29.12.2012 Views

Emplacement depths and radiometric ages of Paleozoic plutons of ...

Emplacement depths and radiometric ages of Paleozoic plutons of ...

Emplacement depths and radiometric ages of Paleozoic plutons of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Emplacement</strong> <strong>depths</strong> <strong>and</strong> <strong>radiometric</strong> <strong>ages</strong> <strong>of</strong> <strong>Paleozoic</strong> <strong>plutons</strong> <strong>of</strong><br />

the Neukirchen–Kdyně massif: differential uplift <strong>and</strong> exhumation<br />

<strong>of</strong> Cadomian basement due to Carboniferous orogenic collapse<br />

(Bohemian Massif)<br />

Abstract<br />

Tectonophysics 352 (2002) 225–243<br />

Curd Bues a , Wolfgang Dörr b , Jirˇi Fiala c , Zdeněk Vejnar c , Gernold Zulauf d, *<br />

a Celtesstr. 14, D-85051 Ingolstadt, Germany<br />

b Institut für Geowissenschaften und Lithosphärenforschung, Universität Giessen, Senckenbergstr. 3, D-35390 Giessen, Germany<br />

c Geologicky´ ústav, AVČR, Rozvojová 135, CS-16500 Prague 6, Suchdol, Czech Republic<br />

d Institut für Geologie und Mineralogie, Universität Erlangen, Schloßgarten 5, D-91054 Erlangen, Germany<br />

Received 26 February 2001; accepted 12 December 2001<br />

The igneous complex <strong>of</strong> Neukirchen–Kdyně is located in the southwestern part <strong>of</strong> the Teplá–Barr<strong>and</strong>ian unit (TBU) in the<br />

Bohemian Massif. The TBU forms the most extensive surface exposure <strong>of</strong> Cadomian basement in central Europe. Cambrian<br />

<strong>plutons</strong> show significant changes in composition, emplacement depth, isotopic cooling <strong>ages</strong>, <strong>and</strong> tectonometamorphic overprint<br />

from NE to SW. In the NE, the Vsˇepadly granodiorite <strong>and</strong> the Smrzˇovice diorite intruded at shallow crustal levels (< ca. 7 km<br />

depth) as was indicated by geobarometric data. K–Ar age data yield 547 F 7 <strong>and</strong> 549 F 7 for hornblende <strong>and</strong> 495 F 6 Ma for<br />

biotite <strong>of</strong> the Smrzˇovice diorite, suggesting that this pluton has remained at shallow crustal levels (T < ca. 350 jC) since its<br />

Cambrian emplacement. A similar history is indicated for the Vsˇepadly granodiorite <strong>and</strong> the Stod granite. In the SW,<br />

intermediate to mafic <strong>plutons</strong> <strong>of</strong> the Neukirchen–Kdyně massif (Vsˇeruby <strong>and</strong> Neukirchen gabbro, Hoher–Bogen metagabbro),<br />

which yield Cambrian <strong>ages</strong>, either intruded or were metamorphosed at considerably deeper structural levels (> 20 km). The<br />

Teufelsberg (Čertu˚v kámen) diorite, on the other h<strong>and</strong>, forms an unusual intrusion dated at 359 F 2 Ma (concordant U–Pb<br />

zircon age). K–Ar dating <strong>of</strong> biotite <strong>of</strong> the Teufelsberg diorite yields 342 F 4 Ma. These <strong>ages</strong>, together with published cooling<br />

<strong>ages</strong> <strong>of</strong> hornblende <strong>and</strong> mica in adjacent <strong>plutons</strong>, are compatible with widespread medium to high-grade metamorphism <strong>and</strong><br />

strong deformation fabrics, suggesting a strong Variscan impact under elevated temperatures at deeper structural levels. The<br />

<strong>plutons</strong> <strong>of</strong> the Neukirchen area are cut by the steeply NE dipping Hoher–Bogen shear zone (HBSZ), which forms the boundary<br />

with the adjacent Moldanubian unit. The HBSZ is characterized by top-to-the-NE normal movements, which were particularly<br />

active during the Lower Carboniferous. A geodynamic model is presented that explains the lateral gradients in Cambrian pluton<br />

composition <strong>and</strong> emplacement depth by differential uplift <strong>and</strong> exhumation, the latter being probably related to long-lasting<br />

movements along the HBSZ as a consequence <strong>of</strong> Lower Carboniferous orogenic collapse. D 2002 Elsevier Science B.V. All<br />

rights reserved.<br />

Keywords: Cadomian orogeny; Variscan orogenic collapse; Corona gabbro; Teplá–Barr<strong>and</strong>ian unit; Bohemian Massif<br />

* Corresponding author. Tel.: +49-9131-852-2617; fax: +49-9131-852-9295.<br />

E-mail address: zulauf@geol.uni-erlangen.de (G. Zulauf).<br />

0040-1951/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.<br />

PII: S0040-1951(02)00198-1<br />

www.elsevier.com/locate/tecto


226<br />

1. Introduction<br />

The southwestern Bohemian Massif has been subdivided<br />

into the Teplá–Barr<strong>and</strong>ian unit (TBU) <strong>and</strong> the<br />

Moldanubian unit that differ from one another in their<br />

magmatic <strong>and</strong> tectonometamorphic evolution (e.g.,<br />

Matte et al., 1990; Franke et al., 1995). Wide areas<br />

<strong>of</strong> the TBU consist <strong>of</strong> a Cadomian (Pan-African) lowgrade<br />

or very low-grade metamorphic basement that<br />

underwent deformation <strong>and</strong> metamorphism near the<br />

Proterozoic/Cambrian boundary. Electron microprobe<br />

dating <strong>of</strong> metamorphic monazite yielded 540–550 Ma<br />

(Zulauf et al., 1999). High-grade metamorphic rocks,<br />

on the other h<strong>and</strong>, prevail in the Moldanubian unit<br />

where the major tectonometamorphic imprint<br />

occurred during the Carboniferous (e.g., Kalt et al.,<br />

2000). Cambrian <strong>plutons</strong> <strong>of</strong> mafic to felsic composition<br />

are characteristic for the TBU. Carboniferous<br />

granitoids, on the other h<strong>and</strong>, predominate in the<br />

Moldanubian unit <strong>and</strong> are related to the steeply dipping<br />

West Bohemian, Central Bohemian, <strong>and</strong> Hoher–<br />

Bogen shear zone (WBSZ, CBSZ, HBSZ), all <strong>of</strong><br />

which form the boundary between the TBU <strong>and</strong> the<br />

Moldanubian unit (Fig. 1).<br />

In the southwestern TBU, <strong>plutons</strong> <strong>of</strong> the Neukirchen–Kdyně<br />

massif (NKM; Fig. 1) are time <strong>and</strong><br />

depth markers that help to distinguish between Cadomian<br />

<strong>and</strong> Variscan tectonometamorphic imprints. In<br />

this study, we present new petrographic, geothermobarometric,<br />

U–Pb <strong>and</strong> K–Ar data derived from mafic<br />

to intermediate <strong>plutons</strong> <strong>of</strong> the NKM. These data yield<br />

constraints on (1) the protolith age, (2) the emplacement<br />

depth, <strong>and</strong> (3) the cooling history <strong>of</strong> the <strong>plutons</strong>.<br />

A clear relation between composition <strong>and</strong> emplacement<br />

depth will be shown by comparing <strong>and</strong> combining<br />

the new data with published emplacement <strong>and</strong><br />

cooling <strong>ages</strong> <strong>of</strong> adjacent <strong>plutons</strong>. Finally, we present<br />

structural <strong>and</strong> kinematic data <strong>of</strong> the HBSZ, which<br />

suggest that the lateral gradients in composition,<br />

emplacement depth, <strong>and</strong> cooling <strong>ages</strong> <strong>of</strong> the <strong>plutons</strong><br />

are related to Carboniferous orogenic collapse.<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243<br />

2. Geological setting<br />

The Neukirchen–Kdyně massif is the largest mafic<br />

to intermediate igneous complex in the Bohemian<br />

Massif. It consists <strong>of</strong> several intrusions that cover an<br />

area <strong>of</strong> about 300 km 2 (Fig. 1). Gabbro, olivine<br />

gabbro, gabbronorite, peridotite, <strong>and</strong> pyroxene diorite<br />

are dominant in the SW, whereas quartz diorite<br />

(F granodiorite) predominate in the NE. Cambrian<br />

intrusion <strong>ages</strong> were determined for the following<br />

<strong>plutons</strong> <strong>of</strong> the NKM <strong>and</strong> adjacent areas (see Fig. 1<br />

for locations <strong>and</strong> distribution <strong>of</strong> <strong>ages</strong>): Vsˇepadly<br />

granodiorite (524 F 3 Ma, U–Pb on zircon, Dörr et<br />

al., this volume), Smrzˇovice quartz diorite (504 F 30<br />

Ma, Rb–Sr whole rock, Miethig, 1995; 523 F 3 Ma,<br />

U–Pb on zircon, Dörr et al., this volume), Orlovice<br />

diorite (522 Ma, U–Pb on zircon, Dörr et al., this<br />

volume), Těsˇovice granite <strong>of</strong> the Stod pluton (522 F 2<br />

Ma, U–Pb on zircon, Zulauf et al., 1997), Mračnice<br />

trondhjemite <strong>of</strong> the Domazˇlice crystalline complex<br />

(523 + 4/ 5 Ma, U–Pb on zircon, Zulauf et al.,<br />

1997). Cambrian magmatism is also indicated by a<br />

concordant U–Pb zircon age <strong>of</strong> an amphibolite within<br />

the HBSZ (511 F 3 Ma, Gebauer, 1993; Fig. 1). The<br />

country rocks <strong>of</strong> the <strong>plutons</strong> consist <strong>of</strong> mafic metavolcanics<br />

with intercalations <strong>of</strong> metagreywackes,<br />

metasiltstones, <strong>and</strong> metapelites (Vejnar, 1986, 1991).<br />

Rocks <strong>of</strong> the southwestern NKM were strongly<br />

affected by Variscan medium-pressure metamorphism<br />

<strong>and</strong> deformation (Bues, 1992). The most deformed<br />

<strong>and</strong> metamorphosed rocks occur within the HBSZ, a<br />

sharply bent belt <strong>of</strong> mylonitic amphibolite, metaultrabasite,<br />

<strong>and</strong> garnet pyriclasite (Bues et al., 1998;<br />

Bues <strong>and</strong> Zulauf, 2000; Fig. 1). The HBSZ connects<br />

the WBSZ (Zulauf, 1994) with the CBSZ (Scheuvens<br />

<strong>and</strong> Zulauf, 2000), all <strong>of</strong> which are high-angle normal<br />

shear zones that dip towards the TBU. A minimum<br />

extensional throw <strong>of</strong> 10 km has been determined for<br />

both the WBSZ (Zulauf et al., 2002) <strong>and</strong> the CBSZ<br />

(Scheuvens <strong>and</strong> Zulauf, 2000). A similar minimum<br />

throw is inferred for the HBSZ.<br />

Fig. 1. Geological map <strong>of</strong> the Neukirchen–Kdyně massif (modified, according to Vejnar, 1986; Bues, 1992) with structural data <strong>of</strong> the Hoher–<br />

Bogen shear zone, sample locations described in the text (numbers 1 – 8) <strong>and</strong> geochronological data ((1) Vejnar (1962); (2) Fischer et al. (1968);<br />

(3) Kreuzer et al. (1989); (4) Kreuzer et al. (1990); (5) Kreuzer et al. (1992); (6) Gebauer (1993); (7) Dörr et al. (1996); (8) Dörr et al. (1997); (9)<br />

Zulauf et al. (1997); (10) Dallmeyer <strong>and</strong> Urban (1998); (11) Wemmer <strong>and</strong> Ahrendt (unpublished); (12) Dörr et al. (2002); (13) this study. HBSZ,<br />

NBSZ, WBSZ, CBSZ = Hoher–Bogen, North, West, Central Bohemian shear zone, respectively; AF = Andělice fault.


