30.12.2012 Views

Fluka - Sigma-Aldrich

Fluka - Sigma-Aldrich

Fluka - Sigma-Aldrich

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fluka</strong><br />

Chemika<br />

[106] M. Schorr and W. Schmitt, Phosphorus, Sulfur<br />

and Silicon, 68, 25 (1992)<br />

[107] J. R. Babu, G. Sanai-Zingde, J. S. Riffle, J. Polymer<br />

Sci. 31, 1645 (1993)<br />

[108] H. Appler J. Organomet. Chem. 350, 217 (1988)<br />

[109] L. M. Markovskii et al., Zh. Organ. Khim. 28,<br />

1388 (1992)<br />

[110] M. Müller et al., Liebigs Ann. Chem. 975 (1989)<br />

[111] R. Hoffmann, R. Brückner, Chem. Ber. 125,1471<br />

(1992)<br />

[112] D. L. J. Clive, C. Zhang, J. Chem. Soc., Chem.<br />

Commun. 647 (1993)<br />

[113] K. K. Murthi, R. G. Salomon, Tetrahedron Lett.<br />

35, 517 (1994)<br />

[114] N. Kuhn, S. Stubenrauch, J. Prakt. Chem. 335,<br />

285 (1993)<br />

[115] V. N. Sergeev, E. P. Shapovalenko, Y. I. Baukov,<br />

Zh. Obshch. Khim. 57, 1315 (1987)<br />

[116] H. Oshita, Y. Mizobe, M. Hidai, J. Organomet.<br />

Chem. 456, 213 (1993)<br />

[117] K. Hattori, H. Yamamoto, Tetrahedron 50, 3099<br />

(1994)<br />

[118] B. J. Bunn, N. S. Simpkins, J. Org. Chem. 58,<br />

533 (1993)<br />

[119] P. Duhamel et al., J. Chem. Soc., Perkin Trans.<br />

1, 387 (1992)<br />

[120] P. Cazeau, F. Duboudin, F. Moulines, O. Babot,<br />

J. Dunogues, Tetrahedron 43, 2075 (1987)<br />

[121] T. Thiemann, S. Kohlstruk, G. Schwär,<br />

A. de Meijere, Tetrahedron Lett. 32, 3483 (1991)<br />

[122] P. A. McCarthy, M. Kageyama, J. Org. Chem.<br />

52, 4681 (1987)<br />

[123] F. L. Koerwitz, G. B. Hammond, D. F. Wiemer,<br />

J. Org. Chem. 54, 738 (1989)<br />

[124] B. Caron, P. Brassard, Tetrahedron 47, 4287 (1991)<br />

[125] G. A. Olah, T. Bach, G. K. S. Prakash,<br />

New J. Chem., 15, 571 (1991)<br />

3.1.26 Trimethyliodosilane, TMIS<br />

Trimethyliodosilane is one of the most reactive<br />

silylating agents, particularly useful for<br />

synthetic purposes. Although it has been<br />

known for many years, its chemical potential<br />

was discovered mainly in the last decade<br />

[1–3].<br />

It has been used e.g. for the cleavage of<br />

ethers, esters, carbamates and ketals, for the<br />

synthesis of iodides, and as electrophilic catalyst<br />

in different reactions [1–3]. R. D. Miller<br />

and D. R. McKean were the first to use TMIS<br />

as silylating agent [4]. Later on, other authors<br />

showed its high silylating power by<br />

comparison with other silylating agents [5, 6].<br />

Trimethyliodosilane is a clear, colourless liquid<br />

which is extremely sensitive to light and<br />

moisture.<br />

Analytical applications<br />

M. Donike and co-workers [7] found that<br />

trimethyliodosilane is by far the best catalyst<br />

for the quantitative silylation of hydroxyketosteroids<br />

with MSTFA. Hydroxyl groups are<br />

silylated immediately, keto groups yield the<br />

pure silyl enol ether within a few min (TMCS<br />

and potassium acetate are much less reactive;<br />

TMBS, although an excellent catalyst,<br />

needs longer reaction times and isomer<br />

formation is possible). The drawback with<br />

this application of TMIS is the formation of<br />

dehydrated products. This can be avoided by<br />

using only very small amounts of catalyst, by<br />

protecting from light and by addition of a<br />

