09.01.2013 Views

Zooplankton communities of Deepor Beel (a Ramsar site), Assam ...

Zooplankton communities of Deepor Beel (a Ramsar site), Assam ...

Zooplankton communities of Deepor Beel (a Ramsar site), Assam ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Tropical Ecology 52(3): 293-302, 2011 ISSN 0564-3295<br />

© International Society for Tropical Ecology<br />

www.tropecol.com<br />

<strong>Zooplankton</strong> <strong>communities</strong> <strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong> (a <strong>Ramsar</strong> <strong>site</strong>), <strong>Assam</strong><br />

(N. E. India): ecology, richness, and abundance<br />

B. K. SHARMA *<br />

Department <strong>of</strong> Zoology, North Eastern Hill University, Permanent Campus, Umshing,<br />

Shillong 793022, Meghalaya, India<br />

Abstract: Limnological studies undertaken at two sampling stations <strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong> (91º<br />

35′ - 91º 43′ E, 26º 05′ - 26 0 11′ N) revealed the presence <strong>of</strong> 171 and 160 species <strong>of</strong> zooplankton at<br />

stations I and II, respectively. Species richness in different months ranged between 96 ± 11 and<br />

97 ± 13 (mean ± SD) and community similarities across months between 48.9 - 88.1 % and 53.1 -<br />

89.7 % at stations I and II, respectively. Richness, which was mainly influenced by Rotifera (110<br />

species) and Cladocera (45 species), showed significant variations between months but not<br />

between stations. <strong>Zooplankton</strong> (475 ± 114, 459 ± 128 n l -1 at stations I and II, respectively)<br />

formed an important quantitative component <strong>of</strong> the net plankton. Rotifera and Cladocera<br />

dominated quantitatively, Copepoda and Rhizopoda formed sub-dominant groups, and<br />

Ostracoda and Conchostraca had very low densities. <strong>Zooplankton</strong> abundance varied<br />

significantly between both months and stations. At both stations, richness and abundance<br />

inversely correlated with water temperature and rainfall, and positively with specific<br />

conductivity and dissolved oxygen. While at station II both richness and abundance also<br />

positively correlated with transparency, alkalinity, and hardness, at station I, abundance<br />

positively correlated with free CO2. Finally, zooplankton richness and abundance oscillated with<br />

annual frequency but showed winter peaks, was not quantitatively dominated by any individual<br />

species, and was characterized by higher species diversity with equitable abundance <strong>of</strong> various<br />

species. In view <strong>of</strong> the paucity <strong>of</strong> works from the floodplain lakes <strong>of</strong> India, this study provides<br />

important information on zooplankton diversity and ecology <strong>of</strong> the sampled <strong>Ramsar</strong> <strong>site</strong>.<br />

Resumen: Estudios limnológicos realizados en dos estaciones de muestreo de <strong>Deepor</strong> <strong>Beel</strong><br />

(91º 35′ - 91º 43′ E, 26º 05′ - 26º 11′ N) revelaron la presencia de 171 y 160 especies de zooplancton<br />

en las estaciones I y II, respectivamente. La riqueza de especies en diferentes meses varió entre<br />

96 ± 11 y 97 ± 13 (media ± SD), y las similitudes a nivel de comunidad entre meses fluctuaron<br />

entre 48.9 - 88.1 % y 53.1 - 89.7 % en las Estaciones I y II, respectivamente. La riqueza, influenciada<br />

principalmente por Rotifera (110 especies) y Cladocera (45 especies), mostró variaciones<br />

significativas entre meses pero no entre estaciones. El zooplancton (475 ± 114, 459 ± 128 n l -1 en<br />

las Estaciones I y II, respectivamente) conformó un componente cuantitativamente importante del<br />

plancton. Rotifera y Cladocera dominaron cuantita-tivamente, Copepoda y Rhizopoda formaron<br />

grupos subdominantes, y Ostracoda y Conchostraca tuvieron densidades muy bajas. La<br />

abundancia del zooplancton varió significativamente tanto entre meses como entre estaciones.<br />

En ambas estaciones, la riqueza y la abundancia se correlacionaron inversamente con la<br />

temperatura del agua y la precipitación, y positivamente con la conductividad específica y el<br />

oxígeno disuelto. Mientras que en la Estación Ii tanto la riqueza como la abundancia también<br />

estuvieron correlacionados positivamente con la trans-parencia, la alcalinidad y la dureza, en la<br />

Estación I la abundancia se correlacionó positivamente con el CO2 libre. Finalmente, la riqueza<br />

y la abundancia del zooplancton oscilaron con una frecuencia anual pero mostraron picos de<br />

invierno, no estuvieron dominadas cuantitativamente por ninguna especie particular, y<br />

N<br />

* Corresponding Author; e-mail: bksharma@nehu.ac.in, pr<strong>of</strong>bksharma@gmail.com


294 ZOOPLANKTON COMMUNITIES OF DEEPOR BEEL<br />

estuvieron caracterizadas por una diversidad de especies más alta con una abundancia<br />

equitativa de varias especies. En virtud de la pobreza de trabajos de los lagos de planicie de<br />

inundación en la India, este estudio brinda información importante sobre la diversidad de<br />

zooplancton y la ecología del sitio <strong>Ramsar</strong> muestreado.<br />

Resumo: Os estudos limnológicos levados a efeito em duas estações amostra em <strong>Deepor</strong><br />

<strong>Beel</strong> (91º 35’ - 91º 43’ E, 26º 05’ - 26º 11’ N) revelou a presença de 171 e 160 espécies de<br />

zooplâncton nas Estações I e II, respectivamente. A riqueza específica nos diferentes meses<br />

oscilou entre 96 ± 11 e 97 ± 13 (média ± DP) e as semelhanças de comunidade ao longo dos<br />

meses situou-se entre os 48,9 - 88,1 % e os 53,1 - 89,7 % nas Estações I e II, respectivamente. A<br />

riqueza, que era principalmente influenciada pela Rotifera (110 espécies) e a Cladocera (45<br />

espécies), mostrou variações significativas entre meses mas não entre Estações. O zooplâncton<br />

