06.01.2013 Views

Compressed Air Energy Storage – one promising technology in the ...

Compressed Air Energy Storage – one promising technology in the ...

Compressed Air Energy Storage – one promising technology in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Compressed</strong> <strong>Air</strong> <strong>Energy</strong> <strong>Storage</strong><br />

<strong>–</strong> <strong>one</strong> <strong>promis<strong>in</strong>g</strong> <strong>technology</strong> <strong>in</strong> <strong>the</strong> future energy storage bus<strong>in</strong>ess<br />

Dr. Andrei Zschocke<br />

Technology & Innovation<br />

E.ON Innovation Center <strong>Energy</strong> <strong>Storage</strong><br />

IPHE Workshop<br />

Sevilla, 15.11.2012


<strong>Energy</strong> storage technologies at E.ON<br />

2<br />

Proven Technology - Potential for improvement - New Technology<br />

Availability, Specification, Cost Effectiveness, Acceptance, Dimension<br />

Battery Capacitor<br />

Heat Fly wheel<br />

Pumped <strong>Storage</strong> P.<br />

(A) CAES<br />

Power to Gas to Grid<br />

or to Caverns or to Power


E.ON Gas <strong>Storage</strong> is <strong>the</strong> host<strong>in</strong>g unit for <strong>in</strong>novation<br />

<strong>in</strong> energy storage bus<strong>in</strong>ess<br />

Key figures<br />

work<strong>in</strong>g gas <strong>in</strong> bill. m³<br />

Germany and Austria:<br />

E.ON Gas <strong>Storage</strong> GmbH<br />

Status 8,5<br />

Projects 1,3<br />

Hungary: E.ON Földgáz <strong>Storage</strong><br />

Status 4,2<br />

Projects 0,0<br />

UK: E.ON Gas <strong>Storage</strong> UK<br />

Status 0,2<br />

Projects 0,0


Estimated development status of<br />

storage technologies (selection)<br />

4<br />

ic<br />

a<br />

l<br />

n<br />

a<br />

h<br />

c<br />

m<br />

e<br />

a<br />

l<br />

m<br />

ic<br />

c<br />

h<br />

e<br />

l<br />

m<br />

a<br />

r<br />

t<br />

h<br />

e<br />

Research & Development<br />

A-CAES CAES+<br />

CAES<br />

o<strong>the</strong>r<br />

PEM<br />

Elektrolysis<br />

PCM<br />

Redox-Flow<br />

undergr.<br />

H 2<br />

Li-Ion<br />

Salt<br />

Bus<strong>in</strong>ess<br />

Na S<br />

Alkali<br />

Elektrolyis<br />

PSP<br />

Water<br />

Plumb<br />

undergr.<br />

CH 4


Compar<strong>in</strong>g <strong>the</strong> energy content<br />

5<br />

Vessel, 150.000 t hard coal, 540 GWh el<br />

Gas <strong>Storage</strong>: 260 GWh<br />

Hydrogen storage: 84 GWh<br />

Waldeck:<br />

PSP<br />

4,3 GWh<br />

total<br />

6 h<br />

CAES Huntorf 0,9 GWh<br />

5 d<br />

1,4 h<br />

Assumption:<br />

over which a<br />

Period<br />

MW generation<br />

800<br />

plant can be fueled<br />

17 d<br />

- for hydrogen and UGS respectively small size<br />

caverns of 300.000 m 3 volume (=Huntorf),<br />

-Efficiency gas generation: 0,6<br />

35 d


Which <strong>technology</strong> fits best to which problem?<br />

-don’t compare “apples with pears”<br />

Capacity<br />

H 2<br />

CAES<br />

PHS<br />

Efficiency (Power to Power)<br />

Battery<br />

� Capacity<br />

� Power<br />

� Ramp-up time<br />

� Efficiency<br />

� Availability<br />

� Costs<br />

� Acceptance<br />

� …and 50 more!


