04.01.2013 Views

Locali crysta ization an als using nd orienta molecula ation of h ar ...

Locali crysta ization an als using nd orienta molecula ation of h ar ...

Locali crysta ization an als using nd orienta molecula ation of h ar ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

Person too<br />

contact for thiss<br />

submission: M<strong>an</strong>uel M E. Th<strong>an</strong><br />

(th<strong>an</strong>@fli-lleibniz.de;<br />

phonne:<br />

0049364165 56170; fax: 004993641656335)<br />

Acta Cryystallographica<br />

Section D<br />

<strong>Locali</strong><strong>iz<strong>ation</strong></strong><br />

<strong>an</strong><strong>nd</strong><br />

<strong>orienta</strong> <strong>ation</strong> <strong>of</strong> hheavy<br />

atom<br />

cluster r compouu<strong>nd</strong>s<br />

in pr rotein<br />

<strong>crysta</strong><strong>als</strong><br />

<strong>using</strong> <strong>molecula</strong> <strong>ar</strong> replaceement<br />

Sven O. . Dahms<br />

M<strong>an</strong>uel<br />

a *,<br />

E. Th<strong>an</strong> a Miriam Kuester<br />

*<br />

a , C<strong>ar</strong>ssten<br />

Streb b<br />

, Christi<strong>an</strong> Roth c , Norrbert<br />

Sträte er c <strong>an</strong>d<br />

a Protein<br />

Crystallograaphy<br />

Group, Leibniz Instit<br />

Beutenbbergstraße<br />

11,<br />

Jena, D-07745,<br />

Germa<br />

Chemisttry<br />

<strong>an</strong>d Ph<strong>ar</strong>mmacy,<br />

Friedr rich-Alex<strong>an</strong>de<br />

Erl<strong>an</strong>genn,<br />

D-91058, Germ<strong>an</strong>y, <strong>an</strong> <strong>nd</strong><br />

Biomediicine,<br />

Universität<br />

Leipzig,<br />

c tute for Age<br />

<strong>an</strong>y,<br />

Institute<br />

, Leipzig, D-0<br />

b Rese<strong>ar</strong>ch - Fritz F Lipm<strong>an</strong>nn<br />

Institute (F FLI),<br />

Institute<br />

<strong>of</strong> Inorg<strong>an</strong> nic Chemistryy<br />

II Dep<strong>ar</strong>tme ent <strong>of</strong><br />

er-University y Erl<strong>an</strong>gen-N Nürnberg, Egeerl<strong>an</strong>dstr.<br />

1,<br />

<strong>of</strong> Bio<strong>an</strong>alyt tical Chemist try, Center foor<br />

Biotechnology<br />

<strong>an</strong>d<br />

04103, Germ m<strong>an</strong>y<br />

Correspo<strong>nd</strong>ence<br />

emmail:<br />

sdahms s@fli-leibniz.dde;<br />

th<strong>an</strong>@fli-leibniz.de<br />

Keyworrds:<br />

Experimmental<br />

phasin ng; Heavy meetal<br />

cluster; Hexa-sodium<br />

H m �-metatunggstate;<br />

Molec cul<strong>ar</strong><br />

replacemment;<br />

Death receptor 6 (D DR6)<br />

Synopssis<br />

A new aapproach<br />

is ppresented<br />

tha at allows efficciently<br />

locali izing <strong>an</strong>d ori ienting heavyy<br />

atom cluste er<br />

compoun<strong>nd</strong>s<br />

used for r experimenta al phasing byy<br />

a <strong>molecula</strong> <strong>ar</strong> replacemen nt procedure.<br />

This permit ts the<br />

calculatiion<br />

<strong>of</strong> me<strong>an</strong>iingful<br />

phases s up to the toop<br />

resolution <strong>of</strong> the diffra action data.<br />

Abstracct<br />

rese<strong>ar</strong>c ch papers<br />

Heavy aatom<br />

clusterss<br />

(HA-cluster rs), containinng<br />

a l<strong>ar</strong>ge nu umber <strong>of</strong> spec cifically <strong>ar</strong>ra<strong>an</strong>ged<br />

electro on-dense<br />

scattererrs,<br />

<strong>ar</strong>e especiially<br />

useful for f experimenntal<br />

phase de etermin<strong>ation</strong> <strong>of</strong> l<strong>ar</strong>ge commplex<br />

structu ures,<br />

weakly ddiffracting<br />

crryst<strong>als</strong><br />

or stru uctures withh<br />

l<strong>ar</strong>ge unit ce ells. Often th he determinat <strong>ation</strong> <strong>of</strong> the ex xact<br />

<strong>orienta</strong>tiion<br />

<strong>of</strong> the HAA-cluster<br />

<strong>an</strong>d d hence <strong>of</strong> thhe<br />

i<strong>nd</strong>ividual heavy atom positions pro roves to be th he<br />

critical sstep<br />

for successful<br />

phasin ng <strong>an</strong>d subseequent<br />

structu ure solution. Here we demmonstrate<br />

that<br />

<strong>molecula</strong>r<br />

replacemeent<br />

(MR) wit th either <strong>an</strong>ommalous<br />

or isomorphous<br />

differences d iss<br />

a useful str rategy<br />

for correect<br />

placemennt<br />

<strong>of</strong> HA-clus ster compoun<strong>nd</strong>s.<br />

The polyoxometalla<br />

ate cluster hexxa-sodium<br />

alpha- a<br />

metatungstate<br />

(HMTT)<br />

was applie ed for phasinng<br />

<strong>of</strong> the stru ucture <strong>of</strong> the death d receptoor<br />

6 (DR6). Even E<br />

though tthe<br />

HA-clustter<br />

is bou<strong>nd</strong> in i alternate pp<strong>ar</strong>tially<br />

occu upied <strong>orienta</strong> <strong>ation</strong>s <strong>an</strong>d is located at a special<br />

position,<br />

its correct llocal<strong>iz<strong>ation</strong></strong><br />

<strong>an</strong>d a <strong>orienta</strong>tion<br />

could be determined at a resolutionss<br />

as low as 4.9 4 Å.<br />

1


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

The broad applicability <strong>of</strong> this approach was demonstrated for five different derivative <strong>crysta</strong>ls,<br />

including the compou<strong>nd</strong>s t<strong>an</strong>talum tetradecabromide, tri-sodium phosphotungstate in addition to<br />

HMT. The correct HA-cluster-placement depe<strong>nd</strong>s on the length <strong>of</strong> the intra<strong>molecula</strong>r vectors chosen<br />

for MR, such that both a l<strong>ar</strong>ger cluster size <strong>an</strong>d the optimal choice <strong>of</strong> the wavelength used for<br />

<strong>an</strong>omalous data collection strongly affect the outcome.<br />

1. Introduction<br />

Solving the phase problem is a bottleneck in protein <strong>crysta</strong>llography. Unless a useful model for<br />

<strong>molecula</strong>r replacement (MR) is available, experimental phasing is the method <strong>of</strong> choice (Adams et al.,<br />

2009). The p<strong>ar</strong>ticul<strong>ar</strong> challenge <strong>of</strong> experimental phasing is to obtain sufficiently well diffracting<br />

derivative <strong>crysta</strong>ls that yield measurable isomorphous or <strong>an</strong>omalous differences. Once the<br />

substructure <strong>of</strong> the hetero-atoms is solved, the resulting inform<strong>ation</strong> c<strong>an</strong> be used to calculate phases<br />

for the protein content <strong>of</strong> the whole <strong>crysta</strong>l (reviewed e.g. in (Taylor, 2010)). M<strong>an</strong>y approaches, <strong>of</strong>ten<br />

based on difference Patterson or <strong>an</strong>omalous difference Patterson methods or on direct methods, have<br />

been developed. Relev<strong>an</strong>t popul<strong>ar</strong> <strong>an</strong>d easy to use computer programs in this context <strong>ar</strong>e: SHELX<br />

(Sheldrick, 2008), Shake-<strong>an</strong>d-Bake (Miller et al., 2007), RSPS (Knight, 2000), SHARP (Bricogne et<br />

al., 2003), HySS (Grosse-Kunstleve & Adams, 2003), SOLVE (Terwilliger & Bere<strong>nd</strong>zen, 1999),<br />

PHASER (McCoy et al., 2007), CRUNCH (de Graaff et al., 2001), BP3 (P<strong>an</strong>nu et al., 2003, P<strong>an</strong>nu &<br />

Read, 2004) or the use <strong>of</strong> the tr<strong>an</strong>sl<strong>ation</strong> function to determine single heavy atom positions (Vagin &<br />

Teplyakov, 1998). To generate <strong>an</strong> isomorphous or <strong>an</strong> <strong>an</strong>omalous signal detectable against the<br />

backgrou<strong>nd</strong>, a certain number <strong>of</strong> heavy atoms (or <strong>an</strong>omalous scatterers) per amino acid residue has to<br />

be introduced into (or natively present in) the protein <strong>crysta</strong>l (Boggon & Shapiro, 2000).<br />

Consequently, for l<strong>ar</strong>ge proteins, protein complexes <strong>an</strong>d asymmetric units, containing multiple<br />

molecules, very l<strong>ar</strong>ge numbers <strong>of</strong> such hetero-atoms <strong>ar</strong>e required. The resulting heavy atom<br />

substructures <strong>ar</strong>e highly complex, complicating the local<strong>iz<strong>ation</strong></strong> <strong>of</strong> the heavy atom bi<strong>nd</strong>ing sites. This<br />

b<strong>ar</strong>rier c<strong>an</strong> <strong>of</strong>ten be overcome, <strong>using</strong> heavy metal clusters (HA-clusters) as the derivat<strong>iz<strong>ation</strong></strong> agent<br />

(Thygesen et al., 1996, Mueller et al., 2007). Per bou<strong>nd</strong> HA-cluster molecule <strong>an</strong> ensemble <strong>of</strong> several<br />

heavy atoms is introduced into a protein <strong>crysta</strong>l. At low resolutions (6-8 Å) the i<strong>nd</strong>ividual atoms <strong>of</strong><br />

HA-clusters scatter in phase <strong>an</strong>d behave as “super heavy atoms”. However, the total scattering<br />

contribution <strong>of</strong> the spherically <strong>ar</strong>r<strong>an</strong>ged HA-cluster atoms is higher comp<strong>ar</strong>ed to <strong>an</strong> equal number <strong>of</strong><br />

r<strong>an</strong>domly distributed heavy atoms (Dauter, 2005). Very strong <strong>an</strong>omalous or isomorphous sign<strong>als</strong> <strong>ar</strong>e<br />

generated in such derivative <strong>crysta</strong>ls <strong>an</strong>d the centres <strong>of</strong> mass <strong>of</strong> HA-clusters <strong>ar</strong>e detected with high<br />

sensitivity, e.g. in <strong>an</strong> <strong>an</strong>omalous difference Patterson map.<br />

2


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

Heteropolytungstate clusters, containing 12-30 spherically <strong>ar</strong>r<strong>an</strong>ged octahedral WO6 subunits were<br />

used to solve structures <strong>of</strong> e.g. Fum<strong>ar</strong>ase C (Weaver et al., 1995), RNA-polymerase (Fu et al., 1999),<br />

the LDL-receptor (Rudenko et al., 2003), the proteasome core complex (Lowe et al., 1995) <strong>an</strong>d<br />

ribosomal subunits (e.g. (B<strong>an</strong> et al., 1999, Clemons et al., 2001)). The most frequently used HAcluster<br />

probably is the t<strong>an</strong>talum-tetradecabromide cluster Ta6Br12 2+ (TaB) (Knablein et al., 1997,<br />

Dauter, 2005). This compou<strong>nd</strong> contains <strong>an</strong> octahedral heavy metal core <strong>of</strong> six t<strong>an</strong>talum atoms <strong>an</strong>d has<br />

been applied to solve the structures <strong>of</strong> e.g. Furin (Henrich et al., 2003), Rubisco <strong>an</strong>d tr<strong>an</strong>scetolase<br />

(Schneider & Li<strong>nd</strong>qvist, 1994), the proteasome core complex (Lowe et al., 1995) as well as RNA<br />

polymerase (Zh<strong>an</strong>g et al., 1999, Cramer et al., 2000).<br />

If the preferred <strong>orienta</strong>tion is unknown <strong>an</strong>d HA-clusters <strong>ar</strong>e treated as super heavy atoms, phase<br />

inform<strong>ation</strong> is restricted to resolutions equal to their diameters (Dauter, 2005). To improve the phase<br />

quality, the specifically structured heavy atom ensemble c<strong>an</strong> be placed in r<strong>an</strong>dom <strong>orienta</strong>tion at the<br />

centre <strong>of</strong> mass (Schneider & Li<strong>nd</strong>qvist, 1994). Alternatively, the spherically <strong>ar</strong>r<strong>an</strong>ged heavy atom<br />

shell <strong>of</strong> HA-cluster compou<strong>nd</strong>s was approximated by spherical averaging to improve the phase quality<br />

at low <strong>an</strong>d at medium resolution (e.g. (Schluenzen et al., 2000, Oubridge et al., 2009, Fu et al.,<br />

1999)). This approach <strong>als</strong>o accounts for possible disordered bi<strong>nd</strong>ing modes <strong>of</strong> HA-clusters<br />

(Schluenzen et al., 2000). However, for efficient model building the phase inform<strong>ation</strong> obtained by<br />