(475 ± 114,459, 459 ± 128 n ℓ -1 nas estações I e II, respectivamente) forma uma componente<br />

quantitativa importante do plâncton líquido. Os Rotifera e Cladocera dominavam<br />

quantitativamente, os Copepoda e Rhizopoda formam os subgrupos dominantes, apresentando<br />

os Ostracoda e os Conchostraca densidades muito baixas. A abundância do zooplâncton variou<br />

significativamente quer entre meses e quer entre estações. Em ambas as Estações, a riqueza e<br />

abundância estavam inversamente correlacionadas com a temperatura e a queda pluviométrica,<br />

e positivamente com a condutividade específica e o oxigénio dissolvido. Enquanto na Estação II,<br />

quer a riqueza, quer a abundância estavam também positivamente correlacionadas com a<br />

transparência, alcalinidade e dureza, já na Estação I, a abundância estava positivamente<br />

correlacionada com o CO2 livre. Finalmente, a riqueza e abundância do zooplâncton oscilaram<br />

com uma frequência anual mas mostraram picos no inverno que não estavam<br />

quantitativamente dominados por nenhuma espécie individual, e estava caracterizado por<br />

elevada diversidade de espécies com abundância equivalente das várias espécies. Com vista à<br />

insuficiência de trabalhos nos lagos de encharcamento da Índia, este estudo proporciona<br />

informação importante sobre a diversidade do zooplâncton e ecologia do sítio <strong>Ramsar</strong><br />

amostrado.<br />

Key words: Abundance, <strong>Ramsar</strong> <strong>site</strong>, richness, synecology, zooplankton.<br />

Introduction<br />

Freshwater ecosystems are colonized by a<br />

diverse array <strong>of</strong> aquatic organisms. Amongst<br />

these, zooplankton, which function as primary<br />

consumers, comprise an integral component <strong>of</strong><br />

aquatic food-webs and contribute significantly to<br />

biological productivity. Inspite <strong>of</strong> several studies<br />

from fresh-water environs <strong>of</strong> India, there is still<br />

little information on the ecology and role <strong>of</strong><br />

zooplankton in the aquatic productivity <strong>of</strong> the<br />

Indian floodplain lakes (Sharma & Sharma 2008).<br />

Studies <strong>of</strong> zooplankton ecology from the floodplains<br />

<strong>of</strong> North-eastern India have so far been<br />

restricted to the reports <strong>of</strong> Sharma & Hussain<br />

(2001) and Sharma & Sharma (2008); in addition,<br />

Sharma & Sharma (2001, 2005) and Sharma<br />

(2005, 2009a, 2009b) dealt with Rotifera diversity.<br />

Thus, in view <strong>of</strong> the paucity <strong>of</strong> works from<br />

India, the present study <strong>of</strong> zooplankton <strong>communities</strong><br />

<strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong>, a <strong>Ramsar</strong> Site and an important<br />

floodplain lake <strong>of</strong> the Brahmaputra river<br />

basin <strong>of</strong> <strong>Assam</strong>, assumes special importance. This<br />

report presents information on zooplankton richness,<br />

community similarities and abundance, and<br />

the constituent zooplankton groups at two sampling<br />

stations. Analysis includes the temporal<br />

variation <strong>of</strong> species diversity, dominant groups,<br />

and the influence <strong>of</strong> seventeen abiotic parameters<br />

on zooplankton richness and abundance.<br />

Materials and methods<br />

Limnological investigations were undertaken<br />

during November 2002 - October 2003 in <strong>Deepor</strong><br />

<strong>Beel</strong> (longitude: 91º 35′ - 91º 43′ E, latitude: 26º 05′


SHARMA 295<br />

Fig. 1. A-Map <strong>of</strong> India indicating location <strong>of</strong> <strong>Assam</strong> state and map <strong>of</strong> <strong>Assam</strong> indicating location <strong>of</strong> <strong>Deepor</strong> beel;<br />

B- Map <strong>of</strong> <strong>Deepor</strong> beel indicating the sampling stations I and II.<br />

Table 1. Abiotic factors studied at <strong>Deepor</strong> <strong>Beel</strong><br />

(Nov 02 - Oct 03) (Mean ± SD).<br />

Factors Station I Station II<br />

Rainfall (mm) 204.5 ± 160.4 204.5 ± 160.4<br />

Water temperature ( 0C) 27.2 ± 4.6 27.4 ± 5.1<br />

pH 6.89 ± 0.18 6.93 ± 0.21<br />

Transparency (cm) 51.9 ± 26.2 52.7 ± 25.3<br />

Specific Conductivity<br />

(µS cm-1 )<br />

99.2 ± 13.2 96.8 ± 15.5<br />

Dissolved oxygen (mg l-1 ) 6.7 ± 1.6 7.0 ± 1.1<br />

Free CO2 (mg l-1 ) 7.2 ± 2.1 6.8 ± 1.9<br />

Alkalinity (mg l-1 ) 66.3 ± 12.1 68.9 ± 10.3<br />

Hardness (mg l-1 ) 62.1 ± 9.9 61.2 ± 12.3<br />

Chloride (mg l-1 ) 34.6 ± 5.2 35.1 ± 5.0<br />

Phosphate (mg l-1 ) 0.18 ± 0.07 0.19 ± 0.10<br />

Sulphate (mg l-1 ) 10.2 ± 3.2 9.9 ± 3.4<br />

Nitrate (mg l-1 ) 0.72 ± 0.12 0.74 ± 0.14<br />

Silicate (mg l-1 ) 3.02± 1.02 3.10 ± 1.27<br />

B.O.D5 (mg l-1 ) 3.11 ± 0.59 3.21 ± 0.46<br />

Dissolved organic<br />

matter (mg l-1 )<br />

3.84 ± 0.80 3.90 ± 0.64<br />

Total dissolved solids (mg l-1) 2.37 ± 0.29 2.57 ± 0.30<br />

- 26º 11′ N; area: 40 km 2 ; altitude: 42 m above sea<br />

level) in the Kamrup district <strong>of</strong> lower <strong>Assam</strong>, N. E.<br />

