26.05.2014 Views

Electron Beam Flue Gas Treatment - PlasTEP

Electron Beam Flue Gas Treatment - PlasTEP

Electron Beam Flue Gas Treatment - PlasTEP

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>PlasTEP</strong> Summer School and Training Course<br />

Warsaw/Szczecin 2011<br />

Andrzej Pawelec<br />

<strong>Electron</strong> beam flue gas treatment<br />

Szczecin, 2 August 2011


Some history<br />

• Early phase (Japan, 1970s)<br />

• Pilot plants phase (Japan, USA, Germany, Poland 1980s,<br />

1990s)<br />

• Industrial plants phase (China, Poland, late 90s)<br />

• Recent attempts (China, Bulgaria, Middle East)<br />

Present operating plant:<br />

• EBFGT at Pomorzany Power Station, Poland<br />

• New facilities under construction


Technology basis


The idea of EBFGT<br />

Conventional process<br />

(wet-FGD + SCR)<br />

EBFGT


Pollutants removed by EB method<br />

The method has been designed for simultaneous removal of:<br />

• SO 2<br />

• NO x<br />

Also there proceeds removal of other pollutants as:<br />

• HCl, HF etc.<br />

• Volatile Organic Hydrocarbons (VOC)<br />

• Dioxins<br />

• Mercury<br />

• Others…


<strong>Electron</strong> beam effect on gas<br />

Primary radiolysis products<br />

4.43N eV 2<br />

0.29N 2*<br />

+ 0.885N( 2 D) + 0.295N( 2 P) + 1.87N( 4 S) + 2.27N 2+<br />

+ 0.69N + +<br />

2.96e -<br />

100<br />

<br />

5.377O eV 2<br />

0.077O 2*<br />

+ 2.25O( 1 D) + 2.8O( 3 P) + 0.18O * + 2.07O 2+<br />

+ 1.23O + + 3.3e -<br />

7.33H 2<br />

O 0.51H 2<br />

+ 0.46O( 3 P) + 4.25OH + 4.15H + 1.99 H 2<br />

O + + 0.01H 2+<br />

+<br />

0.57OH 100 eV + + 0.67H + + 0.06O + + 3.3 e -<br />

7.54CO 2<br />

4.72CO + 5.16O( 3 P) + 2.24CO 2+<br />

+ 0.51CO + + 0.07C + + 0.21O + + 3.03 e -<br />

100<br />

100 <br />

eV<br />

<br />

1. J.C. Person, D.O. Ham: Radiat. Phys. Chem. 31 (1988) 1<br />

2. H. Matzing: Model studies of flue gas treatment by electron beams, in: Application of isotopes and radiation in<br />

conservation of the environment, IAEA-SM-325/186, International Atomic Energy Agency, Vienna 1995, pp.<br />

115-124


<strong>Electron</strong> beam effect on gas<br />

Secondary reactions<br />

O( 1 D) + H2O 2OH *<br />

N 2<br />

+<br />

+ 2H 2 O<br />

*<br />

H 3 O + + OH + N 2<br />

O( 3 P) + O 2 + M O 3 + M<br />

e - + O 2 + M<br />

H 3 O + -<br />

+ O 2<br />

O - 2 * + M<br />

HO 2 + H2 O<br />

As a result of these primary and secondary reactions OH * ,<br />

HO 2<br />

*<br />

, O * radicals,O 3 and other oxidizing species are formed,<br />

that can oxidize NO, SO 2 and Hg


SO x / NO x removal


SO 2 removal pathways<br />

radiothermal<br />

SO 2<br />

+ OH* + M HSO 3<br />

+ M<br />

HSO 3<br />

+ O 2<br />

SO 3<br />

+ HO 2<br />

*<br />

SO 3<br />

+ H 2<br />

O H 2<br />

SO 4<br />

thermal<br />

H 2<br />

SO 4<br />

+ 2NH 3<br />

(NH 4<br />

) 2<br />

SO 4<br />

SO 2<br />

+ 2NH 3<br />

(NH 3<br />

) 2<br />

SO 2<br />

<br />

(NH 3<br />

) 2<br />

SO O 2 , H 2<br />

<br />

O <br />

2<br />

(NH 4<br />

) 2<br />

SO 4<br />

1. H. Namba: Materials of UNDP(IAEA)RCA Regional Training Course on Radiation Technology for<br />

Environmental Conservation TRCE-JAERI, Takasaki, September/October 1993, 99-104<br />

