11.01.2013 Views

Endocrine late sequelae in long-term survivors of childhood non ...

Endocrine late sequelae in long-term survivors of childhood non ...

Endocrine late sequelae in long-term survivors of childhood non ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

orig<strong>in</strong>al article<br />

<strong>Endocr<strong>in</strong>e</strong> <strong>late</strong> <strong>sequelae</strong> <strong>in</strong> <strong>long</strong>-<strong>term</strong> <strong>survivors</strong> <strong>of</strong><br />

<strong>childhood</strong> <strong>non</strong>-Hodgk<strong>in</strong> lymphoma<br />

Annals <strong>of</strong> Oncology<br />

doi:10.1093/an<strong>non</strong>c/mdr511<br />

M. van Waas 1 , S. J. C. M. M. Neggers 1,2 , M. L. te W<strong>in</strong>kel 1 , A. Beishuizen 1 , R. Pieters 1 &<br />

M. M. van den Heuvel-Eibr<strong>in</strong>k 1 *<br />

1 2<br />

Department <strong>of</strong> Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam; Section <strong>of</strong> Endocr<strong>in</strong>ology, Department <strong>of</strong> Medic<strong>in</strong>e,<br />

Erasmus University Medical Centre, Rotterdam, The Netherlands<br />

Received 12 July 2011; revised 30 August 2011; accepted 23 September 2011<br />

Background: Aim <strong>of</strong> this study was to <strong>in</strong>vestigate the <strong>long</strong>-<strong>term</strong> endocr<strong>in</strong>e effects <strong>of</strong> treatment <strong>of</strong> <strong>childhood</strong><br />

<strong>non</strong>-Hodgk<strong>in</strong> lymphoma (NHL).<br />

Patients and methods: A s<strong>in</strong>gle-center cohort <strong>of</strong> 84 <strong>survivors</strong> (22 females) was <strong>in</strong>cluded <strong>in</strong> this retrospective study.<br />

Median age was 21 years (9–40 years) and time after cessation <strong>of</strong> therapy 12 years (4–30 years). Height, weight,<br />

percentage fat, lean body mass (LBM), bone m<strong>in</strong>eral content (BMC), bone m<strong>in</strong>eral density <strong>of</strong> total body (BMDTB) and<br />

bone m<strong>in</strong>eral density <strong>of</strong> lumbar sp<strong>in</strong>e (BMD LS) were measured. Thyroid-stimulat<strong>in</strong>g hormone (TSH), free thyrox<strong>in</strong> (fT4),<br />

<strong>in</strong>sul<strong>in</strong>-like growth factor-1 (IGF-1), <strong>in</strong>hib<strong>in</strong> B and anti-müllerian hormone (AMH) levels were measured. Results were<br />

compared with Dutch controls.<br />

Results: Height was lower <strong>in</strong> <strong>survivors</strong> [mean standard deviation score (SDS) 20.36, P = 0.002], but further analysis<br />

showed that shorter stature was already present at diagnosis (mean SDS 20.28, P = 0.023). Body mass <strong>in</strong>dex,<br />

percentage fat, BMC, BMDTB and BMD LS were not different from controls. LBM was lower <strong>in</strong> <strong>survivors</strong> (mean<br />

SDS 20.47, P = 0.008). TSH, fT4 and IGF-1 were normal <strong>in</strong> all <strong>survivors</strong>. Three <strong>of</strong> 20 adult females had low AMH levels<br />

and 23 <strong>of</strong> 42 adult males had low <strong>in</strong>hib<strong>in</strong> B levels.<br />

Conclusions: Twelve years after cessation <strong>of</strong> treatment, NHL <strong>survivors</strong> did not develop adiposity, osteoporosis or<br />

thyroid disease. Male <strong>survivors</strong> may be at risk for <strong>in</strong>fertility.<br />

Key words: anthropometry, bone m<strong>in</strong>eral density, endocr<strong>in</strong>e <strong>sequelae</strong>, fertility, <strong>late</strong> effects, <strong>non</strong>-Hodgk<strong>in</strong> lymphoma<br />

<strong>in</strong>troduction<br />

Annals <strong>of</strong> Oncology Advance Access published November 2, 2011<br />

Six percent <strong>of</strong> children with a malignancy suffer from <strong>non</strong>-<br />

Hodgk<strong>in</strong> lymphomas (NHLs) [1]. Currently, the 5-year survival<br />

for <strong>childhood</strong> NHL is 80%. Because <strong>of</strong> this high survival rate<br />

and s<strong>in</strong>ce treatment is adm<strong>in</strong>istered <strong>in</strong> a grow<strong>in</strong>g and<br />

develop<strong>in</strong>g <strong>in</strong>dividual, <strong>long</strong>-<strong>term</strong> side-effects are an important<br />

issue. Treatment <strong>of</strong> NHL consists <strong>of</strong> <strong>in</strong>tensive chemotherapy, <strong>in</strong><br />

rare cases comb<strong>in</strong>ed with radiotherapy. Treatment schedules<br />