India (Fig. 1 A & B). Various aquatic macrophytes,<br />

namely Hydrilla verticellata, Eichhornia crassipes,<br />

Vallisnaria spiralis, Utricularia flexuosa, Trapa<br />

bispinosa, Euryale ferox, Najas indica, Monochoria<br />

hastaefolia, Ipomoea fistulosa, Hygroryza aristata,<br />

Polygonum hydropiper, and Limnophila sp., cover<br />

this floodplain lake.<br />

Due to local constraints, the observations for<br />

this study were limited (November 2002 - October<br />

2003) to two sampling stations (I and II). The<br />

sampled <strong>site</strong>s were characterized by common<br />

occurrence <strong>of</strong> H. verticellata, E. crassipes, U. flexuosa,<br />

T. bispinosa, E. ferox, N. indica, and P. hydropiper.<br />

Station II, however, differed from the former<br />

in occasional (temporal) lack <strong>of</strong> the rest <strong>of</strong> the<br />

observed macrophyte species, namely V. spiralis,<br />

M. hastaefolia, I. fistulosa, H. aristata, and<br />

Limnophila sp.. Though there is no <strong>of</strong>ficial monitoring<br />

<strong>of</strong> water table <strong>of</strong> this floodplain lake, general<br />

minimum and maximum water levels were observed<br />

in <strong>Deepor</strong> beel during April 2003 and August


296 ZOOPLANKTON COMMUNITIES OF DEEPOR BEEL<br />

Table 2. Temporal variation <strong>of</strong> zooplankton at <strong>Deepor</strong> <strong>Beel</strong> (Nov 02 - Oct 03) (Range, Mean ± SD).<br />

Qualitative Station I Station II<br />

<strong>Zooplankton</strong> Total richness<br />

Monthly richness<br />

Community similarity (%)<br />

Rotifera Total richness<br />

Monthly richness<br />

Cladocera Total richness<br />

Monthly richness<br />

Quantitative<br />

171 species<br />

68 - 112 96 ± 11<br />

48.9 - 88.1<br />

110 species<br />

43 - 65 56 ± 6<br />

45 species<br />

17 - 41 29 ± 6<br />

160 species<br />

68 - 113 97 ± 13<br />

53.1 - 89.7<br />

100 species<br />

38 - 60 52 ± 7<br />

43 species<br />

20 - 41 32 ± 6<br />

Net Plankton (n l -1 ) 708 - 961 812 ± 80 696 - 1058 801 ± 123<br />

<strong>Zooplankton</strong> (n l-1 )<br />

Percentage<br />

Species Diversity<br />

Different Groups<br />

Rotifera (n l-1 )<br />

Percentage<br />

Cladocera (n l-1 )<br />

Percentage<br />

Copepoda (n l-1 )<br />

Percentage<br />

239 - 657 475 ± 114<br />

33.2 - 68.4 57.9 ± 9.0<br />

3.548 - 4.229 3.991 ± 0.181<br />

105 - 318 231 ± 60<br />

42.8 - 65.2 48.7 ± 6.1<br />

43 - 252 142 ± 59<br />

14.6 - 38.3 28.7 ± 7.0<br />

49 - 95 66 ± 17<br />

7.6 - 31.4 15.1 ± 6.5<br />

255 - 687 459 ± 128<br />

35.4 - 66.9 56.5 ± 8.8<br />

3.529 - 4.219 3.973 ± 0.193<br />

106 - 325 198 ± 70<br />

37.9 - 49.6 42.5 ± 4.1<br />

56 - 233 142 ± 48<br />

22.0 - 37.6 30.6 ± 4.9<br />

66 - 101 81 ± 13<br />

11.9 - 29.-0 18.7 ± 4.9<br />

Rhizopoda (n l-1 ) 7 - 41 29 ± 14 5 - 66 35 ± 18<br />

Ostracoda (n l-1 ) 2 - 10 6 ± 3 2 - 10 5 ± 2<br />

Conchostraca (n l-1 ) 0 - 4 0 - 2<br />

2003, respectively; the water levels were identical<br />

at both the stations. Further, the two sampling<br />

stations experienced similar inputs <strong>of</strong> rainwater<br />

and floods.<br />

Water samples were collected monthly from<br />

the selected sampling <strong>site</strong>s and were analyzed for<br />

the following abiotic factors: water temperature,<br />

rainfall, pH, transparency, specific conductivity,<br />

dissolved oxygen, free CO2, alkalinity, hardness,<br />

chloride, phosphate, sulphate, nitrate, silicate,<br />

BOD5, dissolved organic matter, and total dissolved<br />

solids. Water temperature, specific conductivity,<br />

and pH were recorded through field probes, transparency<br />

was noted with a Secchi disc, dissolved<br />

oxygen was estimated by Winkler’s method, and<br />

the other parameters were analyzed following<br />

APHA (1992). Three qualitative (by towing) and<br />

quantitative plankton (by filtering 25 l water each)<br />

samples were collected monthly at each station<br />

using a nylobolt plankton net (No. 25). <strong>Zooplankton</strong><br />

samples were preserved in 5 % formalin,<br />

screened, and then identified following Koste<br />

(1978), Michael & Sharma (1988), Sharma (1998)<br />

and Sharma & Sharma (1999a, 1999b, 2000, 2008).<br />

Quantitative samples were analyzed for abundance<br />

<strong>of</strong> net plankton (phyto- and zooplankton),<br />

zooplankton, and zooplankton constituent groups.<br />

Community similarity (Sorensen’s index) and species<br />

diversity (Shannon’s index) were calculated following<br />

Ludwig & Reynolds (1988) and Magurran<br />

(1988). ANOVA was used to analyse the significance<br />

<strong>of</strong> temporal variation <strong>of</strong> the biotic <strong>communities</strong>.<br />

Simple correlation coefficients (r1 and r2,<br />

respectively for stations I and II) were calculated<br />

between all abiotic and biotic parameters.<br />

Results and discussion<br />

Water samples analyzed from <strong>Deepor</strong> <strong>Beel</strong> are<br />

characterized by low ionic concentrations (Table 1)<br />

and, thus, warrant the inclusion <strong>of</strong> this <strong>Ramsar</strong><br />

<strong>site</strong> under the ‘Class I’ category <strong>of</strong> trophic classification<br />

following Talling & Talling (1965). Mean<br />

water temperature confirms the tropical range<br />

concurrent with the lake’s geographical location.<br />

The nearly neutral and marginally hard waters <strong>of</strong><br />

this floodplain lake show moderate values for<br />

dissolved oxygen, low free CO2, and low concen-


Fig. 2. Monthly variations in zooplankton richness<br />

<strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong> (Nov 02 - Oct 03).<br />

tration <strong>of</strong> micronutrients. In general, the ranges <strong>of</strong><br />

most abiotic factors show insignificant differences<br />

at the two stations and broadly agree with earlier<br />

reports from other floodplain lakes <strong>of</strong> <strong>Assam</strong><br />

