12.4<br />

Fe2O3 (total) 3.31 2.07 3.17 1.71 4.31 1.88 1.94 2.62<br />

MnO 0.354 0.085 0.609 0.1 0.245 0.095 0.038 0.142<br />

MgO 4.18 0.6 6.33 0.52 2.07 0.46 0.34 1.12<br />

CaO 0.34 0.04 0.59 0.15 0.04 0.09 0.23 0.46<br />

Na2O 0.15 0.12 0.2 0.22 0.2 0.22 0.16 1.79<br />

K2O 7.02 4.1 11.37 8.98 12.09 9.69 9.57 7.17<br />

TiO2 0.444 0.088 0.389 0.149 0.245 0.168 0.169 0.42<br />

P2O5 0.06 < 0.01 0.05 0.01 0.02 0.02 0.02 0.07<br />

LOI 3.02 1.09 3.99 0.67 1.75 0.76 1.4 1.5<br />

Au 14 38 70 < 1 < 1 5 8 < 1<br />

Ag 0.8 1.2 1.8 < 0.5 0.5 < 0.5 < 0.5 < 0.5<br />

As 25.9 22.6 99 12 8 14 10 27<br />

Ba 365 231 350 904 836 856 843 705<br />

Bi 0.1 < 0.1 0.8 0.3 < 0.1 < 0.1 < 0.1 < 0.1<br />

Cd 3.1 19.4 < 0.5 < 0.5 1 1.3 2.2 < 0.5<br />

Co 9 2 3.9 < 0.1 1.3 1.2 1.2 3.1<br />

Cr 66 22 19.3 29.3 15.6 33.6 18.4 31.5<br />

Cs 1.7 0.7 2.4 1 1 1.2 0.6 0.5<br />

Cu 124 13 50 8 1 10 6 10<br />

Ga 15 8 21 16 23 18 13 18<br />

Ge 1.1 2.5 1.5 1.4 1.7 1.4 1 1.1<br />

Hf 7.1 4.3 14.5 7.9 12.6 8.3 8 8.3<br />

Mo < 2 < 2 < 2 < 2 2 < 2 < 2 < 2<br />

Nb 19.6 13.1 36 24.5 37.8 24.4 23.7 23.6<br />

Ni 29 9 4 2 2 2 1 5<br />

Pb 687 2810 61 121 201 162 94 7<br />

Rb 262 146 414 268 384 287 271 212<br />

S 0.621 0.572 0.977 0.162 0.145 0.232 1.02 0.558<br />

Sb 5.6 15.1 3.2 1.4 1.4 1.3 2 0.9<br />

Sc 10 3 13.5 6.94 12.8 8.02 6.47 12.5<br />

Se < 3 < 3 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5<br />

Sn 11.3 6.5 6 7 13 6 5 8<br />

Sr 39 9 65 50 26 41 37 54<br />

Ta 1.08 0.68 2.11 1.6 2.48 1.63 1.46 1.41<br />

Th 12.1 8.14 24.6 20.8 32.5 21.3 19.2 18.4<br />

U 3.29 2.5 6.58 5.43 8.01 5.57 5.11 4.98<br />

V 49 < 5 23 < 5 8 < 5 < 5 24<br />

W 2.6 1.8 < 1 5 16 4 < 1 8<br />

Y 39.4 30 69 65 84 67 40 61<br />

Zn 1170 6240 191 214 216 772 809 31<br />

Zr 291 179 609 279 436 298 300 331<br />

La 51.3 20 83 63.9 92.1 73.8 59.9 63.3<br />

Ce 106 46.4 162 124 172 141 120 121<br />

Pr 10.2 4.64 19.1 14.3 21 16.4 13.7 14<br />

Nd 37.1 17.1 74.5 54.8 80.4 62.5 51.8 54.6<br />

Sm 7.06 3.69 15.3 11.5 16.3 13 10.4 11.5<br />

Eu 1.23 0.663 2.65 1.27 2.82 1.52 1.02 1.69<br />

Gd 6.75 3.43 13.2 11.1 15.2 12.5 8.82 11<br />

Tb 1.07 0.6 2.22 1.89 2.57 2.06 1.35 1.85<br />

Dy 6.26 3.71 13.4 11.6 14.9 12.1 7.42 10.9<br />

Ho 1.27 0.79 2.85 2.38 3.17 2.44 1.46 2.22<br />

Er 3.79 2.54 8.07 6.7 9.11 6.65 4.18 6.16<br />

Tl 1.59 0.83 2.79 1.37 2.01 1.34 1.33 1.01<br />

Tm 0.584 0.396 1.27 1.05 1.43 1.01 0.647 0.94<br />

Yb 4.01 2.7 8.12 6.59 9.27 6.59 4.37 6<br />

Lu 0.638 0.433 1.17 0.914 1.33 0.904 0.637 0.856<br />

Notes: 1. All detection limits are in ppm unless otherwise stated. All analyses were conducted by Activation Laboratories Ltd.<br />

2. FUS-ICP = metaborate/tetraborate fusion-inductively coupled plasma emission spectrometry, INAA = instrumental neutron activation analysis,<br />

FUS-MS = metaborate/tetraborate fusion-mass spectrometry, TD-ICP = total digestion-inductively coupled plasma mass spectrometry.<br />

3. rhy = rhyolite, flb = flow-banded, fspar = feldspar, xl = crystal.


Table 1 (cont’d). Lithogeochemical data for SLAM Exploration Ltd. drill cores and trenches at the <strong>Mount</strong> <strong>Costigan</strong> deposit.<br />