2. A.G. Chmielewski: Nukleonika 45(1) (2000) 31


NO x removal pathways<br />

NO oxidation<br />

NO 2 removal<br />

NO + O( 3 P) + M NO 2<br />

+ M<br />

O( 3 P) + O 2<br />

+ M O 3<br />

+ M<br />

NO + O 3<br />

+ M NO 2<br />

+ O 2<br />

+ M<br />

NO + HO 2<br />

* + M NO 2<br />

+ OH* +M<br />

NO + OH* + M HNO 2<br />

+M<br />

HNO 2 + OH* NO 2<br />

+ H 2 O<br />

NO 2<br />

+ OH* + M HNO 3<br />

+ M<br />

HNO 3<br />

+ NH 3<br />

NH 4<br />

NO 3<br />

H. Namba: Materials of UNDP(IAEA)RCA Regional Training Course on Radiation Technology for Environmental<br />

Conservation TRCE-JAERI, Takasaki, September/October 1993, 99-104


NO x reduction in the presence of<br />

ammonia<br />

NO + N( 4 S) N 2<br />

+ O<br />

NO 2<br />

+ N( 4 S) N 2<br />

O + O<br />

N( 2 D) + NH 3 NH* + NH 2 *<br />

NO + NH 2<br />

* N 2<br />

+ H 2<br />

O<br />

NO 2<br />

+ NH 2<br />

* N 2<br />

O + H 2<br />

O<br />

NO + NH* N 2<br />

+ OH*<br />

NO 2<br />

+ NH* N 2<br />

O + OH*<br />

H. Namba: Materials of UNDP(IAEA)RCA Regional Training Course on Radiation Technology for Environmental<br />

Conservation TRCE-JAERI, Takasaki, September/October 1993, 99-104


Simplified reaction mechanism<br />

HNO 3 NH 4 NO 3<br />

OH<br />

OH<br />

NO<br />

O, OH OH<br />

NO 2<br />

NH 3<br />

HNO 2<br />

OH O 2 , OH H 2 O<br />

SO 2 HSO 3 SO 3 H 2 SO 4<br />

NH 3<br />

NH 3<br />

(NH 3 ) 2 SO 2<br />

O 2 , H 2 O<br />

(NH 4 ) 2 SO 4


Reaction mechanisms and sequence<br />

of E-beam process


NO X removal factors<br />

NO x removal depends on such parameters as:<br />

• Dose (1 kGy = 1kJ/kg)<br />

• NO x inlet concentration<br />

• Ammonia concentration (stoichiometry)