HA-cluster derivatives has to be exte<strong>nd</strong>ed to higher resolution. In several studies non-<strong>crysta</strong>llographic<br />

symmetry operators were used in combin<strong>ation</strong> with solvent flattening to exte<strong>nd</strong> the resolution limit <strong>of</strong><br />

experimental phase inform<strong>ation</strong> (e.g. (Br<strong>an</strong>dstetter et al., 2001, Henrich et al., 2003, Szczep<strong>an</strong>owski<br />

et al., 2005, Kroemer & Schulz, 2002)). Low resolution phases obtained from HA-cluster derivatives<br />

were <strong>als</strong>o used to solve more complex heavy atom substructures <strong>of</strong> single heavy atom derivatives. In<br />

most cases additional single heavy atom derivatives were finally used to calculate experimental<br />

phases to high resolution (e.g. (B<strong>an</strong> et al., 1999, Cramer et al., 2000, Wahl et al., 2000, Singleton et<br />

al., 2004)).<br />

If HA-cluster derivative <strong>crysta</strong>ls <strong>ar</strong>e directly used to calculate experimental phases, the correct<br />

placement <strong>of</strong> the i<strong>nd</strong>ividual cluster atoms is essentially required to overcome this resolution b<strong>ar</strong>rier.<br />

However, the correct <strong>orienta</strong>tion <strong>of</strong> HA-clusters is a challenging task, especially if only weakly<br />

diffracting derivative <strong>crysta</strong>ls <strong>ar</strong>e available. The identific<strong>ation</strong> <strong>of</strong> the i<strong>nd</strong>ividual t<strong>an</strong>talum atoms <strong>of</strong><br />

TaB derivative <strong>crysta</strong>ls with automated structure solution programs required highly resolved<br />

diffraction data (B<strong>an</strong>umathi et al., 2003, Pasternak et al., 2008). Below 2.6 Å the determin<strong>ation</strong> <strong>of</strong> the<br />

i<strong>nd</strong>ividual Ta-sites failed, even if a truncated dataset with a high resolution limit <strong>of</strong> 1.8 Å was used<br />

(Pasternak et al., 2008). Alternatively, Knablein <strong>an</strong>d co-workers applied a two step procedure for<br />

<strong>orienta</strong>tion <strong>of</strong> TaB (Knablein et al., 1997). As the first step the HA-cluster had to be localized in<br />

<strong>an</strong>omalous Patterson maps at low resolution. Once the centre <strong>of</strong> mass was identified, rigid body<br />

3


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

refinement was performed in XPLOR to orient the HA cluster, <strong>using</strong> the <strong>crysta</strong>llographic R factor <strong>an</strong>d<br />

the Patterson correl<strong>ation</strong> value as t<strong>ar</strong>get function. This procedure succeeded with isomorphous<br />

differences at 3 Å resolution, <strong>using</strong> truncated datasets resolved to 2.2 Å or 2.3 Å <strong>an</strong>d was <strong>als</strong>o adapted<br />

to the correct placement <strong>of</strong> naturally occurring [Fe4S4] clusters <strong>using</strong> dispersive differences (Dias et<br />

al., 1999). Another approach that, however, <strong>als</strong>o requires sufficient resolution <strong>of</strong> the diffraction data is<br />

e.g. implemented in SHARP (Bricogne 2003) <strong>an</strong>d initially uses spherical averaging to approximate<br />

the cluster shape during phasing <strong>an</strong>d the subsequent identific<strong>ation</strong> <strong>of</strong> the i<strong>nd</strong>ividual HA-sites from<br />

Log-likelihood-gradient maps (residual/LLG-maps).<br />

Here we use <strong>an</strong> MR-based approach for the localis<strong>ation</strong> <strong>an</strong>d <strong>orienta</strong>tion <strong>of</strong> HA-cluster compou<strong>nd</strong>s<br />

even at low resolution (down to 4.9 Å). This strategy was applied to determine the HA substructure <strong>of</strong><br />

the polyoxometallate cluster compou<strong>nd</strong> hexasodium �-metatungstate (HMT) in derivative <strong>crysta</strong>ls <strong>of</strong><br />

the extracellul<strong>ar</strong> cysteine rich region <strong>of</strong> the death receptor six (DR6). Originally the structure <strong>of</strong> DR6<br />

was determined <strong>using</strong> aurate derivative <strong>crysta</strong>ls in a multiple <strong>an</strong>omalous dispersion (MAD)<br />

experiment (Kuester et al., 2011) or by sulphur single <strong>an</strong>omalous dispersion (Ru et al., 2012). The<br />

DR6 <strong>crysta</strong>ls derivatized with HMT proved as a challenging model system to investigate experimental<br />

phase determin<strong>ation</strong> with HA-cluster compou<strong>nd</strong>s. This MR-based strategy <strong>of</strong> substructure<br />

determin<strong>ation</strong> succeeded with different HA-clusters, a number <strong>of</strong> protein <strong>crysta</strong>ls <strong>an</strong>d even in<br />

complicated cases <strong>an</strong>d proves especially useful at intermediate resolution <strong>of</strong> the diffraction data, if<br />

other methods fail.<br />

2. Materi<strong>als</strong> <strong>an</strong>d methods<br />

2.1. Hexa-sodium α-metatungstate-DR6 derivative <strong>crysta</strong>ls<br />

DR6 was cloned, prep<strong>ar</strong>ed <strong>an</strong>d <strong>crysta</strong>llized as described (Kuester et al., 2011). Cryst<strong>als</strong> were grown<br />

within 2 days from 0.1 M sodium phosphate, pH 6.1, 30% (w/v) PEG4000 <strong>an</strong>d 0.3 M ammonium<br />

acetate <strong>an</strong>d derivatized by soaking for 1 h in 0.1 M sodium citrate pH 6.0, 0.3 M ammonium acetate,<br />

30% (w/v) PEG4000, containing 5 mM hexa-sodium α-metatungstate (HMT; Jena Bioscience).<br />

Native <strong>an</strong>d derivative <strong>crysta</strong>ls were flash frozen in liquid nitrogen for data collection.<br />

2.2. HA-cluster derivative <strong>crysta</strong>ls <strong>of</strong> hexagonal lysozyme<br />

For the prep<strong>ar</strong><strong>ation</strong> <strong>of</strong> hexagonal hen egg white lysozyme (HEWL) <strong>crysta</strong>ls the described batch<br />

procedure (Haas, 1967) was adapted for sitting drop vapor diffusion as follows: HEWL (Roth) was<br />

dissolved in water, mixed with reservoir solution in the ratio 3:2 (drop volume: 5 µl) <strong>an</strong>d equilibrated<br />

in 24-well Cryschem plates (Hampton Rese<strong>ar</strong>ch) at 20°C against 1 ml <strong>of</strong> reservoir solution. Reservoir<br />

solution contained a 1:10 mixture <strong>of</strong> 0.5 M tricine pH 7.4 <strong>an</strong>d saturated sodium nitrate in 10% (v/v)<br />

4


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

aqueous acetone. Cryst<strong>als</strong> grew within 24-48 hours to maximal dimensions <strong>of</strong> 1.0 mm. Tri-sodium<br />

phosphotungstate (TPT) (Jena Bioscience) was added to the reservoir solution at a final concentr<strong>ation</strong><br />

<strong>of</strong> 2.5 mM resulting in phase sep<strong>ar</strong><strong>ation</strong>. The upper phase was removed immediately <strong>an</strong>d derivative<br />

<strong>crysta</strong>ls were prep<strong>ar</strong>ed by soaking for 2 h in the upper phase. Prolonged storage <strong>of</strong> the soaking<br />

solution as well as prolonged soaking times resulted in lower occup<strong>an</strong>cies <strong>of</strong> the heavy atom cluster<br />

(HA-cluster) in the <strong>crysta</strong>ls, i<strong>nd</strong>icating ongoing degrad<strong>ation</strong> reactions. T<strong>an</strong>talum tetradecabromide<br />

(TaB) (Jena Bioscience) was ne<strong>ar</strong>ly insoluble in the reservoir solution. Hence, a suspension <strong>of</strong> 1%<br />

(w/v) TaB in reservoir was acidified with 1 M sodium acetate pH 3.8 until the color <strong>of</strong> the soluble<br />

phase turned d<strong>ar</strong>k green. The supernat<strong>an</strong>t <strong>of</strong> this suspension was added stepwise to a 1 µl-drop <strong>of</strong><br />

reservoir solution, containing several <strong>crysta</strong>ls until the <strong>crysta</strong>ls adopted a d<strong>ar</strong>k green color. For cryoprotection<br />

the HEWL <strong>crysta</strong>ls were treated with P<strong>ar</strong>atone-N (Hampton Rese<strong>ar</strong>ch) prior to flashcooling<br />

in liquid nitrogen.<br />

2.3. HA-cluster derivative <strong>crysta</strong>ls <strong>of</strong> styrol monooxygenase (StyA1)<br />

StyA1 from Rhodococcus opacus 1CP was cloned, expressed <strong>an</strong>d purified as described by Tischler<br />

et.al. (Tischler et al., 2010). An ammonium sulphate precipit<strong>ation</strong> <strong>of</strong> purified StyA1 was dissolved in<br />

buffer containing 20 mM Tris pH 7.3, 150 mM NaCl <strong>an</strong>d 5 mM DTT <strong>an</strong>d applied on a Superdex 200<br />

(GE Healthc<strong>ar</strong>e) equilibrated with the same buffer. StyA1 containing fractions were pooled <strong>an</strong>d<br />

concentrated to 8 mg/ml. Cryst<strong>als</strong> were grown in 0.1 M sodium cacodylate pH 6.0-7.0, 0.2 M<br />

potassium chloride, 14-16 % (w/v) PEG 8000 within 4 days at 19°C. Suitable <strong>crysta</strong>ls were<br />

tr<strong>an</strong>sferred in a stabil<strong>iz<strong>ation</strong></strong> solution containing 0.1 M sodium cacodylate, 0.2 M potassium chloride,<br />

a 2% (w/v) elevated PEG concentr<strong>ation</strong>, supplemented with 10 % (v/v) 1,2-eth<strong>an</strong>ediol as<br />

cryoprotect<strong>an</strong>t as well as 10 mM TaB. Cryst<strong>als</strong> were equilibrated for 24 hours in this buffer prior to<br />

flash-cooling in liquid nitrogen.<br />

2.4. Measurement <strong>an</strong>d processing <strong>of</strong> diffraction data<br />

Diffraction data <strong>of</strong> native <strong>an</strong>d derivative DR6 <strong>crysta</strong>ls were collected at a ENRAF-NONIUS FR591<br />

rotating <strong>an</strong>ode X-ray generator (Bruker AXS) equipped with FOX mirror optics (Xenocs) <strong>an</strong>d <strong>an</strong><br />

MAR 345 image plate detector (M<strong>ar</strong>rese<strong>ar</strong>ch), resulting in the SIRAS-data. MAD- <strong>an</strong>d SAD-datasets<br />

from the same DR6 <strong>crysta</strong>l <strong>an</strong>d from lysozyme <strong>crysta</strong>ls were collected <strong>using</strong> synchrotron radi<strong>ation</strong><br />

(MAD at BL14.2, SAD at BL14.1; BESSY-II, Helmholtz-Zentrum Berlin)(Mueller et al., 2012). Prior<br />

to measurement <strong>of</strong> the MAD <strong>an</strong>d SAD datasets <strong>an</strong> X-ray fluorescence emission spectrum was<br />

collected to determine the exact energetic loc<strong>ation</strong> <strong>of</strong> the white lines <strong>of</strong> t<strong>an</strong>talum <strong>an</strong>d tungsten. MAD<br />

data were collected in the order: peak, inflection point, high energy remote. The data were integrated<br />

with MOSFLM (v7.0.1; (Leslie & Powell, 2007)), scaled with SCALA (v3.3.16; (Ev<strong>an</strong>s, 2006)) <strong>an</strong>d<br />

further processed <strong>using</strong> programs <strong>of</strong> the CCP4 suite (v6.1.13; (Winn et al., 2011)). Diffraction data <strong>of</strong><br />

5


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

StyA1 were collected at BESSY BL14.1 at the Ta peak wavelength, prior determined <strong>using</strong> <strong>an</strong> X-ray<br />

fluorescence emission spectrum. The data were integrated with XDS (v06/2010; (Kabsch, 2010)) <strong>an</strong>d<br />

scaled with XSCALE (v06/2010;(Kabsch, 2010)). The statistics <strong>of</strong> the processed datasets <strong>ar</strong>e shown<br />

in Table 1. The native <strong>an</strong>d derivative datasets <strong>of</strong> the DR6 <strong>crysta</strong>ls were scaled together in SCALEIT<br />

<strong>an</strong>d isomorphous differences for the MR-se<strong>ar</strong>ches were calculated with SFTOOLS.<br />

The diffraction data shown in table 1 <strong>ar</strong>e available upon request from the authors <strong>an</strong>d were deposited<br />

at http://www.fli-leibniz.de/www_pxg/supp-mat/.<br />

2.5. <strong>Locali</strong>z<strong>ation</strong> <strong>an</strong>d <strong>orienta</strong>tion <strong>of</strong> HA-clusters <strong>an</strong>d phase calcul<strong>ation</strong><br />

MR se<strong>ar</strong>ches for <strong>orienta</strong>tion <strong>an</strong>d local<strong>iz<strong>ation</strong></strong> <strong>of</strong> the HA-clusters in DR6 <strong>an</strong>d lysozyme <strong>crysta</strong>ls were<br />

performed in MOLREP (version 10.2.35; (Vagin & Teplyakov, 1997)) <strong>using</strong> the CCP4 version 6.1.13<br />

