04.01.2013 Views

SHS Jointing, Flowdrill & Hollo-Bolt - Tata Steel

SHS Jointing, Flowdrill & Hollo-Bolt - Tata Steel

SHS Jointing, Flowdrill & Hollo-Bolt - Tata Steel

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Corus Tubes library publication<br />

The contents of this publication are current, when republished<br />

it will be in the new Corus housestyle.


<strong>SHS</strong> <strong>Jointing</strong><br />

<strong>Flowdrill</strong> &<br />

<strong>Hollo</strong>-<strong>Bolt</strong>


<strong>Flowdrill</strong>&<strong>Hollo</strong>-<strong>Bolt</strong><br />

<strong>Flowdrill</strong> &<br />

<strong>Hollo</strong>-<strong>Bolt</strong><br />

<strong>Jointing</strong><br />

for <strong>Hollo</strong>w Sections<br />

<strong>Flowdrill</strong> and <strong>Hollo</strong>-<strong>Bolt</strong> give a choice of two<br />

methods to produce bolted joints in<br />

<strong>Hollo</strong>w Sections. Both systems offer the<br />

following benefits:<br />

● They produce bolted joints of structural<br />

capacity in Hot Finished Rectangular <strong>Hollo</strong>w<br />

Sections (HFRHS).<br />

● They minimise the change in the fabrication<br />

process by using connection details which<br />

are standard in the construction industry.<br />

● They reduce fabrication by removing the<br />

need to weld plates or other fittings onto the<br />

outside surface of the RHS.<br />

● They simplify erection by using fully threaded<br />

bolts -an increasing practice in the<br />

construction industry.<br />

● They maintain aesthetics by producing a<br />

flush face on the RHS after fabrication.<br />

Design Guidance<br />

The design guidance produced in this<br />

publication is for <strong>Flowdrill</strong> and <strong>Hollo</strong>-<strong>Bolt</strong><br />

systems with grade 8.8 bolts in conjunction with<br />

Tubes and Pipes hot finished structural hollow<br />

sections. The design guidance, for joints in<br />

simple construction, result from Tubes & Pipes<br />

initial research work undertaken in connection<br />

with CIDECT (Ref. 1). The guidance<br />

complements the information published by the<br />

BCSA/SCI and is presented in a form<br />

compatible with their publication “Joints in<br />

Simple Construction” (Ref. 2).<br />

Further test work is being undertaken to<br />

establish design guidance for semi-rigid<br />

joints.<br />

Procedural checks are given for bearing, shear<br />

and local bolt pull out of the RHS wall and for<br />

the combined effect of the column axial load<br />

and the structural integrity tensile load of<br />

BS 5950 : Part 1.<br />

The combined check for the column axial load<br />

and the structural integrity tensile load<br />

recognises that the flexibility of the RHS face<br />

caused by the tensile load can, in the presence<br />

of the column axial load, reduce the overall joint<br />

capacity.


<strong>Hollo</strong>-<strong>Bolt</strong><br />

Fabrication and<br />

<strong>Flowdrill</strong><br />

Construction<br />

General detailing recommendations for beam<br />

column connections, given in this<br />

publication, are in accordance with the<br />

BCSA/SCI publication -”Joints in Simple<br />

Construction” (Ref. 2).<br />

Both <strong>Flowdrill</strong> and <strong>Hollo</strong>-<strong>Bolt</strong> use fully threaded<br />

bolts which allows standardisation of bolt<br />

lengths throughout the construction. Where<br />

beams are connected to adjacent faces of an<br />

RHS column a check must be made with the<br />

chosen bolt length to ensure that assembly is<br />

possible (see Fig. 3 and 6) and the bolts do<br />

not touch.<br />

Both <strong>Flowdrill</strong> and <strong>Hollo</strong>-<strong>Bolt</strong> are suitable for use<br />