<strong>in</strong>volve high doses <strong>of</strong> corticosteroids, which may cause reduced<br />

bone m<strong>in</strong>eral density, osteoporosis and obesity [2]. Both<br />

normal and decreased bone m<strong>in</strong>eral density (BMD) have been<br />

reported <strong>in</strong> <strong>long</strong>-<strong>term</strong> <strong>survivors</strong> <strong>of</strong> other malignancies treated<br />

with chemotherapy <strong>in</strong>clud<strong>in</strong>g corticosteroids [3–9]. In<br />

addition, altered body composition, especially obesity, was<br />

observed dur<strong>in</strong>g and after treatment <strong>of</strong> acute lymphoblastic<br />

leukemia (ALL) [10–19]. Other endocr<strong>in</strong>e or metabolic<br />

<strong>sequelae</strong> that have been described <strong>in</strong> NHL and ALL <strong>survivors</strong><br />

are growth hormone deficiency, hypothyroidism, <strong>in</strong>sul<strong>in</strong><br />

resistance and dyslipidemia [18–20]. Moreover, <strong>in</strong>fertility or<br />

*Correspondence to: Dr M. M. van den Heuvel-Eibr<strong>in</strong>k, Department <strong>of</strong> Pediatric<br />

Oncology/Hematology, Erasmus Medical Center-Sophia Children’s Hospital, Room Sp-<br />

2568,<br />

PO Box 2060, 3000 CB Rotterdam, The Netherlands. Tel: +31-0-10-7036782;<br />

Fax: +31-0-10-7036801; E-mail: m.vandenheuvel@erasmusmc.nl<br />

impaired reproductive outcome has been described <strong>in</strong> <strong>survivors</strong><br />

<strong>of</strong> <strong>childhood</strong> cancer [21–25].<br />

So far, studies on endocr<strong>in</strong>e <strong>long</strong>-<strong>term</strong> effects <strong>in</strong> <strong>survivors</strong> <strong>of</strong><br />

<strong>childhood</strong> NHL are scarce and <strong>of</strong>ten limited by small sample<br />

sizes or by the fact that data <strong>of</strong> NHL <strong>survivors</strong> have been<br />

comb<strong>in</strong>ed with that <strong>of</strong> <strong>survivors</strong> <strong>of</strong> other malignancies [20,<br />

26–31]. Therefore, we <strong>in</strong>vestigated endocr<strong>in</strong>e <strong>late</strong> <strong>sequelae</strong> after<br />

<strong>childhood</strong> NHL <strong>in</strong> a s<strong>in</strong>gle-center cohort.<br />

patients and methods<br />

ª The Author 2011. Published by Oxford University Press on behalf <strong>of</strong> the European Society for Medical Oncology.<br />

All rights reserved. For permissions, please email: journals.permissions@oup.com<br />

patients<br />

We identified all <strong>survivors</strong> who were alive and ‡4 years after cessation <strong>of</strong><br />

therapy on 1 January 2009 and were treated for <strong>childhood</strong> <strong>non</strong>-B-NHL, Bcell<br />

type lymphoma (B-NHL) or large-cell anaplastic lymphoma<br />

(LCAL) at the Erasmus Medical Centre-Sophia Children’s Hospital from<br />

1975 to 2003. Survivors that visited the Late Effects Registration (LATER)<br />

outpatient cl<strong>in</strong>ic were eligible for analysis. The local ethical committee<br />

approved the study and consent accord<strong>in</strong>g to the Hels<strong>in</strong>ki Declaration<br />

was obta<strong>in</strong>ed [32]. Outpatient cl<strong>in</strong>ic visits and performance <strong>of</strong> dualenergy<br />

X-ray absorptiometry (DXA) scans took place from July 2003<br />

to November 2008. As they received similar treatment regimens, the<br />

LCAL <strong>survivors</strong> will be analyzed together with the B-NHL group.<br />

Basel<strong>in</strong>e characteristics and treatment details <strong>of</strong> <strong>survivors</strong> are summarized<br />

<strong>in</strong> Table 1.<br />

Downloaded from<br />

http://an<strong>non</strong>c.oxfordjournals.org/ by guest on January 10, 2013<br />

orig<strong>in</strong>al<br />

article


orig<strong>in</strong>al article<br />

Table 1. Basel<strong>in</strong>e characteristics <strong>of</strong> NHL <strong>survivors</strong><br />

NHL <strong>survivors</strong> Non-B-NHL B-NHL + LCAL<br />

N (male/female) 84 (62/22) 32 (22/10) 52 (40/12)<br />

Age at follow-up (years) a<br />

21 (9–40) 23 (9–37) 20 (10–40)<br />

Age at diagnosis (years) a<br />

8 (2–16) 8 (2–16) 8 (2–16)<br />

Duration <strong>of</strong> treatment<br />

13 (1–38) 24 (4–38) 6 (1–28)<br />

(months) a<br />

Follow-up time (years) a<br />

Specification <strong>of</strong><br />

12 (4–30) 14 (4–25) 9 (5–30)<br />

chemotherapy n (%) TCD (mg/m 2 ) n (%) TCD (mg/m 2 ) n (%) TCD (mg/m 2 )<br />

Methotrexate 79 (94) 15 000 (1500–30 000) 31 (97) 6900 (1500–20 000) 48 (92) 15 000 (1500–30 000)<br />