<strong>an</strong>d the CCP4i interface version 2.0.6. Isomorphous or <strong>an</strong>omalous differences were used instead <strong>of</strong><br />

structure factor amplitudes. If HA-clusters were located on a symmetry axis (DR6-HMT-derivative,<br />

Lysozyme-TaB-derivative) the packing function had to be disabled. In case <strong>of</strong> the fragment <strong>of</strong> the<br />

mouse ubiquitin-activating enzyme (MUAE) <strong>an</strong> overall B-factor <strong>of</strong> 85 Å 2 was applied for the MRse<strong>ar</strong>ch,<br />

guided by the reported Wilson B factor <strong>of</strong> the diffraction data (Szczep<strong>an</strong>owski et al., 2005)).<br />

Atomic coordinates <strong>of</strong> �-metatungstate (ABOCIE; (Niu et al., 2004)), phosphotungstate (BIGLIN;<br />

(Hu<strong>an</strong>g et al., 2004)) <strong>an</strong>d the dodecabromohexat<strong>an</strong>talum c<strong>ation</strong> (AFASUV; (Vojnovic et al., 2002))<br />

were obtained from the Cambridge Structural Database (CSD) (Allen, 2002) <strong>an</strong>d used as se<strong>ar</strong>ch<br />

models. To test the perform<strong>an</strong>ce <strong>of</strong> this approach, additional MR se<strong>ar</strong>ches were performed, <strong>using</strong><br />

isomorphous or <strong>an</strong>omalous differences to the resolution limits given in Table 2. These resolution<br />

limits were applied by the RESMAX keyword in MOLREP. For MR se<strong>ar</strong>ches at the Ta-peak<br />

wavelength only the Ta coordinates were used as se<strong>ar</strong>ch model whereas a combined model consisting<br />

<strong>of</strong> both, the Ta <strong>an</strong>d the Br coordinates was used as se<strong>ar</strong>ch model at the Br-peak wavelength.<br />

Subsequently to MR, experimental phases were calculated in SHARP version 2.6.0 (Bricogne et al.,<br />

2003). Phases were calculated <strong>using</strong> the native <strong>an</strong>d the MAD-peak datasets in case <strong>of</strong> DR6-HMT, the<br />

W-peak <strong>an</strong>d the Ta-peak datasets in case <strong>of</strong> lysozyme <strong>an</strong>d the Ta-peak dataset in case <strong>of</strong> StyA1<br />

(Table 1). For HMT <strong>an</strong>d TaB, the atom positions obtained from MR were used directly <strong>an</strong>d only<br />

B-factor <strong>an</strong>d occup<strong>an</strong>cy refinement was performed in SHARP. For TPT, the structure <strong>of</strong> the initial<br />

se<strong>ar</strong>ch model in MR differed from the final degrad<strong>ation</strong> product fou<strong>nd</strong> in the <strong>crysta</strong>ls <strong>an</strong>d positional<br />

refinement was used for all sites. Anomalous difference maps i<strong>nd</strong>icated the presence <strong>of</strong> additional<br />

single heavy atom sites. These sites were stepwise located by residual/LLG-maps <strong>an</strong>alysis, refined<br />

<strong>an</strong>d included in the phase calcul<strong>ation</strong> in SHARP. For comp<strong>ar</strong>ison, the phase calcul<strong>ation</strong> was <strong>als</strong>o<br />

performed based on spherical averaging <strong>of</strong> the HA-clusters in SHARP (Bricogne et al., 2003), <strong>using</strong><br />

the SPHCLUSTER keyword as recomme<strong>nd</strong>ed in the SHARP m<strong>an</strong>ual<br />

6


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

(http://www.globalphasing.com/sh<strong>ar</strong>p/m<strong>an</strong>ual/appe<strong>nd</strong>ix3.html). The cluster definition <strong>of</strong> TaB <strong>an</strong>d<br />

TPT were used as provided in SHARP, for HMT the cluster properties were adapted to the slightly<br />

smaller radius <strong>of</strong> 7.0 Å. For the spherically averaged HA-clusters the positions (originally the center<br />

<strong>of</strong> mass), the occup<strong>an</strong>cies as well as the B-factors were refined. Residual/LLG-map <strong>an</strong>alysis was<br />

performed in SHARP either by inspection <strong>of</strong> peak lists or by visual inspection <strong>of</strong> the map.<br />

Heavy atom se<strong>ar</strong>ch in SHELXC/D (Sheldrick, 2010) was performed <strong>using</strong> the CCP4i-interface, with<br />

v<strong>ar</strong>ying numbers <strong>of</strong> expected sites <strong>an</strong>d up to 100000 tri<strong>als</strong>. For the TaB-cluster interatomic dist<strong>an</strong>ces<br />

<strong>of</strong> 1.5 Å <strong>an</strong>d 2.0 Å were tested <strong>an</strong>d for the l<strong>ar</strong>ger tungstate clusters interatomic dist<strong>an</strong>ces <strong>of</strong> 2.5 Å <strong>an</strong>d<br />

3.0 Å were tested.<br />

Density modific<strong>ation</strong> was performed in SOLOMON (Abrahams & Leslie, 1996) <strong>using</strong> the SHARP<br />

density modific<strong>ation</strong> control p<strong>an</strong>el in SUSHI version 3.8.0. DM (Cowt<strong>an</strong>, 1994) was used for NCSaveraging.<br />

The respective NCS operators were initially determined from the self rot<strong>ation</strong> function<br />

calculated in MOLREP <strong>an</strong>d subsequently refined in GETAX (Vonrhein & Schulz, 1999).<br />

2.6. Evalu<strong>ation</strong> <strong>of</strong> the phase quality<br />

To achieve a relative comp<strong>ar</strong>ison <strong>of</strong> the phase quality, different sets <strong>of</strong> experimental phases were<br />

comp<strong>ar</strong>ed to model phases calculated from the atomic coordinates. Because <strong>of</strong> signific<strong>an</strong>t nonisomorphism<br />

between the high resolution dataset (PDB ID: 3QO4; (Kuester et al., 2011)) <strong>an</strong>d the<br />

HMT derivative datasets, the high resolution structure <strong>of</strong> DR6 had to be subjected to additional<br />

rou<strong>nd</strong>s <strong>of</strong> refinement. The DR6 structure was refined to the native in-house dataset by rigid body<br />

refinement in REFMAC (version 5.5.0109; (Murshudov et al., 1997)), showing Rfac/Rfree <strong>of</strong><br />

22.7%/25.5%. In addition, the DR6 structure, including the tungsten atoms was refined to the high<br />

energy remote derivative dataset by rigid body refinement in REFMAC, model building in MAIN<br />

(Turk, 1992) <strong>an</strong>d positional refinement in CNS (version 1.3; (Brunger, 2007)), showing Rfac/Rfree <strong>of</strong><br />

24.5%/ 27.6%. Initial rou<strong>nd</strong>s <strong>of</strong> rigid-body <strong>an</strong>d positional refinement for the HA-cluster derivative<br />

structures <strong>of</strong> lysozyme <strong>an</strong>d StyA1 were performed in CNS showing Rfac/Rfree <strong>of</strong> 23.5%/28.2% for<br />

TaB-lysozyme, 28.0/30.6% for TPT-lysozyme <strong>an</strong>d 21.7%/25.7% for StyA1. I<strong>nd</strong>ividual occup<strong>an</strong>cies<br />

<strong>an</strong>d B-factors <strong>of</strong> HA-clusters were refined in CNS. SFTOOLS was used to calculate the cosine <strong>of</strong> the<br />

phase difference between the model phases (native <strong>an</strong>d DR6-HMT) structure <strong>an</strong>d the respective<br />

experimental protein phases (SIRAS <strong>an</strong>d MAD). The values <strong>ar</strong>e plotted in Figure 2 as function <strong>of</strong> the<br />

resolution (interv<strong>als</strong> comprising simil<strong>ar</strong> numbers <strong>of</strong> reflections). Map correl<strong>ation</strong> coefficients were<br />

calculated with OVERLAPMAP comp<strong>ar</strong>ing maps calculated from experimental <strong>an</strong>d model phases <strong>an</strong>d<br />

<strong>ar</strong>e given in figure 3. Molecul<strong>ar</strong> graphics were prep<strong>ar</strong>ed with PyMOL (DeL<strong>an</strong>o Scientific LLC,<br />

www.pymol.org).<br />

3. Results<br />

7


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

3.1. Prep<strong>ar</strong><strong>ation</strong> <strong>of</strong> hexa-sodium �-metatungstate-DR6 derivative <strong>crysta</strong>ls<br />

We have successfully obtained isomorphous DR6 derivative <strong>crysta</strong>ls by soaking them in stabilizing<br />

solution supplemented with 5 mM <strong>of</strong> HMT. This HA-cluster is composed <strong>of</strong> twelve tungsten atoms<br />

showing a structure simil<strong>ar</strong> to the more commonly used TPT (Figure 1). The phosphate core <strong>of</strong> the<br />

latter is replaced by four water molecules in HMT resulting in a higher overall ch<strong>ar</strong>ge <strong>of</strong> -6 (Fig. 1A,<br />

B). Both clusters <strong>ar</strong>e ch<strong>ar</strong>acterized by <strong>an</strong> internal tetrahedral symmetry but differ in the W-O-W bo<strong>nd</strong><br />

<strong>an</strong>gles as a result <strong>of</strong> a differently isomerized WO4 - - substructure. HMT is soluble in acidic, in neutral<br />

<strong>an</strong>d in slightly basic aqueous solutions with high or low ionic stren gth. In contrast, other HA-cluster<br />

compou<strong>nd</strong>s tested (TaB <strong>an</strong>d TPT) showed lower solubility u<strong>nd</strong>er the tested co<strong>nd</strong>itions. As low<br />

solubility is <strong>of</strong>ten a limiting factor for the practical use <strong>of</strong> derivatis<strong>ation</strong> agents, this observ<strong>ation</strong><br />

favors the broad applic<strong>ation</strong> <strong>of</strong> HMT (Hastings & How<strong>ar</strong>th, 1992).<br />

Tungsten displays strong <strong>an</strong>omalous diffraction <strong>of</strong> 5.6 electrons at the copper K�-wavelength <strong>an</strong>d a<br />

strong white line at its L-III absorption edge (1.2147 Å). Hence successful derivatis<strong>ation</strong> <strong>of</strong> DR6<br />

<strong>crysta</strong>ls with HMT could be monitored by a signific<strong>an</strong>tly increased <strong>an</strong>omalous correl<strong>ation</strong> coefficient<br />

(CC<strong>an</strong>om) <strong>of</strong> the in-house data. The unit cell const<strong>an</strong>ts <strong>of</strong> the native <strong>an</strong>d the derivative <strong>crysta</strong>ls (Table 1,<br />

SIRAS) show only slight differences <strong>an</strong>d the correspo<strong>nd</strong>ing datasets i<strong>nd</strong>icated a sufficient degree <strong>of</strong><br />

isomorphism (Supplement<strong>ar</strong>y inform<strong>ation</strong>). Three additional datasets were collected from the same<br />

derivative <strong>crysta</strong>l at the tungsten L-III absorption edge to perform a three wavelength MAD<br />

experiment (Table 1, MAD).<br />

3.2. Orient<strong>ation</strong> <strong>an</strong>d local<strong>iz<strong>ation</strong></strong> <strong>of</strong> HMT by <strong>molecula</strong>r replacement<br />

To orient the HA-cluster <strong>an</strong>d thus to localize the i<strong>nd</strong>ividual tungsten atom positions <strong>of</strong> HMT, we<br />

applied <strong>molecula</strong>r replacement (MR) in MOLREP (Vagin & Teplyakov, 1997). The coordinates <strong>of</strong> the<br />

Cambridge structural database (CSD) entry ABOCIE (Allen, 2002) were directly used as the se<strong>ar</strong>ch<br />

model. MOLREP was run with default settings via the CCP4i-interface, disabling the packing <strong>an</strong>d the<br />

scoring system. Instead <strong>of</strong> structure factor amplitudes either the isomorphous differences <strong>of</strong> the inhouse<br />

datasets (Table 1, SIRAS) or the <strong>an</strong>omalous differences <strong>of</strong> the MAD-peak dataset (Table 1,<br />

peak) were used. To test the perform<strong>an</strong>ce <strong>of</strong> this procedure at different resolutions, the respective<br />

datasets were cut in 0.5 Å steps <strong>an</strong>d the MR-calcul<strong>ation</strong>s were repeated. Correct solutions were well<br />

sep<strong>ar</strong>ated from noise by signific<strong>an</strong>tly higher score <strong>an</strong>d contrast (TFcnt) values in MOLREP (Table 2)<br />

<strong>an</strong>d were fou<strong>nd</strong> for isomorphous as well as <strong>an</strong>omalous differences down to resolutions as low as 4.4 Å<br />

<strong>an</strong>d 4.9 Å, respectively. In addition, we could <strong>als</strong>o identify “p<strong>ar</strong>tial solutions” represented by<br />

intermediate scoring values. In this case the correct center <strong>of</strong> mass but <strong>an</strong> incorrect <strong>orienta</strong>tion <strong>of</strong> the<br />

HA-cluster was identified, resulting in incorrect placement <strong>of</strong> the i<strong>nd</strong>ividual tungsten atoms. Such<br />

“p<strong>ar</strong>tial solutions” were obtained down to 5.4 Å resolution <strong>using</strong> <strong>an</strong>omalous differences.<br />