Costs<br />

The general concept of CAES<br />

Huntorf<br />

(1978)<br />

Efficiency<br />

Our goal<br />

McIntosh<br />

(1992)<br />

CAESplus<br />

60 % 70 %


Huntorf as diabatic CAES is state of <strong>the</strong> art<br />

c<br />

o<br />

m<br />

p<br />

e<br />

r<br />

s<br />

io<br />

n<br />

a<br />

t<br />

h<br />

e<br />

n<br />

a<br />

t<br />

.<br />

g<br />

a<br />

s<br />

o<br />

n<br />

n<br />

s<br />

p<br />

a<br />

e<br />

x<br />

600-1000 m depth<br />

i<br />

Huntorf


Huntorf as diabatic CAES is state of <strong>the</strong> art<br />

Huntorf


Huntorf CAES <strong>–</strong> Key figures<br />

In operation s<strong>in</strong>ce 1978<br />

Power 290 MW<br />

Production time 4h<br />

Efficiency 42%<br />

Ramp up time 10 m<strong>in</strong>.<br />

Ramp up time, warm start 6 m<strong>in</strong>.<br />

<strong>Air</strong> production rate 417 kg/s<br />

Compression power 60 MW<br />

Depth of Cavern 650 m<br />

Cavern pressure 43-70 bar<br />

Start per year 100-200<br />

10<br />

Diabatic system <strong>–</strong> compression waste heat is not used<br />

Note: ideal cavern depth for CAES is<br />

shallower than for <strong>the</strong> purpose of<br />

underground gas storage<br />

Comparison of <strong>the</strong> two CAES sites<br />

Huntorf McIntosh<br />

Power 290 MW 110 MW<br />

Prod. Period 4 h 26 h


<strong>Energy</strong> streams of <strong>the</strong> diabatic system<br />

Diabatic CAES Comparison of diabat with adiabat<br />

Compression<br />

Power 67 MW<br />

Cool<strong>in</strong>g<br />

65 MW<br />

Electric Power<br />

293 MW<br />

Gas 456 MW<br />

Loss of Heat<br />

172 MW<br />

Diabat Adiabat<br />

Compress. 70 MW 150 MW<br />

Load time 10 h 10 h<br />

Compression <strong>Energy</strong> 700 MWh 1500 MWh el<br />

Production <strong>Energy</strong> 1000 MWh el 1000 MWh el<br />

<strong>Storage</strong> Vol. 324 000 m 3 416000 m 3<br />

11


Adiabatic CAES (A-CAES)<br />

C<br />

o<br />

m<br />

p<br />

e<br />

r<br />

s<br />

io<br />

n<br />

o<br />

n<br />

i<br />

n<br />

s<br />

p<br />

a<br />

E<br />

x


Cavern<br />

CAESplus concept<br />

Atm.<br />

40°C / 80 bara<br />

Heat storage<br />

LP<strong>–</strong>Comp. HP<strong>–</strong>Comp.<br />

> 400°C, 80 bar<br />

Motor<br />

Gen<br />

HP - Exp.<br />

Adiabatic<br />

stage<br />

Gen<br />

Gas<br />

Exhaust<br />

GT


Low Temperature CAES (LT CAES)<br />

C<br />

o<br />

m<br />

p<br />

e<br />

r<br />

s<br />

io<br />

n<br />

o<br />

n<br />

n<br />

s<br />

p<br />

a<br />

E<br />

x<br />

600-1000 m depth<br />

i<br />

to use water as heat storage<br />

Allows<br />

medium.<br />

Requires more compression stages.


The Challenge: Which is <strong>the</strong> appropriate heat storage?<br />

<strong>in</strong>sulation<br />

steel l<strong>in</strong>er<br />

(airtight)<br />

ground surface<br />

± 0 m<br />

40 m<br />

36 m<br />

4 m<br />

re<strong>in</strong>forced concrete<br />

3 m 1 m<br />

4 m<br />

symmetric axis<br />

10<br />

m<br />

9 m<br />

5 m<br />

22 m<br />

foundation<br />

re<strong>in</strong>forced concrete<br />

active cool<strong>in</strong>g<br />

−4 −4 m<br />

Pressure tank concrete<br />

Oil or molten salt


Occurrence of salt deposits <strong>in</strong> Europe as geographical<br />

constra<strong>in</strong> for cavern based CAES<br />

� Potential for w<strong>in</strong>d power matches partly<br />

with <strong>the</strong> occurrence of salt deposits.<br />

� It complements geographically<br />

pumped hydro.<br />

� Potential is very high, however, <strong>the</strong>re is a<br />

geographical constra<strong>in</strong>.<br />

Artificial pressure tanks<br />

are <strong>the</strong> alternative.<br />

16


Which is <strong>the</strong> best CAES concept?<br />

Today Choices for tomorrow<br />

Diabatic CAES<br />

Huntorf, McIntosh<br />

HT Adiabatic CAES<br />

heat storage<br />

CAESplus<br />

Gas fir<strong>in</strong>g, heat storage<br />

LT adiabatic CAES<br />

Low temperature, adiabatic<br />

CCGT with CAES<br />

Comb<strong>in</strong><strong>in</strong>g everyth<strong>in</strong>g<br />

1. Large scale solutions require salt caverns.<br />

2. High temperature requires <strong>in</strong>novative comp<strong>one</strong>nts.<br />

3. Low temperature solutions can use water as storage medium.<br />

4. High temperature solutions are <strong>the</strong> choice to co-fire gas.<br />

Identification of <strong>the</strong> „best“ design<br />

5-10 MW<br />

pilot<br />

-Spot market<br />

-Balanc<strong>in</strong>g market<br />

-Structur<strong>in</strong>g RE


Fur<strong>the</strong>r example: E.ON PtG-Pilot "Falkenhagen"<br />

Key Parameters<br />

� Power: 2 MW el<br />

� Hydrogen production: 360 m³/h<br />

� Fed <strong>in</strong>to <strong>the</strong> local gas grid (ONTRAS)<br />

� Planned start of operation Q3/2013<br />

� Owner is E.ON Gas <strong>Storage</strong><br />

Goals<br />

� Demonstration of <strong>the</strong> process cha<strong>in</strong><br />

� Optimize operational concept<br />

(fluctuat<strong>in</strong>g power from w<strong>in</strong>d vs.<br />

chang<strong>in</strong>g gas feed)<br />

� Ga<strong>in</strong> experience <strong>in</strong> <strong>technology</strong>, costs,<br />

consent<strong>in</strong>g<br />

18<br />

Meter<strong>in</strong>g<br />

pipel<strong>in</strong>e<br />

connection<br />

voltage<br />

Low<br />

supply<br />

Control<br />

Power supply<br />

Electrolysis


Thank you for your attention!


Summary<br />

<strong>Energy</strong> storage is needed to <strong>in</strong>tegrate <strong>in</strong>termittent<br />

renewable energy generation.<br />

CAES has <strong>the</strong> potential to be a competitive solution<br />

among batteries, power to gas, pumped storage plants<br />

and o<strong>the</strong>rs. Different technologies render different<br />

services on spot and reserve markets.<br />

CAES can also be built for decentralized applications. Which of<br />

variants is best, is not clear today.<br />

Decentralized storage plants are widely accepted <strong>in</strong> <strong>the</strong><br />

public

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!