C. Bues et al. / Tectonophysics 352 (2002) 225–243 227


Table 1<br />

Composition <strong>of</strong> analysed minerals (average values)<br />

(A) Plagioclase (Pl) <strong>and</strong> potassium feldspar (Ksp) analyses (Pl_c = plagioclase core, Pl_r = plagioclase rim)<br />

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19<br />

Pl_c Pl_c Kfs Pl_c Pl_r Pl_c Pl_r Pl_c Pl_r Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl<br />

SiO2 57.41 66.74 65.03 54.75 63.64 53.89 57.10 50.05 53.57 51.94 50.69 50.50 55.41 51.15 53.06 54.08 56.80 57.11 50.97<br />

TiO2 0.00 0.01 0.01 0.03 0.01 0.03 0.02 0.07 0.08 0.06 0.04 0.05 0.01 0.03 0.01 0.09 0.01 0.02 0.00<br />

Al2O3 26.55 20.52 17.89 28.64 22.96 29.56 27.36 32.44 30.01 30.36 31.06 31.48 28.53 30.69 29.67 28.96 26.98 26.92 32.02<br />

FeO * 0.06 0.20 0.02 0.26 0.07 0.07 0.11 0.13 0.09 0.20 0.08 0.05 0.13 0.04 0.07 0.14 0.05 0.09 0.05<br />

MnO 0.00 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.02 0.00<br />

MgO 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.00 0.04 0.01 0.01 0.00 0.01 0.00 0.06 0.01 0.01 0.00<br />

CaO 8.95 1.94 0.06 11.45 4.09 11.05 8.50 14.21 11.52 12.71 13.84 13.78 10.21 13.41 12.07 11.11 9.04 8.93 13.84<br />

Na2O 6.25 10.13 1.25 5.02 8.77 4.97 6.32 3.37 4.89 4.11 3.61 3.50 5.27 3.80 4.74 5.19 6.18 6.16 3.78<br />

K2O 0.13 0.16 14.77 0.19 0.19 0.20 0.23 0.02 0.01 0.09 0.03 0.04 0.15 0.04 0.04 0.04 0.17 0.26 0.01<br />

Total 99.35 99.71 99.04 100.37 99.74 99.78 99.64 100.35 100.18 99.52 99.38 99.43 99.72 99.19 99.68 99.70 99.26 99.52 100.67<br />

An 43.80 9.50 0.30 55.20 20.30 54.50 42.10 69.90 56.50 62.80 67.80 68.40 51.20 66.00 58.30 54.10 44.20 43.80 66.90<br />

Ab 55.40 89.60 11.40 43.70 78.60 44.40 56.60 30.00 43.40 36.70 32.00 31.40 47.80 33.80 41.50 45.70 54.70 54.70 33.00<br />

Or 0.80 0.90 88.30 1.10 1.10 1.10 1.30 0.10 0.10 0.50 0.20 0.20 0.90 0.20 0.20 0.20 1.00 1.50 0.10<br />

(B) Amphibole (Am) <strong>and</strong> biotite (Bt) analyses (Am_cor = corona amphibole)<br />

No. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36<br />

Am Am Am Am Am Am Am Am_cor Am Am_cor Am_cor Am_cor Am Am Am Bt Bt<br />

SiO2 44.04 45.40 47.91 48.38 52.09 44.30 41.86 42.95 49.30 43.37 41.56 40.84 44.47 46.53 43.53 35.40 35.48<br />

TiO2 1.48 1.11 0.95 0.86 0.09 1.21 2.91 0.03 0.99 0.05 0.31 0.06 1.32 1.27 1.64 3.15 4.08<br />

Al2O3 6.32 6.30 5.34 5.02 2.13 12.67 14.22 17.02 6.02 17.71 16.60 18.08 10.83 9.78 11.30 15.71 15.82<br />

FeO * 28.06 24.39 23.98 16.59 17.53 9.14 10.88 5.52 15.23 6.76 9.41 11.91 17.96 15.08 19.25 25.57 20.75<br />

MnO 0.51 0.87 0.92 0.28 0.39 0.22 0.14 0.13 0.20 0.10 0.14 0.23 0.18 0.23 0.20 0.37 0.07<br />

MgO 5.36 6.79 7.32 13.49 13.63 15.94 13.26 15.96 13.79 15.22 14.05 13.04 9.71 12.65 8.98 6.60 9.96<br />

CaO 9.71 10.93 10.81 11.05 10.97 10.90 11.95 11.90 11.04 11.71 11.86 10.29 11.12 10.94 10.63 0.08 0.01<br />

Na2O 1.60 1.02 0.77 0.53 0.11 2.39 2.22 2.51 0.61 2.56 2.85 3.27 1.28 1.04 1.19 0.06 0.19<br />

K2O 0.66 0.63 0.52 0.30 0.11 0.21 0.79 0.18 0.32 0.21 0.24 0.28 0.61 0.57 0.68 8.95 8.77<br />

Cr2O3 0.01 0.00 0.02 0.03 0.00 0.04 0.06 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01<br />

NiO 0.01 0.01 0.00 0.01 0.03 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00<br />

Total 97.76 97.45 98.54 96.54 97.08 97.02 98.30 96.20 97.53 97.69 97.02 98.00 97.48 98.09 97.40 95.92 95.14<br />

228<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243


(C) Orthopyroxene (Opx) <strong>and</strong> clinopyroxene (Cpx) analyses (Opx_cor = corona orthopyroxene, Cpx_cor = corona clinopyroxene)<br />

No. 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60<br />

Cpx Opx Cpx Cpx Cpx Opx Opx_cor Cpx Opx Cpx Opx Cpx Opx_cor Cpx Opx_cor Cpx Opx Cpx Opx Cpx Opx Cpx Cpx_cor Opx_cor<br />

SiO2 51.38 50.99 51.20 50.97 52.04 54.23 55.91 52.15 54.64 51.57 50.83 51.94 55.26 50.29 53.34 50.97 53.04 50.70 49.32 50.35 48.90 51.91 52.08 54.57<br />

TiO2 0.27 0.19 0.76 1.04 0.73 0.27 0.00 0.63 0.21 0.28 0.17 0.54 0.02 1.20 0.04 0.82 0.01 0.14 0.07 0.19 0.35 0.47 0.36 0.04<br />

Al2O3 0.96 0.80 3.09 3.32 3.64 2.54 0.90 3.35 2.06 1.45 0.74 4.05 1.15 4.17 1.66 2.74 1.12 1.24 0.69 1.46 0.91 5.26 5.34 3.47<br />

FeO * 13.33 28.41 5.89 7.52 4.26 11.22 11.25 4.52 11.87 11.72 29.81 5.43 13.44 7.42 18.13 9.37 21.03 13.82 32.92 14.65 33.75 3.25 3.44 11.77<br />

MnO 0.36 0.56 0.18 0.24 0.12 0.19 0.30 0.12 0.23 0.30 0.65 0.15 0.32 0.22 0.39 0.28 0.47 0.34 0.81 0.34 0.71 0.25 0.09 0.26<br />

MgO 12.91 17.80 16.81 15.46 16.45 28.71 30.22 16.48 29.03 12.78 17.53 16.36 28.86 14.38 25.58 14.93 23.52 11.36 14.46 10.10 12.99 15.04 14.84 29.74<br />

CaO 20.23 1.31 20.51 21.08 21.37 1.17 0.12 20.91 1.27 21.06 0.92 20.25 0.16 21.09 0.32 20.02 0.24 21.40 0.91 21.74 1.65 23.31 23.25 0.29<br />

Na2O 0.19 0.03 0.39 0.45 0.49 0.04 0.01 0.44 0.02 0.23 0.01 0.55 0.02 0.61 0.01 0.42 0.01 0.28 0.02 0.31 0.04 0.70 0.77 0.00<br />

K2O 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00<br />

Cr2O3 0.07 0.03 0.36 0.14 0.97 0.54 0.02 0.70 0.34 0.02 0.02 0.53 0.02 0.20 0.05 0.09 0.01 0.02 0.02 0.02 0.02 0.15 0.03 0.03<br />

NiO 0.02 0.04 0.01 0.01 0.04 0.09 0.06 0.03 0.02 0.01 0.00 0.03 0.04 0.05 0.02 0.03 0.01 0.03 0.03 0.01 0.02 0.00 0.00 0.00<br />

Total 99.72 100.16 99.20 100.23 100.13 99.01 98.81 99.34 99.70 99.43 100.69 99.85 99.30 99.65 99.55 99.68 99.47 99.34 99.26 99.18 99.35 100.35 100.21 100.17<br />

(D) Olivine analyses<br />

No. 61 62 63 64 65 66 67 68<br />

Ol Ol Ol Ol Ol Ol Ol Ol<br />

SiO2 36.80 37.19 32.62 39.39 38.55 36.53 35.18 38.92<br />

TiO2 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.01<br />

Al2O3 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.01<br />

FeO * 30.13 26.12 50.81 18.81 21.31 30.34 37.48 18.17<br />

MnO 0.49 0.41 0.88 0.23 0.29 0.43 0.50 0.22<br />

MgO 33.34 35.55 15.52 41.32 39.13 32.44 26.54 42.19<br />

CaO 0.02 0.03 0.03 0.01 0.02 0.02 0.01 0.03<br />

Cr2O3 0.01 0.01 0.01 0.02 0.03 0.01 0.02 0.01<br />

NiO 0.02 0.05 0.03 0.12 0.06 0.08 0.04 0.20<br />

Total 100.81 99.38 99.92 99.93 99.39 99.86 99.77 99.76<br />

Numbers <strong>of</strong> localities mentioned in the text <strong>and</strong> depicted in Fig. 1 (encircled) are listed in parentheses. Numbers without parentheses refer to the numbers <strong>of</strong> the columns <strong>of</strong> the tables:<br />

Vsˇepadly granodiorite (1) 1–3, 20; Smrzˇovice quartz diorite (2) 4 + 5, 21 + 22, 35; Smrzˇovice pyroxene diorite (2) 6 + 7, 23 + 24, 37 + 38; Smrzˇovice olivine gabbro (2) 8 + 9, 25, 39,<br />

61; Orlovice olivine gabbro (3) 10, 26, 40, 62; Orlovice hortonolite rock (3) 63; Vsˇeruby olivine gabbro (4) 11, 27, 41–43, 64; Vsˇeruby gabbronorite (4) 12, 44 + 45; Vsˇeruby<br />

pyroxene diorite (4) 13, 28, 46 + 47; Neukirchen olivine gabbro (5) 14, 29, 48 + 49, 65; Neukirchen olivine gabbro (5) 15, 30, 50 + 51, 66; Teufelsberg olivine gabbro (6) 16, 31,<br />

