06.01.2013 Views

Comparison of different air treatment methods with plasma - PlasTEP

Comparison of different air treatment methods with plasma - PlasTEP

Comparison of different air treatment methods with plasma - PlasTEP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

COMPARISON OF DIFFERENT<br />

AIR TREATMENT METHODS<br />

WITH PLASMA TREATMENT<br />

<strong>PlasTEP</strong> 3 rd Summer school and trainings<br />

course 2012 Vilnius / Kaunas<br />

Saulius Vasarevicius, VGTU<br />

Part-financed by the European Union (European Regional Development Fund<br />

ˇ


Two Types <strong>of</strong> Air Pollutants<br />

Particulate (Visible)<br />

Gaseous


Stationary Source Control<br />

• Philosophy <strong>of</strong> pollution prevention (3P’s)<br />

– Modify the process: use <strong>different</strong> raw materials<br />

– Modify the process: increase efficiency<br />

– Recover and reuse: less waste = less pollution<br />

• Philosophy <strong>of</strong> end-<strong>of</strong>-pipe <strong>treatment</strong><br />

– Collection <strong>of</strong> waste streams<br />

– Add-on equipment at emission points<br />

• Control <strong>of</strong> stationary sources<br />

– Particulates<br />

– Gases<br />

3


Three Types Of Control<br />

Mechanical<br />

Chemical<br />

Biological


Particulate Control<br />

(Mechanical)<br />

• Electrostatic precipitator<br />

• Bag house fabric filter<br />

• Wet scrubber<br />

• High efficiency cyclones


Particulate Control Technologies<br />

• Remember this order:<br />

– Settling chambers<br />

– Cyclones<br />

– ESPs (electrostatic<br />

precipitators)<br />

– Spray towers<br />

– Venturi scrubbers<br />

– Baghouses (fabric filtration)<br />

• All physical processes


Settling Chambers<br />

• “Knock-out pots”<br />

• Simplest, cheapest, no moving parts<br />

• Least efficient<br />

– large particles only<br />

• Creates solid-waste stream<br />

– Can be reused<br />

• Picture on next slide<br />

8


Disadvantages<br />

• Large space requirement<br />

• Relatively low overall collection<br />

efficiencies (typical 20 - 60 %)<br />

Gravity settler


Flue Gas Cleaning – The state <strong>of</strong> the art<br />

Selection criteria<br />

Emission<br />

mg/Nm 3<br />

ESP Bag house Scrubber Cyclones<br />

(normal)<br />

Spraycone<br />

Cyclones<br />

100 30 200 250 < 100<br />

Reliability ++ + ++ ++++ ++++<br />

Cost ++++ ++++ +++ + +


Gas Cleaning – The state <strong>of</strong> the art<br />

Evaluation <strong>of</strong> ESP for industrial boilers:<br />

• High cost (investment, maintenance & operation)<br />

• Complex large size plant <strong>with</strong> sub-systems<br />

• Requires constant gas conditions (sulphur, temp, moisture)<br />

Evaluation <strong>of</strong> bag filters for industrial boilers:<br />

• High cost (investment, maintenance & filter bags)<br />

• Difficult to handle sulphur and sparks<br />

• Not robust (one faulty bag destroys efficiency<br />

Evaluation <strong>of</strong> wet scrubbers for industrial boilers:<br />

• High cost (large water <strong>treatment</strong> plant)<br />

• Difficult to separate fine particulate<br />

• Sulphur control costly & difficult


Flue Gas Cleaning – The state <strong>of</strong> the art<br />

Evaluation <strong>of</strong> cyclone “grid arrestor” :<br />

• Low collection efficiency due to:<br />

• Wrong design (see velocity analysis)<br />

• Air ingress<br />

• Bad manufacturing quality<br />

• Lack <strong>of</strong> maintenance (blockage <strong>of</strong> cyclone cells)<br />

But cyclone system advantages are low cost and robust installation<br />

Can a cyclone reach efficiencies <strong>of</strong> ESP / Bag filter / Wet scrubber?<br />

This question triggered our cyclone development Program<br />

in 1994 to improve cyclone efficiency and to invent the<br />

“dry spray agglomeration principle”


• Most Common<br />

• Cheapest<br />

Cyclone<br />

• Most Adaptable


Mechanical Collectors –<br />

Cyclones<br />

Advantages: Good for larger PM<br />

Disadvantages: Poor efficiency for finer PM<br />

Difficult removing sticky or wet PM


Cyclone Operating Principle<br />

“Dirty” Air Enters The Side.<br />

The Air Swirls Around The<br />

Cylinder And Velocity Is<br />

Reduced.<br />

Particulate Falls Out Of The Air<br />

To The Bottom Cone And Out.