V<strong>in</strong>crist<strong>in</strong>e 78 (93) 11 (2–141) 32 (100) 18 (7–141) 46 (88) 9 (2–25)<br />

Cytarab<strong>in</strong>e 76 (90) 1800 (1000–42 500) 28 (88) 3000 (1200–9800) 45 (87) 1800 (1000–42 500)<br />

Corticosteroids b<br />

71 (85) 3413 (710–28 670) 30 (94) 4407 (1840–26 490) 39 (75) 1418 (700–28 670)<br />

Anthracycl<strong>in</strong>es 65 (77) 180 (60–480) 29 (91) 280 (160–480) 36 (69) 180 (60–480)<br />

Cyclophosphamide 69 (82) 5500 (360–16 200) 18 (56) 3000 (2000–6000) 51 (98) 5800 (360–16 200)<br />

Ifosfamide 9 (11) 12 000 (4000–16 000) 1 (3) 4000 (NA) 8 (15) 120 000 (6000–16 000)<br />

Busulfan 1 (1) 480 (NA) 0 NA 1 (2) 480 (NA)<br />

Melphalan 1 (1) 140 (NA) 0 NA 1 (2) 140 (NA)<br />

a Median (range).<br />

b TCD prednisone plus TCD dexamethasone (dexamethasone was converted to prednisone us<strong>in</strong>g factor 6.67).<br />

NHL, <strong>non</strong>-Hodgk<strong>in</strong> lymphoma; LCAL, large-cell anaplastic lymphoma; TCD, total cumulative doses; NA, not applicable.<br />

anthropometry<br />

Height was measured us<strong>in</strong>g a Harpenden stadiometer and compared with<br />

Dutch normative values [33]. Height <strong>of</strong> <strong>survivors</strong> <strong>of</strong> other ethnicities<br />

was compared with normative values for these ethnicities [34, 35]. No data<br />

on target height were available. Weight was measured on a standard cl<strong>in</strong>ical<br />

balance. Body mass <strong>in</strong>dex (BMI) was calcu<strong>late</strong>d as weight (kg)/[height<br />

(m)] 2 . BMI <strong>of</strong> <strong>survivors</strong>


Annals <strong>of</strong> Oncology orig<strong>in</strong>al article<br />

results<br />

patients<br />

N<strong>in</strong>ety-two <strong>long</strong>-<strong>term</strong> NHL <strong>survivors</strong> were identified, <strong>of</strong> whom<br />

84 visited the outpatient cl<strong>in</strong>ic and could be analyzed (Figure 1).<br />

Sixty-two males and 22 females were identified, consistent with<br />

the <strong>in</strong>cidence <strong>of</strong> NHL (NHL occurs two to three times as <strong>of</strong>ten<br />

<strong>in</strong> males as <strong>in</strong> females). Thirty-two <strong>of</strong> the 84 <strong>survivors</strong> were<br />

diagnosed <strong>non</strong>-B-NHL, 46 B-NHL and 6 LCAL. Seventy-six<br />

<strong>survivors</strong> were Dutch, 4 Moroccan, 3 Turkish and 1 Asian.<br />

Median age at diagnosis was 8 years (range 2–16 years) and at<br />

follow-up 21 years (range 9–40 years). Thirty-six subjects<br />

(6 females) were aged


orig<strong>in</strong>al article<br />

Table 3. De<strong>term</strong><strong>in</strong>ants <strong>of</strong> height <strong>in</strong> NHL <strong>survivors</strong><br />

Variable Height (SDS)<br />

ß P value 95% CI<br />

All <strong>survivors</strong> a<br />

Age at follow-up 0.01 0.556 20.02 to 0.04<br />

Sex (male) 0.26 0.319 20.25 to 0.77<br />

Type <strong>of</strong> NHL b<br />

Survivors with a DXA scan available<br />

0.13 0.582 20.33 to 0.59<br />

c<br />

Age at follow-up 0.24 0.815 20.03 to 0.04<br />

Sex (male) 0.00 0.303 20.23 to 0.72<br />

Type <strong>of</strong> NHL 0.16 0.482 20.30 to 0.62<br />

LBM 0.68


Annals <strong>of</strong> Oncology orig<strong>in</strong>al article<br />

able to assess these dynamic tests. It should, moreover, be<br />

considered that these tests are more <strong>in</strong>vasive for the <strong>survivors</strong>,<br />

time consum<strong>in</strong>g and therefore expensive.<br />

Adiposity has been frequently reported not only <strong>in</strong> leukemia<br />

but also <strong>in</strong> lymphoma <strong>survivors</strong> [11, 30, 31]. In the present<br />

study, we found normal BMI and normal percentage fat <strong>in</strong><br />

NHL <strong>survivors</strong>. Hypothyroidism, which can contribute to<br />

obesity and is reported <strong>in</strong> <strong>survivors</strong>, especially after local<br />

radiotherapy [49–51], did not occur <strong>in</strong> this group <strong>of</strong> <strong>survivors</strong>.<br />