Sample<br />

CM08-13-<br />

22 m<br />

Felsic<br />

fragmental<br />

with chloritic<br />

clasts<br />

CM08-12-<br />

298.5 m<br />

Crystal–<br />

lithic<br />

tuff<br />

38<br />

CM08-12-<br />

175 m<br />

Grey<br />

massive<br />

rhyolite<br />

CM08-8-<br />

48 m<br />

Mafic<br />

dyke<br />

CM08-4-<br />

222b m<br />

Finegrained<br />

sandstone<br />

CM08-4-<br />

222a m<br />

Siltstone<br />

SiO2 62.18 72.83 73.64 49.77 56.81 59.34<br />

Al2O3 14.41 12.27 12.28 13.95 16.54 16.8<br />

(total)<br />

Fe2O3<br />

4.79 2.76 1.97 10.99 8.91 7.53<br />

MnO 0.37 0.191 0.093 1.473 0.385 0.376<br />

MgO 2.57 1.13 0.47 6.37 4.42 4.21<br />

CaO 0.04 0.37 0.08 1.41 0.89 0.82<br />

Na2O 0.15 1.62 0.24 0.12 0.65 0.88<br />

K2O 11.05 7.14 9.78 6.45 4.95 5.13<br />

TiO2 0.206 0.313 0.173 2.354 0.951 0.947<br />

P2O5 0.04 0.05 0.01 0.49 0.17 0.14<br />

LOI 2.94 1.27 0.92 5.34 4.85 4.03<br />

Au 13 < 2 < 2 15 < 2 4<br />

Ag 0.9 0.6 0.5 2.3 0.4 < 0.5<br />

As 246 5.7 20 159 73.5 22<br />

Ba 709 724 851 374 413 451<br />

Bi 0.4 < 0.1 < 0.1 0.1 0.2 0.3<br />

Cd 4.7 0.8 1.1 0.8 0.9 0.8<br />

Co 1.8 3 2 31 23 23.1<br />

Cr 12.2 22 21 22 174 159<br />

Cs 1.1 0.6 1.4 1.9 6.5 5.6<br />

Cu 4 4 12 12 31 34<br />

Ga 13 16 17 20 21 22<br />

Ge 1.4 1.2 1.3 2.2 1.7 1.8<br />

Hf 10.3 8.3 7.7 5.7 4.3 4.9<br />

Mo < 2 < 2 < 2 < 2 < 2 < 2<br />

Nb 27.8 23.4 25.2 20 18 17.7<br />

Ni 3 3 3 18 112 103<br />

Pb 147 221 166 320 209 213<br />

Rb 387 214 296 221 235 225<br />

S 2.06 0.028 0.182 0.716 1.09 0.164<br />

Sb 5.4 1 1.2 10.5 2.4 1.3<br />

Sc 8.74 9 8 31 22 22.3<br />

Se < 0.5 < 3 < 3 < 3 < 3 < 0.5<br />

Sn 3 13.8 17.8 11.5 9.8 4<br />

Sr 31 45 40 42 40 46<br />

Ta 1.84 1.39 1.49 0.98 0.92 1<br />

Th 23.8 17.8 19.4 7.47 9.85 10.9<br />

U 5.21 4.5 4.99 3.75 2.66 2.91<br />

V 6 24 6 338 158 147<br />

W < 1 2.1 2.4 9.2 1.1 4<br />

Y 67 50.4 70.2 49 36.7 33<br />

Zn 158 395 748 486 405 327<br />

Zr 375 329 275 258 183 209<br />

La 46 66.5 77.4 34.7 36.3 38.8<br />

Ce 109 134 153 78.8 79.2 78.1<br />

Pr 13.7 13 15 8.32 8.08 9.12<br />

Nd 54.8 47.1 55.2 33.8 31.2 36.3<br />

Sm 12.2 9.53 11.5 7.99 6.78 7.64<br />

Eu 1.09 1.6 1.47 2.5 1.71 1.68<br />

Gd 11.7 8.96 11.7 8.51 6.61 6.77<br />

Tb 2.11 1.43 1.85 1.36 1.08 1.14<br />

Dy 12.8 8.04 10.5 7.82 6.15 6.61<br />

Ho 2.64 1.56 2.08 1.48 1.2 1.32<br />

Er 7.36 4.57 5.99 4.15 3.47 3.64<br />

Tl 4.86 0.95 1.35 2.57 1.03 0.97<br />

Tm 1.15 0.69 0.89 0.61 0.515 0.543<br />

Yb 7.31 4.63 5.8 3.92 3.32 3.57<br />

Lu 1.01 0.745 0.916 0.605 0.51 0.485<br />

Notes: 1. All detection limits are in ppm unless otherwise stated. All analyses were conducted by Activation Laboratories Ltd.<br />

2. FUS-ICP = metaborate/tetraborate fusion-inductively coupled plasma emission spectrometry, INAA = instrumental neutron activation analysis,<br />

FUS-MS = metaborate/tetraborate fusion-mass spectrometry, TD-ICP = total digestion-inductively coupled plasma mass spectrometry.<br />

3. rhy = rhyolite, flb = flow-banded, fspar = feldspar, xl = crystal.


Table 1 (cont’d). Lithogeochemical data for SLAM Exploration Ltd. drill cores and trenches at the <strong>Mount</strong> <strong>Costigan</strong> deposit.<br />

Sample<br />

ET-1<br />

(surface)<br />

Crystal–<br />

lithic tuff<br />

ET-2<br />

(surface)<br />

Crystal–<br />

lithic tuff<br />

39<br />

ST-1A<br />

(surface)<br />

Crystal–<br />

lithic tuff<br />

ST-1B<br />

(surface)<br />

Crystal–<br />

lithic tuff<br />

ST-2<br />

(surface)<br />

Crystal–<br />

lithic tuff<br />

ST-3<br />

(surface)<br />

Crystal–<br />

lithic tuff<br />

ST-6<br />

(surface)<br />

Crystal–<br />

lithic tuff<br />

SiO2 72.7 69.9 72.5 77.2 80.1 79.6 67.3<br />

Al2O3 13 12.6 12.2 10.6 8.37 9.33 14.1<br />

Fe2O3 (total) 1.92 1.21 2.06 1.55 2.14 1.4 3.36<br />

MnO 0.4 0.31 0.18 0.09 0.15 0.12 0.23<br />

MgO 2.63 3.12 2.26 1.15 2.24 1.6 3.87<br />

CaO 0.05 0.06 0.05 0.04 0.05 0.04 0.03<br />

Na2O 0.1 0.1 0.14 0.1 0.08 0.09 0.13<br />

K2O 7.06 8.98 7.44 6.88 4.76 6.49 8.13<br />

TiO2 0.234 0.177 0.219 0.193 0.136 0.184 0.166<br />

P2O5 0.03 0.02 0.02 0.02 0.02 0.02 0.01<br />

LOI 1.9 1.7 1.6 1.25 1.5 1.05 2.05<br />

Au 5 < 2 < 2 5 20 14 39<br />

Ag 3.8 1.7 0.9 0.9 1.3 0.5 1.1<br />

As - - - - - - -<br />

Ba 634 591 597 703 399 501 474<br />

Bi - - - - - - -<br />

Cd - - - - - - -<br />

Co 4 1 -0.5 -0.5 -0.5 -0.5 -0.5<br />

Cr 16 10 9 11 13 21 9<br />

Cs 1 1 1 1 1 -0.5 -0.5<br />

Cu 19.3 7.6 4.8 9.9 33.7 18.3 21.1<br />

Ga - - - - - - -<br />

Ge - - - - - - -<br />

Hf 7.9 7.2 9.3 7.4 4.5 6.6 7.7<br />

Mo - - - - - - -<br />

Nb 33 23 22 23 17 17 25<br />

Ni 13 6 6 3 5 5 6<br />

Pb 1690 510 226 139 404 598 354<br />

Rb 282 320 316 241 168 240 258<br />

S - - - - - - -<br />

Sb 7.9 2.9 3.2 3.8 20.6 11.2 3.1<br />

Sc 9 8 12 10 7 8 9<br />

Se - - - - - - -<br />

Sn - - - - - - -<br />

Sr 22 30 22 19 12 17 19<br />

Ta 1.7 1.6 1.6 1.3 1.3 0.8 2.1<br />

Th 26.7 23.4 23.2 19 15 15 26.3<br />

U 7.5 6.8 6.5 5.6 5 4.3 7.3<br />

V 4 2 -2 2 6 5 3<br />

W 4 4 11 3 8 7 10<br />

Y 55 64 64 55 43 53 71<br />

Zn 321 264 149 125 110 59.1 130<br />

Zr 314 292 396 351 186 308 293<br />

La 50.1 48.1 75.5 41 67.4 73.7 96.4<br />

Ce 154 95 167 95 130 140 201<br />

Pr - - - - - - -<br />

Nd 41 45 68 38 55 60 91<br />

Sm 7.23 10.2 13.9 7.67 10.3 12 17<br />

Eu 1.2 1.6 2 1.3 1.3 1.8 2.3<br />

Gd - - - - - - -<br />

Tb 1.1 2 2 1.4 1.3 1.7 2.5<br />

Dy - - - - - - -<br />

Ho - - - - - - -<br />

Er - - - - - - -<br />

Tl - - - - - - -<br />

Tm - - - - - - -<br />

Yb 6.66 6.16 6.77 5.48 4.7 5.2 7.85<br />

Lu 1.07 1 1.1 0.88 0.74 0.81 1.23<br />

Notes: 1. All detection limits are in ppm unless otherwise stated. All analyses were conducted by Activation Laboratories Ltd.<br />

2. FUS-ICP = metaborate/tetraborate fusion-inductively coupled plasma emission spectrometry, INAA = instrumental neutron activation analysis,<br />

FUS-MS = metaborate/tetraborate fusion-mass spectrometry, TD-ICP = total digestion-inductively coupled plasma mass spectrometry.<br />

3. rhy = rhyolite, flb = flow-banded, fspar = feldspar, xl = crystal.