Flue Gas Cleaning – The state <strong>of</strong> the art<br />

Commercial applications <strong>of</strong> high efficiency cyclones:<br />

BurnerMax<br />

Fluidized bed furnace<br />

High efficiency cyclones<br />

operating at 400 C


Multiple Cyclones<br />

(Multi clone)<br />

Smaller Particles Need Lower<br />

Air Flow Rate To Separate.<br />

Multiple Cyclones Allow<br />

Lower Air Flow Rate, Capture<br />

Particles to 2 microns


Air Filtration


Filtration Mechanisms<br />

• Diffusion<br />

Q: How does efficiency change <strong>with</strong><br />

respect to d p?<br />

a. Efficiency goes up as d p decreases<br />

b. Efficiency goes down as d p decreases


Filtration Mechanisms<br />

• Impaction<br />

Q: How does efficiency change<br />

<strong>with</strong> respect to d p?<br />

a. Efficiency goes up as d p decreases<br />

b. Efficiency goes down as d p decreases


Fat Man’s Misery,<br />

Mammoth Cave NP<br />

Filtration Mechanisms<br />

• Interception


Efficiency<br />

Filter efficiency for individual mechanism<br />

and combined mechanisms<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Interception<br />

Impaction<br />

Diffusion<br />

Gravitation<br />

Total<br />

0.0<br />

0.01 0.1 1 10<br />

dp (�m)


Fiber filter<br />

FILTRATION<br />

Q: Do filters function just as a strainer,<br />

collecting particles larger than the strainer<br />

spacing?<br />

a: yes<br />

b: no


Filter Drag Model<br />

�� P �<br />

�P<br />

� �Pf<br />

� �Pp<br />

� s<br />

� V K �LVt�V K1 � 2<br />

Areal Dust Density W � LVt<br />

Filter drag<br />

P<br />

S<br />

V<br />

�<br />

� � S � K1<br />

� K2s<br />

W<br />

e<br />

K e & K s to be determined empirically<br />

�P f: fabric pressure drop<br />

�P f: particle layer pressure drop<br />

�P s: structure pressure drop<br />

Q: What is the pressure drop after 100 minutes <strong>of</strong><br />

operation? L = 5 g/m 3 and V = 0.9 m/min.<br />

K e<br />

K s<br />

Time<br />

(min)<br />

�P, Pa<br />

0 150<br />

5 380<br />

10 505<br />

20 610<br />

30 690<br />

60 990


Case A: Pore blocking<br />

Case B: Pore plugging<br />

Case C1: Pore narrowing<br />

Case C2: Pore narrowing w/lost pore<br />

Case D: Pore bridging


• Impaction<br />

• Diffusion<br />

Air Filtration<br />

• Straining (Interception)<br />

• Electrostatics


Fabric Filter<br />

(Baghouse)<br />

• Same Principle As Home<br />

Vacuum Cleaner<br />

• Air Can Be Blown Through Or<br />

Pulled Through<br />

• Bag Material Varies According<br />

To Exhaust Character


Cleaned gas<br />

Dirty gas<br />

Bags<br />

Dust discharge<br />

Baghouse Filter – only one to remove hazardous fine particles


Advantages/Disadvantages<br />

• Very high collection efficiencies<br />

• Pressure drop reasonably low (at beginning <strong>of</strong> operation,<br />

must be cleaned periodically to reduce)<br />

• Can’t handle high T flows or moist environments


Pulse-Air-Jet Type<br />

Baghouse<br />

35


Baghouse


About Baghouses<br />

Efficiency Up To 97+%<br />

(Cyclone Efficiency 70-90%)<br />

Can Capture Smaller Particles<br />

Than A Cyclone<br />

More Complex, Cost More To<br />

Maintain Than Cyclones


Types <strong>of</strong> Baghouses<br />

• The three common types <strong>of</strong> baghouses<br />

based on cleaning <strong>methods</strong><br />

a. Reverse-<strong>air</strong><br />

b. Shaker<br />

c. Pulse-jet


Electrostatic Precipitators<br />

Types include:<br />

• Dry, negatively charged<br />

• Wet-walled, negatively charged<br />

• Two-stage, positively charged


• ELECTROSTATIC PRECIPITATOR<br />

• Advantages <strong>of</strong> Electrostatic Precipitators<br />

� Electrostatic precipitators are capable very high efficiency, generally <strong>of</strong><br />