In patients treated for <strong>childhood</strong> cancer, treatment can have<br />

a deleterious effect on the acquisition <strong>of</strong> peak bone mass,<br />

subsequently <strong>in</strong>creas<strong>in</strong>g the risk <strong>of</strong> fractures at an older age.<br />

Reduced BMD has been described <strong>in</strong> adolescent and adult NHL<br />

<strong>survivors</strong> after stem-cell transplantation [52] and <strong>in</strong> <strong>childhood</strong><br />

NHL <strong>survivors</strong> after chemotherapy comb<strong>in</strong>ed with cranial<br />

radiotherapy [9, 29]. In our study, which is the largest cohort <strong>of</strong><br />

<strong>long</strong>-<strong>term</strong> <strong>childhood</strong> NHL <strong>survivors</strong>, BMD TB and BMD LS were<br />

with<strong>in</strong> the normal range. BMD LS was still normal after<br />

correction for bone size (BMAD LS). This was <strong>in</strong> concordance<br />

with the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> <strong>long</strong>-<strong>term</strong> <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> ALL [9].<br />

When <strong>in</strong>terpret<strong>in</strong>g these results, one should consider the<br />

retrospective nature <strong>of</strong> this study and the small sample sizes <strong>of</strong><br />

the subgroups. However, as the majority <strong>of</strong> our NHL <strong>survivors</strong><br />

were treated with chemotherapy only, these results seem<br />

comprehensible.<br />

Infertility has been frequently reported <strong>in</strong> <strong>childhood</strong> cancer<br />

<strong>survivors</strong> [21–23]. Additionally, low AMH or <strong>in</strong>hib<strong>in</strong> B levels,<br />

which are fertility markers, have been reported [24, 25].<br />

Notorious for caus<strong>in</strong>g <strong>in</strong>fertility are abdom<strong>in</strong>al radiotherapy<br />

and alkylat<strong>in</strong>g chemotherapeutic agents, like cyclophosphamide<br />

[21, 22]. Moreover, cytarab<strong>in</strong>e has been described to contribute<br />

to gonadal damage <strong>in</strong> <strong>survivors</strong> <strong>of</strong> adult acute myeloid<br />

leukemia [53]. However, this was not confirmed <strong>in</strong> female<br />

<strong>childhood</strong> cancer <strong>survivors</strong> [21] and <strong>in</strong> male <strong>childhood</strong> cancer<br />

<strong>survivors</strong>, even a reversed effect was described [22]. In the<br />

present study, 3 <strong>of</strong> 20 adult female <strong>survivors</strong> had abnormal<br />

AMH levels. Two <strong>of</strong> three received both cyclophosphamide and<br />

cytarab<strong>in</strong>e; however, <strong>non</strong>e <strong>of</strong> them received cranial or<br />

abdom<strong>in</strong>al radiotherapy. Interest<strong>in</strong>gly, <strong>in</strong>hib<strong>in</strong> B levels were<br />

low <strong>in</strong> 55% <strong>of</strong> adult male <strong>survivors</strong>. High FSH levels <strong>in</strong> these<br />

<strong>survivors</strong> confirm that this is not a problem <strong>of</strong> pituitary or<br />

hypothalamus but <strong>of</strong> local orig<strong>in</strong>. After correction for age at<br />

diagnosis and total cumulative dose <strong>of</strong> alkylat<strong>in</strong>g agents,<br />

cytarab<strong>in</strong>e had a significant negative effect on <strong>in</strong>hib<strong>in</strong> B levels <strong>in</strong><br />

adult males. Although groups are small and results should<br />

therefore be <strong>in</strong>terpreted with caution, this effect seems<br />

substantial and has not been reported previously. Our results<br />

contradict those <strong>of</strong> Green et al. [22], which may be due to<br />

differences <strong>in</strong> reported outcomes (sir<strong>in</strong>g a pregnancy versus<br />

fertility markers). Inhib<strong>in</strong> B is a relatively new fertility marker<br />

but has been shown to be the most reliable serum marker<br />

for spermatogenesis [43, 54–57]. Prospective studies are needed<br />

to confirm these data, preferably with larger cohorts and<br />

<strong>in</strong>clud<strong>in</strong>g both <strong>in</strong>hib<strong>in</strong> B measurements and sperm analysis.<br />

In conclusion, <strong>long</strong>-<strong>term</strong> <strong>childhood</strong> NHL <strong>survivors</strong>,<br />

especially males, have a shorter stature that seems to be<br />

de<strong>term</strong><strong>in</strong>ed by height at diagnosis and not by treatment-re<strong>late</strong>d<br />

side-effects. Otherwise, this study shows that <strong>long</strong>-<strong>term</strong><br />

<strong>childhood</strong> NHL <strong>survivors</strong> do not seem to be at risk for<br />

endocr<strong>in</strong>e <strong>late</strong> <strong>sequelae</strong> like osteoporosis, obesity and<br />

hypothyroidy. However, especially males might be at risk for<br />

gonadal damage, which may be re<strong>late</strong>d to the cumulative dose<br />

