09.01.2013 Views

Internal Wave Generation in Uniformly Stratified Fluids. 1 ... - LEGI

Internal Wave Generation in Uniformly Stratified Fluids. 1 ... - LEGI

Internal Wave Generation in Uniformly Stratified Fluids. 1 ... - LEGI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

where<br />

GB(r, t) ~ – H(t)<br />

4πNr<br />

αn = (–1)n<br />

π<br />

∑<br />

j +k = n<br />

∞<br />

∑<br />

n = 0<br />

αn<br />

Γ j+1/2 Γ k+1/2<br />

j! k!<br />

Nt 2 n + 1<br />

2n+1 !<br />

, (6.5)<br />

cos 2 k θ . (6.6)<br />

The series (6.5) converges for all f<strong>in</strong>ite t, so constitut<strong>in</strong>g an exact representation of the<br />

impulsive Green’s function rather than a mere expansion. To lead<strong>in</strong>g order,<br />

GB(r, t) ~ – H(t) t<br />

4πr<br />

. (6.7)<br />

In agreement with Batchelor’s (1967 § 6.10) general discussion, and Morgan’s (1953)<br />

discussion of the analogous case of unstratified rotat<strong>in</strong>g fluids, the Bouss<strong>in</strong>esq fluid <strong>in</strong>itially<br />

ignores its stratification. Thus its motion, described by (6.7), is irrotational. Further details about<br />

the question of <strong>in</strong>itial conditions for stratified or rotat<strong>in</strong>g fluids, which has been a controversial<br />

subject for several years, are given <strong>in</strong> appendix B.<br />

For large times Nt » 1, gravity waves and buoyancy oscillations have become<br />

separated. They respectively correspond to the contributions of the pairs of branch po<strong>in</strong>ts ±<br />

N⏐cos θ⏐ and ± N. Gravity waves are, from the expansion of G B(r, ω) <strong>in</strong> powers of<br />

(ω – N⏐cos θ⏐) 1/2 near N⏐cos θ⏐ and its Fourier <strong>in</strong>version by (D3),<br />

with<br />

GBg (r, t) ~ –<br />

βn = (–1)n<br />

π 3/2<br />

H(t)<br />

2π 3/2 Nr s<strong>in</strong> θ<br />

∑<br />

j +k +m = n<br />

Re ei Nt cos θ – π/4<br />

Nt cos θ<br />

Γ j+1/2 Γ k+1/2 Γ m+1/2<br />

j! k! m!<br />

∞<br />

∑<br />

n = 0<br />

<strong>in</strong> Γ n+1/2<br />

π<br />

(–1) m cos θ<br />

βn<br />

Nt cos θ n<br />

k + m<br />

2 j 1+ cos θ k 1– cos θ<br />

, (6.8)<br />

m . (6.9)<br />

The conjugate contribution of – N⏐cos θ⏐ has been <strong>in</strong>corporated by tak<strong>in</strong>g two times the real<br />

part of the result. We similarly have for buoyancy oscillations<br />

with<br />

GBb (r, t) ~ –<br />

γn = (–1)n<br />

π 3/2<br />

<strong>Internal</strong> wave generation. 1. Green’s function 22<br />

∑<br />

j +k +m = n<br />

H(t)<br />

2π 3/2 Nr s<strong>in</strong> θ<br />

Im ei Nt – π/4<br />

Nt<br />

Γ j+1/2 Γ k+1/2 Γ m+1/2<br />

j! k! m!<br />

∞<br />

∑<br />

n = 0<br />

<strong>in</strong> Γ n+1/2<br />

π<br />

1<br />

γn<br />

Nt n<br />

2 j 1+ cos θ k 1– cos θ<br />

, (6.10)<br />

m . (6.11)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!