8


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

3.3. Evalu<strong>ation</strong> <strong>of</strong> experimental phases obtained by the HA-cluster-MR procedure<br />

<strong>Locali</strong>z<strong>ation</strong> <strong>an</strong>d <strong>orienta</strong>tion <strong>of</strong> the HMT-cluster by MR yields the i<strong>nd</strong>ividual tungsten atom positions,<br />

allowing the calcul<strong>ation</strong> <strong>of</strong> phases to high resolution. For comp<strong>ar</strong>ison, experimental phases were<br />

calculated by spherical averaging at the center <strong>of</strong> mass (SPHCLUSTER option in SHARP). The<br />

experimental phases determined in SHARP were evaluated in rel<strong>ation</strong> to reference phases, calculated<br />

from the DR6 structure (Fig. 2). To calculate reference phases <strong>of</strong> good quality, DR6-structures were<br />

initially refined to the tungsten high energy remote dataset <strong>an</strong>d to the native in-house dataset showing<br />

Rfac/Rfree <strong>of</strong> 24.5%/ 27.6% <strong>an</strong>d 22.7%/25.5%, respectively. The best phase quality was cle<strong>ar</strong>ly<br />

observed, when the i<strong>nd</strong>ividual tungsten sites <strong>of</strong> the MR-solutions were used for phase calcul<strong>ation</strong>. In<br />

contrast, the initial phases obtained by spherical averaging were <strong>of</strong> low quality, especially beyo<strong>nd</strong><br />

4.5 Å. For the MAD experiment a general improvement <strong>of</strong> the phase quality was observed after<br />

solvent flattening. However, in the resolution r<strong>an</strong>ge beyo<strong>nd</strong> 3.5 Å the phases calculated based on<br />

spherical averaging still showed signific<strong>an</strong>t more error in comp<strong>ar</strong>ison to phases calculated based on<br />

the MR-solution. Correspo<strong>nd</strong>ingly, the experimental electron density map in the latter case shows<br />

more details (e.g. <strong>ar</strong>ou<strong>nd</strong> Thr148, Val149 <strong>an</strong>d Trp154) <strong>an</strong>d is comp<strong>ar</strong>able to the 2fo-fc difference<br />

Fourier map (Fig. 3).<br />

The in-house diffraction data <strong>ar</strong>e <strong>of</strong> less quality th<strong>an</strong> the MAD data, i<strong>nd</strong>icated by the lower resolution<br />

limit <strong>of</strong> 3.3 Å <strong>of</strong> the native dataset <strong>an</strong>d other p<strong>ar</strong>ameters. As expected, the experimental phases<br />

obtained in the SIRAS experiment resulted in phases <strong>of</strong> lower quality th<strong>an</strong> those obtained from the<br />

MAD experiment. However, the threshold <strong>of</strong> inform<strong>ation</strong> to achieve <strong>an</strong> interpretable electron density<br />

map upon density modific<strong>ation</strong> was not reached in the SIRAS experiment if spherical averaging was<br />

used. In contrast, the phases calculated based on the MR-solutions <strong>ar</strong>e drastically improved upon<br />

solvent flattening <strong>an</strong>d resulted in a well interpretable electron density map. Consequently, if weaker<br />

diffraction data <strong>an</strong>d hence less inform<strong>ation</strong> <strong>ar</strong>e available for phase calcul<strong>ation</strong>, obtaining the optimal<br />

heavy atom substructure <strong>an</strong>d hence initial phases <strong>of</strong> high quality represent the bottleneck for<br />

successful structure solution. The observed differences <strong>of</strong> the phase quality <strong>ar</strong>e in good agreement<br />

with the map correl<strong>ation</strong> coefficients calculated from experimental <strong>an</strong>d model phases (Fig. 3).<br />

The tungsten atom sites were used without further positional refinement for phase calcul<strong>ation</strong>.<br />

Consequently, the phase error is expected to increase l<strong>ar</strong>gely with <strong>an</strong> increase <strong>of</strong> the positional error <strong>of</strong><br />

the MR-solutions. Interestingly, a comp<strong>ar</strong>ison <strong>of</strong> phases calculated with MR-solutions obtained at<br />

high <strong>an</strong>d low resolution (2.9 Å <strong>an</strong>d 4.4 Å) revealed a comp<strong>ar</strong>able good quality. App<strong>ar</strong>ently the<br />

positional accuracy <strong>of</strong> the MR-procedure, once the solution is fou<strong>nd</strong>, is only slightly decreased at<br />

4.4 Å resolution <strong>an</strong>d the heavy atom sites derived from the MR-solutions at low resolution <strong>ar</strong>e hence<br />

equally suited for phase calcul<strong>ation</strong>. This observ<strong>ation</strong> is in agreement with the distribution <strong>of</strong> the<br />

scoring values in MOLREP over resolution, reaching maxima in the r<strong>an</strong>ge <strong>of</strong> 4 Å.<br />

9


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

3.4. Multiple occupied states <strong>of</strong> HMT in DR6 <strong>crysta</strong>ls<br />

A closer inspection <strong>of</strong> the obtained MR solutions revealed a local<strong>iz<strong>ation</strong></strong> <strong>of</strong> HMT on a 2-fold<br />

<strong>crysta</strong>llographic symmetry axis (Fig. 4). However, the local 2-fold symmetry axis <strong>of</strong> the HA-cluster<br />

does not coincide with the 2-fold <strong>crysta</strong>llographic symmetry axis <strong>an</strong>d hence breaks the<br />

<strong>crysta</strong>llographic symmetry. Correspo<strong>nd</strong>ingly, the i<strong>nd</strong>ividual tungsten atom positions <strong>of</strong> two symmetry<br />

related HA-cluster molecules showed <strong>an</strong> increasing divergence along the 2-fold <strong>crysta</strong>llographic<br />

symmetry axis. This divergence in-between the symmetry related HA-cluster molecules is coincident<br />

with a blurring <strong>of</strong> the <strong>an</strong>omalous difference density map (Fig. 4B). This co<strong>nd</strong>ition c<strong>an</strong> be interpreted<br />

as two alternative p<strong>ar</strong>tially occupied <strong>orienta</strong>tions <strong>of</strong> HMT inside the <strong>crysta</strong>l. Each <strong>of</strong> the two observed<br />

HA-cluster <strong>orienta</strong>tions forms stronger contacts to one <strong>of</strong> the DR6 molecules <strong>an</strong>d hence belongs to<br />

different asymmetric units. Bi<strong>nd</strong>ing occurs at a positively ch<strong>ar</strong>ged pocket formed by two symmetry<br />

related protein molecules. This te<strong>nd</strong>ency to bi<strong>nd</strong> on special positions, <strong>als</strong>o known from other studies<br />

(e.g. (Ladenstein et al., 1987)), complicates the treatment <strong>of</strong> the HA-cluster during experimental<br />

phase determin<strong>ation</strong>. The multiple occupied state <strong>of</strong> HMT is accomp<strong>an</strong>ied by a low average<br />

occup<strong>an</strong>cy <strong>of</strong> �33% (calculated by occup<strong>an</strong>cy refinement in CNS), reducing the <strong>an</strong>omalous or<br />

isomorphous signal comp<strong>ar</strong>ed to a fully occupied HA-cluster site. As a result <strong>of</strong> this bi<strong>nd</strong>ing state, the<br />

i<strong>nd</strong>ividual tungsten positions were unstable during the positional heavy atom refinement in SHARP.<br />

However, the solutions obtained by MR fit very nicely to the two different HA-cluster bi<strong>nd</strong>ing states.<br />

Consequently, these coordinates could directly be entered for phasing in SHARP without further<br />

positional refinement.<br />

3.5. Applic<strong>ation</strong> <strong>of</strong> MR for substructure determin<strong>ation</strong> in hen egg white lysozyme-TPT <strong>an</strong>d -TaB<br />

derivative <strong>crysta</strong>ls<br />

Encouraged by the successful applic<strong>ation</strong> <strong>of</strong> MR for substructure determin<strong>ation</strong> in DR6-HMT<br />

derivative <strong>crysta</strong>ls, we tested the applicability <strong>of</strong> this approach to a v<strong>ar</strong>iety <strong>of</strong> HA-cluster derivatives.<br />

We first prep<strong>ar</strong>ed <strong>an</strong>d <strong>an</strong>alyzed HA-cluster derivatives <strong>of</strong> the hexagonal <strong>crysta</strong>l form <strong>of</strong> hen egg white<br />

lysozyme (HEWL). This <strong>crysta</strong>l form shows l<strong>ar</strong>ge solvent ch<strong>an</strong>nels, allowing unhi<strong>nd</strong>ered diffusion <strong>of</strong><br />

HA-cluster compou<strong>nd</strong>s inside the <strong>crysta</strong>l (PDB ID: 2FBB; (Brinkm<strong>an</strong>n et al., 2006)). TPT <strong>an</strong>d TaB<br />

were not well soluble in the <strong>crysta</strong>ll<strong>iz<strong>ation</strong></strong> co<strong>nd</strong>ition, requiring <strong>an</strong> optimized soaking procedure (see<br />

Materi<strong>als</strong> <strong>an</strong>d Methods for details). In contrast, the well soluble HMT resulted in rapid degrad<strong>ation</strong> <strong>of</strong><br />

the lysozyme <strong>crysta</strong>ls, probably as a consequence <strong>of</strong> bi<strong>nd</strong>ing <strong>of</strong> HMT to lysozyme <strong>an</strong>d the resulting<br />

destruction <strong>of</strong> <strong>crysta</strong>l contacts.<br />

The two bou<strong>nd</strong> clusters, TPT <strong>an</strong>d TaB, were successfully oriented <strong>an</strong>d localized by MR, cle<strong>ar</strong>ly<br />

i<strong>nd</strong>icated by the scoring values in MOLREP (Table 2). A closer inspection <strong>of</strong> TPT derivative <strong>crysta</strong>ls<br />

revealed a low occup<strong>an</strong>cy <strong>of</strong> the HA-cluster. Occup<strong>an</strong>cy refinement in CNS revealed <strong>an</strong> average<br />

10


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

occup<strong>an</strong>cy <strong>of</strong> 10%, simil<strong>ar</strong>ly the average <strong>an</strong>omalous occup<strong>an</strong>cy was refined in SHARP to only 13%.<br />

Even more surprising, only eleven tungsten positions were confirmed in the <strong>an</strong>omalous difference<br />

Fourier map (Fig. 5A). This observ<strong>ation</strong> i<strong>nd</strong>icates the form<strong>ation</strong> <strong>of</strong> the so called lacun<strong>ar</strong>y <strong>an</strong>ion<br />

[PW11O39] 7- , a degrad<strong>ation</strong> product <strong>of</strong> this cluster compou<strong>nd</strong> (Müller et al., 1998). Additionally,<br />

thirteen weakly occupied single heavy atoms were identified in the asymmetric unit, again a hint for<br />

degrad<strong>ation</strong> <strong>of</strong> TPT (Fig. 5A). These sites were clustered in dist<strong>an</strong>ces v<strong>ar</strong>ying from <strong>ar</strong>ou<strong>nd</strong> 2 Å to 4 Å<br />

but did not show <strong>an</strong>y obvious order. The observed degrad<strong>ation</strong> <strong>of</strong> TPT during derivatizing the <strong>crysta</strong>ls<br />

is expected to interfere with the MR-se<strong>ar</strong>ch. I<strong>nd</strong>eed, the se<strong>ar</strong>ch procedure worked well only down to a<br />

resolution <strong>of</strong> 2.2 Å, but failed abruptly at 2.3 Å (or lower) resolution. Nonetheless, experimental<br />

phases could finally be calculated to high resolution in a SAD experiment. Employing initially the<br />

original MR solution, we identified first the correct W11-substructure <strong>an</strong>d subsequently located the<br />

additional low occupied tungsten sites, employing the residual/LLG-map <strong>an</strong>alysis in SHARP<br />

(Fig. 5A).<br />

For the TaB cluster derivative, one strongly occupied bi<strong>nd</strong>ing site as well as a seco<strong>nd</strong> weaker<br />

occupied bi<strong>nd</strong>ing site were identified by MR correspo<strong>nd</strong>ing to <strong>an</strong> <strong>an</strong>omalous occup<strong>an</strong>cy after heavy<br />

atom refinement in SHARP <strong>of</strong> 45% <strong>an</strong>d 25%, respectively (occup<strong>an</strong>cies refined in CNS: 33% <strong>an</strong>d<br />

22%). TaB is bou<strong>nd</strong> at a two-fold symmetry axis at each site, perfectly matching the <strong>crysta</strong>llographic<br />

symmetry (note that the loc<strong>ation</strong> <strong>of</strong> the cluster necess<strong>ar</strong>ily causes a formal reduction <strong>of</strong> the<br />

occup<strong>an</strong>cy). Phase calcul<strong>ation</strong> in SHARP employing a SAD phasing-scheme resulted in <strong>an</strong><br />

experimental electron density map <strong>of</strong> good quality, if both HA-cluster sites <strong>ar</strong>e used (Fig. 5B).<br />

However, even phasing with the highly occupied TaB site only enabled the calcul<strong>ation</strong> <strong>of</strong> <strong>an</strong><br />

interpretable electron density map (data not shown).<br />

The <strong>orienta</strong>tion <strong>an</strong>d local<strong>iz<strong>ation</strong></strong> <strong>of</strong> TaB was <strong>als</strong>o determined at lower resolution <strong>using</strong> the Ta-peak<br />

dataset. However, the positional errors <strong>of</strong> the solutions increased at resolutions below 3.3 Å.<br />