the order <strong>of</strong> 99.5-99.9%.<br />

� Since the electrostatic precipitators act on the particles and not on the <strong>air</strong>,<br />

they can handle higher loads <strong>with</strong> lower pressure drops.<br />

� They can operate at higher temperatures.<br />

� The operating costs are generally low.<br />

• Disadvantages <strong>of</strong> Electrostatic Precipitators<br />

� The initial capital costs are high.<br />

� Although they can be designed for a variety <strong>of</strong> operating conditions, they<br />

are not very flexible to changes in the operating conditions, once<br />

installed.<br />

� Particulate <strong>with</strong> high resistivity may go uncollected.


http://www.ppcbio.com/ppcdespwhatis.htm


Electrostatic Precipitator Drawing


How An ESP Operates


ESPs<br />

• Electrostatic precipitator<br />

• More expensive to install,<br />

• Electricity is major operating cost<br />

• Higher particulate efficiency than<br />

cyclones<br />

• Can be dry or wet<br />

• Plates cleaned by rapping<br />

• Creates solid-waste stream<br />

• Picture on next slide<br />

44


Electrostatic Precipitator Concept<br />

45


Electrostatic Precipitator<br />

46


Cleaned gas<br />

Dust discharge<br />

Electrodes<br />

Dirty gas<br />

Electrostatic Precipitator – static plates collect particles


Wet Type<br />

• Venturi<br />

• Static packed<br />

• Moving bed<br />

• Tray tower<br />

• Spray towers


Scrubbers<br />

• Gas Contacts A Liquid Stream<br />

• Particles Are Entrained In<br />

The Liquid<br />

• May Also Be A Chemical<br />

Reaction<br />

–Example: Limestone Slurry<br />

With Coal Power Plant Flue Gas


Wet Particle Scrubbers<br />

• Particulate control by impaction,<br />

interception <strong>with</strong> water droplets<br />

• Can clean both gas and particle<br />

phases<br />

• High operating costs, high<br />

corrosion potential


• WET SCRUBBERS (CONTD.)<br />

• Advantages <strong>of</strong> Wet Scrubbers<br />

• Wet Scrubbers can handle incoming streams at high temperature, thus<br />

removing the need for temperature control equipment.<br />

� Wet scrubbers can handle high particle loading.<br />

� Loading fluctuations do not affect the removal efficiency.<br />

� They can handle explosive gases <strong>with</strong> little risk.<br />

� Gas adsorption and dust collection are handled in one unit.<br />

� Corrosive gases and dusts are neutralized.<br />

• Disadvantages <strong>of</strong> Wet Scrubbers<br />

� High potential for corrosive problems<br />

� Effluent scrubbing liquid poses a water pollution problem.