52 + 53, 67; Teufelsberg pyroxene diorite (6) 17, 32, 54 + 55; Teufelsberg pyroxene diorite (7) 18, 33 + 34, 36, 56 + 57; Hoher – Bogen olivine metagabbro (8) 19, 58–60, 68.<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243 229


230<br />

Several <strong>plutons</strong>, predominantly <strong>of</strong> granitic composition,<br />

intruded into or adjacent to the WBSZ <strong>and</strong><br />

CBSZ, parts <strong>of</strong> them synkinematically (Scheuvens,<br />

1999; Zulauf et al., 2002). Lower Carboniferous<br />

emplacement <strong>ages</strong>, ranging from ca. 330 to 350 Ma,<br />

have been determined for these intrusions by U–Pb<br />

<strong>and</strong> Pb–Pb zircon dating (e.g., Bor pluton, Mutěnín<br />

pluton, Babylon granite, Drahotín gabbro, Klatovy<br />

pluton, Ny´rsko pluton; Dörr et al., 1997; Central<br />

Bohemian pluton; Holub et al., 1997). Only the<br />

Teufelsberg (Čertu˚v kámen) diorite yields an Upper<br />

Devonian age (see below).<br />

In contrast to the TBU, the Moldanubian unit is<br />

characterized by widespread Carboniferous granitoids<br />

<strong>and</strong> anatexis, the age <strong>of</strong> which has recently been<br />

determined at 322–326 Ma (U–Pb on zircon <strong>and</strong><br />

titanite, 40 Ar– 39 Ar on hornblende, Kalt et al., 2000).<br />

Lower grade mica schists <strong>and</strong> gneisses are restricted to<br />

the Královsky Hvozd crystalline complex, a Moldanubian<br />

subunit situated SE <strong>of</strong> the NKM (Fig. 1). In<br />

this area, metapelitic rocks partly contain kyanite<br />

relics <strong>of</strong> an early medium pressure metamorphism<br />

(Vejnar, 1991; Babu˚rek, 1995), suggesting a multistage<br />

metamorphic evolution within parts <strong>of</strong> the<br />

Moldanubian unit. The age <strong>of</strong> this medium pressure<br />

metamorphism (i.e., Cadomian or Variscan) has yet<br />

not been determined. However, microspores preserved<br />

within low grade metamorphic mica schists near<br />

Rittsteig suggest a <strong>Paleozoic</strong> protolith for at least<br />

parts <strong>of</strong> the Královsky Hvozd metasediments (Reitz,<br />

1992). Apart from these mica schists, the Moldanubian<br />

unit adjacent to the study area consists <strong>of</strong> a<br />

prograde succession <strong>of</strong> <strong>and</strong>alusite-bearing mica<br />

schists, cordierite sillimanite gneisses, <strong>and</strong> cordierite<br />

K-feldspar anatexites (Blümel, 1990).<br />

3. Methods<br />

The composition, emplacement depth, cooling history,<br />

<strong>and</strong> tectonometamorphic overprints <strong>of</strong> granodiorite,<br />

diorite, <strong>and</strong> gabbro <strong>of</strong> the Vsˇepadly, Smrzˇovice,<br />

Orlovice, Vsˇeruby, Neukirchen, Teufelsberg, <strong>and</strong><br />

Hoher–Bogen–Rittsteig areas have been investigated<br />

(for localities, see encircled numbers 1–8 in Fig. 1).<br />

In the case <strong>of</strong> the Teufelsberg pluton, we also determined<br />

the protolith age. Geobarometric <strong>and</strong> geothermometric<br />

data were derived from the chemical<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243<br />

compositions <strong>of</strong> olivine, pyroxene, amphibole, biotite,<br />

<strong>and</strong> feldspar, which were analysed at the Technische<br />

Universität Darmstadt <strong>and</strong> the Universität Würzburg<br />

using a Cameca SX-50 electron microprobe. The<br />

operating conditions were similar to those reported<br />

in Bues <strong>and</strong> Zulauf (2000). Summaries <strong>of</strong> representative<br />

mineral analyses are listed in Table 1. The mineral<br />

abbreviations used throughout the text are according<br />

to Kretz (1983).<br />

We applied the geothermometer <strong>of</strong> Blundy <strong>and</strong><br />

Holl<strong>and</strong> (1990) <strong>and</strong> Holl<strong>and</strong> <strong>and</strong> Blundy (1994) to<br />

calculate equilibration temperatures <strong>of</strong> hornblende <strong>and</strong><br />

plagioclase for the Vsˇepadly granodiorite <strong>and</strong> Smrzˇovice<br />

quartz diorite. These rocks also contain the<br />

appropriate buffer assemblage required for the Al-in-<br />

Hbl barometry according to Schmidt (1991) <strong>and</strong><br />

Anderson <strong>and</strong> Smith (1995). Equilibration temperatures<br />

<strong>of</strong> orthopyroxene <strong>and</strong> clinopyroxene were calculated<br />

for the Smrzˇovice, Vsˇeruby, <strong>and</strong> Teufelsberg<br />

pyroxene diorite using the TWQ program <strong>of</strong> Berman<br />

(1991) together with the revised thermodynamic database<br />

<strong>of</strong> Berman et al. (1995) <strong>and</strong> Berman <strong>and</strong> Aranovich<br />

(1996). This method was also applied to the<br />

Opx–Cpx–Spl corona <strong>of</strong> the olivine metagabbro <strong>of</strong><br />

the eastern Hoher–Bogen area. For the Vsˇeruby<br />

olivine gabbro <strong>and</strong> gabbronorite, we additionally used<br />

the Opx–Cpx geothermometer <strong>of</strong> Wells (1977).<br />

To carry out K–Ar analyses <strong>of</strong> hornblende <strong>and</strong><br />

biotite, mineral separation was performed in the<br />

laboratory <strong>of</strong> the geological institute <strong>of</strong> the AVČR<br />

(Prague) using st<strong>and</strong>ard techniques, such as crushing,<br />

sieving, flotation, Frantz magnetic separation, <strong>and</strong><br />

h<strong>and</strong> picking. K–Ar analyses were carried out in the<br />

laboratory <strong>of</strong> the Bundesanstalt für Geowissenschaften<br />

und Rohst<strong>of</strong>fe (BGR, Hannover) using flame<br />

photometry <strong>and</strong> noble-gas mass spectrometry for<br />

K–Ar determination. Details <strong>of</strong> sample processing<br />

are given by Kreuzer et al. (1989). All errors quoted<br />

were calculated on the 95% (2r) confidence level.<br />

Zircons <strong>of</strong> the Teufelsberg pluton (locality<br />

‘Hoher–Stein’) have been separated <strong>and</strong> abraded<br />

(for the separation <strong>and</strong> analytical techniques, see also<br />

Dörr et al., this volume). Dissolution <strong>and</strong> separation <strong>of</strong><br />

U <strong>and</strong> Pb were carried out after Krogh (1973). Each<br />

single zircon was placed in a Teflon vessel within an<br />

autoclave <strong>and</strong> digested over 6 days at 180 jC with 24<br />

N HF. After cooling, a mixed 235 U– 208 Pb spike was<br />

added to one-third <strong>of</strong> the solution <strong>of</strong> the zircon to


determine the concentrations <strong>of</strong> U <strong>and</strong> Pb. The<br />

remainder <strong>of</strong> the solution was used to determine the<br />

natural Pb isotope composition <strong>of</strong> the zircon. The<br />

isotopic analyses were carried out with a Finnigan<br />

MAT261 solid-source mass spectrometer in multicollector<br />

static mode with ion-counting system for<br />

204 Pb. The measured lead isotopic ratios were corrected<br />

for mass fractionation (1.12 F 0.18x per<br />

amu), blank, <strong>and</strong> initial lead. Lead blanks are about<br />

3–5 pg. The calculation <strong>and</strong> correlation <strong>of</strong> errors for<br />

the 206 Pb/ 238 U <strong>and</strong> 207 Pb/ 235 U ratios were carried out<br />

after Ludwig (1980). Regression lines <strong>and</strong> concordia<br />

diagram were processed using the program Geodate<br />

2.2 (Eglington <strong>and</strong> Harmer, 1991).<br />

4. Composition <strong>and</strong> structure<br />

In the NE part <strong>of</strong> the NKM, igneous rocks mostly<br />

consist <strong>of</strong> quartz diorite that contain small, lensshaped<br />

bodies (maximum 1–2 km long) <strong>of</strong> olivine<br />

gabbro, pyroxene diorite, <strong>and</strong> granodiorite. The Vsˇepadly<br />

granodiorite (Location 1, Fig. 1) is composed<br />

<strong>of</strong> quartz, plagioclase, K-feldspar, hornblende, biotite,<br />

titanium oxide, <strong>and</strong> few amounts <strong>of</strong> cummingtonite.<br />

Apart from weak sericitization <strong>of</strong> plagioclase cores,<br />

alteration <strong>of</strong> hornblende <strong>and</strong>/or biotite margins to<br />

chlorite <strong>and</strong> weak undulose extinction <strong>of</strong> anhedral<br />

quartz, the magmatic fabric does not indicate a major<br />

post-plutonic overprint. Euhedral to subhedral plagioclase<br />

is strongly zoned, with core-to-rim compositions<br />

ranging from An 43 – 44 to An 3–19 (Table 1A). Ferrohornblende<br />

forms anhedral to subhedral crystals,<br />

which are almost homogeneous in composition. Biotite<br />

is locally intergrown with cummingtonite that<br />

probably results from the breakdown <strong>of</strong> orthopyroxene.<br />

The Smrzˇovice quartz diorite (Location 2, Fig. 1)<br />

consists <strong>of</strong> plagioclase, quartz, hornblende, biotite,<br />

titanium oxide, <strong>and</strong> few amounts <strong>of</strong> K-feldspar.<br />

Locally, plagioclase, hornblende, <strong>and</strong> biotite are<br />

weakly altered to sericite ( F epidote) <strong>and</strong> chlorite,<br />

respectively. Slightly deformed parts <strong>of</strong> the rock indicate<br />

undulose extinction, subgrains, <strong>and</strong> partial recrystallization<br />

<strong>of</strong> quartz, as well as deformation twins with<br />

tapering edges in plagioclase. The compositional zoning<br />

<strong>of</strong> subhedral plagioclase is characterized by relatively<br />

homogeneous Ca-rich cores (An 49 – 60) <strong>and</strong><br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243 231<br />

narrow Na-rich rims (An 17 – 22; Table 1A). K-feldspar<br />

occurs as antiperthitic exsolutions within the Na-rich<br />

rims or as small anhedral grains at the boundary <strong>of</strong><br />

plagioclase. The composition <strong>of</strong> subhedral to anhedral<br />

ferro-hornblende ranges from Si = 7.0 to 7.2 pfu (Table<br />

1B; Fig. 2).<br />

The Smrzˇovice pyroxene diorite consists <strong>of</strong> plagioclase,<br />

orthopyroxene, clinopyroxene, hornblende, biotite,<br />

titanium oxide, <strong>and</strong> few amounts <strong>of</strong> quartz. The<br />

composition <strong>of</strong> zoned, subhedral plagioclase ranges<br />

from An52 – 58 (core) to An40 – 45 (rim; Table 1A).<br />

Anhedral Ca-amphibole ranges from magnesio-horn-<br />

Fig. 2. Classification <strong>of</strong> investigated Ca-amphiboles (according to<br />

Leake <strong>and</strong> CNMMN, 1997). Location (1) = Vsˇepadly, (2) = Smrzˇovice,<br />

(3) = Orlovice, (4) = Vsˇeruby, (5) = Neukirchen, (6 <strong>and</strong> 7) = Teufelsberg<br />

(Čertu˚v kámen). Fields: Ca-amphiboles <strong>of</strong> (A) gabbroic,<br />

(B) dioritic–granodioritic rocks, <strong>and</strong> (C) secondary formed Caamphiboles<br />

from the localities listed above according to Vejnar<br />

(1984, 1986), (D) metamorphic amphiboles <strong>of</strong> dioritic rocks from<br />

the Teufelsberg intrusion according to Bues (1992).