Correspo<strong>nd</strong>ingly, the peaks <strong>of</strong> the Ta-<strong>an</strong>omalous density map <strong>an</strong>d the Ta atoms <strong>of</strong> the MR-solution<br />

show a high RMSD <strong>of</strong> 0.83 Å at 3.8 Å comp<strong>ar</strong>ed to 0.23 Å at 1.8 Å. This difficulty was overcome,<br />

<strong>using</strong> a dataset measured at the bromine absorption edge <strong>an</strong>d including the bromine atoms in the<br />

se<strong>ar</strong>ch model (Table 2). Although the <strong>an</strong>omalous contribution <strong>of</strong> the bromine atoms is much lower<br />

comp<strong>ar</strong>ed to t<strong>an</strong>talum at the bromine peak wavelength, the TFcnt-value in MOLREP drastically<br />

increased at 3.8 Å resolution from 2.2 to 4.8 <strong>an</strong>d the RMSD to the peaks <strong>of</strong> the Ta-<strong>an</strong>omalous density<br />

map decreased to 0.24 Å. This observ<strong>ation</strong> is explained by the l<strong>ar</strong>ger interatomic dist<strong>an</strong>ces <strong>of</strong> the<br />

bromine atoms (�7 Å) comp<strong>ar</strong>ed to the t<strong>an</strong>talum atoms (�4 Å) <strong>of</strong> TaB. These interatomic dist<strong>an</strong>ces<br />

define the low resolution limit at which the i<strong>nd</strong>ividual atoms begin to scatter in phase <strong>an</strong>d hence<br />

appe<strong>ar</strong> as a super heavy atom. Consequently, l<strong>ar</strong>ger interatomic dist<strong>an</strong>ces app<strong>ar</strong>ently enable the<br />

determin<strong>ation</strong> <strong>of</strong> the <strong>orienta</strong>tion <strong>of</strong> HA-cluster compou<strong>nd</strong>s down to lower resolutions, <strong>an</strong>d c<strong>an</strong> be<br />

11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

achieved by the choice <strong>of</strong> the cluster compou<strong>nd</strong> <strong>an</strong>d the wavelength used for the diffraction<br />

experiment.<br />

3.6. Applic<strong>ation</strong> <strong>of</strong> MR for substructure determin<strong>ation</strong> in StyA1-TaB derivative <strong>crysta</strong>ls<br />

For experimental phase determin<strong>ation</strong> <strong>of</strong> StyA1,TaB derivative <strong>crysta</strong>ls were obtained together with<br />

other single heavy atom derivatives (to be published, Table 1). However, loc<strong>ation</strong> <strong>of</strong> TaB failed with<br />

SHELXD although the data were resolved to 2.4 Å. Employing the MR-approach, a TaB-site was<br />

readily identified (Fig. 6A). Correct <strong>an</strong>d wrong solutions <strong>ar</strong>e cle<strong>ar</strong>ly discriminated by the highest<br />

score values <strong>of</strong> 0.188 <strong>an</strong>d 0.087, respectively (Table 2). Using these Ta-sites in <strong>an</strong> SAD experiment a<br />

seco<strong>nd</strong> TaB-site was located by residual/LLG-map <strong>an</strong>alysis in SHARP. Occup<strong>an</strong>cy refinement in<br />

CNS revealed that site 2 showed a much lower occup<strong>an</strong>cy (�30%) comp<strong>ar</strong>ed to site 1 (�60%).<br />

Finally, all Ta-sites together were used in <strong>an</strong> SAD experiment to obtain <strong>an</strong> interpretable electron<br />

density map after solvent flattening <strong>an</strong>d tw<strong>of</strong>old NCS-averaging (Fig. 6B).<br />

3.7. Applic<strong>ation</strong> <strong>of</strong> MR for substructure determin<strong>ation</strong> in derivative <strong>crysta</strong>ls <strong>of</strong> a fragment <strong>of</strong> the<br />

mouse ubiquitin-activating enzyme<br />

Another challenging test case for experimental phase determin<strong>ation</strong> is the X-ray structure <strong>of</strong> a<br />

fragment <strong>of</strong> the mouse ubiquitin-activating enzyme (MUAE; 1Z7L; (Szczep<strong>an</strong>owski et al., 2005)).<br />

The final structure is resolved to (2.8 Å). Derivative <strong>crysta</strong>ls contained three TaB clusters with very<br />

high average B-factors (�87 Å 2 ) <strong>an</strong>d very low occup<strong>an</strong>cies (15%, 18% <strong>an</strong>d 19%). Consequently these<br />

TaB sites appe<strong>ar</strong> as single peaks in the <strong>an</strong>omalous difference map, but their <strong>orienta</strong>tion c<strong>an</strong> still be<br />

determined by the shape <strong>of</strong> the <strong>an</strong>omalous difference map. Initial attempts to place TaB by MR with<br />

the Ta-peak data at 3.3 Å revealed only one <strong>of</strong> the two stronger sites, probably because <strong>of</strong> the weak<br />

<strong>an</strong>omalous signal beyo<strong>nd</strong> 5 Å (Szczep<strong>an</strong>owski et al., 2005). To improve the quality <strong>of</strong> the input data<br />

we combined the <strong>an</strong>omalous data <strong>of</strong> all three MAD-datasets by summ<strong>ation</strong>. In addition, <strong>an</strong> overall B-<br />

factor <strong>of</strong> 85 Å 2 was applied to the se<strong>ar</strong>ch model <strong>an</strong>d the packing function was enabled. Running a<br />

sequential MR-se<strong>ar</strong>ch in MOLREP with these settings, the correct three solutions were identified as<br />

i<strong>nd</strong>icated by <strong>an</strong> increasing score value, which otherwise stagnated at the score value <strong>of</strong> site 1.<br />

Interestingly, two <strong>of</strong> these solutions fitted well to the shape <strong>of</strong> the <strong>an</strong>omalous difference map (Fig. 7).<br />

One cluster was placed in r<strong>an</strong>dom <strong>orienta</strong>tion. Nonetheless, good phases were calculated in <strong>an</strong> SAD<br />

experiment <strong>an</strong>d <strong>an</strong> interpretable electron density map was obtained after phase extension to 2.8 Å<br />

(high energy remote dataset), solvent flattening <strong>an</strong>d NCS-averaging (Fig. 7).<br />

3.8. Comp<strong>ar</strong>ison <strong>of</strong> the MR-approach to other methods for substructure determin<strong>ation</strong> <strong>of</strong> HA-<br />

clusters.<br />

12


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

To comp<strong>ar</strong>e the perform<strong>an</strong>ce <strong>of</strong> the MR-approach to st<strong>an</strong>d<strong>ar</strong>d methods, we repeated the HAsubstructure<br />

determin<strong>ation</strong>s for all examples listed in table 2 with SHELXD <strong>an</strong>d with spherical<br />

averaging in SHARP. If initial phases <strong>of</strong> sufficient quality were obtained by spherical averaging, the<br />

i<strong>nd</strong>ividual heavy atom sites were determined by residual/LLG-map <strong>an</strong>alysis in SHARP.<br />

At high resolution the i<strong>nd</strong>ividual heavy atom sites <strong>of</strong> the lysozyme derivative <strong>crysta</strong>ls were readily<br />

identified in SHELX (Table 3). However, for less well resolved data (�2.4 Å) the correct HA-<br />

substructures could not easily be determined in this way.<br />

As shown for the DR6-HMT derivative <strong>crysta</strong>ls, spherical averaging results in poor phase inform<strong>ation</strong><br />

at high resolution. However, given diffraction data <strong>of</strong> sufficient resolution, the single heavy atom sites<br />

could be determined for lysozyme-TaB <strong>an</strong>d for StyA1-TaB in consecutive residual/LLG-map<br />

completion steps. At lower resolutions (e.g. for lysozyme-TaB) <strong>an</strong>d/or lower occup<strong>an</strong>cies (e.g. site 2<br />

<strong>of</strong> StyA1-TaB) simple inspection <strong>of</strong> peak lists was insufficient to determine the <strong>orienta</strong>tion <strong>of</strong><br />

HA-clusters as the signal was lower th<strong>an</strong> the noise. In some cases, the HA-clusters could still be<br />

placed as rigid bodies by visual inspection <strong>of</strong> LLG-maps, but for DR6-HMT, lysozyme-TPT <strong>an</strong>d<br />

MUAE-TaB the single heavy atom sites <strong>an</strong>d hence the <strong>orienta</strong>tion <strong>of</strong> the HA-clusters could only be<br />

determined by MR.<br />

4. Discussion<br />

4.1. Hexa-sodium �-metatungstate as heavy atom compou<strong>nd</strong> for protein <strong>crysta</strong>llography<br />

We have applied the hexa-sodium �-metatungstate cluster (Na6[H2W12O40], HMT) for experimental<br />

phasing <strong>of</strong> the structure <strong>of</strong> the DR6 by SIRAS <strong>an</strong>d MAD. The HA-cluster is composed <strong>of</strong> 12 tungsten<br />

atoms, forming a tetrahedral <strong>ar</strong>r<strong>an</strong>gement with a diameter <strong>of</strong> 7 Å, geometric properties that <strong>ar</strong>e quite<br />

simil<strong>ar</strong> to the tri-sodium phosphotungstate (TPT) cluster. HMT showed a superior solubility in the<br />

reservoir solution <strong>of</strong> DR6 comp<strong>ar</strong>ed to the other tungstate clusters tested. A simil<strong>ar</strong> behavior was<br />

observed in the <strong>crysta</strong>ll<strong>iz<strong>ation</strong></strong> co<strong>nd</strong>ition <strong>of</strong> hexagonal lysozyme <strong>crysta</strong>ls, although exposure to HMT<br />

resulted in decomposition <strong>of</strong> these <strong>crysta</strong>ls. However, solubility <strong>an</strong>d stability over a wide pH r<strong>an</strong>ge<br />

<strong>an</strong>d at higher ionic strengths is a great adv<strong>an</strong>tage for the use <strong>of</strong> HMT as heavy atom compou<strong>nd</strong> in<br />

protein <strong>crysta</strong>llography (Hastings & How<strong>ar</strong>th, 1992, G<strong>ar</strong>m<strong>an</strong> & Murray, 2003).<br />

HMT was shown to bi<strong>nd</strong> in a positively ch<strong>ar</strong>ged pocket in-between two symmetry related DR6<br />

molecules. This observ<strong>ation</strong> is in agreement with the bi<strong>nd</strong>ing preference reported for other tungstate<br />

clusters (Bash<strong>an</strong> & Yonath, 2008), all c<strong>ar</strong>rying a negative net ch<strong>ar</strong>ge. In DR6 <strong>crysta</strong>ls HMT is located<br />

on a <strong>crysta</strong>llographic tw<strong>of</strong>old axis. The te<strong>nd</strong>ency <strong>of</strong> heavy atom clusters (HA-clusters) to bi<strong>nd</strong> at<br />

<strong>crysta</strong>llographic symmetry axes were <strong>als</strong>o described in other studies (e.g. (Ladenstein et al., 1987,<br />

13


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

Rudenko et al., 2003)). The coincidence <strong>of</strong> the HA-cluster’s internal symmetry with <strong>crysta</strong>llographic<br />

symmetry elements c<strong>an</strong> help to orient the HA-cluster correctly, once the center <strong>of</strong> mass is identified.<br />

However, in the DR6-<strong>crysta</strong>ls HMT breaks the two-fold <strong>crysta</strong>llographic symmetry. It adopted<br />

multiple <strong>orienta</strong>tions, bou<strong>nd</strong> to one <strong>of</strong> two symmetry-related DR6 molecules. This co<strong>nd</strong>ition l<strong>ar</strong>gely<br />

complicated the <strong>orienta</strong>tion <strong>of</strong> the HA-cluster, because the effective <strong>an</strong>omalous signal is reduced <strong>an</strong>d<br />

the resulting electron density map is blurred. Despite <strong>of</strong> these drawbacks the HA-cluster was<br />

successfully localized <strong>an</strong>d oriented by (MR), even at resolutions lower th<strong>an</strong> 4 Å. The quality <strong>of</strong> the<br />

resulting electron density map was <strong>of</strong> exceptionally high quality <strong>an</strong>d comp<strong>ar</strong>able to the final 2Fo-Fc<br />

electron density map calculated from the final protein model.<br />

4.2. Applic<strong>ation</strong> <strong>of</strong> MR for determin<strong>ation</strong> <strong>of</strong> <strong>orienta</strong>tion <strong>an</strong>d local<strong>iz<strong>ation</strong></strong> <strong>of</strong> HA-clusters in<br />

protein <strong>crysta</strong>ls<br />

If HA-clusters <strong>ar</strong>e treated as super heavy point scatterers, me<strong>an</strong>ingful experimental phases <strong>ar</strong>e limited<br />

to resolutions lower th<strong>an</strong> their diameter (Dauter, 2005). Given that HA-clusters <strong>ar</strong>e bou<strong>nd</strong> in <strong>an</strong><br />

ordered fashion, phasing to high resolution requires their correct <strong>orienta</strong>tion <strong>an</strong>d hence the placement<br />