<strong>of</strong> cytarab<strong>in</strong>e. To evaluate gonadal damage both <strong>in</strong> male and<br />

female NHL <strong>survivors</strong>, prospective studies <strong>of</strong> larger cohorts are<br />

required.<br />

acknowledgements<br />

The authors would like to thank Wim C. J. Hop from the<br />

Department <strong>of</strong> Biostatistics for his valuable suggestions and<br />

comments and Manita M. M. P. G. M. van Baalen from the<br />

Department <strong>of</strong> Pediatric Oncology for help<strong>in</strong>g recruit<strong>in</strong>g data.<br />

Authorship—MMvdH-E was the pr<strong>in</strong>cipal <strong>in</strong>vestigator and<br />

takes primary responsibility for the paper. MvW participated <strong>in</strong><br />

the statistical analysis. SJCMMN, RP and MH coord<strong>in</strong>ated the<br />

research. MvW, SJCMMN and MMvdH-E wrote the paper.<br />

SJCMMN, MtW, AB, RP and MMvdH-E were <strong>in</strong>volved <strong>in</strong><br />

draft<strong>in</strong>g and revis<strong>in</strong>g the article.<br />

fund<strong>in</strong>g<br />

KiKa (K<strong>in</strong>deren Kankervrij; 2009-030); K<strong>in</strong>deroncologisch<br />

Centrum Rotterdam.<br />

disclosure<br />

The authors declare no conflict <strong>of</strong> <strong>in</strong>terest.<br />

references<br />

1. Reiter A. Diagnosis and treatment <strong>of</strong> <strong>childhood</strong> <strong>non</strong>-Hodgk<strong>in</strong> lymphoma.<br />

Hematology Am Soc Hematol Educ Program 2007; 2007: 285–296.<br />

2. Reid IR. Glucocorticoid osteoporosis—mechanisms and management. Eur J<br />

Endocr<strong>in</strong>ol 1997; 137: 209–217.<br />

3. van Beek RD, van den Heuvel-Eibr<strong>in</strong>k MM, Hakvoort-Cammel FG et al. Bone<br />

m<strong>in</strong>eral density, growth and thyroid function <strong>in</strong> <strong>long</strong>-<strong>term</strong> <strong>survivors</strong> <strong>of</strong> pediatric<br />

Hodgk<strong>in</strong>’s lymphoma treated with chemotherapy only. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab<br />

2009; 94: 1904–1909.<br />

4. Arikoski P, Komula<strong>in</strong>en J, Voutila<strong>in</strong>en R et al. Reduced bone m<strong>in</strong>eral density <strong>in</strong><br />

<strong>long</strong>-<strong>term</strong> <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> acute lymphoblastic leukemia. J Pediatr<br />

Hematol Oncol 1998; 20: 234–240.<br />

5. Brennan BM, Rahim A, Adams JA et al. Reduced bone m<strong>in</strong>eral density <strong>in</strong> young<br />

adults follow<strong>in</strong>g cure <strong>of</strong> acute lymphoblastic leukaemia <strong>in</strong> <strong>childhood</strong>. Br J Cancer<br />

1999; 79: 1859–1863.<br />

6. Gilsanz V, Carlson ME, Roe TF, Ortega JA. Osteoporosis after cranial irradiation<br />

for acute lymphoblastic leukemia. J Pediatr 1990; 117: 238–244.<br />

7. Henderson RC, Madsen CD, Davis C, Gold SH. Bone density <strong>in</strong> <strong>survivors</strong> <strong>of</strong><br />

<strong>childhood</strong> malignancies. J Pediatr Hematol Oncol 1996; 18: 367–371.<br />

8. van der Sluis IM, van den Heuvel-Eibr<strong>in</strong>k MM, Hahlen K et al. Bone m<strong>in</strong>eral<br />

density, body composition, and height <strong>in</strong> <strong>long</strong>-<strong>term</strong> <strong>survivors</strong> <strong>of</strong> acute<br />

lymphoblastic leukemia <strong>in</strong> <strong>childhood</strong>. Med Pediatr Oncol 2000; 35: 415–420.<br />

9. Nysom K, Holm K, Hertz H et al. Bone mass after treatment for acute<br />

lymphoblastic leukemia <strong>in</strong> <strong>childhood</strong>. J Cl<strong>in</strong> Oncol 2001; 19: 2970–2971.<br />