232<br />

blende to actinolite (Si = 7.2 to 7.7 pfu; Table 1B; Fig.<br />

2). The latter is attributed to local uralitization <strong>of</strong><br />

pyroxene.<br />

Olivine gabbro <strong>of</strong> the Smrzˇovice complex consists<br />

<strong>of</strong> plagioclase, clinopyroxene, olivine, titanium oxide,<br />

<strong>and</strong> pargasite. Although anhedral olivine (Fo64 – 67;<br />

Table 1D, Fig. 3) <strong>and</strong> clinopyroxene are unzoned,<br />

euhedral to subhedral plagioclase have core-to-rim<br />

compositions ranging from An 67 – 72 to An 51 – 62 (Table<br />

1A). Unzoned pargasite is restricted to small anhedral<br />

grains within the ophitic fabric. Boundaries between<br />

olivine <strong>and</strong> plagioclase are free from reaction rims<br />

except in altered parts where olivine, pyroxene, <strong>and</strong><br />

plagioclase are replaced by amphibole <strong>and</strong> sericite,<br />

respectively.<br />

Sub-ophitic Orlovice olivine gabbro (Location 3,<br />

Fig. 1) contains anhedral or roundish olivine (Fo 70 – 71,<br />

Table 1D), anhedral clinopyroxene, <strong>and</strong> subhedral<br />

Fig. 3. Chemical composition <strong>of</strong> olivine <strong>and</strong> pyroxene. For<br />

localities, see Figs. 1 <strong>and</strong> 2. En–Fs–Di–Hd quadrilateral according<br />

to Morimoto et al. (1988). Fields: pyroxene compositions according<br />

to Vejnar (1984, 1986).<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243<br />

plagioclase (An 60 – 65, Table 1A). Small amounts <strong>of</strong><br />

anhedral pargasite may also occur in the matrix.<br />

Locally, the Orlovice intrusion is affected by secondary<br />

alteration especially in its marginal parts. In<br />

weakly altered olivine gabbros, coronas <strong>of</strong> amphibole<br />

(F orthopyroxene) are developed around olivine at the<br />

contact to plagioclase. In case <strong>of</strong> strong alteration,<br />

olivine, orthopyroxene, clinopyroxene, <strong>and</strong> plagioclase<br />

are replaced by serpentine, cummingtonite,<br />

actinolite, <strong>and</strong> sericite (F epidote). Deformed plagioclase<br />

is characterized by deformation twins, undulose<br />

extinction, subgrains, <strong>and</strong> incipient bulging <strong>of</strong> grain<br />

boundaries, the latter suggesting the onset <strong>of</strong> recrystallization<br />

driven by grain–boundary migration.<br />

Gabbroic <strong>and</strong> dioritic rocks <strong>of</strong> the Vsˇeruby intrusion<br />

(Location 4, Fig. 1) underwent intensive retrograde<br />

overprint (uralitization, serizitisation, Fsaussuritization).<br />

Rare relics <strong>of</strong> wherlite, olivine gabbro,<br />

<strong>and</strong> gabbronorite consist <strong>of</strong> olivine, orthopyroxene,<br />

clinopyroxene, plagioclase, <strong>and</strong> opaque phases in<br />

varied modal amounts. Orthopyroxene (En77 – 80, Table<br />

1C) <strong>and</strong> olivine (Fo79–80, Table 1D) mostly form<br />

euhedral to subhedral cumulate phases, whereas plagioclase<br />

(An 65 – 71) <strong>and</strong> clinopyroxene occur as anhedral<br />

intercumulate minerals. In contrast to the<br />

Smrzˇovice <strong>and</strong> Orlovice intrusions, olivine <strong>of</strong> the<br />

Vsˇeruby gabbro is surrounded by double reaction rims<br />

at the contact with plagioclase that consist <strong>of</strong> orthopyroxene<br />

(En82 – 83) <strong>and</strong> pargasite–spinel symplectite<br />

(Fig. 4).<br />

As indicated by discrete shear zones <strong>and</strong> pervasive<br />

foliations, the post-intrusive strain <strong>and</strong> metamorphism<br />

increased considerably towards the SW. Details about<br />

the increase in postmagmatic strain from NE to SW are<br />

given in Köhler et al. (1993). Wide areas <strong>of</strong> the<br />

Neukirchen <strong>and</strong> Teufelsberg intrusion were transformed<br />

into amphibolite or orthogneiss. Relics <strong>of</strong><br />

olivine gabbro are restricted to low-strain domains <strong>of</strong><br />

these intrusions. Similar to the Vsˇeruby olivine gabbro,<br />

coronitic reaction rims <strong>of</strong> orthopyroxene (En 78 – 79) <strong>and</strong><br />

pargasite–spinel symplectite are developed around<br />

olivine (Fo75 – 77) at the contact to plagioclase (An65 –<br />

67) <strong>of</strong> the sub-ophitic Neukirchen olivine gabbro (Location<br />

5, Fig. 1). Further relics <strong>of</strong> olivine gabbro <strong>of</strong> the<br />

Neukirchen intrusion consist <strong>of</strong> olivine (Fo65 – 66) <strong>and</strong><br />

plagioclase (An57 – 60) with a reaction rim <strong>of</strong> orthopyroxene<br />

(En70 – 71) towards olivine <strong>and</strong> pargasite–spinel<br />

intergrowth towards plagioclase. In deformed meta-


gabbros, olivine <strong>and</strong> pyroxene are entirely replaced by<br />

polycrystalline aggregates <strong>of</strong> amphibole (mostly magnesio-hornblende).<br />

Relics <strong>of</strong> large magmatic plagioclase<br />

show undulose extinction <strong>and</strong> deformation twins.<br />

These grains frequently pass into domains <strong>of</strong> small<br />

dynamically recrystallized grains. Additionally, plagioclase<br />

is replaced by epidote + clinozoisite <strong>and</strong> less<br />

common by sericite.<br />

The fabric <strong>and</strong> mineral assemblage <strong>of</strong> the Teufelsberg<br />

olivine gabbro (Locations 6 <strong>and</strong> 7, Fig. 1) is<br />

similar to that <strong>of</strong> the Orlovice area. However, olivine<br />

<strong>of</strong> the Teufelsberg intrusion (Fo54 – 57) is surrounded<br />

by a large corona <strong>of</strong> orthopyroxene (En65 – 66) <strong>and</strong><br />

pargasite–spinel symplectite at the contact to plagioclase<br />

(An50 – 57), similar to that <strong>of</strong> the Vsˇeruby <strong>and</strong><br />

Neukirchen olivine gabbro.<br />

Apart from a stronger overprint, the mineral assemblage<br />

<strong>of</strong> the Teufelsberg pyroxene (meta)diorite is<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243 233<br />

Fig. 4. Coronitic micr<strong>of</strong>abrics <strong>of</strong> olivine gabbros. (a <strong>and</strong> b): double reaction rims <strong>of</strong> orthopyroxene (close to olivine) <strong>and</strong> intergrowths <strong>of</strong><br />

pargasite + spinel (close to plagiaclase) surrounding olivine (Location 5). (c <strong>and</strong> d): Large reaction rims <strong>of</strong> orthopyroxene <strong>and</strong> intergrowths <strong>of</strong><br />

clinopyroxene + spinel around olivine (Location 8). All photomicrographs with parallel polarizers.<br />

similar to that <strong>of</strong> the Smrzˇovice area. Plagioclase<br />

(An37–48) is characterized by undulose extinction,<br />

subgrains, <strong>and</strong> recrystallization, whereas the subhedral<br />

habit <strong>of</strong> orthopyroxene (En39 – 54) indicates a magmatic<br />

origin. The southern part <strong>of</strong> the Teufelsberg intrusion<br />

consists <strong>of</strong> more strongly deformed metadiorite <strong>and</strong><br />

orthogneiss, where pyroxene is entirely transformed<br />

into amphibole, <strong>and</strong> plagioclase shows pervasive<br />

grain-size reduction by dynamic recrystallization.<br />

The Hoher–Bogen metabasite belt forms the most<br />

deformed <strong>and</strong> metamorphosed part <strong>of</strong> the NKM,<br />

affected by ductile shearing along the HBSZ (Bues<br />

et al., 1998). Highly deformed domains consist <strong>of</strong><br />

mylonitic epidote amphibolite with porphyroclasts <strong>of</strong><br />

hornblende embedded in a matrix <strong>of</strong> recrystallized<br />

plagioclase. Domains that did not suffer pervasive<br />

deformation contain relics <strong>of</strong> granoblastic pyroxene<br />

amphibolite, garnet pyriclasite, garnet hornblendite,


234<br />

Fig. 5. Lower-hemisphere equal-area plots <strong>of</strong> D2 extensional structures <strong>of</strong> the Hoher–Bogen shear zone (HBSZ). Poles to mylonitic shear planes<br />

(S 2) with traces <strong>of</strong> displacement vector are depicted (arrow indicates movement direction <strong>of</strong> hanging wall); (a) western part <strong>of</strong> HBSZ; (b) eastern<br />

part <strong>of</strong> HBSZ; (c) southern part <strong>of</strong> HBSZ.<br />

garnet amphibolite, <strong>and</strong> small amounts <strong>of</strong> metagabbro<br />

(Bues <strong>and</strong> Zulauf, 2000). More or less, mylonitized<br />

<strong>and</strong> serpentinized spinel metaperidotite also occur<br />

within the HBSZ. Relics <strong>of</strong> (granulitic?) olivine<br />

metagabbro, located ca. 2 km W <strong>of</strong> Rittsteig (Number<br />

8, Fig. 1), differ from that described above. In this<br />

rock, large coronas around olivine (Fo80 – 81) occur<br />

with an inner rim <strong>of</strong> orthopyroxene (En80 – 82) <strong>and</strong> an<br />

outer rim <strong>of</strong> clinopyroxene–spinel symplectite at the<br />

contact to plagioclase (An64 – 69) (Fig. 4). The com-<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243<br />

position <strong>of</strong> matrix clinopyroxene is similar to that <strong>of</strong><br />

corona clinopyroxene (Table 1C).<br />

The mylonitic S2-foliation <strong>of</strong> the HBSZ results<br />

from a second deformation (D2, Bues et al., 1998).<br />

D 1-deformation fabrics occur only as relicts that do<br />

not permit assessment <strong>of</strong> the D 1-kinematics. The S 2foliation<br />

is moderately to steeply dipping (50j to 80j)<br />

<strong>and</strong> its strike changes gradually from NW–SE (in the<br />

W, towards the WBSZ) to NE–SW (in the E, towards<br />

the CBSZ; Figs. 1 <strong>and</strong> 5). The mylonitic lineation is a<br />

Fig. 6. Temperature <strong>and</strong> pressure calculations for granodiorite, quartz diorite, pyroxene diorite, olivine gabbro, <strong>and</strong> gabbronorite. Localities are<br />

depicted like in Figs. 1 <strong>and</strong> 2. Applied geothermometer <strong>and</strong> barometer: AS95 = Anderson <strong>and</strong> Smith (1995); BH90 = Blundy <strong>and</strong> Holl<strong>and</strong><br />

(1990); BF94 = Bucher <strong>and</strong> Frey (1994); G84 = Gasparik (1984); HB94 = Holl<strong>and</strong> <strong>and</strong> Blundy (1994); S91 = Schmidt (1991); TWQ = Berman<br />

(1991), Berman et al. (1995) <strong>and</strong> Berman <strong>and</strong> Aranovich (1996); W77 = Wells (1977); solidus according to Bucher <strong>and</strong> Frey (1994); Al2SiO5<br />

triple point according to Bohlen et al. (1991).