with the two standard grades of Tubes & Pipes<br />

<strong>SHS</strong> to BS EN10210-1 of S275J2H and<br />

S355J2H (formerly BS4360 Gr43D and 50D<br />

respectively).<br />

At present, application of the <strong>Flowdrill</strong> process<br />

is limited to RHS thicknesses up to and<br />

including 12.5mm. For thicknesses of 16mm<br />

and over, conventional drill and tap methods are<br />

recommended, although due to the RHS<br />

material strength being lower than that of the<br />

grade 8.8 bolts, pull out strengths may be below<br />

the bolt tension capacity.<br />

Reference<br />

1. Comité International pour le<br />

Développment et l’Étude de la<br />

Construction Tubulaire<br />

UK Member<br />

British <strong>Steel</strong> plc<br />

Tubes & Pipes<br />

PO Box 101<br />

Corby<br />

Northants NN17 5UA<br />

2. Joints in Simple Construction<br />

Volume 1 : Design methods<br />

Volume 2 : Practical applications<br />

Published jointly by:<br />

BCSA SCI<br />

4 Whitehall Court Silwood Park<br />

Westminster Ascot<br />

London Berks SL5 7QN<br />

SW1A 2ES


<strong>Flowdrill</strong><br />

<strong>Flowdrill</strong><br />

The<br />

Process<br />

<strong>Flowdrill</strong>ing is basically a thermal drilling<br />

process which makes a hole through the<br />

wall of a structural hollow section without<br />

the removal of metal normally associated<br />

with a drilling process. The formed hole is<br />

then threaded by the use of a roll thread<br />

forming tool, leaving a threaded hole which<br />

will accept a standard fully threaded bolt.<br />

The Tools<br />

The initial hole is made by a <strong>Flowdrill</strong> tool<br />

consisting of a tungsten carbide bit held in a<br />

<strong>Flowdrill</strong> Morsetaper collet adaptor (Fig. 1). The<br />

tool can be used in a conventional drilling<br />

machine or CNC machine as found in<br />

fabricators works, provided it has adequate<br />

horsepower and spindle speed.<br />

1st stage<br />

The tungsten carbide bit is brought into contact<br />

with the RHS wall where it generates sufficient<br />

heat to soften the steel. The bit is then<br />

advanced through the wall and in so doing the<br />

metal is redistributed (or flows) to form an<br />

internal bush. As well as drilling the initial hole,<br />

the tool is fitted with the means of removing any<br />

surplus material which may arise on the outside<br />

of the RHS section. The cycle time for<br />

<strong>Flowdrill</strong>ing is similar to that for conventional<br />

drilling. However, if done on CNC machines the<br />

feed rate can be slow at the beginning, rapidly<br />

increasing as the material softens to improve<br />

efficiency.<br />

2nd stage<br />

The 2nd and final stage is to tap the <strong>Flowdrill</strong><br />

bush. This is done by roll threading the bush<br />

with a Coldform Flowtap. The complete cycle is<br />

shown in Figure 2.<br />

Fig. 2<br />

Tool holder<br />

<strong>Flowdrill</strong> data :<br />

The <strong>Flowdrill</strong> system was developed by <strong>Flowdrill</strong> BV in Holland, and is available in the UK from<br />

their agent - Robert Speck Ltd,. Little Ridge, Whittlebury Road, Silverstone, Northants NN12 8UD.<br />