Venturi Scrubber<br />

Detail illustrates cloud atomization from highvelocity<br />

gas stream shearing liquid at<br />

throat<br />

52


Vertical Venturi Scrubber


Packed Bed Scrubber


Dry Scrubber System<br />

http://www.fkinc.com/dirctspraydry.htm#top


Tower Scrubber


Spray Towers<br />

• Water or other liquid “washes out” PM<br />

• Less expensive than ESP but more than<br />

cyclone, still low pressure drop<br />

• Variety <strong>of</strong> configurations<br />

• Higher efficiency than cyclones<br />

• Creates water pollution stream<br />

• Can also absorb some gaseous<br />

pollutants (SO 2)<br />

58


Spray Tower<br />

59


Gaseous Pollutant Control<br />

•Absorption<br />

•Adsorption<br />

•Combustion


Control <strong>of</strong> Air Pollutants<br />

Gaseous pollutants - Combustion<br />

• 3 types <strong>of</strong> combustion systems commonly<br />

utilised for pollution control<br />

– direct flame,<br />

– thermal, and<br />

– catalytic incineration systems


Control <strong>of</strong> Air Pollutants<br />

Gaseous pollutants - Adsorption<br />

• physical adsorption to solid surfaces<br />

• Reversible - adsorbate removed from the<br />

adsorbent by increasing temp. or lowering<br />

pressure<br />

• widely used for solvent recovery in dry<br />

cleaning, metal degreasing operations,<br />

surface coating, and rayon, plastic, and<br />

rubber processing


Control <strong>of</strong> Air Pollutants<br />

Gaseous pollutants - Adsorption<br />

• limited use in solving ambient <strong>air</strong> pollution<br />

problems – <strong>with</strong> its main use involved in the<br />

reduction <strong>of</strong> odour<br />

• Adsorbents <strong>with</strong> large surface area to<br />

volume ratio (activated carbon) preferred<br />

agents for gaseous pollutant control<br />

• Efficiencies to 99%


Carbon Adsorption<br />

• Will do demonstration shortly<br />

• Good for organics (VOCs)<br />

• Both VOCs and carbon can be<br />

recovered when carbon is<br />

regenerated (steam stripping)<br />

• Physical capture<br />

– Adsorption<br />

– Absorption<br />

64


Adsorb<br />

Absorb<br />

66


Control <strong>of</strong> Air Pollutants<br />

Gaseous pollutants - Absorption<br />

• Scrubbers remove gases by chemical<br />

absorption in a medium that may be a liquid<br />

or a liquid-solid slurry<br />

• water is the most commonly used scrubbing<br />

medium<br />

• Additives commonly employed to increase<br />

chemical reactivity and absorption capacity


Pollutants Of Interest<br />

• Volatile Organic Compounds<br />

(VOC)<br />

• Nitrogen Oxides (NOx)<br />

• Sulfur Oxides (SOx)


Controlling Gaseous Pollutants: SO 2 &<br />

NO x<br />

• Modify Process (recall 3P’s)<br />

– Switch to low-sulfur coals<br />

– Desulfurize coal (washing, gasification)<br />

• Increase efficiency<br />

– Low-NO x burners<br />

• Recover and Reuse (heat)<br />

– staged combustion<br />

– flue-gas recirculation<br />

69


Scrubbers / Absorbers<br />

• SO 2 removal: “FGD” (flue gas desulfurization)<br />

– Lime/soda ash/citrate absorbing solutions<br />

– Can create useable by-product OR solid waste<br />

stream<br />

• NO x removal—catalytic and non-catalytic<br />

– Catalyst = facilitates chemical reaction<br />

– Ammonia-absorbing solutions<br />

– Process controls favored over this technology<br />

• CO & CO 2 removal<br />

• Some VOC removal<br />

71


Flue Gas SOx Control<br />

SOx Forms Sulfuric Acid With<br />

Moisture In Air Producing<br />

Acid Rain.<br />

Remove From Flue Gas By<br />

Chemical Reaction With<br />

Limestone


Control Technologies for Nitrogen<br />

• Preventive<br />

– minimizing operating<br />

temperature<br />

– fuel switching<br />

– low excess <strong>air</strong><br />

– flue gas recirculation<br />

– lean combustion<br />

– staged combustion<br />

– low Nox burners<br />

– secondary combustion<br />

– water/steam injection<br />

Oxides<br />

• Post combustion<br />

– selective catalytic reduction<br />

– selective non-catalytic<br />

reduction<br />

– non-selective catalytic<br />

reduction


Thermal Oxidizers<br />

For VOC Control<br />

Also Called Afterburners


Thermal Oxidation<br />

• Chemical change = burn<br />

– CO 2 and H 2O ideal end products <strong>of</strong> all processes<br />

• Flares (for emergency purposes)<br />

• Incinerators<br />

– Direct<br />

– Catalytic = improve reaction efficiency<br />

– Recuperative: heat transfer between inlet /exit gas<br />

– Regenerative: switching ceramic beds that hold<br />

heat, release in <strong>air</strong> stream later to re-use heat<br />

75


• Catalytic<br />

Two Types Of Oxidizer<br />

• Non-Catalytic


Thermal Oxidizer<br />

(Non-Catalytic)


Catalytic Thermal Oxidizer


Biological Method<br />

• Uses Naturally Occurring<br />

Bacteria (Bugs) To Break<br />

Down VOC<br />

• “Bugs” Grow On Moist Media<br />

And Dirty Gas Is Passed<br />

Through. Bugs Digest The<br />

VOC.<br />

• Result Is CO2 And H2O


A Bio Filter For VOC Removal


Other Technologies<br />

• High-temp ceramic filter<br />

• Operates at T > 500 F (limit for<br />

baghouses)