C. Bues et al. / Tectonophysics 352 (2002) 225–243 235


236<br />

Table 2<br />

Analytical data <strong>of</strong> K–Ar age determinations on biotite <strong>and</strong> hornblende. Argon concentrations in nanoliter per gram at st<strong>and</strong>ard conditions (nl/g<br />

STP); potassium concentrations in weight percentage (wt.%)<br />

Sample Locality Mineral Fraction (Am) K (wt.%) Radiogenic Ar Date (Ma)<br />

(nl/g STP) (%)<br />

PAM27F Hoher–Stein biotite 125–63 6.75 98.89 99.1 342 F 4<br />

113 quarry Smrzˇovice biotite 250–125 6.94 153.80 98.8 495 F 6<br />

SK4 quarry Smrzˇovice hornblende 125–63<br />

(magnetic fraction)<br />

0.26 6.49 91.7 547 F 7<br />

SK4 quarry Smrzˇovice hornblende 125–63<br />

(unmagnetic fraction)<br />

0.27 6.81 91.9 549 F 7<br />

Mean st<strong>and</strong>ard deviation (2r) <strong>of</strong> radiogenic argon is about 0.3% <strong>and</strong> <strong>of</strong> potassium about 1% for high-K <strong>and</strong> low-K materials, respectively. The<br />

error in the K –Ar apparent age is given at the 95% confidence level. Note that our K–Ar date for the st<strong>and</strong>ard glauconite GL-O is about 1%<br />

younger than the mean value <strong>of</strong> the compilation <strong>of</strong> Odin (1982).<br />

dip–slip or slightly oblique-slip lineation portrayed<br />

by stretched plagioclase or by the long axes <strong>of</strong><br />

amphibole. Non-coaxial top–down-to-the-NE normal<br />

movements are indicated by asymmetric amphibole<br />

porphyroclasts (j- <strong>and</strong> y-clasts) <strong>and</strong> by shear b<strong>and</strong><br />

fabrics (see Table 1A in Bues et al., 1998).<br />

5. Depth <strong>of</strong> pluton emplacement<br />

Using the geothermometers <strong>and</strong> geobarometers<br />

mentioned above <strong>and</strong> shown in Fig. 6, we calculated<br />

the following temperatures <strong>and</strong> pressures. For granodiorite<br />

<strong>and</strong> quartz diorite <strong>of</strong> the Vsˇepadly <strong>and</strong><br />

Smrzˇovice intrusion, the equilibration temperatures<br />

<strong>of</strong> hornblende <strong>and</strong> plagioclase are in the range <strong>of</strong><br />

Fig. 7. Cathodoluminescence image <strong>of</strong> a zircon separated from the<br />

Teufelsberg diorite (for further explanation, see text).<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243<br />

620–680 jC (Fig. 6A <strong>and</strong> B). Low crystallization<br />

pressures <strong>of</strong> hornblende (1.5–3 kbar; Fig. 6A <strong>and</strong> B)<br />

indicate emplacement at shallow crustal levels. Higher<br />

equilibration temperatures <strong>of</strong> 830–920 jC were calculated<br />

for pyroxene diorite <strong>of</strong> the Smrzˇovice, Vsˇeruby,<br />

<strong>and</strong> Teufelsberg intrusion (Fig. 6C <strong>and</strong> E) that do<br />

not show the appropriate mineral assemblage for<br />

using the Al-in-Hbl barometry. For the Smrzˇovice<br />

pyroxene diorite, the pressure should be similar to<br />

that <strong>of</strong> the quartz diorite from the same locality. For<br />

the Vsˇeruby <strong>and</strong> Teufelsberg pyroxene diorite, we<br />

have inferred the pressure from the corona micr<strong>of</strong>abrics<br />

that occur in the associated olivine gabbros<br />

(see below). Ortho- <strong>and</strong> clinopyroxene equilibration<br />

temperatures up to 980–1080 jC have been derived<br />

from olivine gabbro <strong>and</strong> gabbronorite <strong>of</strong> the Vsˇeruby<br />

intrusion (Fig. 6D). Equilibration temperatures <strong>of</strong><br />

reaction rims between olivine <strong>and</strong> plagioclase are<br />

Fig. 8. Concordia diagram for zircons from the Teufelsberg diorite<br />

(locality Hoher–Stein).


Table 3<br />

U–Pb analytical results for zircons <strong>of</strong> the Teufelsberg diorite<br />

Sample Weight<br />

(Ag)<br />

U<br />

(ppm)<br />

Pb r.<br />

(ppm)<br />

Pb i.<br />

(ppm)<br />

206 Pb/<br />

204 Pb F 2r*<br />

207 Pb/<br />

206 Pb F 2r*<br />

208 Pb/<br />

206 Pb F 2r*<br />

207 Pb/<br />

235 U F 2r<br />

206 Pb/<br />

238 U F 2r<br />

207 Pb/<br />

206 Pb F 2r<br />

Cor. Appara.<br />

206 Pb/<br />

238 U F 2r<br />

Ages<br />

207 Pb/<br />

235 U F 2r<br />

(Ma)<br />

207 Pb/<br />

206 Pb F 2r<br />

(1) 38 242.9 13.27 0.22 1304 F 6 0.06498 F 6 0.08609 F 24 0.4240 F 18 0.05716 F 22 0.05379 F 24 0.88 358 F 1 359 F 2 362 F 10<br />

(2) 37 336.7 17.58 0.45 1313 F 13 0.06475 F 9 0.08409 F 37 0.4047 F 21 0.05472 F 23 0.05364 F 28 0.83 343 F 1 345 F 2 356 F 12<br />

(3) 40 268.7 14.01 0.05 2178 F 54 0.06022 F 13 0.07163 F 48 0.4038 F 24 0.05472 F 22 0.05353 F 32 0.71 343 F 1 344 F 2 352 F 13<br />

(4) 36 356.1 18.38 0.01 1991 F 30 0.06114 F 9 0.07678 F 49 0.4005 F 29 0.05397 F 35 0.05382 F 29 0.92 339 F 2 342 F 3 363 F 13<br />

(5) 41 652.9 24.14 0.20 2562 F 13 0.05928 F 7 0.06370 F 10 0.2880 F 24 0.03898 F 31 0.05359 F 25 0.98 247 F 2 257 F 2 354 F 10<br />

Errors are 2r. Asterisk means corrected for mass fractionation <strong>and</strong> blank. Pb r. radiogenic lead; Pb i. initial common lead.<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243 237


238<br />

ranging from 890 to 940 jC for Opx–Prg–Spl<br />

assembl<strong>ages</strong> (Vsˇeruby <strong>and</strong> Neukirchen olivine gabbro;<br />

Fig. 6D) <strong>and</strong> 810 to 920 jC for Opx–Cpx–Spl<br />

coronas (Hoher–Bogen olivine metagabbro; Fig. 6F).<br />

For these rocks, a pressure estimate is possible based<br />

on the reaction: Ol + Pl F H2O ! Opx + Am or Cpx +<br />

Spl. Such coronitic micr<strong>of</strong>abrics are typical features in<br />

olivine gabbros that underwent magmatic cooling or<br />

high-grade metamorphism at P =6.5–8 kbar (e.g.,<br />

Grantham et al., 1993; Jan <strong>and</strong> Karim, 1995). According<br />

to Bucher <strong>and</strong> Frey (1994), such micr<strong>of</strong>abrics are<br />

diagnostic for pressures >6 kbar. In Fig. 6D <strong>and</strong> F, the<br />

spinel-in reaction in the system CaO–MgO–Al2O3–<br />

SiO2 is illustrated according to Gasparik (1984). In<br />

natural systems containing iron (XMg = ca. 0.9), spinel<br />

may occur at some lower pressures (Bucher <strong>and</strong> Frey,<br />

1994).<br />

6. Radiometric dating<br />

For carrying out K–Ar age dating, biotite <strong>and</strong><br />

hornblende have been separated from samples <strong>of</strong> the<br />

Smrzˇovice <strong>and</strong> Teufelsberg intrusions. Light brown to<br />

greenish magnesio-hornblende sampled from finegrained<br />

hornblende–biotite diorite <strong>of</strong> the large Smrzˇovice<br />

quarry (sample SK 4, Location 2 in Fig. 1) shows<br />

weak alteration along the cleavage planes. Magnetic<br />

<strong>and</strong> unmagnetic fractions yield 547 F 7 <strong>and</strong> 549 F 7<br />

Ma, respectively (Table 2). Dark brown to reddish<br />

brown biotite separated from biotite–hornblende<br />

quartz diorite <strong>of</strong> the Smrzˇovice quarry (sample 113)<br />

shows few inclusions <strong>of</strong> plagioclase, ilmenite<br />

F hornblende. The degree <strong>of</strong> biotite alteration is<br />

very weak. In a few places, biotite is moderately<br />

altered to clinozoisite (along the cleavage planes)<br />

<strong>and</strong>/or chlorite at the margins. K–Ar dating <strong>of</strong> this<br />

biotite yields 495 F 6 Ma (Table 2).<br />

K–Ar dating <strong>of</strong> biotite <strong>of</strong> the Teufelsberg pyroxene<br />

diorite (Location 7 in Fig. 1) yields 342 F 4 Ma.<br />

Similar to the Smrzˇovice samples, the Teufelsberg<br />

biotite is relatively fresh. Rare alteration in form <strong>of</strong><br />

weak chloritization is restricted to the marginal parts.<br />

The separated zircons <strong>of</strong> the Teufelsberg diorite<br />

(Location 7 in Fig. 1) are colourless <strong>and</strong> yellow<br />

belonging to the subtypes S20 to S25 <strong>and</strong> J1 to J5<br />

according to the classification <strong>of</strong> Pupin (1980). The<br />

internal structure <strong>of</strong> the zircons is perceptible in<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243<br />

cathodoluminescence (CL) im<strong>ages</strong> oriented parallel<br />

to the zircon c-axis. The different light–dark contrasts<br />

<strong>and</strong> bright color display different amounts <strong>of</strong> trace<br />

element content. The bright color represents more or<br />

less pure zircon phase, whereas the different dark<br />

colors reflect variable amount <strong>of</strong> U <strong>and</strong> Y contents.<br />