10. van Beek RD, de Mu<strong>in</strong>ck Keizer-Schrama SM, Hakvoort-Cammel FG et al. No<br />

difference between prednisolone and dexamethasone treatment <strong>in</strong> bone m<strong>in</strong>eral<br />

density and growth <strong>in</strong> <strong>long</strong> <strong>term</strong> <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> acute lymphoblastic<br />

leukemia. Pediatr Blood Cancer 2006; 46: 88–93.<br />

11. Asner S, Ammann RA, Ozsah<strong>in</strong> H et al. Obesity <strong>in</strong> <strong>long</strong>-<strong>term</strong> <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong><br />

acute lymphoblastic leukemia. Pediatr Blood Cancer 2008; 51: 118–122.<br />

12. Birkebaek NH, Clausen N. Height and weight pattern up to 20 years after treatment<br />

for acute lymphoblastic leukaemia. Arch Dis Child 1998; 79: 161–164.<br />

doi:10.1093/an<strong>non</strong>c/mdr511 | 5<br />

Downloaded from<br />

http://an<strong>non</strong>c.oxfordjournals.org/ by guest on January 10, 2013


orig<strong>in</strong>al article<br />

13. Jarfelt M, Lanner<strong>in</strong>g B, Bosaeus I et al. Body composition <strong>in</strong> young adult <strong>survivors</strong><br />

<strong>of</strong> <strong>childhood</strong> acute lymphoblastic leukaemia. Eur J Endocr<strong>in</strong>ol 2005; 153: 81–89.<br />

14. Oeff<strong>in</strong>ger KC, Buchanan GR, Eshelman DA et al. Cardiovascular risk factors <strong>in</strong><br />

young adult <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> acute lymphoblastic leukemia. J Pediatr<br />

Hematol Oncol 2001; 23: 424–430.<br />

15. Warner JT, Evans WD, Webb DK, Gregory JW. Body composition <strong>of</strong> <strong>long</strong>-<strong>term</strong><br />

<strong>survivors</strong> <strong>of</strong> acute lymphoblastic leukaemia. Med Pediatr Oncol 2002; 38:<br />

165–172.<br />

16. Brennan BM, Rahim A, Blum WF et al. Hyperlept<strong>in</strong>aemia <strong>in</strong> young adults<br />

follow<strong>in</strong>g cranial irradiation <strong>in</strong> <strong>childhood</strong>: growth hormone deficiency or lept<strong>in</strong><br />

<strong>in</strong>sensitivity? Cl<strong>in</strong> Endocr<strong>in</strong>ol (Oxf) 1999; 50: 163–169.<br />

17. Nysom K, Holm K, Michaelsen KF et al. Degree <strong>of</strong> fatness after treatment for<br />

acute lymphoblastic leukemia <strong>in</strong> <strong>childhood</strong>. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 1999; 84:<br />

4591–4596.<br />

18. van Waas M, Neggers SJ, Pieters R, van den Heuvel-Eibr<strong>in</strong>k MM. Components <strong>of</strong><br />

the metabolic syndrome <strong>in</strong> 500 adult <strong>long</strong>-<strong>term</strong> <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> cancer.<br />

Ann Oncol 2010; 21: 1121–1126.<br />

19. van Waas M, Neggers SJ, van der Lelij AJ et al. The metabolic syndrome <strong>in</strong> adult<br />

<strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> cancer, a review. J Pediatr Hematol Oncol 2010; 32:<br />

171–179.<br />

20. Steffens M, Beauloye V, Brichard B et al. <strong>Endocr<strong>in</strong>e</strong> and metabolic disorders <strong>in</strong><br />

young adult <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> acute lymphoblastic leukaemia (ALL) or <strong>non</strong>-<br />

Hodgk<strong>in</strong> lymphoma (NHL). Cl<strong>in</strong> Endocr<strong>in</strong>ol (Oxf) 2008; 69: 819–827.<br />

21. Green DM, Kawashima T, Stovall M et al. Fertility <strong>of</strong> female <strong>survivors</strong> <strong>of</strong><br />

<strong>childhood</strong> cancer: a report from the <strong>childhood</strong> cancer survivor study. J Cl<strong>in</strong> Oncol<br />

2009; 27: 2677–2685.<br />

22. Green DM, Kawashima T, Stovall M et al. Fertility <strong>of</strong> male <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong><br />

cancer: a report from the Childhood Cancer Survivor Study. J Cl<strong>in</strong> Oncol 2010;<br />

28: 332–339.<br />

23. Hudson MM. Reproductive outcomes for <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> cancer. Obstet<br />

Gynecol 2010; 116: 1171–1183.<br />

24. Lie Fong S, Laven JS, Hakvoort-Cammel FG et al. Assessment <strong>of</strong> ovarian reserve<br />

<strong>in</strong> adult <strong>childhood</strong> cancer <strong>survivors</strong> us<strong>in</strong>g anti-Mullerian hormone. Hum Reprod<br />

2009; 24: 982–990.<br />

25. van Casteren NJ, van der L<strong>in</strong>den GH, Hakvoort-Cammel FG et al. Effect <strong>of</strong><br />

<strong>childhood</strong> cancer treatment on fertility markers <strong>in</strong> adult male <strong>long</strong>-<strong>term</strong> <strong>survivors</strong>.<br />

Pediatr Blood Cancer 2009; 52: 108–112.<br />

26. Nysom K, Holm K, Michaelsen KF et al. Degree <strong>of</strong> fatness after treatment <strong>of</strong><br />

malignant lymphoma <strong>in</strong> <strong>childhood</strong>. Med Pediatr Oncol 2003; 40: 239–243.<br />