Tel: 01327 857307 Contact Mr Mike Carpenter.<br />

Fig. 1<br />

Collet<br />

<strong>Flowdrill</strong> bit<br />

1st Stage 2nd Stage


Drilling machine parameters :<br />

Table 1 gives a guide to required machine<br />

parameters for producing <strong>Flowdrill</strong> holes for<br />

M12 to M24 bolts:<br />

Note: The <strong>Flowdrill</strong> process is not suitable for<br />

hand held or magnetic clamp type drilling<br />

equipment when used in the sizes shown.<br />

Max material<br />

thickness<br />

(mm)<br />

<strong>Flowdrill</strong> detailing requirements.<br />

See Fig. 3 and Table 3.<br />

Note:<br />

3<br />

5<br />

6<br />

8<br />

10<br />

12<br />

16<br />

Table 2<br />

● <strong>Flowdrill</strong>ed joints used at<br />

locations exposed to the<br />

weather should not be<br />

considered as water tight.<br />

● <strong>Flowdrill</strong>ing is not suitable<br />

for use with pre-galvanised<br />

materials.<br />

Dimensions<br />

(mm)<br />

A 1<br />

B 1<br />

C 1<br />

D 1<br />

E 1 Minimum<br />

Min <strong>Bolt</strong> Centres<br />

M12<br />

Short<br />

Long<br />

Long<br />

Long<br />

-<br />

-<br />

-<br />

<strong>Flowdrill</strong> Length<br />

M16<br />

Short<br />

Short<br />

Long<br />

Long<br />

Long<br />

-<br />

-<br />

Thread Size<br />

M12<br />

7<br />

13<br />

18<br />

30<br />

M20<br />

Short<br />

Short<br />

Short<br />

Long<br />

Long<br />

Long<br />

-<br />

Lb<br />

tp<br />

M24<br />

Short<br />

Short<br />

Short<br />

Long<br />

Long<br />

Long<br />

-<br />

tc<br />

M16<br />

10<br />

17<br />

20<br />

40<br />

Thread size<br />

<strong>Flowdrill</strong> size<br />

M/c spindle<br />

speed rpm<br />

M/c feed rate<br />

Motor power<br />

KW Min<br />

Tapping speed<br />

rpm<br />

Table 3 (See Fig. 3 for nomenclature)<br />

M12<br />

10.9<br />

1000-1500<br />

2<br />

250<br />

M16<br />

14.8<br />

700-1100<br />

Table 1<br />

Drill length: The recommended length of<br />

<strong>Flowdrill</strong> bits varies with the thread size and<br />

thickness of material as given in Table 2.<br />

Drill care: <strong>Flowdrill</strong>s are made from tungsten<br />

carbide. They are extremely hard but cannot<br />

withstand shock loads. After drilling each hole,<br />

FD KS paste should be applied to the <strong>Flowdrill</strong><br />

whilst it is still hot, so minimising oxidation and<br />

preventing ‘build up’ on the surface.<br />

Flat surface: the raised rim on the outer surface<br />

of the RHS material caused during <strong>Flowdrill</strong>ing<br />

should be removed using <strong>Flowdrill</strong>s with cutting<br />

edges provided on the collar. One rotation of the<br />

cutter is all that is required to remove the rim.<br />

B 1<br />

C 1<br />

Width<br />

Min bolt centres<br />

Thread size/<strong>Bolt</strong> diameter<br />

2.5<br />

200<br />

M20<br />

18.7<br />

600-1000<br />

3.5<br />

150<br />

M24<br />

22.5<br />

500-800<br />

0.1/0.15mm (0.004/0.006 inches) per rev<br />

M20<br />

12<br />

22<br />

26<br />

Varies with overall bolt length (Lb) specified<br />

C 1/2 + t c (for connection made to a single face or opposite faces)<br />

B 1/2 + A 1 + D 1 + t c (for connection made to adlacent faces)<br />

A 1<br />

D 1<br />

50<br />

E 1<br />

M24<br />

15<br />

25<br />

29<br />

60<br />

5<br />

100<br />

Fig. 3<br />

E 1


<strong>Hollo</strong>-<strong>Bolt</strong><br />

<strong>Hollo</strong>-<strong>Bolt</strong><br />

HOLLO-BOLT is a pre-assembled<br />

three part fitting consisting of body,<br />

cone and bolt.<br />

The pre-assembled unit (Fig. 4) is<br />

inserted through normal tolerance holes<br />

in both the attatchment plate and the<br />

RHS. As the bolt is tightened the cone is<br />

drawn into the body, spreading the legs,<br />

and forming a secure fixing. Once<br />

installed only the <strong>Hollo</strong>-<strong>Bolt</strong> head and<br />

collar are visible (Fig. 5).<br />

The <strong>Hollo</strong>-<strong>Bolt</strong><br />

Location Flats<br />

Body<br />

Cone Knurling<br />

Further information on<br />

<strong>Hollo</strong>-<strong>Bolt</strong> is available from<br />

Fig. 5<br />

Fig. 4<br />

Hexagon Head<br />

Collar<br />

Fixture<br />

RHS<br />

Cone<br />

Legs<br />

Central <strong>Bolt</strong><br />

Lindapter International<br />

A Division of Victaulic plc.,<br />

Lindsay House, Brackenbeck Road,<br />

Bradford, West Yorkshire, Tel: 01274 521444<br />

England, BD7 2NF Fax: 01274 521130


V<br />

tp<br />

Drilling requirements:<br />

<strong>Hollo</strong>-<strong>Bolt</strong> uses a plain drilled<br />

hole which can be made on<br />

site or in the fabrication shop<br />

using all normal drilling<br />

equipment. The finished hole<br />

should have a tolerance of<br />

-0.2mm to +1.0mm from the<br />

nominal given in the data table<br />

(Table 4).<br />

tc<br />

Material Options<br />

Standard product is manufactured from mild<br />

steel and is electro-zinc plated with the addition<br />

of JS500 1000 hour saltspray corrosion<br />

protection. The central fastener is a grade<br />

8.8 bolt.<br />

For special applications, the <strong>Hollo</strong>-<strong>Bolt</strong> is<br />