SO 2 removal factors<br />

Main process parameters influencing SO2 removal efficiency :<br />

• Temperature<br />

• Humidity<br />

• Ammonia stoichiometry<br />

• Dose<br />

• Other parameters


Dependence of NO x and SO 2 removal<br />

efficiencies on dose


VOC/mercury removal


The structures of PAHs emitted from coal<br />

combustion<br />

naphtalene acenaphtene anthracene fluoranthene<br />

pyrene<br />

benzo(a)pyrene<br />

dibenzo(a,h) anthracene


PAHs’ emission at EB pilot plant<br />

at EPS Kawęczyn [μg/Nm 3 ]<br />

PAH name 2001 2000<br />

naphtalene n.m. 0.001 - 0.009<br />

acenaphtene C 12<br />

H 10<br />

0.005 – 0.006 0.354 – 1.027<br />

fluorene n.m – 0.022 0.119 – 0.592<br />

phenentrene 0.217 – 0.585 0.554 – 1.369<br />

anthracene C 14<br />

H 10<br />

0.128 – 0.487 0.324 – 0.367<br />

fluoranthene C 16<br />

H 10<br />

0.041 – 1.122 0.817 – 1.124<br />

pyrene C 16<br />

H 10<br />

0.105 – 0.244 0.093 – 0.607<br />

benzo(a)anthracene 0.153 – 5.750 2.804 – 4.680<br />

chrysene 0.537 – 2.305 0.555 – 1.604<br />

benzo(e)pyrene C 20<br />

H 12<br />

0.195 – 0.407 0.084 – 0.291<br />

benzo(a)pyrene 0.254 – 0.661 0.804 – 2.467


Aromatic VOC decomposition<br />

mechanism<br />

Positive ions’ charge transfer reactions<br />

Radical – neutral particles reactions<br />

•OH radical reactions<br />

M + + RH = M + RH +<br />

˙OH + C 6<br />

H 5<br />

CH 3<br />

= R1˙ (OH radical addition)<br />

C 6<br />

H 5<br />

CH 3<br />

+ ˙OH = R2˙ + H 2<br />

O ( H atom abstraction)<br />

•Organic radicals’ reactions<br />

R. Atkinson: Chem. Rev. 85 (1985) 69<br />

C 6<br />

H 6<br />

+ ˙OH = C 6<br />

H 5<br />

OH + H (H atom elimination)<br />

R˙ + O 2<br />

= RO 2˙<br />

2 RO 2˙ = 2RO˙ + O 2<br />

RO 2˙ + NO = RO˙ + NO 2<br />

RO˙ + O 2<br />

= HO 2˙ + products ( aromatic-CHO, -OH)<br />

RO˙ aliphatic products


Removal efficiency of PAHs(%)<br />

PAHs removal efficiency<br />

100<br />

90<br />

80<br />

70<br />

60<br />

without NH3<br />

NH3<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Acenaphthene<br />

Fluorene<br />

Phenanthrene<br />

fluoranthene<br />

Benzo(a)pyrene<br />

A. Ostapczuk, A.G. Chmielewski, Y. Sun: <strong>Electron</strong> beam flue gases treatment as an integrated method of SO 2<br />

,<br />

NOx and volatile organic compounds (VOC) control. Fifth Inetrnational Symposium and Exhibition on<br />

Environmental Contamination in Central and Eastern Europe. 12-14 September 2000, Prague, Czech<br />

Republic, p. 227


Mercury oxidation<br />

First step of removal process<br />

Hg o oxidation removal<br />

Hg2+ Mercury oxidation proceeds in reaction chamber<br />

EPS Pomorzany – reaction chamber


According to:<br />

Does it work?<br />

Jo-Chun Kim, Ki-Hyun Kim, Al Armendariz and Mohamad Al-Sheikhly: <strong>Electron</strong> <strong>Beam</strong> Irradiation for<br />

Mercury Oxidation and Mercury Emissions Control, J. Envir. Engrg. Volume 136, Issue 5, pp. 554-559 (May<br />

2010)<br />

At medium energy levels, approximately 98% of<br />

gaseous mercury vapor was readily oxidized.<br />

Expreriments were performed for following parameters:<br />

Hg concentration in gas about 16 µg/m 3<br />

applied doses of E-beam<br />

2.5 – 10 kGy


Installation construction


The scheme of industrial installation<br />

A.G. Chmielewski, E. Iller et al.: Modern Power Systems, 53-54 (May 2001)