E-beam flue gas <strong>treatment</strong> process<br />

(Pr<strong>of</strong>. A.Chmielewski)


Pollutants removed by EB method<br />

The method has been designed for simultaneous removal <strong>of</strong>:<br />

• SO2<br />

• NOx<br />

• Cl, HF etc.<br />

• Volatile Organic Hydrocarbons (VOC)<br />

• Dioxins<br />

• Mercury<br />

• Others…


Electron beam effect on gas, primary radiolysis products:<br />

• 4.43N2 -› 0.29N2* + 0.885N(2D) + 0.295N(2P) + 1.87N(4S) + 2.27N2+ +<br />

0.69N+ + 2.96e-<br />

• 5.377O2 -› 0.077O2* + 2.25O(1D) + 2.8O(3P) + 0.18O* + 2.07O2+ +<br />

1.23O+ + 3.3e-<br />

• 7.33H2O -› 0.51H2 + 0.46O(3P) + 4.25OH + 4.15H +1.99 H2O+ + 0.01H2+<br />

+ 0.57OH+ + 0.67H+ + 0.06O+ + 3.3e-<br />

• 7.54CO2 -› 4.72CO + 5.16O(3P) + 2.24CO2+ + 0.51CO+ + 0.07C+ +<br />

0.21O+ + 3.03 e-


Electron beam effect on gas, secondary reactions:<br />

• O(1D) + H2O͢͢͢͢ ͢͢͢͢͢͢͢͢͢͢͢͢<br />

-› 2OH*<br />

• N2+ + 2H2O -› H3O+ + OH*+ N2<br />

• O(3P) + O2+ M -› O3+ M<br />

• e-+ O2 + M -› O2-+ M<br />

• H3O+ + O2- -› HO2*+ H2O<br />

As a result <strong>of</strong> these primary and secondary reactions OH*,<br />

HO2 *, O*radicals, O3and other oxidizing species are<br />

formed, that can oxidize NO, SO2 and Hg.


Radiothermal:<br />

SO2 removal pathways<br />

• SO2 + OH* + M -› HSO3 + M<br />

• HSO3 + O2 -› SO3 + HO2*<br />

• SO3 + H2O -› H2SO4<br />

• H2SO4 + 2NH3 -› (NH4)2SO4<br />

Thermal:<br />

• SO2 + 2NH3 -› (NH3)2SO2<br />

• (NH3)2SO2 -› (NH4)2SO4


NO oxidation<br />

NOx removal pathways<br />

• NO + O(3P) + M -› NO2+ M<br />

• O(3P) + O2+ M -› O3+ M<br />

• NO + O3+ M -› NO2+ O2+ M<br />

• NO + HO2* + M -› NO2+ OH* +M<br />

• NO + OH* + M -› HNO2+M<br />

• HNO2+ OH* -› NO2+ H2O<br />

NO2removal<br />

• NO2+ OH* + M -›HNO3+ M<br />

• HNO3+ NH3-›NH4NO3


Reaction mechanisms and sequence<strong>of</strong> E-beam process<br />

H. Namba: Materials <strong>of</strong> UNDP(IAEA)RCA Regional Training Course on<br />

Radiation Technology for Environmental Conservation TRCE-JAERI,<br />

Takasaki,


VOC-decomposition and deodorization <strong>methods</strong><br />

Thermal Processes: 1-TO, Thermal Oxidation; 2-RTO, Regenerative Thermal Oxidation; 3-<br />

Catalytic Oxidation <strong>with</strong> Recuperation. Filtering/Adsorption: 4-Bi<strong>of</strong>ilters; 5-Scrubber; 7-<br />

Adsorption Container; 8-Concentrator Unit <strong>with</strong> TO; 9-Filtering. Non-thermal Oxidation: 6a-<br />

Electrical Non-thermal oxidation; 6b-UVS Non-thermal Oxidation.