available manufactured from 316 stainless steel,<br />

with a grade A4-80 central bolt. This will not be a<br />

stocked item, and would be manufactured to<br />

order.<br />

Installation<br />

The only tools required to fit <strong>Hollo</strong>-<strong>Bolt</strong> are two<br />

spanners - an open ended spanner to hold the<br />

collar and a torque wrench to tighten the central<br />

bolt. Alternatively a power operated electric<br />

hand tool is in development.<br />

Should the steelwork need to be adjusted,<br />

the fixing can simply be removed and the<br />

hole reused with another <strong>Hollo</strong>-<strong>Bolt</strong>.<br />

Sealing Options<br />

Width<br />

X<br />

<strong>Bolt</strong><br />

size<br />

In certain applications, it may be necessary to<br />

seal the <strong>Hollo</strong>-<strong>Bolt</strong> to prevent ingress of water or<br />

other corrosive agents. For details of sealing<br />

options available, please contact Lindapter.<br />

Special Options (manufactured to order)<br />

● Stainless steel<br />

● Button head setscrew ● Socket head capscrew<br />

● Countersunk setscrew/body ● Special body lengths<br />

Y<br />

M8<br />

M10<br />

M12<br />

M16<br />

M20<br />

<strong>Bolt</strong><br />

length<br />

(V)<br />

W<br />

mm<br />

45<br />

49<br />

53<br />

57<br />

80<br />

Fixing<br />

thickness<br />

(W)<br />

Min Max<br />

mm<br />

3 22<br />

3 22<br />

3 25<br />

3 28<br />

3 34<br />

Fig. 6<br />

E 1<br />

<strong>Bolt</strong><br />

centres<br />

(X)<br />

Min<br />

mm<br />

35<br />

40<br />

50<br />

55<br />

70<br />

Internal<br />

min. edge<br />

distance<br />

(Y)<br />

mm<br />

13<br />

15<br />

18<br />

20<br />

25<br />

Edge<br />

distance<br />

(E1)<br />

Min<br />

mm<br />

50-tp<br />

55-tp<br />

60-tp<br />

65-tp<br />

90-tp<br />

<strong>Bolt</strong><br />

hole<br />

dia.<br />

(Dh )<br />

mm<br />

Table 4 (See Fig. 6 for nomenclature)<br />

14<br />

18<br />

20<br />

26<br />

33<br />

Across<br />

flats<br />

main<br />

body<br />

mm<br />

19<br />

24<br />

30<br />

36<br />

46<br />

Fig. 7<br />

Tightening<br />

torque<br />

Nm<br />

21<br />

40<br />

78<br />

190<br />

300


Design of<br />

Joints in<br />

Simple<br />

Construction<br />

Simple connections between Universal<br />

beams and RHS columns can be made<br />

using double angle web cleats or<br />

flexible end plates.<br />

The following procedural checks are<br />

compatible with the BCSA/SCI rules for<br />

Joints in Simple Construction (Ref. 2).<br />

Length of cleat<br />

I ≥ 0.6D<br />

Cleat thickness, t p<br />

t p = 8mm or 10mm<br />

Notes<br />

Double Angle Cleats Flexible End Plates<br />

End projection t 1 , approx 10mm<br />

Face of column Length of plate<br />

I ≥ 0.6D<br />

Face of column<br />

D I<br />

D I<br />

g <strong>Bolt</strong> diameter, d g<br />

<strong>Bolt</strong> diameter, d<br />

<strong>Flowdrill</strong> hole diameter, D h<br />

D h = d+2mm for d ≤ 24mm<br />

D h = d+3mm for d > 24mm<br />

For <strong>Hollo</strong>-<strong>Bolt</strong> D h see Table 4.<br />

Plate thickness, t p<br />

t p = 8mm or 10mm<br />

● The cleats or end plates are generally positioned as close to the top flange<br />

of the beam as possible to provide adequate positional restraint and a plate<br />

length of at least 0.6D is usually adopted to give adequate torsional restraint<br />