<strong>of</strong> the i<strong>nd</strong>ividual heavy atoms. Encouraged by the successful applic<strong>ation</strong> <strong>of</strong> MR for <strong>orienta</strong>tion <strong>an</strong>d<br />

local<strong>iz<strong>ation</strong></strong> <strong>of</strong> HMT in DR6 derivative <strong>crysta</strong>ls, we comp<strong>ar</strong>ed the perform<strong>an</strong>ce <strong>of</strong> this approach to<br />

st<strong>an</strong>d<strong>ar</strong>d methods. Five test systems were evaluated, comprising four different proteins as well as<br />

three different HA-clusters. At high resolution the heavy atom substructures <strong>of</strong> the hen egg white<br />

lysozyme (HEWL)-TPT <strong>an</strong>d -TaB derivative <strong>crysta</strong>ls were readily identified <strong>using</strong> SHELXD,<br />

consistent with e<strong>ar</strong>lier reports (B<strong>an</strong>umathi et al., 2003). Simil<strong>ar</strong>ly, SOLVE was reported to identify<br />

the heavy atom substructure <strong>of</strong> TaB down to 2.6 Å (Pasternak et al., 2008). Comp<strong>ar</strong>ed to the treatment<br />

<strong>of</strong> HA-clusters as point scatterers with l<strong>ar</strong>ge B-factor (super heavy atom), the approxim<strong>ation</strong> <strong>of</strong> their<br />

heavy atom substructures by spherical averaging c<strong>an</strong> improve the quality <strong>of</strong> experimental phases (e.g.<br />

(Schluenzen et al., 2000, Oubridge et al., 2009, Fu et al., 1999)). Initial phases obtained by spherical<br />

averaging c<strong>an</strong> then be used as st<strong>ar</strong>ting point to identify the <strong>orienta</strong>tion <strong>of</strong> HA-clusters by<br />

residual/LLG-map <strong>an</strong>alysis as implemented in SHARP (Bricogne et al., 2003). At low resolution,<br />

only m<strong>an</strong>ual interpret<strong>ation</strong> <strong>of</strong> the residual/LLG-maps allowed the correct placement <strong>an</strong>d <strong>orienta</strong>tion <strong>of</strong><br />

the HA-cluster.<br />

For the DR6-HMT <strong>an</strong>d HEWL-TPT <strong>crysta</strong>ls spherical averaging fi<strong>nd</strong>s, however, only limited<br />

applic<strong>ation</strong>. In both cases we fou<strong>nd</strong> heavy atom substructures l<strong>ar</strong>gely deviating from the spherically<br />

averaged model. Consequently, the <strong>orienta</strong>tion <strong>of</strong> both HA-clusters could not be determined by<br />

residual/LLG-maps based on initial phases. Using the i<strong>nd</strong>ividual heavy atom positions from MRsolutions<br />

we observed initial phases for DR6-HMT <strong>of</strong> treme<strong>nd</strong>ously improved quality. Determin<strong>ation</strong><br />

<strong>of</strong> the i<strong>nd</strong>ividual tungsten sites was a prerequisite to obtain <strong>an</strong> interpretable electron density in a<br />

SIRAS experiment with DR6-HMT derivative <strong>crysta</strong>ls at 3.3 Å resolution. In the TPT derivative<br />

14


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

<strong>crysta</strong>ls a low occupied W11-degrad<strong>ation</strong> product <strong>of</strong> the HA-cluster was successfully identified, <strong>using</strong><br />

the complete TPT-structure as se<strong>ar</strong>ch model. The resulting phases <strong>of</strong> high resolution were used to<br />

identify <strong>an</strong> additional unusual <strong>ar</strong>r<strong>an</strong>gement <strong>of</strong> 13 tungsten atoms by residual/LLG-map <strong>an</strong>alysis in<br />

SHARP (Bricogne et al., 2003).<br />

MR-based <strong>orienta</strong>tion is expected to be especially useful if HA-clusters with l<strong>ar</strong>ger heavy atom cores<br />

<strong>ar</strong>e used, e.g. tungsten clusters ≥12 atoms. Due to the l<strong>ar</strong>ger interatomic dist<strong>an</strong>ces <strong>of</strong> the tungsten<br />

atoms, the <strong>orienta</strong>tion <strong>of</strong> HMT by MR is still possible at resolutions lower th<strong>an</strong> 4.0 Å, whereas the<br />

<strong>orienta</strong>tion <strong>of</strong> the smaller TaB is h<strong>ar</strong>dly deduced at this resolution. The perform<strong>an</strong>ce <strong>of</strong> the MR-based<br />

HA-cluster <strong>orienta</strong>tion reached a maximum between 3.4 Å <strong>an</strong>d 4.4 Å for HMT, which is readily<br />

explained by the unique scattering properties <strong>of</strong> the spherically <strong>ar</strong>r<strong>an</strong>ged heavy atoms (Dauter, 2005).<br />

A maximum <strong>of</strong> the scattering contribution is reached at a specific resolution, depe<strong>nd</strong>ing on the<br />

diameter <strong>of</strong> a HA-cluster. Correspo<strong>nd</strong>ingly, tungstate clusters with 12 or more heavy atoms <strong>ar</strong>e<br />

especially suited for experimental phase determin<strong>ation</strong> <strong>of</strong> weakly diffracting <strong>crysta</strong>ls, a co<strong>nd</strong>ition<br />

<strong>of</strong>ten correlated with l<strong>ar</strong>ge asymmetric units <strong>an</strong>d high solvent contents <strong>of</strong> the <strong>crysta</strong>ls. Such <strong>crysta</strong>ls<br />

<strong>als</strong>o te<strong>nd</strong> to contain l<strong>ar</strong>ger solvent ch<strong>an</strong>nels, a prerequisite for the perme<strong>ation</strong> by HA-cluster<br />

compou<strong>nd</strong>s.<br />

Another consider<strong>ation</strong> is the use <strong>of</strong> <strong>an</strong>omalous diffraction data in MR-se<strong>ar</strong>ches. Unge <strong>an</strong>d coworkers<br />

correlated e.g., the <strong>an</strong>omalous rot<strong>ation</strong> functions <strong>of</strong> the sulphur-substructures with the conventional<br />

rot<strong>ation</strong> function to improve model placement (Unge et al., 2011). However, the inherent flexibility <strong>of</strong><br />

proteins <strong>an</strong>d the resulting positional error <strong>of</strong> the se<strong>ar</strong>ch models decreased the perform<strong>an</strong>ce <strong>of</strong> sulphur<br />

<strong>an</strong>omalous rot<strong>ation</strong> functions in this study (A<strong>nd</strong>erson et al., 1996, Unge et al., 2011). Such<br />

complic<strong>ation</strong>s were not observed for the different HA-cluster compou<strong>nd</strong>s used in this study, all<br />

composed <strong>of</strong> very rigid groups <strong>of</strong> strong <strong>an</strong>omalous scatterers. Even more, the choice <strong>of</strong> the<br />

wavelength for collection <strong>of</strong> the <strong>an</strong>omalous diffraction data l<strong>ar</strong>gely influenced the limiting resolution<br />

for HA-cluster placement. Only data collected at the bromine absorption edge permitted the precise<br />

placement <strong>of</strong> TaB at a resolution <strong>of</strong> 3.8 Å in excellent agreement with the l<strong>ar</strong>ger inter-atomic vectors<br />

between the bromine atoms as comp<strong>ar</strong>ed to the t<strong>an</strong>talum atoms.<br />

Consequently, MR employing either isomorphous or <strong>an</strong>omalous differences as structure factors is a<br />

very useful tool for the <strong>orienta</strong>tion <strong>an</strong>d local<strong>iz<strong>ation</strong></strong> <strong>of</strong> HA-clusters in protein derivative <strong>crysta</strong>ls. This<br />

approach works over a broad resolution r<strong>an</strong>ge <strong>an</strong>d even in complicated test cases, where st<strong>an</strong>d<strong>ar</strong>d<br />

methods failed. Based on the MR-solutions, phases were calculated up to the resolution limit <strong>of</strong> the<br />

diffracton data without need for additional single heavy atom derivatives for all investigated<br />

examples. The classical MR-se<strong>ar</strong>ch in MOLREP directly combines two steps: the initial <strong>orienta</strong>tion <strong>of</strong><br />

the se<strong>ar</strong>ch-model <strong>an</strong>d its subsequent loc<strong>ation</strong> by calcul<strong>ation</strong> <strong>of</strong> the rot<strong>ation</strong> -<strong>an</strong>d tr<strong>an</strong>sl<strong>ation</strong> functions,<br />

respectively (Vagin & Teplyakov, 1997, 2010). This strategy directly yields the i<strong>nd</strong>ividual heavy<br />

15


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

atom positions as it combines the “classical” heavy atom se<strong>ar</strong>ch step to determine its center <strong>of</strong> mass as<br />

well as the <strong>orienta</strong>tion <strong>of</strong> the HA-cluster. A reverse order <strong>of</strong> the two steps as e.g. applied to position<br />

protein models in electron density maps by a spherical averaged phased tr<strong>an</strong>sl<strong>ation</strong> function first<br />

(SAPTF) <strong>an</strong>d a phased rot<strong>ation</strong> function afterw<strong>ar</strong>ds (Vagin & Isupov, 2001) or as applied by Knäblein<br />

<strong>an</strong>d coworkers (Knablein et al., 1997) seems preferential at first thought. The simplicity <strong>an</strong>d<br />

efficiency <strong>of</strong> use cle<strong>ar</strong>ly support the classical MR-se<strong>ar</strong>ch procedure applied here.<br />

A typical MR se<strong>ar</strong>ch <strong>of</strong> this ki<strong>nd</strong> is easily calculated within seco<strong>nd</strong>s <strong>als</strong>o by non-experts in MOLREP<br />

<strong>an</strong>d showed hereby a simil<strong>ar</strong> if not better perform<strong>an</strong>ce in comp<strong>ar</strong>ison to the more laborious procedures<br />

as e.g. described by Knablein <strong>an</strong>d co-workers (Knablein et al., 1997). Hence it might be useful to<br />

implement <strong>an</strong> MR-based se<strong>ar</strong>ch option for HA-clusters in future versions <strong>of</strong> program suits for<br />

experimental phase determin<strong>ation</strong>.<br />

Acknowledgements The authors wish to th<strong>an</strong>k A. Rau for establishing the contact for this<br />

collabor<strong>ation</strong> <strong>an</strong>d C. Reuter (Jena Bioscience) for the gift <strong>of</strong> the TaB used in this study. We<br />

acknowledge the Helmholtz Zentrum Berlin BESSY II for provision <strong>of</strong> synchrotron radi<strong>ation</strong> at<br />

beamlines BL 14.1 <strong>an</strong>d BL 14.2 <strong>an</strong>d th<strong>an</strong>k the scientific staff for assist<strong>an</strong>ce. The authors <strong>ar</strong>e i<strong>nd</strong>ebted<br />

to M. Bochtler for providing us with the complete diffraction data <strong>of</strong> the fragment <strong>of</strong> the mouse<br />

ubiquitin activating enzyme (MUAE).<br />

References<br />

Abrahams, J. P. & Leslie, A. G. (1996). Acta Crystallogr D Biol Crystallogr 52, 30-42.<br />

Adams, P. D., Afonine, P. V., Grosse-Kunstleve, R. W., Read, R. J., Rich<strong>ar</strong>dson, J. S., Rich<strong>ar</strong>dson, D. C. & Terwilliger, T. C.<br />

(2009). Curr Opin Struct Biol 19, 566-572.<br />

Allen, F. H. (2002). Acta Crystallogr B 58, 380-388.<br />

A<strong>nd</strong>erson, D. H., Weiss, M. S. & Eisenberg, D. (1996). Acta Crystallogr D Biol Crystallogr 52, 469-480.<br />

B<strong>an</strong>, N., Nissen, P., H<strong>an</strong>sen, J., Capel, M., Moore, P. B. & Steitz, T. A. (1999). Nature 400, 841-847.<br />

B<strong>an</strong>umathi, S., Dauter, M. & Dauter, Z. (2003). Acta Crystallogr D Biol Crystallogr 59, 492-498.<br />

Bash<strong>an</strong>, A. & Yonath, A. (2008). J Mol Struct 890, 289-294.<br />

Boggon, T. J. & Shapiro, L. (2000). Structure 8, R143-149.<br />

Br<strong>an</strong>dstetter, H., Kim, J. S., Groll, M. & Huber, R. (2001). Nature 414, 466-470.<br />

Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. (2003). Acta Crystallogr D Biol Crystallogr 59, 2023-2030.<br />

Brinkm<strong>an</strong>n, C., Weiss, M. S. & Weckert, E. (2006). Acta Crystallogr D Biol Crystallogr 62, 349-355.<br />

Brunger, A. T. (2007). Nat Protoc 2, 2728-2733.<br />

Clemons, W. M., Jr., Brodersen, D. E., McCutcheon, J. P., May, J. L., C<strong>ar</strong>ter, A. P., Morg<strong>an</strong>-W<strong>ar</strong>ren, R. J., Wimberly, B. T. &<br />

Ramakrishn<strong>an</strong>, V. (2001). J Mol Biol 310, 827-843.<br />

Cowt<strong>an</strong>, K. (1994). Joint CCP4 <strong>an</strong>d ESF-EACBM Newsletter on Protein Crystallography 31, 34-38.<br />

Cramer, P., Bushnell, D. A., Fu, J., Gnatt, A. L., Maier-Davis, B., Thompson, N. E., Burgess, R. R., Edw<strong>ar</strong>ds, A. M., David, P. R.<br />