40<br />

Table 2. Lithogeochemical data for the Lewis Brook occurrence (<strong>Costigan</strong> <strong>Mount</strong>ain Formation), and average values<br />

for the River Dee rhyolite and River Dee basalt (Wapske Formation).<br />

Detection<br />

Limit<br />

Sample<br />

Analytical<br />

Method<br />

LB99-3-<br />

43 m<br />

LB99-3-<br />

82 m<br />

LB99-3-<br />

106 m<br />

LB99-3-<br />

108.5 m<br />

LB99-3-<br />

185.2 m<br />

LB99-3-<br />

79.5 m<br />

Rhyodacite Rhyodacite Rhyodacite Rhyodacite Rhyodacite Rhyodacite<br />

SiO2 0.01% XRF 69.8 74.5 74.8 69.3 71.5 64.8<br />

Al2O3 0.01% XRF 13.3 11.1 9.87 9.66 12.8 11<br />

Fe2O3 (total) 0.01% XRF 2.81 1.86 2.57 4.37 1.47 5.26<br />

MnO 0.001% XRF 0.06 0.04 0.05 0.07 0.06 0.04<br />

MgO 0.01% XRF 0.73 0.2 0.38 0.56 0.55 0.49<br />

CaO 0.01% XRF 1.09 0.27 0.39 1.26 1.12 0.7<br />

Na2O 0.01% XRF 2.78 0.16 0.29 0.6 0.1 1.23<br />

K2O 0.01% XRF 5.4 8.53 7.28 7.6 8.8 7.04<br />

TiO2 0.001% XRF 0.26 0.14 0.12 0.14 0.18 0.26<br />

P2O5 0.01% XRF 0.03 0.02 < 0.01 0.02 0.02 0.03<br />

LOI 0.01% XRF 2.89 1.75 2.29 3.65 2.94 4.74<br />

Au 1 ppb INAA 6 18 < 2 58 < 2 211<br />

Ag 0.5 INAA 0.6 1.3 < .5 2.4 < .5 5.2<br />

As 1 INAA 87.6 77.1 69.8 177 11.6 248<br />

Ba 1 INAA 740.6 877.2 798.9 810.4 801.3 784.6<br />

Bi 0.1 FUS-MS 6.8 1.4 0.5 2.8 < .5 4.2<br />

Cd 0.5 TD-ICP 0.5 3.8 16.4 48 < .2 98.3<br />

Co 0.1 INAA 10.1 3.7 2.2 4.4 2 7.8<br />

Cr 0.5 INAA 71 101 115 95 80 101<br />

Cs 0.1 INAA 2.1 1 0.8 0.9 2.9 1.3<br />

Cu 1 TD-ICP 70 35 206 556 4 1452<br />

Ga 1 FUS-MS 16.5 9 12.4 12.8 13.4 11.9<br />

Ge 0.5 FUS-MS - - - - - -<br />

Hf 0.1 INAA 7.6 4.3 3.8 3.8 4.7 5.7<br />

Mo 2 INAA 4.3 4.9 4.3 1.7 2.2 6.9<br />

Nb 0.2 FUS-MS 13.8 11 7.8 9.1 15.5 10.2<br />

Ni 1 INAA 10 5 2 5 5 4<br />

Pb 5 TD-ICP 120 667 132 770 22 547<br />

Rb 1 INAA 177.8 277.4 233.9 236.5 276.5 226.7<br />

Sb 0.1 INAA 1.8 1.9 1.3 2.5 1.5 3.9<br />

Sc 0.01 INAA 5.4 3.6 3.2 3.5 5.6 4.6<br />

Se 0.5 INAA < 3 < 3 < 3 < 3 < 3 < 3<br />

Sn 1 INAA 5 3 4 4 6 7<br />

Sr 2 FUS-ICP 52.4 69.9 43.2 57.9 76.6 66.9<br />

Ta 0.01 INAA 1.7 1.2 0.9 0.9 1.7 1<br />

Th 0.05 INAA 29.8 21.3 17.6 17.3 26.2 15.7<br />

U 0.01 INAA 11.6 7.9 6.1 5.8 9.2 6.5<br />

V 5 FUS-ICP 19 10 9 11 12 13<br />

W 1 INAA 2 2 2 2 2 2<br />

Y 1 FUS-ICP 42.8 29 26.3 25.4 44.2 38<br />

Zn 1 INAA 106 692 5225 11209 9 30062<br />

Zr 1 FUS-MS 223.5 123.4 104.8 115 130.6 191.4<br />

La 0.05 INAA 55.3 35.5 13.4 53 53.9 16.9<br />

Ce 0.05 INAA 89.4 62.4 24.3 113.5 88 31.8<br />

Pr 0.01 INAA 9.42 6.57 2.87 11.82 9.22 3.51<br />

Nd 0.05 INAA 39.6 25.4 12.6 44.3 36.6 14.5<br />

Sm 0.01 INAA 7 4.6 2.8 6.9 7.1 3<br />

Eu 0.005 INAA 0.84 0.47 0.29 0.68 0.99 0.43<br />

Gd 0.01 INAA 6.21 4.54 2.66 5.61 6.78 3.58<br />

Tb 0.01 INAA 1.1 0.76 0.57 0.85 1.19 0.73<br />

Dy 0.01 INAA 6.81 4.85 3.84 4.63 7.31 5.35<br />

Ho 0.01 INAA 1.42 1.02 0.85 0.9 1.42 1.27<br />

Er 0.01 INAA 4.39 3.09 2.65 2.65 4.26 4.05<br />

Tl 0.05 INAA 0.4 0.4 0.3 0.4 0.8 0.5<br />

Tm 0.005 INAA 0.66 0.51 0.37 0.45 0.66 0.65<br />

Yb 0.01 INAA 4.61 3.31 2.86 2.87 4.19 4.1<br />

Lu 0.002 INAA 0.75 0.52 0.49 0.45 0.75 0.74<br />

Notes: 1. All detection limits are in ppm unless otherwise stated. INAA, FUS-MS, TD-ICP, FUS-ICP analyses carried out by Acme Analytical. XRF<br />

analyses carried out by Lakefield Analytical.<br />

2. FUS-ICP = metaborate/tetraborate fusion-inductively coupled plasma emission spectrometry, INAA = instrumental neutron activation analysis,<br />

FUS-MS = metaborate/tetraborate fusion-mass spectrometry, TD-ICP = total digestion-inductively coupled plasma mass spectrometry, XRF = X-ray<br />

fluorescence.


Table 2 (cont’d). Lithogeochemical data for the Lewis Brook occurrence (<strong>Costigan</strong> <strong>Mount</strong>ain Formation), and<br />

average values for the River Dee rhyolite and River Dee basalt (Wapske Formation).<br />