(Sharma & Sharma 2001, 2008; Sharma 2005).<br />

Plankton samples from <strong>Deepor</strong> <strong>Beel</strong> show<br />

(Table 2) the existence <strong>of</strong> a speciose and diverse<br />

zooplankton biocoenosis (171 species) and, thus,<br />

reflect the overall environmental heterogeneity<br />

and habitat diversity <strong>of</strong> this <strong>Ramsar</strong> <strong>site</strong>. Total<br />

zooplankton richness (171 species), the second<br />

highest known from any floodplain lake or individual<br />

aquatic ecosystem in India, follows that <strong>of</strong><br />

212 species for Loktak Lake (Sharma 2009a & b) -<br />

another important <strong>Ramsar</strong> <strong>site</strong> and floodplain lake<br />

located in N. E. India. Richness in <strong>Deepor</strong> <strong>Beel</strong> is,<br />

however, distinctly more than that reported from<br />

several other floodplain lakes <strong>of</strong> India: 51 species<br />

from Trigamasar and Naranbagh lakes (Khan<br />

1987), and 26 species from Mirgund Wetland<br />

(Yousuf et al. 1986) <strong>of</strong> Kashmir; 19 (Baruah et al.<br />

1993) and 31 species (Sanjer & Sharma 1995) from<br />

Kawar Lake, Bihar; 49 species from Samuajan<br />

<strong>Beel</strong>, Upper <strong>Assam</strong> (Sharma & Hussain 2001); and<br />

71 species from Beri Gopalpur and Sosadanga,<br />

West Bengal (Khan 2003). Though <strong>Deepor</strong> <strong>Beel</strong> is<br />

in fact more species rich, the differences between<br />

this study and other studies may result also from<br />

incomplete species inventories, inadequate sampling,<br />

and overlooking identification <strong>of</strong> smaller<br />

species. Nevertheless, a comparison with the zooplankton<br />

species richness reported by the author<br />

in Sharma & Sharma (2008) (which used similar<br />

SHARMA 297<br />

methodology) from 15 other floodplain lakes <strong>of</strong> the<br />

Brahmaputra river basin <strong>of</strong> <strong>Assam</strong> (102 - 156 species)<br />

underlines the relatively high species diversity<br />

<strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong>.<br />

As in the findings <strong>of</strong> Sharma & Sharma (2008)<br />

and Sharma (2009a), zooplankton forms the dominant<br />

qualitative component (phytoplankton + zooplankton<br />

= 230 species) <strong>of</strong> the net plankton in<br />

<strong>Deepor</strong> <strong>Beel</strong>. These results, in turn, differ from the<br />

higher phytoplankton richness reported in certain<br />

other floodplain lakes from Bihar (Baruah et al.<br />

1993; Sinha et al. 1994) and <strong>Assam</strong> (Sharma &<br />

Hussain 2001). Rotifera (110 species) and Cladocera<br />

(45 species) contribute the most to zooplankton<br />

richness. The micro-faunal diversity <strong>of</strong> these two<br />

groups in <strong>Deepor</strong> <strong>Beel</strong>, as well as their nature and<br />

composition, were discussed in Sharma & Sharma<br />

(2005, 2008).<br />

<strong>Zooplankton</strong> richness in <strong>Deepor</strong> <strong>Beel</strong> shows<br />

little annual variation between station I (171<br />

species) and station II (160 species). Comparisons<br />

between sampling stations indicate broadly similar<br />

monthly ranges, mean values, and standard deviations<br />

<strong>of</strong> zooplankton richness (68 - 112, 96 ± 11<br />

species; 68 - 115, 97 ± 13 species). On the other hand,<br />

significant monthly variation (F11, 23 = 23.966, P <<br />

0.005) occurred in zooplankton composition. This<br />

statement holds valid for the present stations and<br />

may not reflect the general environmental heterogeneity<br />

<strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong> unless ascertained by analysis<br />

<strong>of</strong> collections from other parts <strong>of</strong> this <strong>Ramsar</strong><br />

<strong>site</strong>. Richness (Fig. 2) oscillates with annual<br />

frequency with winter peaks in February (station<br />

I) or December (station II) and minima in summer<br />

(April). While the peaks concur with luxuriant<br />

winter growth <strong>of</strong> aquatic macrophytes, the latter<br />

coincides with the lowest water level. Lack <strong>of</strong><br />

information on the seasonal variation in zooplankton<br />

richness in other Indian floodplain lakes prohibits<br />

comparison <strong>of</strong> this study with other areas, but<br />

winter peaks concur with the author’s observations<br />

in Loktak Lake (Sharma unpublished).<br />

Rotifera species (56 ± 6, 52 ± 7 species) form the<br />

main qualitative component <strong>of</strong> zooplankton at both<br />

stations and exert the dominant influence on zooplankton<br />

temporal variation (monthly zooplankton<br />

richness and Rotifera richness, r1 = 0.969, r2 =<br />

0.918). Additionally, Cladocera (34 ± 6, 38 ± 6<br />

species) contributes significantly to the zooplankton<br />

richness (r1 = 0.923, r2 = 0.966). The qualitative<br />

importance <strong>of</strong> Rotifera in <strong>Deepor</strong> <strong>Beel</strong> agrees with<br />

that reported for several other floodplain lakes<br />

(Khan 2002, 2003; Sharma 2000, 2005, 2009a, b;<br />

Sharma & Sharma 2001, 2008).


298 ZOOPLANKTON COMMUNITIES OF DEEPOR BEEL<br />

Table 3. <strong>Zooplankton</strong> community similarities (%) at station I (Nov 02 - Oct 03).<br />

Nov Dec Jan Feb March Apr May June July Aug Sep Oct<br />

Nov - 66.7 73.0 88.1 80.7 51.0 85.7 65.5 78.0 73.4 76.4 74.1<br />

Dec - 76.2 74.6 66.7 66.7 60.7 69.0 67.8 77.2 69.1 66.7<br />

Jan - 77.4 76.7 59.3 71.2 72.1 77.4 76.7 75.9 66.7<br />

Feb - 85.7 56.0 80.0 63.2 82.8 82.1 81.5 79.2<br />

March - 62.5 64.1 61.8 75.0 66.7 76.9 70.6<br />

April - 55.3 65.3 56.0 58.3 65.2 48.9<br />

May - 66.7 72.7 71.7 70.6 68.0<br />

June - 63.2 69.1 60.4 61.5<br />

July - 85.7 74.1 75.5<br />

Aug - 73.1 74.5<br />

Sept - 57.1<br />

Oct -<br />

Table 4. <strong>Zooplankton</strong> community similarities (%) at station II (Nov 02 - Oct 03).<br />