(BS 5950: Part 1, Table 9).<br />

● <strong>Bolt</strong> gauge g: 90mm ≤ g ≤ 140mm, but g ≥ 0.3 x RHS face width B.<br />

● Although it may be possible to satisfy the design requirements with t p < 8mm,<br />

it is not recommended in practice because of the likelihood of weld<br />

distortion during fabrication and damage during transportation.<br />

● The plate thickness and gauge limitations apply equally to partial depth and<br />

to full depth end plates.<br />

If necessary, to comply with structural integrity requirements for a 75 kN tie force,<br />

the connection must have at least 2 no. M20, Grade 8.8 bolts in tension with<br />

/ ≥ 140mm, t ≥ 8mm and g ≤ 140mm.


Local shear and bearing capacity of the<br />

RHS column wall and bolts.<br />

Basic Requirement<br />

For Shear<br />

Q_ 2<br />

≤ Pv Pv = local shear capacity of<br />

RHS column wall<br />

= smaller of 0.6pyc Av and<br />

0.5 Usc Avnet Av = [g/2 + (n -1) p = et] tc with [et ≤ 5 d]<br />

Avnet = Av- n d tc n = number of rows of bolts<br />

p = bolt pitch<br />

d = nominal bolt diameter (or<br />

hole diameter in RHS<br />

columns for <strong>Hollo</strong>-<strong>Bolt</strong>)<br />

g = bolt gauge width<br />

tc = RHS column wall<br />

thickness<br />

pyc = design strength of RHS<br />

colunm wall (S275 = 275<br />

N/mm2 : S355 =<br />

355 N/mm2) Usc = ultimate tensile strength<br />

of RHS column wall<br />

For bearing<br />

Q_ 2<br />

≤ Pbsc Pbsc = bearing capacity of the RHS<br />

column wall per bolt = d tc pbsc pbsc = bearing strength of the RHS<br />

column wall (S275 =<br />

460 N/mm2 : S355 = 550 N/mm2) <strong>Bolt</strong> diameter<br />

-<br />

-<br />

M12<br />

M16<br />

M20<br />

M24<br />

<strong>Flowdrill</strong><br />

kN<br />

-<br />

-<br />

31.6<br />

58.9<br />

91.9<br />

132<br />

<strong>Bolt</strong> diameter<br />

M8<br />

M10<br />

M12<br />

M16<br />

M20<br />

-<br />

<strong>Flowdrill</strong><br />

kN<br />

12<br />

25<br />

38<br />

75<br />

100<br />

-<br />

e t<br />

Q<br />

t c<br />

n rows<br />

of bolts<br />

<strong>Bolt</strong> Check (Table 5)<br />

Critical sections<br />

The single shear capacity for <strong>Flowdrill</strong> and<br />

<strong>Hollo</strong>-<strong>Bolt</strong> can be taken as follows:-<br />

g<br />

Q/2 Q/2<br />

p<br />

p<br />

p


<strong>Bolt</strong><br />

diameter<br />

mm<br />

M16<br />

M20<br />

M24<br />

<strong>Bolt</strong><br />

diameter<br />

mm<br />

M16<br />

M20<br />

M24<br />

5<br />

46<br />

70<br />

80<br />

Structural integrity-local bolt pull-out<br />

of RHS colmn wall.<br />

Note: This check is only needed if it is<br />

necessary to comply with structural<br />

integrity requirements.<br />

Basic Requirement<br />

Tie force ≤∑Local bolts pull-out<br />

resistances<br />

∑ Local bolt pull-out resistances<br />

= 2 n Pp(si) The local bolt pull-out design resistance<br />

in kN of a grade 8.8 bolt in a flowdrilled<br />

hole or a <strong>Hollo</strong>-<strong>Bolt</strong> should be taken from<br />

the following tables which are based on<br />

test results:<br />

<strong>Flowdrill</strong> normal design strength (P p(n) kN<br />

RHS column wall thickness t c mm<br />

Grade S275 (Grade 43) Grade S355 (Grade 50)<br />

6.3<br />

60<br />

85<br />

101<br />

8<br />

95<br />

122<br />

10<br />

70<br />

97<br />

134<br />

12.5<br />

110<br />

159<br />

5<br />

59<br />

102<br />

103<br />

6.3<br />

130<br />

<strong>Flowdrill</strong> structural integrity design strength (P p(si) kN<br />