The internal structure <strong>of</strong> all zircons is complex (e.g.,<br />

Fig. 7). A rounded heterogeneous core is surrounded<br />

by a thin discordant bright zone (A in Fig. 7), the<br />

latter suggesting a first stage <strong>of</strong> dissolution. A narrowspaced<br />

oscillatory zoning follows combined with<br />

compositional sector zoning between dark prisms<br />

<strong>and</strong> light–dark 101-pyramides until a second stage<br />

<strong>of</strong> dissolution is indicated by a thin discordant bright<br />

zone (B in Fig. 7). Towards the margin, a similar<br />

combination follows including small light–dark 211pyramids<br />

ceasing with a third stage <strong>of</strong> dissolution<br />

indicated by a thick discordant bright zone (C in Fig.<br />

7). The margin <strong>of</strong> the zircon consists <strong>of</strong> dark prisms<br />

<strong>and</strong> pyramids.<br />

The single zircons have a weight <strong>of</strong> 37–41 Ag <strong>and</strong><br />

thus, a total lead from 513 to 998 pg, resulting in high<br />

beam intensities <strong>and</strong> allowing static-mode measurements<br />

in all cases. The concordant single zircon 1 <strong>and</strong><br />

four discordant single zircons 2 to 5 define a discordia<br />

with an upper intercept at 361 F 4 Ma <strong>and</strong> a lower<br />

intercept at 16 F 12 Ma (Fig. 8F, Table 3). These data,<br />

together with the age <strong>of</strong> a concordant zircon at<br />

359 F 2 Ma, are interpreted to reflect the age <strong>of</strong> the<br />

zircon crystallization <strong>and</strong> thus, the magmatic emplacement<br />

age <strong>of</strong> the Teufelsberg diorite. Although the CL<br />

im<strong>ages</strong> show a complex core pattern in the zircons, no<br />

inherited lead could be detected (Table 3).<br />

7. Discussion <strong>and</strong> conclusions<br />

The Vsˇepadly granodiorite <strong>and</strong> the Smrzˇovice<br />

diorite <strong>of</strong> the NE part <strong>of</strong> the NKM intruded at shallow<br />

crustal levels (< 7 km depth) as is indicated by Al-in-<br />

Hbl barometry. Similar emplacement <strong>depths</strong> have<br />

been determined for the Těsovice granite <strong>of</strong> the<br />

adjacent Stod pluton (Zulauf et al., 1997). A supracrustal<br />

emplacement level is also indicated by the<br />

small differences between U–Pb zircon <strong>ages</strong> (that<br />

reflect the time <strong>of</strong> pluton emplacement) <strong>and</strong> K–Ar<br />

<strong>and</strong> Ar–Ar <strong>ages</strong> <strong>of</strong> hornblende <strong>and</strong> mica (that reflect<br />

cooling <strong>of</strong> the pluton through particular isotherms).


The new K–Ar <strong>ages</strong> <strong>of</strong> hornblende <strong>of</strong> the Smrzˇovice<br />

diorite (547 F 7 <strong>and</strong> 549 F 7 Ma) are unambiguously<br />

higher than the concordant U–Pb zircon age <strong>of</strong> the<br />

same rock (523 F 3 Ma, Dörr et al., this volume). One<br />

possibility to explain these apparently high K–Ar<br />

<strong>ages</strong> is that excess argon may have been incorporated<br />

into hornblende during younger post-magmatic thermal<br />

events. Relics <strong>of</strong> pyroxene, locally intergrown<br />

with hornblende, are further c<strong>and</strong>idates that may<br />

explain the high K–Ar <strong>ages</strong> <strong>of</strong> hornblende. Despite<br />

careful hornblende separation, some <strong>of</strong> these pyroxenes<br />

could have occurred in the fraction, a possibility<br />

that is compatible with the difference in the potassium<br />

content determined from single hornblende using the<br />

electron microprobe (K2O = 0.52–0.63 wt.%, Table<br />

1B) <strong>and</strong> from hornblende separates using flame photometry<br />

(K 2O = 0.31–0.33 wt.%). The potassium content<br />

<strong>of</strong> biotite <strong>of</strong> the Smrzˇovice quartz diorite is also<br />

relatively low, probably because <strong>of</strong> local chloritization<br />

that may have caused some loss <strong>of</strong> radiogenic argon.<br />

Thus, the K–Ar age <strong>of</strong> biotite (495 F 6 Ma) is<br />

interpreted as minimum cooling age that is compatible<br />

with the U–Pb zircon age, which reflects the time <strong>of</strong><br />

crystallization. Similar to the <strong>ages</strong> <strong>of</strong> the Smrzˇovice<br />

quartz diorite, the Cambrian K–Ar <strong>and</strong> Ar–Ar <strong>ages</strong> <strong>of</strong><br />

the Stod granite (biotite, 491–513 Ma, S ˇ mejkal <strong>and</strong><br />

Vejnar, 1967; 518 F 5 Ma, Kreuzer et al., 1990) <strong>and</strong><br />

the Vsˇepadly granodiorite (hornblende, 516 F 1.3 Ma,<br />

Dallmeyer <strong>and</strong> Urban, 1998) suggest no significant<br />

burial <strong>and</strong> metamorphic reheating above the closure<br />

temperatures for the K–Ar isotopic system <strong>of</strong> hornblende<br />

<strong>and</strong> biotite. Closure to diffusional loss <strong>of</strong><br />

radiogenic 40 Ar in hornblende <strong>and</strong> biotite, although<br />

primarily a function <strong>of</strong> temperature, is also influenced<br />

by the cooling rate <strong>and</strong> perhaps more importantly, by<br />

the composition <strong>and</strong> crystalline structure <strong>of</strong> the mineral.<br />

Using models for argon diffusion in biotite <strong>of</strong><br />

intermediate composition <strong>and</strong> assuming geologically<br />

reasonable cooling rates yield closure temperatures<br />

between 280 <strong>and</strong> 350 jC (Harrison et al., 1985; Grove<br />

<strong>and</strong> Harrison, 1996 <strong>and</strong> references therein). The<br />

closure temperature for the Ar diffusion in hornblende<br />

has been constrained between ca. 490 <strong>and</strong> 550 jC<br />

(Harrison, 1981; Baldwin et al., 1991).<br />

In the SW part <strong>of</strong> the NKM, a strong post-intrusive<br />

Variscan thermal event is obvious from: (1) Carboniferous<br />

(321–329 Ma) K–Ar cooling <strong>ages</strong> <strong>of</strong> mica <strong>of</strong><br />

metapelitic wall rocks in the Neukirchen area (Kreuzer<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243 239<br />

et al., 1992; Fig. 1), (2) various K–Ar cooling <strong>ages</strong><br />

(330–460 Ma) <strong>of</strong> hornblende <strong>of</strong> the Hoher–Bogen<br />

amphibolites (Fischer et al., 1968; Kreuzer et al.,<br />

1992), (3) Upper Devonian (359 F 2 Ma) intrusion<br />

<strong>of</strong> the Teufelsberg pyroxene diorite (see above). The<br />

potassium content <strong>of</strong> biotite <strong>of</strong> the Teufelsberg diorite<br />

is relatively low, probably because <strong>of</strong> local chloritization<br />

that may have caused some loss <strong>of</strong> radiogenic<br />

argon. Thus, similar to the Smrzˇovice quartz diorite,<br />

the newly determined K–Ar age <strong>of</strong> biotite <strong>of</strong> the<br />

Teufelsberg pluton (342 F 4 Ma) is interpreted as<br />

minimum cooling age that is compatible with the U–<br />

Pb zircon age.<br />

The metamorphic overprint <strong>of</strong> the Teufelsberg metadiorite,<br />

constrained at T>600 jC <strong>and</strong> P = 6–7 kbar<br />

(Bues, 1992), is consistent with the metamorphic conditions<br />

determined for the mylonitic shearing <strong>of</strong> epidote<br />

amphibolite along the HBSZ (T = 540–610 jC,<br />

P = 3–6 kbar, Artmann et al., 2002; Bues <strong>and</strong> Zulauf,<br />

2000). As most <strong>of</strong> these mylonites result from retrograde<br />

shearing <strong>of</strong> high-grade amphibolites <strong>and</strong> granulites,<br />

the P–T data mentioned above are minimum<br />

values for the Variscan metamorphism in the southernmost<br />

NKM. In low-strain domains <strong>of</strong> the HBSZ, relics<br />

<strong>of</strong> garnet pyriclasite indicate equilibration at infracrustal<br />

levels (T>750–840 jC, P < 10–13 kbar) prior to the<br />

retrograde transformation to epidote amphibolite (Bues<br />

<strong>and</strong> Zulauf, 2000). With the exceptions <strong>of</strong> the slices <strong>of</strong><br />

mantle-derived metaperidotite, these garnet pyriclasites<br />

represent the deepest buried rocks <strong>of</strong> the NKM<br />

(ca. 35 km).<br />

The presence <strong>of</strong> coronitic micr<strong>of</strong>abrics in olivine<br />

(meta)gabbros SW <strong>of</strong> the Orlovice intrusion (Vsˇeruby,<br />

Neukirchen, Teufelsberg, Hoher–Bogen–Rittsteig<br />

areas) reflects cooling from magmatic conditions<br />

<strong>and</strong>/or reheating due to renewed burying <strong>and</strong> related<br />

granulite facies metamorphism at deep structural levels<br />

(ca. 20–25 km). As there is no systematic change<br />

in the Mg content <strong>of</strong> olivine in the investigated<br />

gabbros <strong>and</strong> metagabbros (Fig. 3), the spatial restriction<br />

<strong>of</strong> corona microstructures to the southwestern<br />

NKM probably reflects higher pressure ( P>6–7 kbar)<br />

during their post-intrusive evolution. The occurrence<br />

<strong>of</strong> Opx–Cpx–Spl coronas in the Hoher–Bogen olivine<br />

metagabbro that equilibrated at T = 840–920 jC<br />

emphasizes the existence <strong>of</strong> former medium-pressure<br />

granulite facies conditions for parts <strong>of</strong> the southernmost<br />

NKM.