Nov Dec Jan Feb March Apr May June July Aug Sep Oct<br />

Nov - 71.9 71.0 75.4 76.7 63.0 70.0 67.8 71.2 76.2 76.7 74.6<br />

Dec - 89.7 73.7 60.7 56.0 64.3 65.4 69.1 78.0 82.1 72.7<br />

Jan - 80.0 70.4 62.5 63.0 71.7 71.7 77.2 77.9 75.5<br />

Feb - 75.5 68.1 71.7 65.4 80.8 71.4 79.2 84.6<br />

March - 73.9 76.9 70.6 74.5 58.2 73.1 74.5<br />

April - 69.6 66.7 66.7 53.1 65.2 66.7<br />

May - 70.6 66.7 65.4 69.2 66.7<br />

June - 76.0 70.4 72,7 60.0<br />

July - 66.7 70.6 72.0<br />

Aug - 69.1 70.4<br />

Sept - 78.4<br />

Oct -<br />

At both stations, zooplankton richness is negatively<br />

correlated with water temperature (r1 =<br />

- 0.705, r2 = -0.776) and rainfall (r1 = -0.523, r2 =<br />

- 0.654) but positively correlated with specific conductivity<br />

(r1 = 0.497, r2 = 0.647) and dissolved<br />

oxygen (r1 = 0.501, r2 = 0.764). Richness is also<br />

positively correlated with transparency (r2 = 0.650),<br />

alkalinity (r2 = 0.608), and hardness (r2 = 0.632) at<br />

station II.<br />

At stations I and II respectively, this study<br />

found 48.9 - 88.1 % and 53.1 - 89.7 % similarity in<br />

zooplankton community across monthly samples<br />

(Tables 3 & 4). Further, 34.8 and 33.3 % instances<br />

in the matrices indicate 60 - 70 % similarity and an<br />

additional 40.9 and 54.5 % <strong>of</strong> instances at the two<br />

stations respectively indicate 70 - 80 % similarity.<br />

In summary, the majority (75 - 88 %) <strong>of</strong> instances<br />

show 60 - 80 % similarity. This generally high level<br />

<strong>of</strong> similarity suggests limited monthly variations<br />

in species composition contrasted by lower simila-<br />

rities, due to decreased species richness, during the<br />

four month summer period (March - June). At<br />

stations I and II, respectively, peak similarity values<br />

occurred between November - February and December<br />

- February and minima were recorded in April-<br />

October and April - August. <strong>Zooplankton</strong> composition<br />

shows closeness between November - February and<br />

July - August at station I and between December-<br />

January and February - October at station II. At<br />

both stations, and apparently due to the fewer<br />

number <strong>of</strong> species present in April, the samples<br />

collected in April exhibit the greatest divergence in<br />

their composition.<br />

<strong>Zooplankton</strong> (239 - 657, 475 ± 114 n l -1 and 255<br />

- 687, 459 ± 128 n l -1 ) forms the main quantitative<br />

component <strong>of</strong> net plankton <strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong> (33.2 -<br />

68.4, 57.9 ± 9.0 % 35.4 - 66.9, 56.5 ± 8.8 %, at the<br />

two stations respectively), thus, significantly<br />

contributing to net planktons’ temporal variation<br />

(monthly net plankton abundance and zooplankton


Fig. 3. Monthly variations <strong>of</strong> zooplankton abundance<br />

<strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong> (Nov 02 - Oct 03).<br />

Fig. 4. Monthly variations <strong>of</strong> zooplankton species<br />

diversity <strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong> (Nov 02 - Oct 03).<br />

abundance, r1 = 0.906, r2 = 0.919). The lowest<br />

percentage composition was recorded in April. At<br />

both stations, in the six months <strong>of</strong> November<br />

through February and July through August,<br />

zooplankton contributed more than 60.0 % <strong>of</strong> the<br />

net plankton abundance.<br />

In general, quantitative dominance <strong>of</strong> zooplankton<br />

agrees with earlier reports from <strong>Assam</strong><br />

(Sharma & Hussain 2001). However, such patterns<br />

SHARMA 299<br />

contrast with the higher phytoplankton abundance<br />

noticed in some floodplain lakes and wetlands <strong>of</strong><br />

Kashmir (Kaul & Pandit 1982), Bihar (Baruah et<br />

al. 1993; Rai & Dutta-Munshi 1982; Sanjer &<br />

Sharma 1995), and West Bengal (Sugunan 1989;<br />

Vass 1989). Generally, zooplankton abundance <strong>of</strong><br />

<strong>Deepor</strong> <strong>Beel</strong> is higher than that reported from<br />

Kawar wetland <strong>of</strong> Bihar (Baruah et al. 1993) and<br />

certain beels <strong>of</strong> <strong>Assam</strong> (Sharma & Hussain 2001;<br />

Sharma & Sharma 2008). On the other hand,<br />

abundance is lower than that reported from<br />

various floodplain lakes <strong>of</strong> Bihar (Rai & Dutta -<br />

Munshi 1982; Sanjer & Sharma 1995), Kashmir<br />

(Khan 1987) and West Bengal (Khan 2002;<br />

Sugunan 1989; Vaas 1989).<br />

At both stations, zooplankton abundance (Fig. 3)<br />

oscillates with annual frequency with a rather<br />

halting general increase to winter peaks in December<br />

at station I and January at station II. Density<br />

registers significant monthly variation (F11, 23 =<br />

24.386, P < 0.005) but insignificant variation<br />

between stations. This study shows no definite<br />

seasonal periodicity other than higher winter densities.<br />

The high winter densities at both stations<br />

reflect a significant negative correlation <strong>of</strong> zooplankton<br />

abundance with water temperature (r1 =<br />

- 0.782, r2 = -0.876). Abundance at both stations is<br />

also negatively correlated with rainfall (r1 = -0.573,<br />

r2 = -0.647) and positively correlated with dissolved<br />

oxygen (r1 = 0.662, r2 = 0.712), transparency (r1 =<br />

0.609, r2 = 0.605), and specific conductivity (r1 =<br />

0.474, r2 = 0.640). In addition at station II, abundance<br />

is negatively correlated with free CO2 (r2 =<br />

-0.470) and positively correlated with alkalinity (r2<br />

= 0.545) and hardness (r2 = 0.598). At both<br />

stations, zooplankton abundance is also positively<br />

correlated with its richness (r1 = 0.863, r2 = 0.889).<br />

<strong>Zooplankton</strong> <strong>communities</strong> <strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong> are<br />

characterized by higher species diversity (3.548 -<br />

4.238, 3.991 ± 0.181 and 3.529 - 4.219, 3.973 ±<br />

0.192) than other beels <strong>of</strong> <strong>Assam</strong> (Sharma &<br />

