12.01.2013 Views

Aligning the Brain in a Rhythmic World

Aligning the Brain in a Rhythmic World

Aligning the Brain in a Rhythmic World

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction: Internal and<br />

External Rhythms<br />

Rhythm <strong>in</strong> <strong>the</strong> bra<strong>in</strong><br />

Except under extreme conditions, such as anes<strong>the</strong>sia,<br />

electrical record<strong>in</strong>gs from <strong>the</strong> bra<strong>in</strong> <strong>in</strong>variably reveal<br />

robust oscillatory activity (fluctuations of voltage). In<br />

pursuit of <strong>the</strong> idea that <strong>the</strong>se oscillations are actually<br />

relevant to adaptive bra<strong>in</strong> function<strong>in</strong>g, <strong>in</strong>creas<strong>in</strong>gly<br />

specific relationships have been proposed between<br />

neuronal oscillations and numerous cognitive<br />

functions. These relationships <strong>in</strong>clude: (1) <strong>the</strong>ta<br />

oscillations and encod<strong>in</strong>g of spatial <strong>in</strong>formation <strong>in</strong><br />

<strong>the</strong> hippocampus (Maurer and McNaughten, 2007);<br />

(2) <strong>the</strong>ta oscillations and <strong>the</strong> formation of mnemonic<br />

neuronal representations (Jensen et al., 2007);<br />

(3) alpha oscillations and “<strong>in</strong>ternally directed”<br />

cognition (Palva and Palva, 2008); and (4) gamma<br />

oscillations and both attention/sensory selection<br />

(Fries et al., 2002) and feature b<strong>in</strong>d<strong>in</strong>g (S<strong>in</strong>ger and<br />

Gray, 1995). See <strong>the</strong> short course chapter Rhythms<br />

<strong>in</strong> Cognitive Process<strong>in</strong>g by C. Tallon-Baudry, for<br />

<strong>in</strong>-depth discussion of this subject. Thus, consensus is<br />

build<strong>in</strong>g that neuronal oscillations are <strong>in</strong>strumental<br />

ra<strong>the</strong>r than <strong>in</strong>cidental to bra<strong>in</strong> function and<br />

dysfunction (Buzsaki and Draguhn, 2004; Uhlhaas<br />

and S<strong>in</strong>ger, 2006; Buzsaki, 2007; Borgers and Kopell,<br />

2008; Schroeder and Lakatos, 2009a).<br />

Rhythm <strong>in</strong> <strong>the</strong> sensorium<br />

When consider<strong>in</strong>g <strong>the</strong> functional significance of<br />

neuronal oscillations, it is worth keep<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d<br />

just how rhythmic our sensory world is. Under<br />

natural conditions, for example, stimulat<strong>in</strong>g <strong>the</strong><br />

hand typically <strong>in</strong>volves mov<strong>in</strong>g <strong>the</strong> f<strong>in</strong>gers across<br />

surfaces or manipulat<strong>in</strong>g objects. Because <strong>the</strong> motor<br />

rout<strong>in</strong>es that drive arm, hand, and f<strong>in</strong>ger movements<br />

are modulated by oscillations <strong>in</strong> <strong>the</strong> delta, <strong>the</strong>ta, mu,<br />

and beta bands (McAuley et al., 1999a; Pfurtscheller<br />

et al., 2000; P<strong>in</strong>eda, 2005; Birbaumer et al., 2006;<br />

Wolpaw, 2007; Hatsopoulos and Donoghue, 2009),<br />

rhythm is imposed on somatosensory <strong>in</strong>flow. (See <strong>the</strong><br />

chapter Rhythms <strong>in</strong> Motor Process<strong>in</strong>g: Functional<br />

Implications for Motor Behavior by N. Hatsopoulos,<br />

<strong>in</strong> this short course.) In <strong>the</strong> visual doma<strong>in</strong>, many<br />

stimuli considered “biologically significant” stem<br />

from observ<strong>in</strong>g <strong>the</strong> motion of conspecifics or o<strong>the</strong>r<br />

animals; here too, because of <strong>the</strong> oscillatory pattern<strong>in</strong>g<br />

mechanisms (above), <strong>the</strong> sensory <strong>in</strong>flow has a strong<br />

rhythmic component. Although a visual scene may<br />

be completely static, <strong>the</strong> sequence of fixations used<br />

to encode <strong>the</strong> scene is generally rhythmic, with a rate<br />

of ~3 Hz (McAuley et al., 1999b; Otero-Millan et<br />

al., 2008). Even when a subject is fixated on a static<br />

stimulus, microsaccades (also occurr<strong>in</strong>g at ~3 Hz)<br />

© 2009 Schroeder<br />

<strong>Align<strong>in</strong>g</strong> <strong>the</strong> <strong>Bra<strong>in</strong></strong> <strong>in</strong> a <strong>Rhythmic</strong> <strong>World</strong><br />

impose a strong rhythm on visual process<strong>in</strong>g (Bosman<br />

et al., 2009).<br />

Interaction of neuronal oscillations<br />

and <strong>in</strong>put rhythms<br />

The strik<strong>in</strong>g similarity between <strong>the</strong> bra<strong>in</strong>’s oscillatory<br />

rhythms and those <strong>in</strong> <strong>the</strong> sensorium is unlikely to<br />

be an accident. Several o<strong>the</strong>r presentations <strong>in</strong> this<br />

short course will deal with <strong>the</strong> precise physiological<br />

mechanisms that generate neuronal oscillations<br />

(see chapters Model<strong>in</strong>g Rhythms: from Physiology<br />

to Function by N. Kopell, and Model<strong>in</strong>g Rhythms:<br />

Detailed Cellular Mechanisms of In Vitro Oscillations,<br />

with Emphasis on Very Fast Oscillations by<br />

R. Traub). This chapter will explore <strong>the</strong> relationship<br />

between neuronal oscillations and environmental<br />

rhythms. We will consider <strong>the</strong> manner <strong>in</strong> which <strong>the</strong><br />

bra<strong>in</strong> may use neuronal oscillations as <strong>in</strong>struments<br />

of adaptive bra<strong>in</strong> operations, by align<strong>in</strong>g <strong>the</strong>m with<br />

relevant environmental rhythms (Schroeder and<br />

Lakatos, 2009a).<br />

Oscillations Control<br />

Neuronal Excitability<br />

Current source density (CSD) analysis of local field<br />

potential (LFP) distributions across cortical layers<br />

shows that fluctuations or “oscillations” of voltage<br />

<strong>in</strong> <strong>the</strong> extracellular medium reflect rhythmic,<br />

synchronous alternation of <strong>in</strong>ward and outward<br />

transmembrane current flow <strong>in</strong> <strong>the</strong> local neuronal<br />

ensembles (Lakatos et al., 2005). In agreement with<br />

Bishop’s fundamental proposition (Bishop, 1933),<br />

analysis of concomitant local neuronal fir<strong>in</strong>g (lower<br />

trace multiunit activity [MUA]) <strong>in</strong>dicates that this<br />

current flow alternation reflects a shift between<br />

net depolarized and hyperpolarized states <strong>in</strong> <strong>the</strong><br />

local neuronal ensemble (Lakatos et al., 2005).<br />

Systematic relationships between oscillatory phase<br />

and excitability have been substantiated for <strong>the</strong> very<br />

low (

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!