Sample<br />

LB99-3-<br />

113.5 m<br />

LB99-3-<br />

119 m<br />

LB99-3-<br />

131 m<br />

LB99-3-<br />

138.5 m<br />

41<br />

LB99-3-<br />

155 m<br />

LB99-3-<br />

176.7 m<br />

LB99-3-<br />

186.8 m<br />

LB99-3-<br />

19.4 m<br />

LB99-3-<br />

41 m<br />

Basalt Basalt Basalt Basalt Basalt Basalt Basalt Basalt Basalt<br />

SiO2 44.7 45.3 45.6 44.3 45.4 41.8 44.2 59.4 59.9<br />

Al2O3 16.4 17 15.2 17 16.9 15.4 15.3 16.1 16.4<br />

Fe2O3 (total) 10.3 7.68 7.92 11.9 7.12 7.76 8.36 8.33 7.41<br />

MnO 0.49 0.23 0.3 0.42 0.19 0.34 0.22 0.11 0.09<br />

MgO 4.77 6.09 4.29 2.75 4.98 3.98 3.64 4.08 3.79<br />

CaO 2.46 7.57 5.04 1.1 7.14 7.43 6 0.93 1.16<br />

Na2O 0.96 2.96 1.65 1.97 2.47 0.08 1.85 1.97 1.39<br />

K2O 6.53 4.28 3.82 6.19 4.83 5.52 4.28 3.09 3.81<br />

TiO2 1.32 1.24 1.16 1.5 1.11 1.59 1.58 1.12 1.01<br />

P2O5 0.18 0.15 0.14 0.21 0.17 0.19 0.18 0.16 0.18<br />

LOI 9.35 7.13 14.2 11.8 9.35 13.4 14.2 4.6 5.07<br />

Au < 2 < 2 < 2 2 < 2 < 2 < 2 3 3<br />

Ag < .5 < .5 < .5 0.6 < .5 < .5 < .5 < .5 < .5<br />

As 49.5 8.6 36.9 77.6 21.5 157 13.4 13.8 29.3<br />

Ba 773.3 555.7 371.1 682 556.5 150.8 616.4 418.2 371.3<br />

Bi < .5 < .5 < .5 < .5 < .5 < .5 < .5 < .5 < .5<br />

Cd 4.3 < .2 < .2 10.4 < .2 0.2 < .2 < .2 < .2<br />

Co 32.3 32.1 27.2 32 29.7 32.2 27 26.5 21.9<br />

Cr 210 234 200 190 225 179 176 157 168<br />

Cs 8 4.7 9.2 7.1 7.6 6.9 8 7.3 7.2<br />

Cu 71 26 28 110 34 36 46 45 41<br />

Ga 26.7 16.8 14.1 38.8 16.2 20.8 18.3 21.7 21.3<br />

Ge - - - - - - - - -<br />

Hf 2.7 2.2 2.1 3.1 2.5 3.4 3.1 5.3 5.3<br />

Mo 1 0.6 1 1.3 0.6 1.4 1.2 0.6 0.8<br />

Nb 6.8 5.3 4.7 7.3 6.3 7.2 6.8 14.2 13.5<br />

Ni 63 71 58 72 72 50 41 78 90<br />

Pb 1582 10 10 3741 12 31 5 14 11<br />

Rb 217.7 167.9 158.3 204.6 206.5 281.9 195.3 134.1 167.2<br />

Sb 1.3 0.6 2.1 2.5 1 5.8 1.3 0.9 1.4<br />

Sc 30.3 28.3 28.3 29.9 27.8 31.5 31.4 24.4 21<br />

Se < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3<br />

Sn 2 1 2 8 2 2 2 3 4<br />

Sr 110.6 354.4 174.2 83.2 226.1 128.7 317.8 81.3 53.2<br />

Ta 0.5 0.2 0.2 0.4 0.4 0.4 0.4 1.1 0.9<br />

Th 3.5 2.2 1.7 3.2 2.6 3.2 3.7 9.8 11<br />

U 1.4 < .5 1.3 2 1.4 1.3 1.5 3.3 3.9<br />

V 207 182 173 211 169 229 248 160 132<br />

W 4 < 1 < 1 6 < 1 6 4 2 1<br />

Y 21.2 20 17.9 33.4 20.2 27 23.5 28.6 31.4<br />

Zn 1336 83 75 3707 67 79 66 85 88<br />

Zr 101 84.3 72.7 112.8 92.5 112.9 112.5 186.1 181.7<br />

La 16.2 13.6 12.5 22.9 14 18.4 13.6 29.7 38.9<br />

Ce 30.8 26.5 23.5 41.2 30.2 34.4 28.7 55.6 69<br />

Pr 3.7 3.07 2.76 4.67 3.32 4.09 3.49 6.39 8.06<br />

Nd 18 15.8 12.9 22.3 16.1 19.9 18 28.5 34.8<br />

Sm 3.6 3.5 3.1 4.8 3.5 4.3 3.5 5.3 6.9<br />

Eu 1.34 1.41 1.13 2.34 1.25 1.41 1.37 1.3 1.31<br />

Gd 3.95 3.62 3.21 5.07 3.74 4.45 4.26 4.98 6.01<br />

Tb 0.62 0.58 0.52 0.91 0.61 0.77 0.67 0.78 0.96<br />

Dy 4.06 3.67 3.36 6.13 3.96 4.61 4.4 5.17 5.41<br />

Ho 0.82 0.72 0.65 1.2 0.71 0.92 0.9 1.07 1.08<br />

Er 2.36 1.98 1.72 3.38 2.1 2.64 2.46 3.16 3.24<br />

Tl 0.5 0.4 0.3 0.6 0.4 0.4 1.4 0.3 0.5<br />

Tm 0.35 0.3 0.26 0.53 0.31 0.38 0.37 0.51 0.46<br />

Yb 2.09 1.76 1.62 3.22 1.97 2.45 2.38 3.11 3.12<br />

Lu 0.39 0.3 0.3 0.53 0.32 0.45 0.37 0.56 0.54<br />

Notes: 1. All detection limits are in ppm unless otherwise stated. INAA, FUS-MS, TD-ICP, FUS-ICP analyses carried out by Acme Analytical. XRF<br />

analyses carried out by Lakefield Analytical. See Wilson (1992) for analytical methods and detection limits.<br />

2. FUS-ICP = metaborate/tetraborate fusion-inductively coupled plasma emission spectrometry, INAA = instrumental neutron activation analysis,<br />

FUS-MS = metaborate/tetraborate fusion-mass spectrometry, TD-ICP = total digestion-inductively coupled plasma mass spectrometry, XRF = X-ray<br />

fluorescence.


Table 2 (cont’d). Lithogeochemical data for the Lewis Brook occurrence (<strong>Costigan</strong> <strong>Mount</strong>ain Formation), and<br />

average values for the River Dee rhyolite and River Dee basalt (Wapske Formation).<br />

Sample<br />

42<br />

River Dee Basalt<br />

(Wilson 1992) *<br />

River Dee Rhyolite<br />

(Wilson 1992) *<br />

n = 3 n = 6<br />

SiO2 51.11 75.61<br />

Al2O3 16.6 12.57<br />

(total)<br />

Fe2O3<br />

9.43 2.68<br />

MnO 0.19 0.05<br />

MgO 7.42 1.17<br />

CaO 8.73 0.05<br />

Na2O 3.68 3.47<br />

K2O 1.09 4.02<br />

TiO2 1.5 0.19<br />

P2O5 0.23 0.09<br />

LOI - -<br />

Au - -<br />

Ag<br />

As<br />

- -<br />

Ba 140 483<br />

Bi - -<br />

Cd - -<br />

Co - 4.3<br />

Cr 247 35<br />

Cs - -<br />

Cu 30 10<br />

Ga - -<br />

Ge 15 16<br />

Hf - 8.4<br />

Mo - -<br />

Nb 6 25<br />

Ni 80 9<br />

Pb - -<br />

Rb 40 142<br />

Sb - -<br />

Sc - 3.4<br />

Se - -<br />

Sn - -<br />

Sr 252 61<br />

Ta - 2<br />

Th - 22<br />

U - -<br />

V 247 -<br />

W - -<br />

Y - -<br />

Zn 86 43<br />

Zr 133 274<br />

La - 40<br />

Ce - 92.95<br />

Pr - -<br />

Nd - -<br />

Sm - 11.72<br />

Eu - 0.87<br />

Gd - -<br />

Tb - 1.99<br />

Dy - -<br />

Ho - -<br />

Er - -<br />

Tl - -<br />

Tm - -<br />

Yb - 6.26<br />

Lu - 0.97<br />

Notes: 1. All detection limits are in ppm unless otherwise stated. INAA, FUS-MS, TD-ICP, FUS-ICP analyses carried out by Acme Analytical. XRF<br />

analyses carried out by Lakefield Analytical. See Wilson (1992) for analytical methods and detection limits.<br />

2. FUS-ICP = metaborate/tetraborate fusion-inductively coupled plasma emission spectrometry, INAA = instrumental neutron activation analysis,<br />

FUS-MS = metaborate/tetraborate fusion-mass spectrometry, TD-ICP = total digestion-inductively coupled plasma mass spectrometry, XRF = X-ray<br />

fluorescence.


