07.01.2013 Views

NEW VOLTAGE FACTOR - DGS - Landesverband Berlin und ...

NEW VOLTAGE FACTOR - DGS - Landesverband Berlin und ...

NEW VOLTAGE FACTOR - DGS - Landesverband Berlin und ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>NEW</strong> <strong>VOLTAGE</strong> <strong>FACTOR</strong> (VF) FOR PV-MODULES<br />

AND OTHER ASPECTS FOR OPTIMIZATION OF INVERTER SIZING<br />

Dipl.-Ing. Ralf Haselhuhn<br />

<strong>DGS</strong> - Deutsche Gesellschaft für Sonnenenergie LV <strong>Berlin</strong> Brandenburg e.V.<br />

Erich-Steinfurth-Str. 6, 10243 <strong>Berlin</strong><br />

Tel. +49 (30) 293812 – 60, Fax +49 (30) 293812 - 61<br />

rh@dgs-berlin.de<br />

www.dgs-berlin.de<br />

ABSTRACT: This paper aims the optimal sizing of PV-generator and inverter especially by thin film technology.<br />

1 MOTIVATION<br />

More and more different types of PV-modules with<br />

different cell technology are entering the market.<br />

Considering the design of PV-Systems, installers and<br />

planers might make mistakes if they don’t consider that<br />

there are new aspects of inverter sizing.<br />

2 FUNDAMENTALS<br />

The relation between MPP-voltage V MPP and opencircuit-voltage<br />

V OC determines the possibility to use the<br />

whole range of MPP-tracking of the inverter. Therefore a<br />

new voltage factor (VF) was introduced for different pvmodules<br />

in order to simplify the sizing (see tab. 1).<br />

crystalline<br />

ThinFilm<br />

Table 1: Technical data and voltage factor of modules with different cell technologies<br />

3 ANALYSIS<br />

For qualified sizing it is necessary to use the MPPvoltage<br />

and open-circuit-voltage at –10 C° for central<br />

Europe (e.g. germany) and at 0 C° for south Europe.<br />

Therefore the author build these values with the<br />

temperature factor β for MPP-voltage and open-circuitvoltage<br />

(see tab. 2). The MPP temperature factor<br />

referring to monocrystalline, polycrystalline and single<br />

ASi modules were calculated using the method of Toro<br />

and Laschinski [1]. The factor β MPP regarding to all other<br />

modules was assessed by the author [2] considering the<br />

information provided by the manufactures.<br />

manufacturer Type cell technology P MPP [W] η V MPP [V] V 0C [V] I MPP I SC FF VF<br />

aleoSolar S_03/75 mono (Cz) 175 13,7% 35,7 44 4,9 5,2 72,0% 81,4%<br />

EvergreenSolar ES-190-RL poly string ribbon 190 12,7% 26,7 32,8 7,12 8,05 72,0% 81,4%<br />

Sanyo HIP-225HDEE1 HIT 225 16,2% 33,9 41,8 6,64 7,14 75,4% 81,1%<br />

Schott Solar EFG 310 poly EFG 310 12,8% 51,6 63,8 6,1 6,7 73,6% 80,9%<br />

Sharp NU-180E1 mono (Cz) 180 13,7% 23,7 30 7,6 8,37 71,7% 79,0%<br />

Solarworld SW220 poly 230 14,0% 29 36,7 7,95 8,55 73,5% 79,0%<br />

SunPower SPR-315-WHT-i mono (Fz) backcontact 315 19,3% 54,7 64,6 5,76 6,14 79,4% 84,7%<br />

FirstSolar FS-265 CdTe 65 9,0% 63,7 87 1,02 1,17 63,8% 73,2%<br />

FirstSolar FS-280 CdTe 80 11,1% 71,3 94 1,12 1,23 69,1% 75,9%<br />

Kaneka T-SD120 ASi (single) 120 6,3% 67 91,8 1,8 2,38 55,2% 73,0%<br />

Kaneka K75 ASi (single) 75 6,2% 67 92 1,12 1,4 58,3% 72,8%<br />

Kaneka HB110 Micromorph 110 9,1% 54 71 1,87 2,25 63,2% 76,1%<br />

Mitsubishi Heavy MT130 Micromorph 130 8,3% 101 131 1,29 1,53 65,0% 77,1%<br />

Schott Solar ASI TM86 ASi (tandem) 86 5,9% 17,2 23,3 5 5,92 62,3% 73,8%<br />

Sharp NA-901 WQ Micromorph 90 8,5% 49,3 65,2 1,83 2,11 65,6% 75,6%<br />

Sulfurcell SCG60-HV-F CIS 60 7,3% 41,5 52,5 1,5 1,7 69,7% 79,0%<br />

Unisolar PVL-136 Asi (triple) 136 6,3% 33 46,2 4,1 5,1 57,4% 71,4%<br />

WürthSolar WSG0025E080 CIS 80 11,0% 120 160 0,67 0,72 69,8% 75,0%<br />

manufacturer Type cell technology ∪∪∪∪ 0 ∪∪∪∪ MPP V0C -10° VMPP-10° VF-10° V0C 0° VMPP 0° VF 0°<br />

aleoSolar S_03/75 mono (Cz) -0,35% -0,45% 49,4 41,3 83,7% 47,9 39,7 83,0%<br />

EvergreenSolar ES-190-RL poly string ribbon -0,35% -0,49% 36,8 31,3 85,0% 35,7 30,0 84,0%<br />

Sanyo HIP-225HDEE1 HIT -0,27% -0,20% 45,8 36,3 79,3% 44,6 35,6 79,8%<br />

Schott Solar EFG 310 poly EFG -0,35% -0,27% 71,6 56,5 78,9% 69,4 55,1 79,4%<br />