Sharma 2008) and, at both stations, show broadly<br />

identical values. The zooplankton community<br />

shows significant monthly variation (F11, 23 =<br />

15.185, P < 0.005) but insignificant variation<br />

between stations. In general, at station I, relatively<br />

high diversities (more than 4.0) are observed<br />

in January through February and July through<br />

October and, at station II, from January through<br />

March and July through December. <strong>Zooplankton</strong><br />

diversity follows oscillating annual patterns at both<br />

stations, peaking in July at station I and October<br />

at station II. Both have April minima (Fig. 4).


300 ZOOPLANKTON COMMUNITIES OF DEEPOR BEEL<br />

Fig. 5. Monthly variations <strong>of</strong> zooplankton groups’<br />

abundance <strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong> (Nov 02 - Oct 03) at<br />

station I.<br />

Fig. 6. Monthly variations <strong>of</strong> zooplankton groups’<br />

abundance <strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong> (Nov 02 - Oct 03) at<br />

station II.<br />

The high species diversity <strong>of</strong> zooplankton in<br />

<strong>Deepor</strong> beel, characterized by low densities <strong>of</strong><br />

majority <strong>of</strong> species <strong>of</strong> different groups, may be<br />

ascribed to fine niche partitioning amongst species<br />

in combination with high micro- and macro-scale<br />

habitat heterogeneity in this <strong>Ramsar</strong> <strong>site</strong> with a<br />

well developed littoral pr<strong>of</strong>ile and occurrence <strong>of</strong><br />

various macrophytes as hypothesized by Segers<br />

(2008). This interesting feature (mainly influenced<br />

by higher Rotifera diversity) also concurs with the<br />

results <strong>of</strong> Dumont & Segers (1996) in a tropical<br />

lake with developed weedy littoral. At both stations,<br />

zooplankton species diversity is positively<br />

correlated with richness <strong>of</strong> zooplankton (r1 = 0.656,<br />

r2 = 0.610), Rotifera (r1 = 0.571, r2 = 0.623) and<br />

Cladocera (r1 = 0.590, r2 = 0.575) and, at station I, is<br />

significantly correlated with zooplankton abundance<br />

(r1 = 0.467).<br />

At both stations, Rotifera (231 ± 60 and 198 ± 90<br />

n l -1 ) constitute the dominant quantitative group<br />

(48.7 ± 6.1 % and 42.5 ± 4.1 %) <strong>of</strong> zooplankton, thus,<br />

significantly contributing to the overall temporal<br />

variation (r1 = 0.896, r2 = 0.970). At both stations<br />

and in accordance with the results <strong>of</strong> Khan (1987),<br />

Sanjer & Sharma (1995), Sharma & Sharma (2001,<br />

2008) and Sharma (2005, 2009a), rotifers reveal<br />

(Figs. 5 & 6) an oscillating annual periodicity with<br />

January (winter) peaks. Throughout the study<br />

period and at both <strong>site</strong>s, species <strong>of</strong> Brachionidae<br />

and Lecanidae, in the stated order, constitute the<br />

major components <strong>of</strong> rotifer diversity. In contrast<br />

to Sharma (1992), no definite seasonal periodicity<br />

<strong>of</strong> abundance <strong>of</strong> loricate or illoricate rotifers was<br />

found. Furthermore, only a few rotifer species<br />

seem to be <strong>of</strong> relative quantitative importance but<br />

no individual species shows any distinct dominant<br />

role.<br />

Cladocera forms a second important group (142<br />

± 59 and 142 ± 48 n l -1 ), comprising 28.7 ± 7.0 % and<br />

30.6 ± 4.9 % <strong>of</strong> general abundance, and considerably<br />

influencing zooplankton temporal<br />

variation (monthly zooplankton abundance and<br />

Cladocera abundance). At both stations respectively,<br />

Cladoceran density oscillates with annual<br />

frequency and shows (Figs. 5 & 6) peaks in winter<br />

(January and December) and minima during April<br />

(summer). Their abundance is higher than that<br />

reported in the floodplain lakes <strong>of</strong> Kashmir (Khan<br />

1987), Bihar (Baruah et al. 1993; Sinha et al.<br />

1994), and <strong>Assam</strong> (Sharma & Hussain 2001;<br />

Sharma & Sharma 2008). Cladocera abundance is<br />

largely influenced by species <strong>of</strong> Chydoridae and<br />

Daphniidae. As with Rotifera, only a few cladoceran<br />

species show relatively high individual<br />

densities but no individual species shows any<br />

distinct dominant role.<br />

At the two stations respectively, Copepoda<br />

abundance ranges between 66 ± 17 n l -1 and 81<br />

± 13 n l -1 comprising 15.1 ± 6.5 % and 18.7 ± 4.9 %<br />

<strong>of</strong> zooplankton. Copepoda abundance oscillates<br />

with annual frequency peaking in May (station<br />

I) and February and September (station II)


with minima in October (both stations) (Figs. 5 &<br />

6). The sub-dominant role <strong>of</strong> Copepoda in this<br />

study contradicts their dominant role reported<br />

earlier in certain floodplain lakes <strong>of</strong> Bihar (Baruah<br />

et al. 1993), <strong>Assam</strong> (Sharma & Hussain 2001), and<br />

West Bengal (Khan 2003). At both stations,<br />

cyclopoids play a dominant role and nauplii occur<br />

throughout the whole study period indicating an<br />

active reproductive phase <strong>of</strong> this group. Another<br />

sub-dominant group is Rhizopoda; at stations I<br />

and II, abundances range respectively, between 29<br />

± 14 n l -1 and 35 ± 18 n l -1 (Figs. 5 & 6) and<br />

comprise 5.9 ± 2.2 % and 7.3 ± 18 % <strong>of</strong> zooplankton<br />

peaking in September at both stations. Other<br />

zooplankton groups such as Ostracoda and Conchostraca<br />

have very poor abundance.<br />

The paucity <strong>of</strong> detailed analysis <strong>of</strong> zooplankton<br />