Non-thermal <strong>plasma</strong>s:<br />

VOC-decomposition<br />

• Decomposition <strong>of</strong> contaminants <strong>with</strong>out heating<br />

• Wide range <strong>of</strong> pollutants (Gases ... Particulate Matter PM)<br />

• Decomposition <strong>of</strong> organic PM<br />

• High efficiency for low contamination (e.g. deodorization), ([VOCs] < 1 g<br />

Corg/m3)<br />

Negative aspects:<br />

• High energy cost/molecule_ high energy for high concentrations<br />

• Uncompleted conversion and by-products _ low selectivity (CO2)<br />

• Deposition <strong>of</strong> polymer films in reactors _ unstable <strong>plasma</strong> source<br />

Possibilities - indirect <strong>treatment</strong>, hybrid <strong>methods</strong> = combination <strong>of</strong> <strong>plasma</strong> <strong>with</strong>:<br />

catalysts, scrubbing, adsorbents…


VOC decomposition by O2 <strong>plasma</strong>


Aromatic VOC decomposition mechanism. Positive ions’<br />

charget transfer reactions<br />

• M++ RH = M + RH+<br />

• Radical –neutral particles reactions<br />

• OH radical reactions<br />

• ˙OH + C6H5CH3= R1˙(OH radical addition)<br />

• C6H5CH3+ ˙OH = R2˙ + H2O ( H atom abstraction)<br />

• C6H6+ ˙OH = C6H5OH + H (H atom elimination)<br />

• Organic radicals’ reactions<br />

• R˙ + O2= RO2˙<br />

• 2 RO2˙ = 2RO˙ + O2<br />

• RO2˙ + NO = RO˙ + NO2<br />

• RO˙ + O2= HO2˙ + products ( aromatic-CHO, -OH)<br />

• RO˙ -› aliphatic products<br />

R. Atkinson: Chem. Rev. 85(1985) 69


Non thermal <strong>plasma</strong>


PDC for deodorization (commercial)


CML 2001, Experts IKP (Central Europe)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

By-products<br />

Material resources<br />

Electricity<br />

74.4<br />

1099.7<br />

EBFGT WFGD + SCR<br />

Total weighed environmental impact <strong>of</strong> <strong>plasma</strong> and non-<strong>plasma</strong> end-<strong>of</strong>-pipe<br />

pollutant <strong>treatment</strong> technologies: the comparison <strong>of</strong> technologies for SOx/NOx<br />

removal. 1) Electron Beam Flue Gas Treatment (EBFGT) versus 2) Wet Flue Gas<br />

Desulphurization <strong>with</strong> Selective Catalytic Reduction (WFGD+SCR


CML 2001, Experts IKP (Central Europe)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

By-products<br />

Material resources<br />

Electricity<br />

4.2<br />

Total weighed environmental impact <strong>of</strong> <strong>plasma</strong> and non-<strong>plasma</strong> end-<strong>of</strong>-pipe<br />

pollutant <strong>treatment</strong> technologies: the comparison <strong>of</strong> technologies for VOCs<br />

removal. 1) Dielectric barrier discharge (DBD) versus 2) adsorption by zeolite (for<br />

LCA) and molecular sieves (for CBA), 3) bi<strong>of</strong>iltration,<br />

41.1<br />

DBD <strong>plasma</strong> Adsorption<br />

(zeolite rotor)<br />

26.1<br />

Bi<strong>of</strong>ilttration


Flue gas <strong>treatment</strong> method >300<br />

MW unit<br />

Investment costs<br />

€/kW<br />

Annual operation costs<br />

€/MW<br />

EBFGT 32-45 1290-1577<br />

Wet deSO2 + SCR 176-247 4786-5350<br />

Wet deSO2 + SNCR 144-190 3870-4223<br />

Emission control method 120 MW<br />

unit<br />

Investment costs<br />

€/kW<br />

Annual operation costs<br />

€/MW<br />

EBFGT 113 5167<br />

WFGT+SCR 162 5343<br />

Investment and operation costs <strong>of</strong> EBFGT and combination <strong>of</strong> conventional deSO 2 and deNOx<br />

Full “Report on Eco-Efficiency <strong>of</strong> Plasma-Based technologies for Environmental Protection” and<br />

“Report on cost-benefit analysis <strong>of</strong> <strong>plasma</strong>-based technologies“ are available at the <strong>PlasTEP</strong><br />

project website (http://www.plastep.eu/fileadmin/dateien/Outputs/OP3-2.1_Ecoefficiency_report.pdf,<br />

http://www.plastep.eu/fileadmin/datein/Outputs/120208_CBA.pdf).


Thank You for Your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!