27. Muszynska-Roslan K, Konstantynowicz J, Krawczuk-Rybak M, Protas P. Body<br />

composition and bone mass <strong>in</strong> <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> cancer. Pediatr Blood<br />

Cancer 2007; 48: 200–204.<br />

28. Vassilopoulou-Sell<strong>in</strong> R, Brosnan P, Delpassand A et al. Osteopenia <strong>in</strong> young adult<br />

<strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> cancer. Med Pediatr Oncol 1999; 32: 272–278.<br />

29. Sala A, Talsma D, Webber C et al. Bone m<strong>in</strong>eral status after treatment <strong>of</strong><br />

malignant lymphoma <strong>in</strong> <strong>childhood</strong> and adolescence. Eur J Cancer Care (Engl)<br />

2007; 16: 373–379.<br />

30. G<strong>of</strong>man I, Ducore J. Risk factors for the development <strong>of</strong> obesity <strong>in</strong> children<br />

surviv<strong>in</strong>g ALL and NHL. J Pediatr Hematol Oncol 2009; 31: 101–107.<br />

31. Razzouk BI, Rose SR, Hongeng S et al. Obesity <strong>in</strong> <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> acute<br />

lymphoblastic leukemia and lymphoma. J Cl<strong>in</strong> Oncol 2007; 25: 1183–1189.<br />

32. World Medical Association General Assembly. Declaration <strong>of</strong> Hels<strong>in</strong>ki—Sixth<br />

Revision. Hels<strong>in</strong>ki, F<strong>in</strong>land. 2008.<br />

33. Fredriks AM, van Buuren S, Burgmeijer RJ et al. Cont<strong>in</strong>u<strong>in</strong>g positive secular growth<br />

change <strong>in</strong> The Netherlands 1955–1997. Pediatr Res 2000; 47: 316–323.<br />

34. Fredriks AM, van Buuren S, Jeurissen SE et al. Height, weight, body mass <strong>in</strong>dex<br />

and pubertal development reference values for children <strong>of</strong> Turkish orig<strong>in</strong> <strong>in</strong> the<br />

Netherlands. Eur J Pediatr 2003; 162: 788–793.<br />

35. Fredriks AM, van Buuren S, Jeurissen SE et al. Height, weight, body mass <strong>in</strong>dex<br />

and pubertal development references for children <strong>of</strong> Moroccan orig<strong>in</strong> <strong>in</strong> The<br />

Netherlands. Acta Paediatr 2004; 93: 817–824.<br />

36. Blokstra A, Smit HA, Bueno de Mesquita HB et al. Monitor<strong>in</strong>g van Risic<strong>of</strong>actoren<br />

en Gezondheid <strong>in</strong> Nederland (MORGEN-project), 1993–1997. Rijks<strong>in</strong>stituut voor<br />

Volksgezondheid en Milieu (RIVM), Bilthoven, Netherlands. 1999.<br />

6 | van Waas et al.<br />

Annals <strong>of</strong> Oncology<br />

37. Kröger H, Va<strong>in</strong>io P, Niem<strong>in</strong>en J, Kotaniemi A. Comparison <strong>of</strong> different models for<br />

<strong>in</strong>terpret<strong>in</strong>g bone m<strong>in</strong>eral density measurements us<strong>in</strong>g DXA and MRI technology.<br />

Bone 1995; 17: 157–159.<br />

38. van der Sluis IM, de Ridder MA, Boot AM et al. Reference data for bone density<br />

and body composition measured with dual energy x ray absorptiometry <strong>in</strong> white<br />

children and young adults. Arch Dis Child 2002; 87: 341–347; discussion 341–<br />

347.<br />

39. Elml<strong>in</strong>ger MW, Kuhnel W, Weber MM, Ranke MB. Reference ranges for two<br />

automated chemilum<strong>in</strong>escent assays for serum <strong>in</strong>sul<strong>in</strong>-like growth factor I (IGF-I)<br />

and IGF-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> 3 (IGFBP-3). Cl<strong>in</strong> Chem Lab Med 2004; 42: 654–664.<br />

40. de Vet A, Laven JS, de Jong FH et al. Antimullerian hormone serum levels:<br />

a putative marker for ovarian ag<strong>in</strong>g. Fertil Steril 2002; 77: 357–362.<br />

41. Kevenaar ME, Meerasahib MF, Kramer P et al. Serum anti-mullerian hormone<br />

levels reflect the size <strong>of</strong> the primordial follicle pool <strong>in</strong> mice. Endocr<strong>in</strong>ology 2006;<br />

147: 3228–3234.<br />

42. van Casteren NJ, Dohle GR, Romijn JC et al. Semen cryopreservation <strong>in</strong> pubertal<br />

boys before gonadotoxic treatment and the role <strong>of</strong> endocr<strong>in</strong>ologic evaluation <strong>in</strong><br />

predict<strong>in</strong>g sperm yield. Fertil Steril 2008; 90: 1119–1125.<br />