& Kornberg, R. D. (2000). Science 288, 640-649.<br />

Dauter, Z. (2005). C. R. Chimie 8, 1808–1814.<br />

de Graaff, R. A., Hilge, M., v<strong>an</strong> der Plas, J. L. & Abrahams, J. P. (2001). Acta Crystallogr D Biol Crystallogr 57, 1857-1862.<br />

de La Fortelle, E. & Bricogne, G. (1997). Maximum-likelihood heavy-atom p<strong>ar</strong>ameter refinement for multiple isomorphous<br />

replacement <strong>an</strong>d multiwavelength <strong>an</strong>omalous diffraction methods, Vol. Volume 276, Methods in Enzymology, edited<br />

by Ch<strong>ar</strong>les W. C<strong>ar</strong>ter, Jr., pp. 472-494. Academic Press.<br />

Dias, J. M., Th<strong>an</strong>, M. E., Humm, A., Huber, R., Bourenkov, G. P., B<strong>ar</strong>tunik, H. D., Bursakov, S., Calvete, J., Caldeira, J.,<br />

C<strong>ar</strong>neiro, C., Moura, J. J., Moura, I. & Romao, M. J. (1999). Structure 7, 65-79.<br />

Ev<strong>an</strong>s, P. (2006). Acta Crystallogr D Biol Crystallogr 62, 72-82.<br />

16


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

Fu, J., Gnatt, A. L., Bushnell, D. A., Jensen, G. J., Thompson, N. E., Burgess, R. R., David, P. R. & Kornberg, R. D. (1999). Cell<br />

98, 799-810.<br />

G<strong>ar</strong>m<strong>an</strong>, E. & Murray, J. W. (2003). Acta Crystallogr D Biol Crystallogr 59, 1903-1913.<br />

Grosse-Kunstleve, R. W. & Adams, P. D. (2003). Acta Crystallogr D Biol Crystallogr 59, 1966-1973.<br />

Haas, D. J. (1967). Acta Crystallogr 23, 666.<br />

Hastings, J. J. & How<strong>ar</strong>th, O. W. (1992). J. Chem. Soc., Dalton Tr<strong>an</strong>s. 209-215.<br />

Henrich, S., Cameron, A., Bourenkov, G. P., Kiefersauer, R., Huber, R., Li<strong>nd</strong>berg, I., Bode, W. & Th<strong>an</strong>, M. E. (2003). Nat Struct<br />

Biol 10, 520-526.<br />

Hu<strong>an</strong>g, W., Tod<strong>ar</strong>o, L., Yap, G. P., Beer, R., Fr<strong>an</strong>cesconi, L. C. & Polenova, T. (2004). J Am Chem Soc 126, 11564-11573.<br />

Kabsch, W. (2010). Acta Crystallogr D Biol Crystallogr 66, 125-132.<br />

Knablein, J., Neuefei<strong>nd</strong>, T., Schneider, F., Bergner, A., Messerschmidt, A., Lowe, J., Steipe, B. & Huber, R. (1997). J Mol Biol<br />

270, 1-7.<br />

Knight, S. D. (2000). Acta Crystallogr D Biol Crystallogr 56, 42-47.<br />

Kroemer, M. & Schulz, G. E. (2002). Acta Crystallogr D Biol Crystallogr 58, 824-832.<br />

Kuester, M., Kemmerzehl, S., Dahms, S. O., Roeser, D. & Th<strong>an</strong>, M. E. (2011). J Mol Biol 409, 189-201.<br />

Ladenstein, R., Bacher, A. & Huber, R. (1987). J Mol Biol 195, 751-753.<br />

Leslie, A. G. W. & Powell, H. R. (2007). Processing diffraction data with mosflm, Vol. 245, Evolving Methods for<br />

Macro<strong>molecula</strong>r Crystallography, edited by R. J. Read & J. L. Sussm<strong>an</strong>, pp. 41-51. Springer Netherl<strong>an</strong>ds.<br />

Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W. & Huber, R. (1995). Science 268, 533-539.<br />

McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J Appl Crystallogr 40,<br />

658-674.<br />

Miller, R., Shah, N., Green, M. L., Furey, W. & Weeks, C. M. (2007). J. Appl. Cryst. 40, 938-944.<br />

Mueller, M., Jenni, S. & B<strong>an</strong>, N. (2007). Curr Opin Struct Biol 17, 572-579.<br />

Mueller, U., D<strong>ar</strong>owski, N., Fuchs, M. R., Forster, R., Hellmig, M., Paith<strong>an</strong>k<strong>ar</strong>, K. S., Puhringer, S., Steffien, M., Zocher, G. &<br />

Weiss, M. S. (2012). J Synchrotron Radiat 19, 442-449.<br />

Müller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). Chem. Rev. 98, 239-271.<br />

Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Crystallogr D Biol Crystallogr 53, 240-255.<br />

Niu, J., Zhao, J., W<strong>an</strong>g, J. & Bo, Y. (2004). Journal <strong>of</strong> Coordin<strong>ation</strong> Chemistry 57, 935-946.<br />

Oubridge, C., Krummel, D. A., Leung, A. K., Li, J. & Nagai, K. (2009). Structure 17, 930-938.<br />

P<strong>an</strong>nu, N. S., McCoy, A. J. & Read, R. J. (2003). Acta Crystallogr D Biol Crystallogr 59, 1801-1808.<br />

P<strong>an</strong>nu, N. S. & Read, R. J. (2004). Acta Crystallogr D Biol Crystallogr 60, 22-27.<br />

Pasternak, O., Bujacz, A., Biesiadka, J., Bujacz, G., Sikorski, M. & Jaskolski, M. (2008). Acta Crystallogr D Biol Crystallogr 64,<br />

595-606.<br />

Ru, H., Zhao, L., Ding, W., Jiao, L., Shaw, N., Li<strong>an</strong>g, W., Zh<strong>an</strong>g, L., Hung, L. W., Matsugaki, N., Wakatsuki, S. & Liu, Z. J.<br />

(2012). Acta Crystallogr D Biol Crystallogr 68, 521-530.<br />

Rudenko, G., Henry, L., Vonrhein, C., Bricogne, G. & Deisenh<strong>of</strong>er, J. (2003). Acta Crystallogr D Biol Crystallogr 59, 1978-1986.<br />

Schluenzen, F., Tocilj, A., Z<strong>ar</strong>ivach, R., H<strong>ar</strong>ms, J., Gluehm<strong>an</strong>n, M., J<strong>an</strong>ell, D., Bash<strong>an</strong>, A., B<strong>ar</strong>tels, H., Agmon, I., Fr<strong>an</strong>ceschi, F.<br />

& Yonath, A. (2000). Cell 102, 615-623.<br />

Schneider, G. & Li<strong>nd</strong>qvist, Y. (1994). Acta Crystallogr D Biol Crystallogr 50, 186-191.<br />

Sheldrick, G. M. (2008). Acta Crystallogr A 64, 112-122.<br />

Sheldrick, G. M. (2010). Acta Crystallogr D Biol Crystallogr 66, 479-485.<br />

Singleton, M. R., Dillingham, M. S., Gaudier, M., Kowalczykowski, S. C. & Wigley, D. B. (2004). Nature 432, 187-193.<br />

Szczep<strong>an</strong>owski, R. H., Filipek, R. & Bochtler, M. (2005). J Biol Chem 280, 22006-22011.<br />

Taylor, G. L. (2010). Acta Crystallogr D Biol Crystallogr 66, 325-338.<br />

Terwilliger, T. C. & Bere<strong>nd</strong>zen, J. (1999). Acta Crystallogr D Biol Crystallogr 55, 849-861.<br />

Thygesen, J., Weinstein, S., Fr<strong>an</strong>ceschi, F. & Yonath, A. (1996). Structure 4, 513-518.<br />

Tischler, D., Kermer, R., Groning, J. A., Kaschabek, S. R., v<strong>an</strong> Berkel, W. J. & Schlom<strong>an</strong>n, M. (2010). J Bacteriol 192, 5220-<br />

5227.<br />

Turk, D. (1992). Weiterentwicklung eines Programms für Molekülgraphik u<strong>nd</strong> Elektrone<strong>nd</strong>ichte-M<strong>an</strong>ipul<strong>ation</strong> u<strong>nd</strong> seine<br />

Anwe<strong>nd</strong>ung auf verschiedene Protein Strukturaufklärungen. PhD thesis (Technische Universität München, Munich,<br />

Germ<strong>an</strong>y).<br />

Unge, J., Mueller-Dieckm<strong>an</strong>n, C., P<strong>an</strong>jik<strong>ar</strong>, S., Tucker, P. A., Lamzin, V. S. & Weiss, M. S. (2011). Acta Crystallogr D Biol<br />

Crystallogr 67, 729-738.<br />

Vagin, A. & Teplyakov, A. (1997). J. Appl. Cryst. 30, 1022-1025.<br />

Vagin, A. & Teplyakov, A. (1998). Acta Crystallogr D Biol Crystallogr 54, 400-402.<br />

Vagin, A. & Teplyakov, A. (2010). Acta Crystallogr D Biol Crystallogr 66, 22-25.<br />

Vagin, A. A. & Isupov, M. N. (2001). Acta Crystallogr D Biol Crystallogr 57, 1451-1456.<br />

Vojnovic, M., Jozic, D., Giester, G., Peric, B., Pl<strong>an</strong>inic, P. & Brnicevic, N. (2002). Acta Crystallogr C 58, M219-220.<br />

Vonrhein, C. & Schulz, G. E. (1999). Acta Crystallogr D Biol Crystallogr 55, 225-229.<br />

Wahl, M. C., Bourenkov, G. P., B<strong>ar</strong>tunik, H. D. & Huber, R. (2000). Embo J 19, 174-186.<br />

Weaver, T. M., Levitt, D. G., Donnelly, M. I., Stevens, P. P. & B<strong>an</strong>aszak, L. J. (1995). Nat Struct Biol 2, 654-662.<br />

Winn, M. D., Ball<strong>ar</strong>d, C. C., Cowt<strong>an</strong>, K. D., Dodson, E. J., Emsley, P., Ev<strong>an</strong>s, P. R., Keeg<strong>an</strong>, R. M., Krissinel, E. B., Leslie, A.<br />

G., McCoy, A., McNicholas, S. J., Murshudov, G. N., P<strong>an</strong>nu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin,<br />

A. & Wilson, K. S. (2011). Acta Crystallogr D Biol Crystallogr 67, 235-242.<br />

Zh<strong>an</strong>g, G., Campbell, E. A., Minakhin, L., Richter, C., Severinov, K. & D<strong>ar</strong>st, S. A. (1999). Cell 98, 811-824.<br />

17


Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

Table 1 Data collection statistics<br />

Crystal DR6 Lysozyme StyA1<br />

Native HMT TPT TaB TaB<br />

Dataset SIRAS MAD W-peak Ta-peak Br-peak Ta-peak<br />

Peak Inflection point Remote<br />

Temperature <strong>of</strong> collection 100 K 100<br />

Wavelength (Å) 1.54 1.54 1.21461 1.21506 1.21340 1.21471 1.25496 0.91977 1.2250<br />

Resolution limit (Å) 3.3 3.0 2.9 2.9 2.9 1.9 1.8 1.8 2.4<br />

Unit cell p<strong>ar</strong>ameters P6 122 P6 122 P21<br />

a (Å) 77.88 77.34 77.27 77.24 77.27 86.51 86.35 86.39 61.67<br />

b (Å) 78.62<br />

c (Å) 183.70 184.64 184.71 184.64 184.68 68.22 68.86 68.87 75.36<br />

β (°) 107.52<br />

Completeness (%) b 99.9 (100.0) 99.7 (99.6) 99.8 (99.8) 99.3 (99.8) 99.8 (99.8) 100.0 (100.0) 98.5 (97.1) 99.5 (99.0) 99.2(96.3)<br />

Anomalous Completeness (%) b - 100.0 (100.0) 99.9 (100.0) 99.4 (100.0) 99.6 (100.0) 100.0 (100.0) 98.9 (97.6) 99.7 (99.3) 98.1(89.4)<br />

R merge (%) b 18.2 (40.1) 10.4 (34.2) 7.8 (30.7) 6.5 (24.2) 8.6 (35.3) 8.0 (39.4) 6.0 (31.2) 6.6 (38.2) 8.8(53.3)<br />

R pim (%) b 6.9 (14.3) 8.2 (27.1) 5.6 (22.6) 4.7 (17.7) 6.2 (25.9) 3.3 (16.2) 2.7 (14.2) 3.0 (17.3) 7,3(33,6)<br />

b 10.9 (5.2) 12.2 (3.9) 14.6 (4.5) 16.9 (5.7) 13.3 (4.0) 20.2 (6.1) 25.9 (6.6) 23.4 (6.0) 9.67(1.67)<br />

Redu<strong>nd</strong><strong>an</strong>cy b 7.7 (8.7) 4.5 (4.7) 5.0 (5.2) 5.0 (5.2) 5.0 (5.2) 12.8 (12.9) 10.6 (10.8) 10.7 (10.9) 2.4(2.0)<br />

CC <strong>an</strong>om a - 0.144 0.858 0.679 0.339 0.715 0.886 0.490 0.732<br />

a Anomalous difference correl<strong>ation</strong> between half-sets computed in SCALA (Ev<strong>an</strong>s, 2006) (not available for the native DR6 dataset).<br />

b<br />

Values given in p<strong>ar</strong>enthesis represent the highest resolution shell. (DR6-native: 3.48-3.30 Å; DR6-Na6[H2W12O40]: 3.16-3.00 Å; Peak: 3.06-2.90 Å; Inflection point: 3.06-<br />