History of investment :<br />

‣ Feasibility Study 1994<br />

‣ Basic Engineering 1996, technical design<br />

‣ Contract with z IAEA, Sumitomo 1996<br />

‣ Contract with Energobudowa (general contractor)<br />

1998<br />

‣ Begin of construction 1 IV 1999<br />

‣ Start-up of the plant X 2000<br />

‣ Routine operation IV2003


Main operational data<br />

• <strong>Flue</strong> gas flow rate 100 000 - 270 000 Nm 3 /h<br />

• Pollutants removal efficiency:<br />

95 % SO 2<br />

70 % NO x<br />

• Total accelerators power: 1.04 MW<br />

• Inlet flue gas parameters:<br />

temperature 130 – 150°C<br />

SO 2 concentration 1500 – 2200 mg/Nm 3<br />

NO x concentration 400 – 600 mg/Nm 3<br />

• Ammonia water consumption: 150 – 300 kg/h<br />

• By-product yield: 200 – 300 kg/h


nom<br />

nom<br />

nom<br />

nom<br />

nom<br />

Main units of the plant<br />

AIR COMPRESSORS<br />

AMMONIA WATER UNLOADING<br />

AND STORAGE STATION<br />

M<br />

OPWP<br />

OPWP<br />

t =<br />

250°<br />

C<br />

M<br />

PROCESS WATER<br />

M<br />

M<br />

M<br />

M<br />

t = 80°<br />

C<br />

p = 1.3<br />

OWCW III<br />

t = 20° C Q= 2100Nm 3<br />

p = 0.8<br />

SPRAY<br />

COOLER<br />

CISTERN<br />

M<br />

P2<br />

Z3<br />

PP<br />

P1<br />

M<br />

Z1<br />

Z2<br />

P3.1<br />

M<br />

M<br />

P3.2<br />

Ammonia<br />

storage<br />

and<br />

dosing<br />

<strong>Flue</strong> gas<br />

conditioning<br />

Control<br />

and<br />

monitoring<br />

AMMONIA<br />

WATER<br />

EVAPORATION<br />

COLUMN<br />

M<br />

Z4<br />

P7.1<br />

M<br />

M<br />

P7.2<br />

M<br />

Reaction unit<br />

A1<br />

B1<br />

BY-PRODUCT ELECTROSTATIC<br />

PRECIPITATOR<br />

WSW<br />

M<br />

Byproduct<br />

collecting<br />

and storage<br />

M<br />

REACTION CHAMBER 1<br />

DC<br />

DC<br />

SUPPLY<br />

NTA1<br />

NTB1<br />

SUPPLY<br />

+ +<br />

M<br />

NTA2<br />

NTB2<br />

BY-PRODUCT STORAGE HOUSE<br />

AND GRANULATOR<br />

A2<br />

B2<br />

M<br />

REACTION CHAMBER 2


Control, monitoring and data<br />

management system<br />

E-beam flue gas treatment process<br />

<strong>Flue</strong> gas<br />

T 0 , w 0 , s 0 , C 0SO2 , C 0NOx<br />

water<br />

compressed air<br />

steam<br />

Cooling and<br />

humidification<br />

waste<br />

water<br />

T 1 , w 1 , s 1 , C 0SO2 , C 0NOx<br />

Ammonia<br />

storage<br />

ammonia<br />

Mixing<br />

T 1 , w 1 , s 1 , a 0 , C 0SO2 , C 0NOx<br />

electric<br />

energy<br />

Reaction<br />

T 2 , w 1 , s 2 , a 1 , C 1SO2 , C 1NOx<br />

electric<br />

energy<br />

Filtration<br />

T 2 , w 1 , s 3 , a 1 , C 1SO2 , C 1NOx<br />

electric<br />

energy<br />

Transportation and storage of<br />

by-product<br />

electric<br />

energy<br />

Compression of purified<br />

flue gas<br />

electric<br />

energy<br />

Granulation or<br />

packaging<br />

T 2 , w 1 , s 3 , a 1 ,<br />

C 1SO2 , C 1NOx<br />

electric<br />

energy<br />

Loading and<br />

transportation


Cooling and humidification process<br />

1. Cooling column with dry bottom<br />

2. Cooling column with water recirculation


Cooling and humidification process<br />

3. Cooling in ducts


EPS Pomorzany<br />

gas cooling tower


1. Liquid ammonia<br />

Ammonia supply system


2. Ammonia water<br />

Ammonia supply system


EPS Pomorzany<br />

– ammonia<br />

water tank


EPS Pomorzany<br />

- accelerator


Accelerator<br />

vs. kinescope


Reaction unit<br />

•power suppliers<br />

•water cooling system<br />

•windows cooling<br />

system<br />

•X-radiation shielding<br />

•ventilation system


EPS Pomorzany<br />

– process vessel


Accelerator and reaction chamber<br />

Zasilanie katody<br />

Zasilacz DC<br />

Katoda<br />

Tuba przyspieszająca<br />

Elektrody przyspieszające<br />

Cewki odchylania<br />

Skaner<br />

Pompa próżniowa<br />

Powietrze chłodzące<br />

folie


Dose deposition in reactor<br />

Arbitral units