in the Indian floodplain lakes highlights the<br />

importance <strong>of</strong> this study, which, in turn, indicates<br />

the distinctly rich and diverse nature <strong>of</strong> zooplankton<br />

biocoenosis <strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong>, the speciose<br />

character <strong>of</strong> Rotifera and Cladocera, and the qualitative<br />

and quantitative predominance <strong>of</strong> zooplankton<br />

in net plankton <strong>communities</strong>. <strong>Zooplankton</strong><br />

richness and abundance show winter peaks<br />

that occur simultaneously with lower water<br />

temperature. The lack <strong>of</strong> clear temporal patterns,<br />

the different monthly trends, and certain other<br />

variations noticed at the two sampling stations<br />

need further confirmation. The present results<br />

may not reflect holistic environmental heterogeneity<br />

<strong>of</strong> this <strong>Ramsar</strong> <strong>site</strong> unless extended to<br />

more sampling stations with particular reference<br />

to variations in the macrophyte associations. In<br />

view <strong>of</strong> the existing lacunae, investigations have<br />

since been initiated by the author.<br />

Conclusions<br />

<strong>Zooplankton</strong> comprises an important quantitative<br />

component <strong>of</strong> net plankton, showing a<br />

diverse and speciose character, with a rich faunal<br />

diversity and the quantitative dominance <strong>of</strong> Rotifera<br />

and Cladocera. In general, richness or abundance<br />

<strong>of</strong> zooplankton or its constituent groups is<br />

found to oscillate with annual frequency but more<br />

observations may be required to corroborate this<br />

conclusively. Results show high species diversity<br />

with relatively low densities and equitable abundance<br />

for the majority <strong>of</strong> species. Individual abiotic<br />

factors have a limited influence on zooplankton<br />

richness and abundance. The present results provide<br />

useful information on zooplankton diversity<br />

particularly in view <strong>of</strong> the paucity <strong>of</strong> a detailed<br />

SHARMA 301<br />

community analysis in the Indian floodplain lakes.<br />

In order to acquire better understanding <strong>of</strong> holistic<br />

environmental heterogeneity <strong>of</strong> this <strong>Ramsar</strong> <strong>site</strong>,<br />

investigations, however, need to be extended to<br />

more sampling stations with particular reference<br />

to variations in the macrophyte associations.<br />

Acknowledgements<br />

This study is undertaken partly under the<br />

“Potential for Excellence Program (Focus Area:<br />

Biosciences) <strong>of</strong> North-Eastern Hill University,<br />

Shillong. The author is thankful to the G. B. Pant<br />

Institute <strong>of</strong> Himalayan Environmental Development,<br />

Almora, for a research grant during which<br />

this study was initiated. The author is grateful to<br />

Dr. (Mrs.) Sumita Sharma, North Eastern Regional<br />

Centre, Zoological Survey <strong>of</strong> India, Shillong, for<br />

her useful comments. Thanks are also due to the<br />

Head <strong>of</strong> the Department <strong>of</strong> Zoology, North-Eastern<br />

Hill University, Shillong, for the necessary laboratory<br />

facilities. Finally, the author wishes to thank<br />

an anonymous reviewer for critical comments and<br />

constructive suggestions.<br />

References<br />

A. P. H. A. 1992. Standard Methods for the Examination<br />

<strong>of</strong> Water and Wastewater. 18th edn. American<br />

Public Health Association, Washington D. C.<br />

Baruah, A., A. K. Sinha & U. P. Sharma. 1993. Plankton<br />

variability <strong>of</strong> a tropical wetland, Kawar (Begusarai),<br />

Bihar. Journal <strong>of</strong> Freshwater Biology 5: 27-<br />

32.<br />

Dumont, H. J. & H. Segers. 1996. Estimating lacustrine<br />

zooplankton species and complementarity. Hydrobiologia<br />

341: 125-132.<br />

Kaul, V. & A. K. Pandit. 1982. Biotic factors and food<br />

chain structure in some typical wetlands <strong>of</strong> Kashmir.<br />

Pollution Research 1: 49-54.<br />

Khan, M. A. 1987. Observations on zooplankton composition,<br />

abundance and periodicity in two flood-<br />

plain lakes <strong>of</strong> the Kashmir Himalayan valley. Acta<br />

Hydrochemica Hydrobiologica 15: 167-174.<br />

Khan, R. A. 2002. The ecology and faunal diversity <strong>of</strong><br />

two floodplain Ox-bow lakes <strong>of</strong> South-Eastern West<br />

Bengal. Records <strong>of</strong> the Zoological Survey <strong>of</strong> India,<br />

Occasional Paper No. 195: 1-57.<br />

Khan, R. A. 2003. Faunal diversity <strong>of</strong> zooplankton in<br />

freshwater wetlands <strong>of</strong> Southeastern West Bengal.<br />

Records <strong>of</strong> the Zoological Survey <strong>of</strong> India, Occasional<br />

Paper No. 204: 1-107.<br />

Koste, W. 1978. ROTATORIA. Die Rädertiere Mitteleuropas,<br />

begründet von Max Voigt. Überordnung


302 ZOOPLANKTON COMMUNITIES OF DEEPOR BEEL<br />

Monogononta. Gebrüder Borntraeger, Berlin, Stuttgart.<br />

Ludwig, J. A. & J. F. Reynolds. 1988. Statistical Ecology:<br />

a Primer on Methods and Computing. John Wiley &<br />

Sons, New York.<br />

Magurran, A. E. 1988. Ecological Diversity and its Measurement.<br />

Croom Helm Limited, London.<br />

Michael, R. G. & B. K. Sharma. 1988. Indian Cladocera<br />

(Crustacea: Branchiopoda: Cladocera). Fauna <strong>of</strong><br />

India and Adjacent Countries Series. Zoological<br />

Survey <strong>of</strong> India, Calcutta.<br />

Rai, D. N. & J. M. Dutta-Munshi. 1982. Ecological characteristics<br />

<strong>of</strong> `Chaurs’ <strong>of</strong> North Bihar. pp. 89-95.<br />

In: B. Gopal, R. E. Turner, R. G. Wetzel & D. F.<br />

Winghon (eds.) Wetlands - Ecology and Management.<br />

Vol. II. International Scientific Publications<br />

and National Institute <strong>of</strong> Ecology, Jaipur, India.<br />

Sanjer, L. R. & U. P. Sharma. 1995. Community structure<br />

<strong>of</strong> plankton in Kawar lake wetland, Begusarai,<br />

Bihar: II. <strong>Zooplankton</strong>. Journal <strong>of</strong> Freshwater Biology<br />