34<br />

[126] S. Bauermeister, T. A. Modro, Phosphorus, Sulfur<br />

and Silicon 72, 201 (1992)<br />

[127] T. Hayashi et al., Tetrahedron Lett. 29, 4147 (1988)<br />

[128] T. Makaiyama et al., Chemistry Lett. 2239 (1990)<br />

[129] S. Czernecki, T. Le Diguarher, Synthesis 683 (1991)<br />

[130] G. A. Olah, T. Bach, G. K. S. Prakash, J. Org.<br />

Chem. 54, 3770 (1989)<br />

[131] P. J. Beswick et al., Tetrahedron 44, 7325 (1988)<br />

[132] M. Bordeau et al., J. Org. Chem. 57, 4705 (1992)<br />

[133] M. Uemura et al., Tetrahedron Lett. 27, 2479<br />

(1986)<br />

[134] U. Gross, D. Kaufmann, Chem. Ber. 120, 991<br />

(1987)<br />

[135] M. S. Loft, D. A. Widdowson, T. J. Mowlem,<br />

Synlett, 135 (1992)<br />

[136] D. L. Comins, Y. C. Myoung, J. Org. Chem.<br />

55, 292 (1990)<br />

[137] J. Yoshida et al., J. Org. Chem. 51, 3996 (1986)<br />

[138] T. Ohno et al., Tetrahedron Lett. 33, 5515 (1992)<br />

[139] A. J. Stern, J. S. Swenton, J. Org. Chem. 54,<br />

2953 (1989)<br />

[140] A. A. Krolevets et al., Zh. Obshch. Khim. 58,<br />

2274 (1988)<br />

[141] E. P. Kramarova et al., Zh. Obshch. Khim. 61,<br />

1406 (1991)<br />

[142] S. F. Karaev et al., Zh. Obshch. Khim. 62, 2709<br />

(1992)<br />

[143] W. Amberg, D. Seebach, Chem. Ber. 123, 2439<br />

(1990)<br />

[144] M. Grignon-Dubois, M. Fialeix, J.-M. Leger, Can.<br />

J. Chem. 71, 754 (1993)<br />

[145] M. Grignon-Dubois et al., J. Org. Chem. 58, 1926<br />

(1993)<br />

[146] P.-P. Picard et al., J. Organomet. Chem. 419,<br />

C1-C4, (1991)<br />

[147] M. Pietsch, M. Walter, K. Buchholz, Carbohydrate<br />

Res. 254, 183 (1994)<br />

very small amount of a reduction agent (e.g.<br />

cysteine or 1,4-dithioerythritol). M. Donike<br />

introduced this method for the determination<br />

of conjugated steroids in the routine<br />

urine analysis of anabolica [8].<br />

Synthetic applications<br />

R. D. Miller and D. R. McKean [4] found a<br />

mixture of HMDS/TMIS (1.1:1) to be a very<br />

efficient silylating agent for aldehydes and<br />

ketones. The thermodynamically controlled<br />

mixtures of trimethylsilyl enol ethers are<br />

generated at room temperature in very good<br />

yields. All �- and �-ketoesters (the ester<br />

groups are not affected!) [4], other ketoesters<br />

[18, 20], ketoamides [19] and �-halogenketones<br />

[9] can also be transformed<br />

regioselectively by this method to the corresponding<br />

silyl enol ethers. The utility of this<br />

method has also been described by other<br />

authors [10, 11]. H. H. Hergott and G. Simchen<br />

[5] compared the reactivity of ten electrophilic<br />

silylation agents in a system consisting<br />

of triethylamine and 1,2-dichloroethane<br />

for the silylation of ketones: trimethyliodosilane<br />

(together with TMS triflate) gave by<br />

far the highest reaction rates. Similar results<br />

on the silylating reactivity of TMIS were<br />

found by A. R. Bassindale and T. Stout [6].<br />

N-(Trifluoroacetyl)lactams have also been<br />

shown to yield trimethylsilyl enol ethers by<br />

silylation with TMIS/Et 3N [15]. The preparation<br />

of trimethylsilylesters of acetate derivatives<br />

from the silver salt and TMIS in ether is<br />

possible in 29% yield [16].The bis-silylation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!