43<br />

Table 3. Lithogeochemical data for the Redstone <strong>Mount</strong>ain Granite collected during this investigation and compiled<br />

from previously published data of Whalen (1993).<br />

Detection<br />

Limit *<br />

Sample From This Investigation From Whalen (1993)<br />

Analytical<br />

Method<br />

RS-<br />

1<br />

RS-<br />

2<br />

RS-<br />

5<br />

RS-<br />

7<br />

RS-<br />

P<br />

RS-<br />

Renous<br />

G15-<br />

144 *<br />

G15-<br />

147 *<br />

G15-<br />

152 *<br />

G15-<br />

305 *<br />

SiO2 0.01 wt % FUS-ICP 72.82 76.33 78.38 71.75 74.67 75.23 73 75.1 72.8 75.7<br />

Al2O3 0.01 wt % FUS-ICP 13.35 11.51 12.12 13.57 12.23 12.2 13.75 12.35 13.7 12.5<br />

Fe2O3 0.01 wt % FUS-ICP 3.4 2.16 1.87 3.4 1.7 2.14 0.82 1.16 0.82 0.65<br />

MnO 0.001 wt % FUS-ICP 0.032 0.014 0.028 0.072 0.021 0.023 0.04 0.01 0.03 0.01<br />

MgO 0.01 wt % FUS-ICP 0.79 0.05 0.11 0.49 0.28 0.07 0.26 0.06 0.35 0.25<br />

CaO 0.01 wt % FUS-ICP 2.11 0.51 0.52 1.09 0.59 0.65 1.14 0.56 1.45 0.66<br />

Na2O 0.01 wt % FUS-ICP 5.08 3.42 6.38 5.15 2.79 3.64 3.98 4.13 3.75 4.29<br />

K2O 0.01 wt % FUS-ICP 1.06 4.41 0.1 2.07 5.4 4.57 4.82 4.69 4.48 4.13<br />

TiO2 0.001 wt % FUS-ICP 0.384 0.137 0.121 0.392 0.209 0.131 0.29 0.15 0.3 0.2<br />

P2O5 0.01 wt % FUS-ICP 0.05 0.01 < 0.01 0.14 0.03 < 0.01 0.05 0.02 0.06 0.04<br />

Total 0.01 FUS-ICP 99.93 99.05 100.3 99.28 98.72 99.24 - - - -<br />

Au 1 ppb INAA 1 < 1 < 1 < 1 < 1 < 1 11 0.3 < 0.3 < 0.3<br />

Ag 0.5<br />

MULT INAA<br />

/ TD-ICP<br />

< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 - - - -<br />

As 1 INAA 18 7 26 15 17 13 0.3 < 0.2 0.5 1<br />

Ba 1 FUS-ICP 450 860 19 495 584 913 617 756 581 810<br />

Be 1 FUS-ICP 4 2 2 4 3 3<br />

Bi 0.1 FUS-MS 1 0.4 1 1.5 0.8 0.6 1 < 0.1 < 0.1 < 0.1<br />

Br 0.5 INAA < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 1.2 0.9 1.1 < 0.3 0.6<br />

Cd 0.5 TD-ICP < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5<br />

Co 0.1 INAA 6.8 1.9 < 0.1 3.8 < 0.1 < 0.1 2.8 1.4 3.4 1.9<br />

Cr 0.5 INAA 29.7 10.4 18 14.4 21.2 16.2 2 1 3 3<br />

Cs 0.1 FUS-MS 1.1 1.6 0.2 0.4 1.4 0.5 5.2 0.7 2.7 1.1<br />

Cu 1 TD-ICP 2 2 2 3 1 6 2 1 3 1<br />

Ga 1 FUS-MS 19 17 22 19 15 21 18 17 18 16<br />

Ge 0.5 FUS-MS 1.9 2.3 1.9 2.3 2.2 2.3 - - - -<br />

Hf 0.1 FUS-MS 8 7.3 11.1 8.2 4.5 8.9 6.3 7.9 4.8 6.5<br />

Mo 2 FUS-MS < 2 < 2 < 2 < 2 < 2 < 2 < 0.5 < 0.5 < 0.5 3<br />

Nb 0.2 FUS-MS 13.9 19.2 33 18.2 11.3 26.1 15 25 14 22<br />

Ni 1 TD-ICP 15 4 4 5 4 3 2 2 6 1<br />

Pb 5 TD-ICP < 5 < 5 < 5 < 5 12 < 5 12 7 28 4<br />

Rb 1 FUS-MS 40 127 4 58 186 128 196 141 188 119<br />

S 0.001 wt % TD-ICP 0.007 0.003 0.004 0.005 0.003 0.004 - - - -<br />

Sb 0.1 INAA 0.1 0.2 < 0.1 0.1 < 0.1 < 0.1 0.3 0.2 0.2 0.3<br />

Sc 0.01 INAA 6.39 5.32 1.42 8.55 4.71 4.04 5.9 7.7 6.9 6.8<br />

Sn 1 FUS-MS 10 4 10 5 7 7 2.5 1.5 < 0.5 8.5<br />

Sr 2 FUS-ICP 256 66 59 147 117 81 87 56 108 89<br />

Ta 0.01 FUS-MS 1.33 1.63 2.58 1.48 1.45 2.06 1.2 1.6 1.3 1.5<br />

Th 0.05 FUS-MS 26 18.4 24 18.8 27.3 25.9 25 20.3 22 22<br />

U 0.01 FUS-MS 6 3.77 6.69 4.62 6.33 6.62 5.9 4.9 6.6 4.8<br />

V 5 FUS-ICP 27 < 5 < 5 13 12 < 5 15 2 20 15<br />

W 1 INAA < 1 < 1 < 1 < 1 < 1 < 1 3 0.8 1.5 2<br />

Y 1 FUS-ICP 48 39 73 47 34 79 48 69 47 65<br />

Zn 1<br />

INAA /<br />

TD-ICP<br />

12 11 17 28 17 10 25 10 24 5<br />

Zr 1 FUS-MS 305 243 324 352 134 265 204 232 147 168<br />

La 0.05 FUS-MS 51.9 41 57.6 58 38.8 88.1 64 74 43 64<br />

Ce 0.05 FUS-MS 102 94 138 124 78.6 156 103 136 85 114<br />

Pr 0.01 FUS-MS 11.5 9.39 14.8 13.5 8.54 20.1 - - 9.4 -<br />

Nd 0.05 FUS-MS 40.7 34.9 56.6 50.3 30.1 75.1 41 55.5 34.1 50<br />

Sm 0.01 FUS-MS 8.57 7.43 12.9 10.1 6.13 15.7 7 10.65 6.78 11.3<br />

Eu 0.005 FUS-MS 1.26 0.947 0.764 2.28 0.825 1.61 1.29 1.63 0.87 1.01<br />

Gd 0.01 FUS-MS 8.05 6.72 12.2 9.02 6.03 14.3 - - 6.48 -<br />

Tb 0.01 FUS-MS 1.44 1.17 2.31 1.48 1.01 2.49 1.35 1.8 1.07 1.8<br />

Dy 0.01 FUS-MS 8.4 7.2 14.3 8.88 6.53 15.2 - - 7.01 -<br />

Ho 0.01 FUS-MS 1.74 1.52 2.97 1.78 1.29 3.07 - - 1.5 -<br />

Er 0.01 FUS-MS 5.24 4.4 8.84 5.26 3.84 8.65 - - 4.2 -<br />

Tl 0.05 FUS-MS 0.18 0.44 < 0.05 0.28 1 0.59 < 1 < 1 7 < 1<br />

Tm 0.005 FUS-MS 0.83 0.696 1.4 0.808 0.641 1.34 - - 0.59 -<br />

Yb 0.01 FUS-MS 5.49 4.89 8.8 5.5 4.23 8.87 4.51 6.35 4.04 6.51<br />

Lu 0.002 FUS-MS 0.865 0.779 1.44 0.845 0.633 1.38 0.68 0.94 0.58 1.02<br />

Notes: 1. All detection limits are in ppm unless otherwise stated. All analyses were conducted by Activation Laboratories Ltd.<br />

2. FUS-ICP = metaborate/tetraborate fusion-inductively coupled plasma emission spectrometry, INAA = instrumental neutron activation analysis,<br />

FUS-MS = metaborate/tetraborate fusion-mass spectrometry, TD-ICP = total digestion-inductively coupled plasma mass spectrometry.<br />

* Compiled data: see Whalen (1993) for analytical methods and detection limits.