7: 165-167.<br />

Segers, H. 2008. Global diversity <strong>of</strong> rotifers (Rotifera) in<br />

freshwater. Hydrobiologia 595: 49-59.<br />

Sharma, B. K. 1992. Systematics, distribution and ecology<br />

<strong>of</strong> freshwater rotifera in West Bengal. pp. 231 -<br />

273. In: S. R. Mishra & D. N. Saksena (eds.) Recent<br />

Advances in Aquatic Ecology. Ashish Publishing<br />

House, New Delhi.<br />

Sharma, B. K. 1998. Freshwater rotifers (Rotifera:<br />

Eurotatoria). Fauna <strong>of</strong> West Bengal State Fauna<br />

Series 3: 341-461. Zoological Survey <strong>of</strong> India, Calcutta.<br />

Sharma, B. K. 2000. Synecology <strong>of</strong> rotifers in a tropical<br />

floodplain lake <strong>of</strong> Upper <strong>Assam</strong> (N. E. India). The<br />

Indian Journal <strong>of</strong> Animal Sciences 70: 880-885.<br />

Sharma, B. K. 2005. Rotifer <strong>communities</strong> <strong>of</strong> floodplain<br />

lakes <strong>of</strong> the Brahmaputra basin <strong>of</strong> lower <strong>Assam</strong> (N.<br />

E. India): biodiversity, distribution and ecology.<br />

Hydrobiologia 533: 209-221.<br />

Sharma, B. K. 2009a. Diversity <strong>of</strong> rotifers (Rotifera,<br />

Eurotatoria) <strong>of</strong> Loktak Lake, Manipur, North eastern<br />

India. Tropical Ecology 50: 277-285.<br />

Sharma, B. K. 2009b. Rotifer <strong>communities</strong> <strong>of</strong> floodplain<br />

lakes <strong>of</strong> Manipur (N. E. India): biodiversity, distribution<br />

and ecology. Journal <strong>of</strong> the Bombay Natural<br />

History Society 106: 45-56.<br />

Sharma, B. K. & Md. Hussain. 2001. Abundance and<br />

ecology <strong>of</strong> zooplankton in a tropical floodplain lake,<br />

<strong>Assam</strong> (N. E. India). Ecology, Environment &<br />

Conservation 7: 397-403.<br />

Sharma, B. K. & S. Sharma. 1999a. Freshwater<br />

Rotifers (Rotifera : Eurotatoria). State Fauna Series:<br />

Fauna <strong>of</strong> Meghalaya 4: 11-161. Zoological Survey <strong>of</strong><br />

India, Calcutta.<br />

Sharma, B. K. & S. Sharma. 1999b. Freshwater Cladocerans<br />

(Crustacea: Branchiopoda: Cladocera). State<br />

Fauna Series: Fauna <strong>of</strong> Meghalaya 4: 469-550.<br />

Zoological Survey <strong>of</strong> India, Calcutta.<br />

Sharma, B. K. & S. Sharma. 2000. Freshwater Rotifers<br />

(Rotifera: Eurotatoria). State Fauna Series: Fauna<br />

<strong>of</strong> Tripura 7: 163-224. Zoological Survey <strong>of</strong> India,<br />

Calcutta.<br />

Sharma, B. K. & S. Sharma. 2001. Biodiversity <strong>of</strong> Rotifera<br />

in some tropical floodplain lakes <strong>of</strong> the Brahmaputra<br />

river basin, <strong>Assam</strong> (N. E. India). Hydrobiologia<br />

446 / 447: 305-313.<br />

Sharma, B. K. & S. Sharma. 2005. Faunal diversity <strong>of</strong><br />

Rotifers (Rotifera: Eurotatoria) <strong>of</strong> <strong>Deepor</strong> <strong>Beel</strong>,<br />

<strong>Assam</strong> (N. E. India)- a <strong>Ramsar</strong> <strong>site</strong>. Journal <strong>of</strong> the<br />

Bombay Natural History Society 102: 169-175.<br />

Sharma, B. K. & S. Sharma. 2008. Faunal diversity <strong>of</strong><br />

Cladocera (Crustacea: Branchiopoda) <strong>of</strong> <strong>Deepor</strong><br />

<strong>Beel</strong>, <strong>Assam</strong> (Northeast India)- a <strong>Ramsar</strong> <strong>site</strong>.<br />

Journal <strong>of</strong> the Bombay Natural History Society 105:<br />

196-201.<br />

Sharma, S. & B. K. Sharma. 2008. <strong>Zooplankton</strong> diversity<br />

in floodplain lakes <strong>of</strong> <strong>Assam</strong>. Records <strong>of</strong> the Zoological<br />

Survey <strong>of</strong> India, Occasional Paper No. 290: 1-<br />

307.<br />

Sinha, A. K., A. Baruah, D. K. Singh & U. P. Sharma.<br />

1994. Biodiversity and pollution status in relation to<br />

physico-chemical factors <strong>of</strong> Kawar lake (Begusarai),<br />

North Bihar. Journal <strong>of</strong> Freshwater Biology 6: 309-<br />

331.<br />

Sugunan, V. V. 1989. Limnological features in beels:<br />

Biotic factors. Bulletin <strong>of</strong> Central Inland Capture<br />

Fisheries Research Institute, Barrackpore 63: 128-<br />

135.<br />

Talling, J. F. & I. B. Talling. 1965. The chemical composition<br />

<strong>of</strong> African lake waters. Internationale Revue<br />

Gesammten Hydrobiologia 50: 421-463.<br />

Vass, K. K. 1989. <strong>Beel</strong> fisheries resources in West<br />

Bengal. Bulletin <strong>of</strong> Central Inland Capture Fisheries<br />

Research Institute, Barrackpore 63: 29-35.<br />

Yousuf, A. R., G. Mustafa Shah & M. Y. Qadri. 1986.<br />

Some limnological aspects <strong>of</strong> Mirgund wetland.<br />

Geobios New Reports 5: 27-30.<br />

(Received on 28.05.2009 and accepted after revisions, on 16.09.2010)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!