240<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243


The changes in composition, emplacement level,<br />

isotopic cooling <strong>ages</strong>, <strong>and</strong> degree <strong>of</strong> post-intrusive<br />

tectonometamorphic overprint <strong>of</strong> the Cambrian <strong>plutons</strong><br />

suggest that deeper structural levels are encountered<br />

when moving from the Stod pluton to the HBSZ.<br />

A major break in the crustal pr<strong>of</strong>ile occurs along the<br />

NNW–SSE trending Andělice fault (AF in Fig. 1; see<br />

also Scheuvens, 1999). Rocks to the NE <strong>of</strong> this fault<br />

mostly include intermediate to felsic <strong>plutons</strong> that have<br />

not been deeply buried since their supracrustal<br />

emplacement (T < ca. 300 jC since the Cambrian).<br />

The <strong>plutons</strong> SW <strong>of</strong> the Andělice fault are intermediate<br />

to mafic in composition <strong>and</strong> show evidence for<br />

emplacement at infracrustal levels <strong>and</strong>/or subsequent<br />

deep burying, particularly when approaching the<br />

HBSZ. The HBSZ contains lower crustal mafic granulites<br />

<strong>and</strong> metaperidotites, the latter being probably<br />

derived from the upper mantle. Thus, a more or less<br />

complete oblique crustal section is exposed between<br />

Stod <strong>and</strong> the HBSZ to the SW.<br />

We suggest that extensional movements along the<br />

steeply NE dipping HBSZ <strong>and</strong> probably along the<br />

Andělice fault caused differential uplift <strong>and</strong> exhumation<br />

in the NKM. Due to large displacement along the<br />

HBSZ, the infrastructural granulites <strong>and</strong> metaperidotites<br />

were juxtaposed against Moldanubian mica<br />

schists <strong>and</strong> gneisses. These interpretations <strong>and</strong> published<br />

data from surrounding areas are incorporated<br />

into the following model, which accounts for the<br />

present distribution <strong>of</strong> Cambrian <strong>and</strong> younger <strong>plutons</strong><br />

in the SW part <strong>of</strong> the TBU.<br />

In Cambrian times, felsic to intermediate melts<br />

were emplaced at upper crustal levels (Stod, Vsˇepadly<br />

<strong>and</strong> Smrzˇovice area), whereas intermediate to mafic<br />

<strong>plutons</strong> intruded at deeper structural levels (Vsˇeruby,<br />

Neukirchen, Hoher–Bogen areas, Fig. 9A). Although<br />

strong evidence for syntectonic emplacement has not<br />

been found so far in the NKM, it is possible that some<br />

<strong>of</strong> the melts were emplaced along transtensional,<br />

ENE–WSW trending shear zones. Such types <strong>of</strong><br />

shear zones have facilitated the emplacement <strong>of</strong> the<br />

Cambrian Mračnice trondhjemite <strong>of</strong> the Domazˇlice<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243 241<br />

crystalline complex (Zulauf et al., 1997; for location<br />

<strong>of</strong> the Mračnice trondhjemite, see Fig. 1).<br />

To explain the presence <strong>of</strong> slices <strong>of</strong> lower crust <strong>and</strong><br />

mantle material within the HBSZ, we assume that<br />

during the Upper Devonian collision, the entire crust<br />

<strong>of</strong> the TBU was thrust towards the SE over the<br />

Moldanubian unit including the lower crustal mafic<br />

granulite <strong>and</strong> parts <strong>of</strong> the Teplá–Barr<strong>and</strong>ian mantle<br />

(Fig. 9B). This type <strong>of</strong> stacking led to overthickened<br />

crust that became gravitationally unstable. Intrusion <strong>of</strong><br />

the mantle-derived Teufelsberg diorite at 359 F 2Ma<br />

was simultaneous to the exhumation <strong>and</strong> cooling <strong>of</strong> the<br />

Domazˇlice crystalline complex below the K–Ar closure<br />

temperature <strong>of</strong> white mica (ca. 350 jC; cf. cooling<br />

<strong>ages</strong> depicted in Fig. 1). The Teufelsberg pluton<br />

intruded into this thickened, collapsing crustal wedge.<br />

Its geodynamic significance, however, is difficult to<br />

interpret. Cooling <strong>and</strong> exhumation <strong>of</strong> the Teufelsberg<br />

pluton from deep structural levels (>20 km at T>600<br />

jC) to upper crustal levels, where T < ca. 300 jC,<br />

occurred between 359 F 2 <strong>and</strong> 342 F 4 Ma. We suggest<br />

that this Upper Devonian to Lower Carboniferous<br />

phase <strong>of</strong> pluton exhumation was related to the persistent<br />

activity <strong>of</strong> the HBSZ. Thus, the recent distribution<br />

<strong>of</strong> felsic to mafic <strong>plutons</strong> <strong>of</strong> the NKM <strong>and</strong> Stod area, as<br />

well as their difference in emplacement level <strong>and</strong><br />

metamorphic imprints may result from differential<br />

uplift that was largely controlled by the normal movements<br />

along the HBSZ <strong>and</strong> related shear zones that cut<br />

through the southeastern part <strong>of</strong> the NKM. The fact that<br />

the composition <strong>of</strong> the Cambrian <strong>plutons</strong> changes from<br />

felsic to mafic towards deeper structural levels is<br />

compatible with a Cambrian layered intrusion, as has<br />

been suggested by Vejnar (1986).<br />

Acknowledgements<br />

We thank S. Weinbruch, T. Thybusch (Technical<br />

University Darmstadt), <strong>and</strong> U. Schüssler (University<br />

Würzburg) for their help at the electron microprobe.<br />

We further acknowledge the help <strong>of</strong> the BGR isotopic<br />

Fig. 9. Geodynamic evolution <strong>of</strong> the SW part <strong>of</strong> the Teplá–Barr<strong>and</strong>ian unit. (A) Cambrian emplacement <strong>of</strong> mafic to felsic <strong>plutons</strong> at different<br />

crustal levels during dextral transtension. Pluton emplacement postdates tilting <strong>of</strong> Cadomian metamorphic isograds. (B) Continent–continent<br />

collision <strong>of</strong> the Saxothuringian, Teplá –Barr<strong>and</strong>ian, <strong>and</strong> Moldanubian unit during the Upper Devonian. The Teplá–Barr<strong>and</strong>ian unit was thrust<br />

over the Moldanubian unit as an entire crustal block including mantle slices from its base. (C) During the orogenic collapse, the infracrustal<br />

Hoher–Bogen metabasites were exhumed <strong>and</strong> the southern NKM was tilted to the NE along the HBSZ, forced by rising domes <strong>of</strong> anatexites<br />

<strong>and</strong> granites within the adjacent Moldanubian unit during the Lower Carboniferous. For further explanations, see text.


242<br />

laboratory (Hannover) when carrying out K–Ar<br />

analyses <strong>of</strong> biotite <strong>and</strong> hornblende. We would also<br />

like to thank A. Castro, B. Murphy, <strong>and</strong> I. Vigneresse<br />

for their helpful comments. This study was supported<br />

by grants <strong>of</strong> the Deutsche Forschungsgemeinschaft<br />

(Zu 73/1-5, BL 191/12).<br />

References<br />

Anderson, J.L., Smith, D.R., 1995. The effects <strong>of</strong> temperature <strong>and</strong><br />

fO2 on the Al-in-hornblende barometer. Am. Mineral. 80, 549–<br />

559.<br />

Artmann, E., Bues, C., Scheuvens, D., Zulauf, G., 2002. Zur tektonometamorphen<br />

Entwicklung der Zentralböhmischen Scherzone<br />

zwischen Svatá Katerˇina und Rittsteig unter besonderer Berücksichtigung<br />

der Forschungsbohrung Rittsteig (Böhmische Masse).<br />

Geol. Bavarica (in press).<br />

Babu˚rek, J., 1995. High, medium <strong>and</strong> low pressure assembl<strong>ages</strong><br />

from the Czech part <strong>of</strong> the Královsky Hvozd Unit (KHU) in<br />

the Moldanubian Zone <strong>of</strong> SW Bohemia. J. Czech Geol. Soc. 40/<br />

2-1, 115–126.<br />

Baldwin, S.L., Harrison, T.M., Fitz Gerald, J.D., 1991. The diffusion<br />

<strong>of</strong> 40 Ar in metamorphic hornblende. Contrib. Mineral. Petrol.<br />

105, 691–703.<br />

Berman, R.G., 1991. Thermobarometry using multi-equilibrium calculations—a<br />

new technique, with petrological applications. Can.<br />

Mineral. 29, 328–344.<br />

Berman, R.G., Aranovich, L.Y., 1996. Optimized st<strong>and</strong>ard state <strong>and</strong><br />

solution properties <strong>of</strong> minerals: I. Model calibration for olivine,<br />

orthopyroxene, cordierite, garnet, <strong>and</strong> ilmenite in the system<br />

FeO–MgO–CaO – Al2O3–TiO2–SiO2. Contrib. Mineral. Petrol.<br />

126, 1 –24.<br />

Berman, R.G., Aranovich, L.Y., Pattison, D., 1995. Reassessment <strong>of</strong><br />

the garnet – clinopyroxene Fe – Mg exchange thermometer: II.<br />

Thermodynamic analysis. Contrib. Mineral. Petrol. 119, 30–42.<br />

Blümel, P., 1990. The Moldanubian zone in Bavaria. Int. Conf.<br />

<strong>Paleozoic</strong> Orogens in Central Europe. Field Guide Bohemian<br />

Massif, Göttingen-Gießen, pp. 143–179.<br />

Blundy, J., Holl<strong>and</strong>, T., 1990. Calcic amphibole equilibria <strong>and</strong> a<br />

new amphibole – plagioclase geothermometer. Contrib. Mineral.<br />

Petrol. 104, 208–224.<br />

Bohlen, S.T., Montana, A., Kerrick, D.M., 1991. Precise determinations<br />

<strong>of</strong> the equilibria kyanite-sillimanite <strong>and</strong> kyanite-<strong>and</strong>alusite<br />

<strong>and</strong> a revised triple point for Al2Si05 polymorphs. Am.<br />

Mineral. 76, 677–680.<br />

Bucher, K., Frey, M., 1994. Petrogenesis <strong>of</strong> Metamorphic Rocks.<br />

Springer, Berlin, 318 pp.<br />

Bues, C., 1992. Geologie, Petrographie und Mineralchemie der<br />

Gabbroamphibolitmasse von Neukirchen b. Hl. Blut (Nordostbayern).<br />

Dissertation, Univ. München, pp.151.<br />

Bues, C., Zulauf, G., 2000. Microstructural evolution <strong>and</strong> geologic<br />

significance <strong>of</strong> garnet pyriclasites in the Hoher–Bogen Shear<br />

Zone (Bohemian Massif, Germany). Int. J. Earth Sciences 88,<br />

803–813.<br />

Bues, C., Behrmann, J., Franke, W., Pauli, C., Seibert, J., Zulauf,<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243<br />

G., 1998. Strukturentwicklung und Kinematik der Metabasite<br />

und Metapelite im Grenzbereich Teplá–Barr<strong>and</strong>ium– Moldanubikum<br />

im Raum Hoher Bogen-Rittsteig (NE Bayern). Z. Dtsch.<br />

Geol. Ges. 149/4, 329–343.<br />

Dallmeyer, R.D., Urban, M., 1998. Variscan vs. Cadomian tectonothermal<br />

activity in northwestern sectors <strong>of</strong> the Teplá–Barr<strong>and</strong>ian<br />

zone, Czech Republic: constraints from 40 Ar/ 39 Ar <strong>ages</strong>.<br />

Geol. Rundsch. 87, 94–106.<br />

Dörr, W., Zulauf, G., Schastok, J., Scheuvens, D., Vejnar, Z., Wemmer,<br />

K., Ahrendt, H., 1996. The Teplá–Barr<strong>and</strong>ian/Moldanubian<br />

s.str. boundary: preliminary geochronological results from<br />

fault related <strong>plutons</strong>. Terra Nostra 2, 34–38.<br />

Dörr, W., Zulauf, G., Fiala, J., Schastok, J., Scheuvens, D., Wulf, S.,<br />

Vejnar, Z., Ahrendt, H., Wemmer, K., 1997. Dating <strong>of</strong> collapse<br />

related <strong>plutons</strong> along the West- <strong>and</strong> Central Bohemian shear<br />

zone (European Variscides). Terra Nostra 5, 31–34.<br />

Dörr, W., Zulauf, G., Fiala, J., Franke, W., Vejnar, Z., 2002. Neoproterozoic<br />

to Early Cambrian history <strong>of</strong> an active plate margin<br />

in the Teplá–Barr<strong>and</strong>ian unit (Bohemia, Czech Republic). Tectonophysics<br />