Sharp NU-180E1 mono (Cz) -0,35% -0,45% 33,6 27,4 81,5% 32,6 26,3 80,8%<br />

Solarworld SW220 poly -0,33% -0,44% 40,9 33,5 81,7% 39,7 32,2 81,0%<br />

SunPower SPR-315-WHT-i mono (Fz) backcontact -0,27% -0,20% 70,8 58,6 82,8% 69,0 57,5 83,3%<br />

FirstSolar FS-265 CdTe -0,20% -0,17% 93,1 67,5 72,5% 91,4 66,4 72,7%<br />

FirstSolar FS-280 CdTe -0,20% -0,17% 100,6 75,5 75,1% 98,7 74,3 75,3%<br />

Kaneka T-SD120 ASi (single) -0,31% -0,39% 101,6 76,0 74,8% 98,8 73,4 74,3%<br />

Kaneka K75 ASi (single) -0,30% -0,38% 101,8 76,0 74,7% 99,0 73,4 74,2%<br />

Kaneka HB110 Micromorph -0,35% -0,37% 79,7 61,0 76,5% 77,2 59,0 76,4%<br />

Mitsubishi Heavy MT130 Micromorph -0,33% -0,35% 146,1 113,4 77,6% 141,8 109,8 77,5%<br />

Schott Solar ASI TM86 ASi (tandem) -0,33% -0,41% 26,0 19,7 75,7% 25,2 19,0 75,2%<br />

Sharp NA-901 WQ Micromorph -0,30% -0,32% 72,0 54,8 76,1% 70,1 53,2 76,0%<br />

Sulfurcell SCG60-HV-F CIS -0,26% -0,31% 57,3 46,0 80,3% 55,9 44,7 80,0%<br />

Unisolar PVL-136 Asi (triple) -0,38% -0,31% 52,4 36,6 69,8% 50,6 35,6 70,3%<br />

WürthSolar WSG0025E080 CIS -0,29% -0,34% 176,2 134,3 76,2% 171,6 130,2 75,9%<br />

Table 2: Temperature coefficients and voltage factors at different module temperature considering different cell<br />

technologies [1, 2]<br />

crystalline<br />

ThinFilm


Crystalline silicon modules have typical values of VF<br />

aro<strong>und</strong> 80%,. Generally most crystalline modules showed<br />

values over 80% up to 85%. Thin film-modules show a<br />

lower VF with typical values between 71% and 76%.<br />

However some CIS-modules show the same values as<br />

some crystalline modules.<br />

VF<br />

° = 0<br />

V<br />

MPP 0°<br />

V<br />

OC 0°<br />

VF<br />

− 10°<br />

V<br />

=<br />

V<br />

MPP −10°<br />

OC −10°<br />

Applying the newly introduced factor it’s possible to find<br />

the optimal operating range of the PV-generator. This can<br />

be done comparing the VF with the relation between the<br />

maximum MPP-tracking-voltage VF Inv and the maximum<br />

input voltage of the inverter.<br />

V<br />

VF inv =<br />

V<br />

MPP max<br />

inv max<br />

The voltage factor of the inverter (VF Inv) has to be lower<br />

than the voltage factor of module.<br />

VF inv<br />

≤ n × VF<br />

If this is the case, the PV-generator will operate optimally<br />

in the V MPP-tracking range of the inverter. Considering<br />

the limitation of power and current the PV-generator will<br />

operate optimally in all obtainable working points too.<br />

The green range of figure 1 shows the optimal operating<br />

range with a marked critical range for thin film modules.<br />

Figure 1: Optimal operating rage of inverter [2]<br />

Thus the open circuit voltage of PV generators with<br />

thin film PV-modules might exceed the maximum<br />

inverter voltage at low temperatures, even though the<br />

MPP-values are located within the operating range of the<br />

inverter. Considery the maximum voltage leads to a<br />

reduction of the MPP range of the inverter, particularly<br />

regarding thin film PV modules.<br />

Figure 2: Open circuit voltage of the thin film PV-<br />

Generator exceeds the maximum input voltage of the<br />

inverter by normal sizing<br />

By normal sizing the open circuit voltage of the thin<br />

film PV-generator exceeds the maximum input voltage of<br />

the inverter.Taking into account a correct dimensioning<br />

of voltage, the maximum number of panles in a string can<br />

be calculated applying the resoective MPP an VF values<br />

in the following formula:.<br />

For central Europe:<br />

n<br />

For south Europe:<br />

n<br />

max −10°<br />

C<br />

max 0°<br />

C<br />

VF<br />

=<br />

VF<br />

=<br />

0°<br />

C<br />

−10°<br />

C<br />

V<br />

V<br />

× V<br />

× V<br />

MPP inv max<br />

MPP −10°<br />

C<br />

MPP inv max<br />

MPP 0°<br />

C<br />

4 CONCLUSION<br />

Applying the newly introduced voltage factor VF the<br />

dimensioning of the inverter can be easily realized for all<br />

different module technologies.<br />

5 REFERENCES<br />

[1] Jose del Toro, Joachim Laschinski: Einfaches Modell<br />

für das thermische Verhalten des MPPs; procceding<br />

to OTTI 18th PV-Symposium, Monastery Banz 2004<br />

[2] Ralf Haselhuhn, Claudia Hemmerle; u.a.:<br />

<strong>DGS</strong> - Leitfaden Photovoltaische Anlagen; Deutsche<br />

Gesellschaft für Sonnenenergie e.V., <strong>DGS</strong> <strong>Berlin</strong>,<br />

4 th edition 2009<br />

English edition:<br />

Planning and Installing Photvoltaic Systems guide for<br />

installers, architects and engineers, <strong>DGS</strong> + earthscan<br />

second edition 2008<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!