ACKNOWLEDGEMENTS<br />

44<br />

Thank you to SLAM Exploration Ltd. for providing access to confidential assessment data.<br />

Alison Pye at the Stable Isotope Laboratory, Memorial University of <strong>New</strong>foundland, conducted<br />

the sulphur isotope analyses. Douglas Hall at the University of <strong>New</strong> Brunswick, Fredericton,<br />

conducted the microprobe analyses. Cyndie Pitre is thanked for GIS work and Reg Wilson<br />

and Steve McCutcheon are thanked for numerous discussions of Early Devonian stratigraphy<br />

and metallogenesis. This manuscript benefitted greatly from thorough review by Reg Wilson.<br />

REFERENCES<br />

Ayuso, R.A., and Bevier, M.L. 1991. Regional differences in lead isotopic compositions of<br />

feldspar from plutonic rocks of the northern Appalachian <strong>Mount</strong>ains, U.S.A. and Canada:<br />

a geochemical method of terrane correlation. Tectonophysics, 10, p. 191–212.<br />

Barnes, H.L. 1979. Solubilities of ore minerals. In Geochemistry of Hydrothermal Ore <strong>Deposit</strong>s,<br />

2 nd edition. Edited by H.L. Barnes. John Wiley and Sons, <strong>New</strong> York, p. 404–460.<br />

Barrett, T.J., and MacLean, W.H. 1994. Chemostratigraphy and hydrothermal alteration in<br />

exploration for VHMS deposits in greenstones and younger volcanic rocks. In Alteration<br />

and Alteration Processes Associated with Ore-Forming Systems. Edited by D.R. Lentz,<br />

Geological Association of Canada, Short Course Notes, 11, p. 433–467.<br />

Barton, P.B. Jr., and Bethke, P.M. 1987. Chalcopyrite disease in sphalerite: pathology and<br />

epidemiology. American Mineralogist, 72, p. 451–467.<br />

Bjornson, B. 1975. Report of work on the Ogilvie (<strong>Costigan</strong> <strong>Mount</strong>ain) Group for Amoco<br />

Canada Petroleum Company Ltd. Mining Division. <strong>New</strong> Brunswick Department of Natural<br />

Resources; Lands, Minerals and Petroleum Division, Assessment Report 470298.<br />

Bjornson, B. 1976. Report of work on the Ogilvie (<strong>Costigan</strong> <strong>Mount</strong>ain) Group for Amoco<br />

Canada Petroleum Company Ltd. Mining Division. <strong>New</strong> Brunswick Department of Natural<br />

Resources; Lands, Minerals and Petroleum Division, Assessment Report 470390.<br />

Bjornson, B. 1977. Report of work on the <strong>Costigan</strong>–Ogilvie Group for Amoco Canada<br />

Petroleum Company Ltd. Mining Division. <strong>New</strong> Brunswick Department of Natural<br />

Resources; Lands, Minerals and Petroleum Division, Assessment Report 470448.<br />

Boucot, A.J., and Wilson, R.A. 1994. Origin and early radiation of terebratuloid brachiopods:<br />

thoughts provoked by Prorensselaeria and Nanothyris. Journal of Paleontology, 68, p.<br />

1002–1025.<br />

Clark, D. 2004. Report of work on the <strong>Mount</strong> <strong>Costigan</strong> Property for 2003 for SLAM Exploration<br />

Ltd. <strong>New</strong> Brunswick Department of Natural Resources; Lands, Minerals and Petroleum<br />

Division, Assessment Report 475748.<br />

Clark D. 2008. Report of work on the <strong>Costigan</strong> property. <strong>New</strong> Brunswick Department of<br />

Natural Resources; Lands, Minerals and Petroleum Division. Assessment Report 476661.<br />

Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., and Zak, I. 1980. <strong>The</strong> age curves of<br />

sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical<br />

Geology, 28, p. 199–260.<br />

Cox, N.D. 1990. Geology of the <strong>Mount</strong> <strong>Costigan</strong> Pb–Zn deposit, west-central <strong>New</strong> Brunswick.<br />

Unpublished M.Sc. thesis, University of Ottawa, Ontario, Canada, 176 p.


45<br />

Crevier, M. 1983. Report of work for the first year of the initial exploration period on the <strong>Mount</strong><br />

<strong>Costigan</strong> Property by Lac Minerals Ltd., for Amoco Canada Petroleum Company Ltd. <strong>New</strong><br />

Brunswick Department of Natural Resources; Lands, Minerals and Petroleum Division,<br />

Assessment Report 472943.<br />

Crevier, M. 1984. Report of work on the <strong>Mount</strong> <strong>Costigan</strong> claim Group for Lac Minerals Ltd.<br />

<strong>New</strong> Brunswick Department of Natural Resources; Lands, Minerals and Petroleum<br />

Division, Assessment Report 473035.<br />

Crevier, M. 1985. Report of work for the 3 rd year of the initial exploration period on the <strong>Mount</strong><br />

<strong>Costigan</strong> Property for Lac Minerals Ltd. <strong>New</strong> Brunswick Department of Natural<br />

Resources; Lands, Minerals and Petroleum Division, Assessment Report 473131.<br />

Crevier, M., and Gravel, L. 1983. Report of work on the <strong>Mount</strong> <strong>Costigan</strong> property for Lac<br />

Minerals Ltd. <strong>New</strong> Brunswick Department of Natural Resources; Lands, Minerals and<br />

Petroleum Division, Assessment Report 472980.<br />

Czamanske, G.K., and Rye, R.O. 1974. Experimentally determined sulfur isotope<br />

fractionations between sphalerite and galena in the temperature range 600 o to 275 o C.<br />

Economic Geology, 69, p. 17–25.<br />

Dong, G., and Morrison, G.W. 1995. Adularia in epithermal veins, Queensland: morphology,<br />

structural state and origin. Mineralium <strong>Deposit</strong>a, 30, p. 11–19.<br />

Dostal, J., Wilson, R.A., and Keppie, D. 1989. Geochemistry of Siluro–Devonian Tobique belt<br />

in northern and central <strong>New</strong> Brunswick (Canada). Canadian Journal of Earth Science, 26,<br />

p. 1282–1296.<br />

Faure, G. 1986. Principles of Isotope Geology. John Wiley and Sons Inc., <strong>New</strong> York, 589 p.<br />

Franklin, J.M. 1995. Volcanic-associated massive sulphide base metals. In Geology of<br />

Canadian Mineral <strong>Deposit</strong> Types. Edited by O.R. Eckstrand, W.D. Sinclair, and R.I.<br />

Thorpe. Geological Survey of Canada, Geology of Canada No. 8, p. 158–183.<br />

Fyffe, L.R., and Pronk, A. G. 1985. Bedrock and surficial geology—rock and till geochemistry<br />

in the Trousers Lake area, Victoria County, <strong>New</strong> Brunswick. Report of Investigations 20,<br />

Lands, Minerals and Petroleum Division; <strong>New</strong> Brunswick Department of Natural<br />