5<br />

30<br />

46<br />

53<br />

RHS column wall thickness t c mm<br />

70<br />

110<br />

8-12.5<br />

159<br />

Grade S275 (Grade 43) Grade S355 (Grade 50)<br />

6.3<br />

40<br />

56<br />

67<br />

8<br />

63<br />

81<br />

<strong>Bolt</strong><br />

diameter<br />

mm<br />

M8<br />

M10<br />

M12<br />

M16<br />

M20<br />

10<br />

46<br />

65<br />

89<br />

Table 6<br />

Table 7<br />

12.5<br />

73<br />

106<br />

5<br />

39<br />

68<br />

68<br />

6.3<br />

86<br />

<strong>Hollo</strong>-<strong>Bolt</strong> design strengths<br />

Normal design<br />

strength (P p(n) )<br />

kN<br />

16<br />

26<br />

38<br />

70<br />

110<br />

Table 8<br />

46<br />

73<br />

8-12.5<br />

106<br />

Structural integrity<br />

design strength (P p(si) )<br />

kN<br />

10<br />

17<br />

25<br />

46<br />

73<br />

n rows of<br />

bolts (critical<br />

bolts are<br />

those in<br />

the column)<br />

Note:<br />

Tie force<br />

1. The tension capacity of Grade 8.8 bolts for<br />

normal design and for structural integrity<br />

design is shown in the shaded areas.<br />

2. The pull-out resistances for structural<br />

integrity Pp(si) are less than those for normal<br />

design because the design method<br />

presented here for structural integrity leads<br />

to thinner cleats or end plates than for<br />

normal design methods, based on BS 5950:<br />

Part 1, and, as a result, will lead to higher<br />

prying forces. This has been taken into<br />

account in the quoted resistances.


Structural integrity - tie force<br />

capacity of RHS column wall in the<br />

presence of axial compression in the<br />

column.<br />

Note: This check is only needed if it is<br />

necessary to comply with structural<br />

integrity requirements.<br />

Basic Requirement<br />

Tie force ≤ Tying capacity of RHS column<br />

wall<br />

Tying capacity of RHS column wall<br />

8 m u<br />

= (� 1+ 1.5 (1 - � 1) 0.5 (1 - � 1) 0.5)<br />

(1 - � 1)<br />

M u = moment capacity of RHS<br />

column wall per unit length<br />

p yc t c 2<br />

=<br />

4<br />

p yc = design strength of the RHS column<br />

(S275 = 275 N/mm 2 : S355 = 355 N/mm 2)<br />

tc = thickness of RHS column wall<br />

�1 n<br />

= (n - 1)p - d<br />

2<br />

(B - 3tc )<br />

� 1<br />

� 1<br />

=<br />

=<br />

g<br />

(B - 3t c )<br />

d<br />

(B - 3t c )<br />

B = overall width of RHS column<br />

wall to which the connection is<br />

made.<br />

d = bolt diameter (or hole diameter<br />

in RHS column for <strong>Hollo</strong>-<strong>Bolt</strong>)<br />

g = bolt gauge width<br />

n = number of rows of bolts<br />

p = bolt pitch<br />

p<br />

Yield lines<br />

(n-1)p<br />

<strong>Bolt</strong> holes<br />

deducted<br />

B<br />

g<br />

Tie force<br />

(applied at<br />

bolt positions)<br />

t c<br />

1.5 t c


British <strong>Steel</strong><br />

Tubes & Pipes<br />

PO Box 101, Weldon Road,<br />

Corby, Northants, NN17 5UA<br />

Tel: 01536 402121<br />

Fax: 01536 404111<br />

British <strong>Steel</strong> plc Registered Office: 9 Albert Embankment, London, SE1 7SN Reg. in England No: 2280000<br />

TD 384.12E.95

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!