43. Pierik FH, Burdorf A, de Jong FH, Weber RF. Inhib<strong>in</strong> B: a novel marker <strong>of</strong><br />

spermatogenesis. Ann Med 2003; 35: 12–20.<br />

44. Schriock EA, Schell MJ, Carter M et al. Abnormal growth patterns and adult short<br />

stature <strong>in</strong> 115 <strong>long</strong>-<strong>term</strong> <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> leukemia. J Cl<strong>in</strong> Oncol 1991; 9:<br />

400–405.<br />

45. Katz JA, Pollock BH, Jacaruso D, Morad A. F<strong>in</strong>al atta<strong>in</strong>ed height <strong>in</strong> patients<br />

successfully treated for <strong>childhood</strong> acute lymphoblastic leukemia. J Pediatr 1993;<br />

123: 546–552.<br />

46. Sklar C, Mertens A, Walter A et al. F<strong>in</strong>al height after treatment for <strong>childhood</strong><br />

acute lymphoblastic leukemia: comparison <strong>of</strong> no cranial irradiation with 1800<br />

and 2400 centigrays <strong>of</strong> cranial irradiation. J Pediatr 1993; 123: 59–64.<br />

47. Dalton VK, Rue M, Silverman LB et al. Height and weight <strong>in</strong> children treated for<br />

acute lymphoblastic leukemia: relationship to CNS treatment. J Cl<strong>in</strong> Oncol 2003;<br />

21: 2953–2960.<br />

48. Mulder RL, Kremer LC, van Santen HM et al. Prevalence and risk factors <strong>of</strong><br />

radiation-<strong>in</strong>duced growth hormone deficiency <strong>in</strong> <strong>childhood</strong> cancer <strong>survivors</strong>:<br />

a systematic review. Cancer Treat Rev 2009; 35: 616–632.<br />

49. Bonato C, Sever<strong>in</strong>o RF, Elnecave RH. Reduced thyroid volume and<br />

hypothyroidism <strong>in</strong> <strong>survivors</strong> <strong>of</strong> <strong>childhood</strong> cancer treated with radiotherapy.<br />

J Pediatr Endocr<strong>in</strong>ol Metab 2008; 21: 943–949.<br />

50. Miyoshi Y, Ohta H, Hashii Y et al. Endocr<strong>in</strong>ological analysis <strong>of</strong> 122 Japanese<br />

<strong>childhood</strong> cancer <strong>survivors</strong> <strong>in</strong> a s<strong>in</strong>gle hospital. Endocr J 2008; 55: 1055–1063.<br />

51. Stava CJ, Jimenez C, Vassilopoulou-Sell<strong>in</strong> R. <strong>Endocr<strong>in</strong>e</strong> <strong>sequelae</strong> <strong>of</strong> cancer and<br />

cancer treatments. J Cancer Surviv 2007; 1: 261–274.<br />

52. Majhail NS, Ness KK, Burns LJ et al. Late effects <strong>in</strong> <strong>survivors</strong> <strong>of</strong> Hodgk<strong>in</strong> and<br />

<strong>non</strong>-Hodgk<strong>in</strong> lymphoma treated with autologous hematopoietic cell<br />

transplantation: a report from the bone marrow transplant survivor study. Biol<br />

Blood Marrow Transplant 2007; 13: 1153–1159.<br />

53. Lemez P, Urbanek V. Chemotherapy for acute myeloid leukemias with cytos<strong>in</strong>e<br />

arab<strong>in</strong>oside, daunorubic<strong>in</strong>, etoposide, and mitoxantrone may cause permanent<br />

oligoasthenozoospermia or amenorrhea <strong>in</strong> middle-aged patients. Neoplasma<br />

2005; 52: 398–401.<br />

54. Pierik FH, Vreeburg JT, Stijnen T et al. Serum <strong>in</strong>hib<strong>in</strong> B as a marker <strong>of</strong><br />

spermatogenesis. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 1998; 83: 3110–3114.<br />

55. Kumanov P, Nandipati K, Tomova A, Agarwal A. Inhib<strong>in</strong> B is a better marker <strong>of</strong><br />

spermatogenesis than other hormones <strong>in</strong> the evaluation <strong>of</strong> male factor <strong>in</strong>fertility.<br />

Fertil Steril 2006; 86: 332–338.<br />

56. Kl<strong>in</strong>gmuller D, Haidl G. Inhib<strong>in</strong> B <strong>in</strong> men with normal and disturbed<br />

spermatogenesis. Hum Reprod 1997; 12: 2376–2378.<br />

57. van Beek RD, Smit M, van den Heuvel-Eibr<strong>in</strong>k MM et al. Inhib<strong>in</strong> B is superior to<br />

FSH as a serum marker for spermatogenesis <strong>in</strong> men treated for Hodgk<strong>in</strong>’s<br />

lymphoma with chemotherapy dur<strong>in</strong>g <strong>childhood</strong>. Hum Reprod 2007; 22:<br />

3215–3222.<br />

Downloaded from<br />

http://an<strong>non</strong>c.oxfordjournals.org/ by guest on January 10, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!