11.01.2013 Views

X - NASA Quantum Future Technologies Conference

X - NASA Quantum Future Technologies Conference

X - NASA Quantum Future Technologies Conference

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Milestones in CV-­‐QKD (cont’d)<br />

§� (2003) Reverse reconciliation introduced to overcome 3 dB loss limit [9]<br />

ú� In a reverse reconciliation protocol, Alice corrects her keys to have the same<br />

values as Bob’s<br />

§� (2004) No switching protocol was introduced to eliminate the need to<br />

change basis during encoding [10]<br />

ú� Simplifies implementation and enables higher secret key rates<br />

§� (2009-­‐2011) CV-­‐QKD proved secure [11, 12, 13]<br />

[1] T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A, 61(1):010303, (1999).<br />

[2] T. C. Ralph, “Security of continuous-­‐variable quantum cryptography,” Phys. Rev. A, 62, 062306 (2000).<br />

[3] M. Hillery, “<strong>Quantum</strong> cryptography with squeezed states,” Phys. Rev. A, 61(2):022309, Jan (2000).<br />

[4] M.D. Reid, “<strong>Quantum</strong> cryptography with a predetermined key, using continuous variable Einstein-­‐Podolsky-­‐Rosen correlations,” Phys. Rev. A,<br />

62:022309, (2000).<br />

[5] D. Gottesman and J. Preskill, “Secure quantum key distribution using squeezed states,” Phys. Rev. A, 63:022309, (2001).<br />

[6] N.J. Cerf, M. Levy, & G. Van Assche, “<strong>Quantum</strong> distribution of Gaussian keys using squeezed states,” Phys. Rev. A, 63:052311,(2001).<br />

[7] F. Grosshans & P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett., 88:057902, (2002).<br />

[8] Ch. Silberhorn, T. C. Ralph, N. Lutkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: Beating the 3 dB loss limit,” Phys. Rev.<br />

Lett., 89(16):167901, Sep (2002).<br />

[9] F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-­‐Brouri, and P. Grangier, “Virtual entanglement and reconciliation protocols for quantum<br />

cryptography with continuous variables,” <strong>Quantum</strong> Information and Computation, 3:535–552, (2003).<br />

[10] C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, & P. K. Lam, “<strong>Quantum</strong> Cryptography without Switching,” Phys. Rev. Lett. 93,<br />

170504 (2004).<br />

[11] R. Renner and J. I. Cirac, “de Finetti Representation Theorem for Infinite-­‐Dimensional <strong>Quantum</strong> Systems and Applications to <strong>Quantum</strong><br />

Cryptography,” Phys. Rev. Lett. 102 110504 (2009).<br />

[12] A. Leverrier and P. Grangier, “Unconditional Security Proof of Long-­‐Distance Continuous-­‐Variable <strong>Quantum</strong> Key Distribution with Discrete<br />

Modulation,” Phys. Rev. Lett. 102, 180504 (2009).<br />

[13] A. Leverrier and P. Grangier, “Erratum: Unconditional Security Proof of Long-­‐Distance Continuous-­‐Variable <strong>Quantum</strong> Key Distribution with<br />

Discrete Modulation [Phys. Rev. Lett. 102, 180504 (2009)],” Phys. Rev. Lett. 106, 259902(E) (2011).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!