Different reactor construction variants<br />

Variant 1<br />

Variant 2<br />

Variant 3<br />

Variant 4


Velocity field<br />

Variant 1<br />

Variant 4


The obtained results


Filtration<br />

• Electrostatic precipitator<br />

• Bag filter<br />

• Wet gravel bed filter<br />

• Venturi scrubber


EPS Pomorzany - ESP


By-product<br />

storage<br />

EPS Pomorzany<br />

– byproduct storage building


Control and monitoring system<br />

Control room at EPS Pomorzany


Removal [%]<br />

The obtained results<br />

The dependence of SO 2 and NO x removal efficiency on<br />

dose<br />

100<br />

90<br />

80<br />

SO2<br />

70<br />

60<br />

50<br />

40<br />

NOx<br />

30<br />

20<br />

10<br />

0<br />

5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0<br />

Dose [kGy]


Removal [mg/Nm 3 ]<br />

The obtained results<br />

The dependence of SO 2 removal on temperature<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

60 65 70 75 80 85 90<br />

Temperature [°C]


Removal [mg/Nm 3 ]<br />

The obtained results<br />

The dependence of SO 2 and NO x removal on ammonia<br />

stoichiometry<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

SO2<br />

400<br />

NOx<br />

200<br />

0<br />

30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00<br />

Ammonia stoichiometry [%]


Removal [%]<br />

The obtained results<br />

The dependence of SO 2 removal efficiency on ammonia<br />

injection mode<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00<br />

Ammonia mass fraction sprayed into cooling tower


The byproduct


NPK fertilizers<br />

made of<br />

by-product


The by-product<br />

by-product composition:<br />

(NH 4 ) 2 SO 4 45-60%<br />

NH 4 NO 3 22 - 30%<br />

NH 4 Cl 10 - 20%<br />

moisture 0,4 - 1%<br />

water insoluble parts 0,5 - 2%<br />

by-product yield:<br />

up to 300 kg/h


By-product heavy metals concentrations<br />

[ppm]<br />

Metal Pb Cd Hg As<br />

Pilot plant EPS<br />

Kawęczyn<br />

< 5<br />

0.5 ÷<br />

0.6<br />

0.02 ÷<br />

0.05<br />

0.25 ÷<br />

0.39<br />

Max. allowable<br />

(Polish standards)<br />

140 140 2 50


Economy<br />

Emission control method<br />

Investment cost<br />

(USD/kW e )<br />

Annual operational cost<br />

(USD/MW e )<br />

Wet flue gas desulphurisation 120 3000<br />

Selective catalytic reduction 110 4600<br />

Wet FGD + SCR 230 7600<br />

<strong>Electron</strong> beam FGT 160 7350<br />

EBFGT (low NOx removal) 130 4100


Strong points of technology<br />

• Simultaneous removal of SO 2 and NO x ,<br />

multipollution control system<br />

• High removal efficiency<br />

• High flexibility of installation<br />

• Dry process<br />

• Wasteless process, usable byproduct<br />

• Simple facility construction<br />

• Easy retrofitting<br />

• Economical competitiveness


Potential applications of EBFGT technology<br />

• Power plants (hard coal, oil, lignite combustion) - Asia, Middle<br />

East, developing countries…<br />

• Refineries (oil combustion)<br />

• Waste incinerators (VOC, dioxins)<br />

• Ore sintering plants, (high SO 2 content)<br />

• Chemical processes (multipollutant emission control)<br />

• Others…


Final remarks<br />

1. <strong>Electron</strong> <strong>Beam</strong> flue gas treatment process has been implemented in<br />

power industry. Due to the installed beam power (over 1 MW),<br />

plant constructed in EPS Pomorzany is the biggest radiation<br />

processing facility ever built.<br />

2. High efficiency of pollutants removal has been achieved.<br />

3. The technology is competitive to conventional ones from removal<br />

efficiency and economical points of views.<br />

4. With the agricultural use of the by-product the method becomes<br />

waste free and environmental friendly.<br />

5. There are possibilities for the process application for PAH<br />

emission control e.g. at municipal waste incineration plant.


Thank You for Your Attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!