(this issue).<br />

Eglington, B.M., Harmer, R.E., 1991. Geodate 2.2: A Program for<br />

Processing <strong>and</strong> Regression <strong>of</strong> Isotope Data. Division <strong>of</strong> Earth,<br />

Marine <strong>and</strong> Atmospheric Science <strong>and</strong> Technology, Pretoria,<br />

pp. 1 – 70.<br />

Fischer, G., Schreyer, W., Troll, G., Voll, G., Hart, S., 1968. Hornblendealter<br />

aus dem ostbayerischen Grundgebirge. Neues Jahrb.<br />

Mineral., 352–385.<br />

Franke, W., Dallmeyer, R.D., Weber, K., 1995. XI geodynamic<br />

evolution. In: Dallmeyer, R.D., Franke, W., Weber, K. (Eds.),<br />

Pre-Permian Geology <strong>of</strong> Central <strong>and</strong> Eastern Europe. Springer,<br />

Berlin, pp. 579–594.<br />

Gasparik, T., 1984. Two-pyroxene thermobarometry with new experimental<br />

data in the system CaO-MgO-Al2O3-SiO2. Contrib.<br />

Mineral. Petrol. 87, 87–97.<br />

Gebauer, D., 1993. Geochronologische Übersicht. In: Bauberger, W.<br />

(Ed.), Geologische Karte von Bayern 1:25000, Erläuterungen<br />

zum Blatt Nr. 6439 Tännesberg. Bayer. Geol. L.-Amt, München,<br />

pp. 10–22.<br />

Grantham, G.H., Thomas, R., Eglington, B., Bruin, D., Atanasov,<br />

A., Evans, M.J., 1993. Corona textures in proterozoic olivine<br />

melanorites <strong>of</strong> the Equeefa Suite, Natal metamorphic province,<br />

South Africa. Mineral. Petrol. 49, 91–102.<br />

Grove, M., Harrison, T.M., 1996. 40 Ar diffusion in Fe-rich biotite.<br />

Am. Mineral. 81, 940–951.<br />

Harrison, T.M., 1981. Diffusion <strong>of</strong> 40 Ar in hornblende. Contrib.<br />

Mineral. Petrol. 78, 324–331.<br />

Harrison, T.M., Duncan, J., McDougall, J., 1985. Diffusion <strong>of</strong> 40 Ar<br />

in biotite. Temperature, pressure <strong>and</strong> composition effects. Geochim.<br />

Cosmochim. Acta 49, 2461–2468.<br />

Holl<strong>and</strong>, T., Blundy, J., 1994. Non-ideal interactions in calcic amphiboles<br />

<strong>and</strong> their bearing on amphibole–plagioclase thermometry.<br />

Contrib. Mineral. Petrol. 116, 433–447.<br />

Holub, F.V., Cocherie, A., Rossi, P., 1997. Radiometric dating <strong>of</strong><br />

granitic rocks from the Central Bohemian Plutonic Complex<br />

(Czech Republic): constraints on the chronology <strong>of</strong> thermal<br />

<strong>and</strong> tectonic events along the Moldanubian – Barr<strong>and</strong>ian boundary.<br />

C. R. Acad. Sci. Paris, Earth Planet. Sci. 325, 19–26.


Jan, M.Q., Karim, A., 1995. Coronas <strong>and</strong> high-P veins in metagabbros<br />

<strong>of</strong> the Kohistan isl<strong>and</strong> arc, northern Pakistan: evidence for<br />

crustal thickening during cooling. J. Metamorph. Geol. 13,<br />

357–366.<br />

Kalt, A., Corfu, F., Wijbrans, J.R., 2000. Time calibration <strong>of</strong> a P –T<br />

path from a Variscan high-temperature low-pressure metamorphic<br />

complex (Bayerischer Wald, Germany), <strong>and</strong> the detection<br />

<strong>of</strong> inherited monazite. Contrib. Mineral. Petrol. 138, 143–163.<br />

Köhler, H., Masch, L., Miethig, A., Pfeiffer, T., Propach, G., Weger,<br />

M., 1993. Gabbroamphibolit-Masse von Neukirchen – Kdyně<br />

und ihr Rahmen. Beih. Eur. J. Mineral. 2 (5), 35–80.<br />

Kretz, R., 1983. Symbols for rock-forming minerals. Am. Mineral.<br />

68, 277–279.<br />

Kreuzer, H., Müller, P., Okrusch, M., Patzak, M., Schüssler, U.,<br />

Seidel, E., Sˇmejkal, V., Vejnar, Z., 1990. Ar –Ar Confirmation<br />

for Cambrian, Early Devonian, <strong>and</strong> Mid-Carboniferous tectonic<br />

units at the Western Margin <strong>of</strong> the Bohemian Massif. Zbl. Geol.<br />

Palaeontol. I 1991 (5), 1332–1335.<br />

Kreuzer, H., Seidel, E., Schüssler,U.,Okrusch,M.,Lenz,K.,<br />

Raschka, H., 1989. K–Ar geochronology <strong>of</strong> different tectonic<br />

unites at the northwestern margin <strong>of</strong> Bohemian Massif. Tectonophysics<br />

157, 149–178.<br />

Kreuzer, H., Vejnar, Z., Schüssler, U., Okrusch, M., Seidel, E.,<br />

1992. K–Ar Dating in the Teplá-Domazˇlice Zone at the Western<br />

Margin <strong>of</strong> the Bohemian Massif. Proc. 1st Int. Conf. Bohemian<br />

Massif, Prag, 26.9–3.10 vol. 1988, pp. 168–175.<br />

Krogh, T.E., 1973. A low contamination method for hydrothermal<br />

decomposition <strong>of</strong> zircon <strong>and</strong> extraction <strong>of</strong> U <strong>and</strong> Pb for isotopic<br />

age determinations. Geochim. Cosmochim. Acta 37, 485–494.<br />

Leake, B.E., CNMMN, 1997. Nomenclature <strong>of</strong> amphiboles, report<br />

<strong>of</strong> the subcommittee on amphiboles <strong>of</strong> the International Mineralogical<br />

Association Commission on new minerals <strong>and</strong> mineral<br />

names. Eur. J. Mineral. 9, 623–651.<br />

Ludwig, K.R., 1980. Calculation <strong>of</strong> uncertainties <strong>of</strong> U –Pb isotope<br />

data. Earth Planet. Sci. Lett. 46, 212–220.<br />

Matte, P., Maluski, H., Rajlich, P., Franke, W., 1990. Terrane boundaries<br />

in the Bohemian Massif: results <strong>of</strong> large-scale Variscan<br />

shearing. Tectonophysics 177, 151–170.<br />

Miethig, A., 1995. Sr- und Nd-Isotopensystematik an den Gesteinen<br />

der Gabbroamphibolitmasse von Neukirchen b. Hl. Blut-Kdyně.<br />

Dissertation, Univ. München, pp. 206.<br />

Morimoto, N., Fabries, J., Ferguson, A., Ginzburg, I., Ross, M.,<br />

Seifert, F., Zussman, J., Aoki, K., Gottardi, G., 1988. Nomenclature<br />

<strong>of</strong> pyroxene. Am. Mineral. 73, 1123–1133.<br />

Odin, G.S. (Ed.), 1982. Numerical Dating in Stratigraphy, 2 vols.,<br />

John Wiley, Chichester, UK, 1040 pp.<br />

Pupin, J.P., 1980. Zircon <strong>and</strong> granite petrology. Contrib. Mineral.<br />

Petrol. 73, 207–220.<br />

C. Bues et al. / Tectonophysics 352 (2002) 225–243 243<br />

Reitz, E., 1992. Silurische Mikrosporen aus einem Biotit-Glimmerschiefer<br />

bei Rittsteig, Nördlicher Bayerischer Wald. Neue Jahrb.<br />

Geol. Palaontol. Mh., 351–358.<br />

Scheuvens, D., 1999. Die tektonische und kinematische Entwicklung<br />

im Westteil der Zentralböhmischen Scherzone (Böhmische<br />

Masse)—Evidenz für variscischen Kollaps. Frankf.<br />

Geowiss. Arb., Ser. A 18, 273 pp.<br />

Scheuvens, D., Zulauf, G., 2000. Exhumation, strain localization,<br />

<strong>and</strong> emplacement <strong>of</strong> granitoids along the western part <strong>of</strong> the<br />

Central Bohemian shear zone (central European Variscides,<br />

Czech Republic). Int. J. Earth Sci. 89, 617–630.<br />

Schmidt, M.W., 1991. Experimental calibration <strong>of</strong> the Al-in-hornblende<br />

geobarometer at 650 jC, 3.5–13.0 kbar. Terra, Abstr.<br />

3/1, 3/13.<br />

Sˇmejkal, V., Vejnar, Z., 1967. Zur Frage des praevaristischen Alters<br />

einiger Granitoide des Böhmischen Massivs. Sb. I. Geochem.<br />

Konference, Ostrava 1965, 157–162.<br />

Vejnar, Z., 1962. Zum problem des absoluten Alters der kristallinen<br />

Schiefer und der Intrusiva des Westböhmischen Kristallins.<br />

Krystalinikum 1, 149–159.<br />

Vejnar, Z., 1984. The Čertu˚v kámen diorite body in the Kdyně<br />

massif. Vestn. Ustred. Ust. Geol. 59, 267–274.<br />

Vejnar, Z., 1986. The Kdyně massif, South-West Bohemia—a tectonically<br />

modified basic layered intrusion. Sb. Geol. Ved, Geol.<br />

41, 9 – 67.<br />

Vejnar, Z., 1991. The metamorphic zonal pattern in the Moldanubicum<br />

<strong>of</strong> the NW part <strong>of</strong> the Sˇumava Mts., Královsky´ Hvozd<br />

unit. Vestn. Ustred. Ust. Geol. 66, 129–140.<br />

Wells, P., 1977. Pyroxene thermometry in simple <strong>and</strong> complex systems.<br />

Contrib. Mineral. Petrol. 62, 129–139.<br />

Zulauf, G., 1994. Ductile normal faulting along the West Bohemian<br />

Shear Zone (Moldanubian/Tepla – Barr<strong>and</strong>ian boundary): evidence<br />

for late Variscan extensional collapse in the Variscan<br />

Internides. Geol. Rundsch. 83, 276–292.<br />

Zulauf, G., Dörr, W., Fiala, J., Vejnar, Z., 1997. Late Cadomian<br />

crustal tilting <strong>and</strong> Cambrian transtension in the Teplá –Barr<strong>and</strong>ian<br />

unit (Bohemian Massif, Central European Variscides).<br />

Geol. Rundsch. 86, 571–584.<br />

Zulauf, G., Schitter, F., Riegler, G., Finger, F., Fiala, J., Vejnar, Z.,<br />

1999. Age constraints on the Cadomian evolution <strong>of</strong> the Teplá –<br />

Barr<strong>and</strong>ian unit (Bohemian Massif) through electron microprobe<br />

dating <strong>of</strong> metamorphic monazite. Z. Dtsch. Geol. Ges.<br />

150/4, 627–639.<br />

Zulauf, G., Bues, C., Dörr, W., Vejnar, Z., 2002. 10 km minimum<br />

throw along the West Bohemian shear zone: evidence for dramatic<br />

crustal thickening <strong>and</strong> high topography in the Bohemian<br />

Massif (European Variscides). Int. J. Earth Sci. (in press).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!