Resources, 74 p.<br />

Galley, A.G. 1995. Target vectoring using lithogeochemistry: applications to the exploration for<br />

volcanic hosted massive sulphide deposits. CIM Bulletin, 88, p. 15–27.<br />

Goodfellow, W.D., and Jonasson, I.R. 1984. Ocean stagnation and ventilation defined by δ 34 S<br />

secular trends for barite and pyrite, Selwyn Basin, Yukon. Geology, 12, p. 583–586.<br />

Goodfellow, W.D., Lydon, J.W., and Turner, R.J.W. 1993. Geology and genesis of stratiform<br />

sediment hosted (SEDEX) zinc-lead-silver sulphide deposits. In Mineral <strong>Deposit</strong><br />

Modelling. Edited by R.V. Kirkham, W.D. Sinclair, R.I. Thorpe, and J.M.S. Duke.<br />

Geological Association of Canada, Special Paper 40, p. 201–251.<br />

Gromet, L.P., Dymek, R.F., Haskin, L.A., and Korotev, R.L. 1984. <strong>The</strong> “North American Shale<br />

Composite:” its compilation, major and trace element characteristics. Geochimica et<br />

Cosmochimica Acta, 48, p. 2469–2482.<br />

Grootenboer, J., and Schwarcz, H.P. 1969. Experimentally determined sulfur isotope<br />

fractionation between sulfide minerals. Earth and Planetary Science Letters, 7,<br />

p. 162–166.


46<br />

Han, Y., and Pickerill, R.K. 1994. Palichnology of the Lower Devonian Wapske Formation,<br />

Perth-Andover–<strong>Mount</strong> Carleton region, northwestern <strong>New</strong> Brunswick, eastern Canada.<br />

Atlantic Geology, 30, p. 217–245.<br />

Hughes, C.J. 1972. Spilites, keratophyres and the igneous spectrum. Geology Magazine, 109,<br />

p. 513–527.<br />

Irrinki, R.R. 1990. Geology of the Charlo area; Restigouche County, <strong>New</strong> Brunswick. <strong>New</strong><br />

Brunswick Department of Natural Resources and Energy; Mineral Resources, Report of<br />

Investigation 24, 118 p.<br />

Kajiwara, Y., and Krouse, H.R.1971. Sulfur isotope partitioning in metallic sulfide systems.<br />

Canadian Journal of Earth Sciences, 8, p. 1397–1408.<br />

Lac Minerals. 1989. Report of work on the <strong>Mount</strong> <strong>Costigan</strong> claim Group for Lac Minerals Ltd.<br />

<strong>New</strong> Brunswick Department of Natural Resources; Lands, Minerals and Petroleum<br />

Division, Assessment Report 473621.<br />

Lavoie, C. 1982. Report of work on the <strong>Mount</strong> <strong>Costigan</strong> Project by Long Lac Explopration for<br />

Amoco Canada Petroleum Company Ltd. <strong>New</strong> Brunswick Department of Natural<br />

Resources; Lands, Minerals and Petroleum Division, Assessment Report 472881.<br />

Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B. 1986. A chemical<br />

classification of volcanic rocks based on the total alkali-silica diagram. Journal of<br />

Petrology, 27, p. 745–750.<br />

Leitch, C.H.B., and Lentz, D.R. 1994. <strong>The</strong> Gresens approach to mass balance constraints of<br />

alteration systems: methods, pitfalls, examples. In Alteration and Alteration Processes<br />

Associated with Ore-Forming Systems. Edited by D.R. Lentz. Geological Association of<br />

Canada, Short Course Notes, 11, p. 161–192.<br />

Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine, P.A.,<br />

Schmid, R., Sorensen, H., Streckeisen, A., Wolley, A.R., and Zanettin, B. 1989. A<br />

Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 193 p.<br />

Lydon, J.W. 1988. Volcanogenic massive sulphide deposits, part 2: genetic models. Geoscience<br />

Canada, 11, p. 195–202. In Geoscience Canada Reprint Series 3. Edited by R.G. Roberts,<br />

and P.A. Sheahan, p. 155–181.<br />

MacLean, W.H. 1963. Report of work on the <strong>Mount</strong> <strong>Costigan</strong> Claim Group for <strong>Mount</strong> <strong>Costigan</strong><br />

Mines Ltd. <strong>New</strong> Brunswick Department of Natural Resources; Lands, Minerals and<br />

Petroleum Division, Assessment Report 470302.<br />

Maingot, P.J. 1974. Report on Ogilvie (<strong>Costigan</strong> <strong>Mount</strong>ain) Group, Tobique follow-up project,<br />

<strong>New</strong> Brunswick. Amoco Petroleum Company Ltd. <strong>New</strong> Brunswick Department of Natural<br />

Resources; Lands, Minerals and Petroleum Division, Assessment Report 470297.<br />

McCutcheon, S.R., and Walker, J.A. 2008. Volcanological constraints on the genesis of<br />

Brunswick-type VMS deposits in the Bathurst Mining Camp. Abstract, GAC/MAC Joint<br />

Annual Meeting, Quebec City, Quebec, Canada, p. 108.<br />

<strong>Mount</strong> <strong>Costigan</strong> Mines. 1955. Report of work on the <strong>Mount</strong> <strong>Costigan</strong> Claim Group for <strong>Mount</strong><br />

<strong>Costigan</strong> Mines Ltd. <strong>New</strong> Brunswick Department of Natural Resources; Lands, Minerals<br />

and Petroleum Division, Assessment Report 470300.<br />

Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and<br />

ordinary chondrites. Geochemica et Cosmochimica Acta, 38, p. 757–775.


47<br />

<strong>New</strong> Brunswick Department of Natural Resources (NBDNR). 2011. <strong>New</strong> Brunswick Mineral<br />

Occurrence database. >. Accessed<br />

October 2011.<br />

Panteleyev, A. 1988. A Canadian Cordilleran model for epithermal gold-silver deposits.<br />

Geoscience Canada, 11, p. 195–202. In Geoscience Canada Reprint Series 3. Edited by<br />

R.G. Roberts and P.A. Sheahan, p. 31–43.<br />

Pearce, J.A., and Norry, M.J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in<br />

volcanic rocks. Contributions to Mineralogy and Petrology, 69, p. 33–47.<br />

Riddell, J.E. 1971. Summary report on properties in the Gulquac River–<strong>Costigan</strong> <strong>Mount</strong>ain<br />

area for Silcan Mines Ltd. <strong>New</strong> Brunswick Department of Natural Resources; Lands,<br />

Minerals and Petroleum Division, Assessment Report 470303.<br />

Rose, D.G., and Johnson, S.C. 1990. <strong>New</strong> Brunswick computerized mineral occurrence<br />

database. <strong>New</strong> Brunswick Department of Natural Resources; Lands, Minerals and<br />

Petroleum Division, Mineral Resource Report 3, p. 69.<br />

St. Peter, C. 1978a. Geology of head of Wapske River. Map area J-13, NTS 21 J/14. Map<br />

Report 78-1. Including map at 1 inch:1/4 mile scale. <strong>New</strong> Brunswick Department of<br />

Natural Resources; Lands, Minerals and Petroleum Division, Map Plate 78-1.<br />

St. Peter, C. 1978b. Geology of parts of Restigouche, Victoria and Madawaska counties,<br />

northwestern <strong>New</strong> Brunswick, NTS 21 N/8, 21 N/9, 21 O/5, 21 O/11, 21 O/14. Report of<br />

Investigations 17, <strong>New</strong> Brunswick Department of Natural Resources and Energy; Mineral<br />

Resources Division, 69 p.<br />

Shanks, W.C., III, Woodruff, L.G., Jilson, G.A., Jennings, D.S., Modene, J.S., and Ryan, B.D.<br />