2.90 Å; Remote: 3.06-2.90 Å; Lysozyme-W-peak: 2.00-1.90 Å; Lysozyme-Ta-Peak: 1.80-1.90 Å; Lysozyme-Br-Peak: 1.80-1.90 Å, StyA1-Ta-Peak: 2.47-2.41 Å).<br />

18


Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

Table 2 Molecul<strong>ar</strong> replacement data<br />

DR6-HMT<br />

Resolution (Å) Solution Highest MOLREP TFcnt/score<br />

(correct) (center <strong>of</strong> mass) (wrong)<br />

Anomalous 2.9 � 8.8 / 0.271 4.0 / 0.177 2.9 / 0.146<br />

differences a 3.4 � 9.9 / 0.377 - 3.5 / 0.195<br />

3.9 � 11.8 / 0.445 7.7 / 0.396 3.1 / 0.240<br />

4.4 � 7.8 /0.468 5.8 / 0.396 -<br />

4.9 � 3.7 / 0.437 3.8 / 0.433 -<br />

5.4 (�) - 4.6 / 0.528 2.3 / 0.466<br />

5.9 - - - 2.0 / 0.372<br />

Isomorphous 3.4 � 6.9 / 0.269 3.9 / 0.212 2.5 / 0.169<br />

differences b 4.4 � 4.7 / 0.397 3.6 / 0.343 -<br />

5.4 - - - 2.0 / 0.470<br />

HEWL-TPT<br />

Resolution (Å) Solution Highest MOLREP TFcnt/score<br />

(correct) (center <strong>of</strong> mass) (wrong)<br />

W-peak c 1.9 � 5.8 / 0.331 - 2.8 / 0.199<br />

2.2 � 4.8 / 0.292 - 2.2 / 0.154<br />

2.3 - - - 3.4 / 0.147<br />

HEWL-TaB<br />

Resolution (Å) Solution Highest MOLREP TFcnt/score<br />

(site1) (site2) (center <strong>of</strong> mass)<br />

Ta-peak 1.8 � 7.7 / 0.023 2.7 / -0.009 -<br />

2.8 � 6.7 / 0.341 3.0 / 0.154 1.9 / 0.121<br />

3.3 � 9.8 / 0.358 - 3.4 / 0.237<br />

3.8 (�) - - 2.2 / 0.404<br />

Br-peak 3.8 � 4.8 / 0.283 - 1.8 /0.222<br />

StyA1-TaB<br />

Resolution (Å) Solution Highest MOLREP TFcnt/score<br />

(site1) (site2) (wrong)<br />

2.6 � 3.82 / 0.188 - 3.20 /0.087<br />

MUAE-TaB c<br />

Resolution (Å) Solution Highest MOLREP TFcnt/score<br />

(site1) (site2) (site3) (wrong)<br />

Step 1<br />

2.12 / 0.169 - - 1.66 / 0.134<br />

Step 2 3.3 � - 1.63 / 0.200 - -<br />

Step 3 - - 1.82 / 0.227 -<br />

a MR-se<strong>ar</strong>ch performed with the <strong>an</strong>omalous differences <strong>of</strong> the Tungsten peak dataset<br />

b MR-se<strong>ar</strong>ch performed with isomorphous differences calculated from the native <strong>an</strong>d derivative datasets<br />

obtained at the home source (λ=1.54 Å)<br />

c sequential se<strong>ar</strong>ch<br />

19


Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

Table 3 Comp<strong>ar</strong>ison <strong>of</strong> heavy atom se<strong>ar</strong>ch methods<br />

Resolution Total number <strong>of</strong><br />

HA-clusters/<br />

single HA-sites<br />

Se<strong>ar</strong>ch method<br />

MR-se<strong>ar</strong>ch procedure SPHCLUSTER SHELXD<br />

Clusters<br />

located (MR-run)<br />

Sites fou<strong>nd</strong><br />

(MR-run)<br />

Sites added<br />

after LLG-map<br />

completion<br />

20<br />

Sites fou<strong>nd</strong> after<br />

LLG-map<br />

completion<br />

DR6-HMT MAD 2.9 1/12 1 12 0 0 -<br />

DR6-HMT SIRAS 3.4 1/12 1 12 0 0 -<br />

Lysozyme-TPT<br />

Lysozyme-TaB<br />

1.9<br />

1 11 13 0 �<br />

1/11<br />

2.2 1 11 13 0 �<br />

1.8<br />

2 12 0 12 �<br />

2.8 2/12<br />

2 12 0 12 -<br />

3.8 1 6 6 a 12 a -<br />

StyA1-TaB 2.4 2/12 1 6 6 a 12 a -<br />

MUAE-TaB 3.3 3/18 3 12 0 0 -<br />

a visual inspection <strong>of</strong> LLG-maps was required<br />

Solution for<br />

single HAsites<br />

fou<strong>nd</strong>


Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

Figure 1 Structural comp<strong>ar</strong>ison <strong>of</strong> heavy atom cluster (HA-cluster) compou<strong>nd</strong>s used in this study.<br />

The HA-clusters <strong>ar</strong>e shown as stereo represent<strong>ation</strong> in ball <strong>an</strong>d stick represent<strong>ation</strong>. (A, B) Tungstate<br />

clusters: L<strong>ar</strong>ge, blue spheres represent tungsten, medium sized, or<strong>an</strong>ge spheres represent phosphorous<br />

<strong>an</strong>d small, red spheres represent oxygen. (A) Hexa-sodium �-metatungstate (HMT). (B) Tri-sodium<br />

phosphotungstate (TPT). (C) Hexa-tatalum Tetradeca-bromide (TaB): L<strong>ar</strong>ge, blue spheres represent<br />

tungsten, medium sized, brown spheres represent phosphor <strong>an</strong>d small, red spheres represent oxygen.<br />

Figure 2 Comp<strong>ar</strong>ison <strong>of</strong> the phase-quality obtained for the HMT derivative DR6 <strong>crysta</strong>ls. The<br />

cosine <strong>of</strong> the phase error between the experimental protein phases <strong>an</strong>d the final model phases is<br />

shown as function <strong>of</strong> the resolution (see experimental section for details). Filled tri<strong>an</strong>gles represent<br />

phases calculated by spherical averaging in SHARP (SPHCLUSTER option), whereas open symbols<br />

represent phases calculated from the i<strong>nd</strong>ividual tungsten positions <strong>of</strong> the MR-se<strong>ar</strong>ches calculated at<br />

2.9Å (squ<strong>ar</strong>es) <strong>an</strong>d 4.4 Å (circles), respectively. The resolution limits refer to the data used for the<br />

heavy atom cluster <strong>orienta</strong>tion by MR; the final phases were always calculated up to resolution<br />

maximum <strong>of</strong> the datasets (Table 1). Phases calculated from the respective heavy atom model <strong>ar</strong>e<br />

connected by solid lines; phases after density modific<strong>ation</strong> <strong>ar</strong>e connected by broken lines. (A)<br />

Comp<strong>ar</strong>ison <strong>of</strong> phases determined in a three wavelength MAD experiment. (B) Comp<strong>ar</strong>ison <strong>of</strong> phases<br />

determined by a SIRAS experiment.<br />

Figure 3 Comp<strong>ar</strong>ison <strong>of</strong> experimental electron density maps calculated for HMT derivative DR6<br />

<strong>crysta</strong>ls. The electron density maps (contoured at 1 σ) were calculated from experimental phases<br />

(MAD experiment at 2.9 Å resolution or SIRAS experiment at 3.3 Å resolution) after solvens<br />

flattening <strong>an</strong>d <strong>ar</strong>e shown in comp<strong>ar</strong>ison to the 2Fo-Fc difference Fourier map calculated from the final<br />

protein model (stick represent<strong>ation</strong>). The experimental phases were either derived from the i<strong>nd</strong>ividual<br />

tungsten positions <strong>of</strong> the MR-solution at 2.9 Å resolution (MAD) or at 3.4 Å resolution (SIRAS) or by<br />

spherical averaging in SHARP (SPHCLUSTER option) at 2.9 Å (MAD) or at 3.4 Å (SIRAS). The<br />

map correl<strong>ation</strong> coefficient is given in comp<strong>ar</strong>ison to the respective the 2Fo-Fc map for each<br />

experimental electron density map.<br />

Figure 4 HMT is bou<strong>nd</strong> at a special position in multiple occupied states in DR6-derivative <strong>crysta</strong>ls.<br />

(A-B) Stereo represent<strong>ation</strong> <strong>of</strong> the <strong>an</strong>omalous difference Fourier map (calculated with phases from the<br />

final DR6 model <strong>an</strong>d <strong>an</strong>omalous differences from the W-peak dataset; contoured at 5 �) together with<br />

the ball <strong>an</strong>d stick represent<strong>ation</strong> <strong>of</strong> the HMT-cluster (l<strong>ar</strong>ge spheres represent the tungsten atoms). The<br />

two symmetry-related HA-cluster molecules <strong>ar</strong>e shown in d<strong>ar</strong>k grey <strong>an</strong>d light grey. (A) View along<br />

21


Acta Crystallographica Section D rese<strong>ar</strong>ch papers<br />

the <strong>crysta</strong>llographic two-fold symmetry axis (m<strong>ar</strong>ked in red) <strong>an</strong>d (B) perpe<strong>nd</strong>icul<strong>ar</strong> to it. (C) Two<br />

symmetry related DR6 molecules <strong>ar</strong>e shown in surface represent<strong>ation</strong> (colored according to their<br />

calculated electrostatic potential) together with the bou<strong>nd</strong> HMT cluster molecules (yellow). Light <strong>an</strong>d<br />

d<strong>ar</strong>k colors distinguish between the symmetry related DR6 protomers. The loc<strong>ation</strong> <strong>of</strong> the two-fold<br />

symmetry axis is i<strong>nd</strong>icated in red.<br />

Figure 5 Derivative <strong>crysta</strong>ls <strong>of</strong> hexagonal HEWL with TPT <strong>an</strong>d TaB. Shown is the stereo<br />

represent<strong>ation</strong> <strong>of</strong> a section <strong>of</strong> the solvent flattened experimental electron density map, calculated from<br />

SAD-phases (blue mesh, contoured at 1 σ) together with the <strong>an</strong>omalous difference Fourier map <strong>of</strong><br />

tungsten <strong>an</strong>d t<strong>an</strong>talum (or<strong>an</strong>ge mesh contoured at 5 σ) for HEWL-TPT (A, 1.9 Å resolution) <strong>an</strong>d<br />

HEWL-TaB (B, 1.9 Å resolution), respectively. HEWL is shown in stick represent<strong>ation</strong>; blue <strong>an</strong>d<br />

purple c<strong>ar</strong>bon atoms m<strong>ar</strong>k two symmetry related molecules. (A) TPT oriented by MR is shown in<br />

stick represent<strong>ation</strong> with light blue tungsten <strong>an</strong>d red oxygen atoms. Due to degrad<strong>ation</strong>, only 11<br />

tungsten atoms reside within the heavy atom cluster whereas additional peaks were fou<strong>nd</strong> in the<br />

<strong>an</strong>omalous Fourier map. Black <strong>an</strong>d grey <strong>ar</strong>rowheads m<strong>ar</strong>k the position <strong>of</strong> the missing <strong>an</strong>d additional<br />

tungsten atoms, respectively. (B) The TaB cluster at bi<strong>nd</strong>ing site one was fou<strong>nd</strong> by MR at 1.8 Å<br />

resolution <strong>an</strong>d is shown in stick represent<strong>ation</strong>. The two-fold <strong>crysta</strong>llographic symmetry axis is<br />

m<strong>ar</strong>ked in red.<br />

Figure 6 TaB derivative <strong>crysta</strong>ls <strong>of</strong> MUAE. Shown is the stereo represent<strong>ation</strong> <strong>of</strong> a section <strong>of</strong> the<br />

experimental electron density map after phase extension to 2.8 Å, solvent flattening <strong>an</strong>d threefold<br />

NCS-averaging calculated from SAD-phases (blue mesh, contoured at 1 σ) together with the<br />

<strong>an</strong>omalous difference Fourier map <strong>of</strong> tungsten (or<strong>an</strong>ge mesh, contoured at 5 σ). The C�-trace <strong>of</strong> the<br />

final model (1Z7L) is shown as ribbon represent<strong>ation</strong> (black). The TaB cluster at bi<strong>nd</strong>ing site one was<br />

fou<strong>nd</strong> by MR at 3.3 Å resolution <strong>an</strong>d is shown in stick represent<strong>ation</strong>.<br />

Figure 7 TaB derivative <strong>crysta</strong>ls <strong>of</strong> the StyA1. Shown is the stereo represent<strong>ation</strong> <strong>of</strong> (A) the<br />

<strong>an</strong>omalous difference Fourier map <strong>of</strong> t<strong>an</strong>talum (or<strong>an</strong>ge mesh, contoured at 5 σ, 2.4 Å Resolution) at<br />

the TaB cluster bi<strong>nd</strong>ing site one (in stick represent<strong>ation</strong>) together with two adjacent protein molecules<br />

in ribbon represent<strong>ation</strong> <strong>an</strong>d (B) the experimental electron density map after solvent flattening <strong>an</strong>d<br />

tw<strong>of</strong>old NCS-averaging calculated from SAD-phases (blue mesh, contoured at 1 σ, 2.4 Å Resolution)<br />

together with the C�-trace <strong>of</strong> the final model in black.<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!