1987. Sulfur and lead isotope studies of stratiform <strong>Zn–Pb–Ag</strong> deposits, Anvil range,<br />

Yukon: basinal brine exhalation and anoxic bottom-water mixing. Economic Geology, 82,<br />

p. 600–634.<br />

Smith, E.A, and Fyffe, L.R. (compilers). 2006a. Bedrock geology of the Plaster Rock area<br />

(NTS 21 J/14), Victoria County, <strong>New</strong> Brunswick. <strong>New</strong> Brunswick Department of Natural<br />

Resources; Lands, Minerals and Petroleum Division, Map Plate 2006-15, 1:50,000 scale.<br />

Smith, E.A, and Fyffe, L.R. (compilers). 2006b. Bedrock geology of the Tuadock Lake map area<br />

(NTS 21 J/15), Victoria County, <strong>New</strong> Brunswick. <strong>New</strong> Brunswick Department of Natural<br />

Resources; Lands Minerals and Petroleum Division, Map Plate 2006-16, 1:50,000 scale.<br />

Taylor, M. 1995. Report of work on the <strong>Costigan</strong> Claim Group for Michael Taylor. <strong>New</strong><br />

Brunswick Department of Natural Resources; Lands, Minerals and Petroleum Division,<br />

Assessment Report 474671.<br />

Thompson A.J.B., and Thompson, J.F.H. 1996. Atlas of alteration: a field and petrographic<br />

guide to hydrothermal alteration minerals. Mineral <strong>Deposit</strong>s Division, Geological<br />

Association of Canada, ISBN 0-919216-59-5, p. 119.<br />

Turner, R.W. 1996a. Report of work on the <strong>Costigan</strong> project for Chapleau Resources. <strong>New</strong><br />

Brunswick Department of Natural Resources; Lands, Minerals and Petroleum Division,<br />

Assessment Report 474792.<br />

Turner, R.W. 1996b. Report of work on the <strong>Costigan</strong> project for Chapleau Resources. <strong>New</strong><br />

Brunswick Department of Natural Resources; Lands, Minerals and Petroleum Division,<br />

Assessment Report 474793.


48<br />

van Staal, C.R., and de Roo, J.A. 1995. Mid-Paleozoic tectonic evolution of the Canadian<br />

Appalachian <strong>Central</strong> Mobile Belt in northern <strong>New</strong> Brunswick, Canada: collision,<br />

extensional collapse and dextral transpression. In Current perspectives in the<br />

Appalachian–Caledonian Orogen. Edited by J.P. Hibbard, C.R. van Staal, and P.A.<br />

Cawood. Geological Association of Canada, Special Paper 41, p. 367–389.<br />

van Staal, C.R., Whalen, J.B., Valverde-Vaquero, P., Zagorevski, A., and Rogers, N. 2009.<br />

Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of<br />

the northern Appalachians. In Ancient Orogens and Modern Analogues. Edited by J.B.<br />

Murphy, J.D. Keppie, and A.J. Hynes. Geological Society, London, Special Publication<br />

327, p. 271–316.<br />

Walker, J.A. 2003. Base-metal deposits of the Siluro-Devonian Tobique–Chaleurs Belt, <strong>West</strong><br />

<strong>Central</strong> <strong>New</strong> Brunswick, Canada. In Abstracts Volume, I st Joint Meeting Northeastern<br />

Section, Geological Society of America, and the Atlantic Geoscience Society. Halifax<br />

Nova Scotia, 35, Issue 3, p. 19.<br />

Walker, J.A. 2005. Petrogenesis and tectonic setting of Devonian volcanic and related rocks<br />

and their control on mineralization at the Shingle Gulch East <strong>Zn–Pb–Ag</strong> sulfide deposit,<br />

northwest <strong>New</strong> Brunswick. Unpublished Ph.D. thesis, University of <strong>New</strong> Brunswick,<br />

Fredericton, 430 p.<br />

Walker, J.A. 2010. Stratigraphy and lithogeochemistry of Early Devonian volcano-sedimentary<br />

rocks hosting the Nash Creek <strong>Zn–Pb–Ag</strong> deposit northern <strong>New</strong> Brunswick. In Geological<br />

Investigations in <strong>New</strong> Brunswick for 2009. Edited by G.L. Martin. <strong>New</strong> Brunswick<br />

Department of Natural Resources; Lands, Minerals and Petroleum Division, Mineral<br />

Resources Report 2010-1, p. 52–97.<br />

Walker, R.T. 1998. Report of work on the <strong>Costigan</strong> Claim Group for Michael Taylor. <strong>New</strong><br />

Brunswick Department of Natural Resources; Lands, Minerals and Petroleum Division,<br />

Assessment Report 475097.<br />

Watson, E.B., and Harrison, T.M. 1983. Zircon saturation revisited: temperature and<br />

composition effects in a variety of crustal magma types. Earth and Planetary Science<br />

Letters, 64, p. 295–304.<br />

Whalen, J.B. 1993. Geology, petrography, and geochemistry of Appalachian granites in <strong>New</strong><br />

Brunswick and Gaspésie, Québec. Geological Survey of Canada Bulletin 436, p. 124.<br />

Whalen, J.B., Jenner, G.A., Hegner, E., Garipey, C., and Longstaffe, F.J. 1994. Geochemical<br />

and isotopic (Nd, O and Pb) constraints on granite sources in the Humber and Dunnage<br />

zones, Gaspésie, Québec, and <strong>New</strong> Brunswick: implications for tectonics and crustal<br />

structure. Canadian Journal of Earth Sciences, 31, p. 323–340.<br />

Whalen, J.B., Jenner, G.A., Longstaffe, F.J., and Hegner, E. 1996. Nature and evolution of the<br />

eastern margin of Iapetus: geochemical and isotopic constraints from Siluro–Devonian<br />

granitoid plutons in the <strong>New</strong> Brunswick Appalachians. Canadian Journal of Earth<br />

Sciences, 33, p. 140–155.<br />

Wilson, R.A. 1990. Geology of the Riley Brook area, <strong>New</strong> Brunswick, NTS 21 O/3E, part of 21<br />

O/2W. <strong>New</strong> Brunswick Department of Natural Resources; Lands, Mines and Petroleum<br />

Division, Map-Plate 90-162, 1:50,000 scale.


49<br />

Wilson, R.A. 1992. Petrographic features of Siluro–Devonian felsic volcanic rocks in the Riley<br />

Brook area, Tobique Zone, <strong>New</strong> Brunswick: implications for base-metal mineralization at<br />

Sewell Brook. Atlantic Geology, 28, p. 115–135.<br />

Wilson, R.A., and Kamo, S.L. 2012. <strong>The</strong> Salinic Orogeny in northern <strong>New</strong> Brunswick:<br />

geochronological constraints and implications for Silurian stratigraphic nomenclature.<br />

Canadian Journal of Earth Sciences, 49, p. 222–138.<br />

Wilson, R.A., Burden, E.T., Bertrand, R., Asselin, E., and McCracken, A.D. 2004. Stratigraphy<br />

and tectono-sedimentary evolution of the Late Ordovician to Middle Devonian Gaspé Belt<br />

in northern <strong>New</strong> Brunswick: evidence from the Restigouche area. Canadian Journal of<br />

Earth Sciences, 41, p. 527–551.<br />

Winchester, J.A., and Floyd, P.A. 1977. Geochemical discrimination of different magma series<br />

and their differentiation products using immobile elements. Chemical Geology, 20, p.<br />

325–343.<br />

Yang X.-M, and Lentz, D.R. 2010. Sulfur isotopic systematics of granitoids from southwestern<br />

<strong>New</strong> Brunswick, Canada: implications for magmatic–hydrothermal processes, redox<br />

conditions, and gold mineralization. Mineralium <strong>Deposit</strong>a, 45, p. 795–816.<br />

Zartman, R.E., and Doe, B.R. 1981. Plumbotectonics—the model. Tectonophysics, 75, p.<br />

135–162.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!