12.01.2013 Views

PET/CT for radiotherapy planning of head-‐neck cancer

PET/CT for radiotherapy planning of head-‐neck cancer

PET/CT for radiotherapy planning of head-‐neck cancer

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Dr. Wouter V. Vogel<br />

Department <strong>of</strong> Nuclear medicine<br />

Department <strong>of</strong> Radia3on oncology<br />

NKI-­‐AVL, Amsterdam, NL<br />

<strong>PET</strong>/<strong>CT</strong> <strong>for</strong><br />

<strong>radiotherapy</strong> <strong>planning</strong><br />

<strong>of</strong> <strong>head</strong>-­‐neck <strong>cancer</strong>


Disclosure slide<br />

! Research Support: none<br />

! Consultant: none<br />

! Speakers Bureau: none<br />

! Honoraria and/or Stockholder: none<br />

2<br />

/ 86


Topics<br />

! Why <strong>PET</strong>/<strong>CT</strong> ?<br />

! Diagnos3c value<br />

! Tumor delinea3on<br />

! Tumor characteriza3on<br />

! How to do it<br />

! Requirements<br />

! Image fusion<br />

! Collabora3ons<br />

! Radia3on protec3on<br />

! Future perspec3ve<br />

3<br />

/ 86


Required in<strong>for</strong>maAon<br />

! Loca3on<br />

! Type<br />

! Size<br />

! Volume<br />

! Mucosal spread<br />

! Deep infiltra3on<br />

! Node metastases<br />

! Distant metastases<br />

! Stage<br />

! Pa3ënt characteris3cs<br />

! HPV / EBV<br />

! Et cetera …<br />

4<br />

/ 86


Anatomical imaging with <strong>CT</strong><br />

Based on Assue density<br />

! Anatomical orienta3on<br />

! Recogni3on / delinea3on <strong>of</strong> cri3cal normal organs<br />

! Recogni3on / delinea3on <strong>of</strong> tumor loca3ons<br />

! Required <strong>for</strong> RT <strong>planning</strong> electron density map<br />

5<br />

/ 86


A mulAmodality diagnosis<br />

Clinical evaluaAon<br />

! History<br />

! Inspec3on<br />

! Biopsies<br />

! Experience<br />

???<br />

tumor<br />

AddiAonal imaging<br />

! Ultrasound<br />

! (ce)MRI<br />

! DWI, spectroscopy<br />

! Endoscopy, et cetera<br />

6<br />

/ 86


Molecular imaging<br />

! Is a visual func3on test<br />

! Does not provide borders<br />

<strong>of</strong> 3ssues, but borders <strong>of</strong><br />

func3ons<br />

7<br />

/ 86


FDG <strong>PET</strong>/<strong>CT</strong><br />

<strong>for</strong> selecAon <strong>of</strong> <strong>radiotherapy</strong>


Reasons to per<strong>for</strong>m <strong>PET</strong>/<strong>CT</strong><br />

! Does the pa3ent have <strong>cancer</strong> ?<br />

! Where is it located, and what stage ?<br />

! Is <strong>radiotherapy</strong> appropriate ?<br />

! Op3mizing the treatment<br />

9<br />

/ 86


Finding a primary tumor<br />

DetecAon rate FDG <strong>PET</strong> aIer negaAve convenAonal work-­‐up<br />

! 25% Rusthoven, Review, Cancer 2004<br />

! 29% Johansen, DAHANCA-­‐13, Head Neck 2008<br />

10<br />

/ 86


Are there nodal metastases?<br />

DetecAon <strong>of</strong> nodal disease<br />

! Meta-­‐analysis <strong>of</strong> 32 studies<br />

! Sensi3vity 81-­‐90%<br />

! Specificity 89-­‐90%<br />

<strong>PET</strong> outper<strong>for</strong>ms <strong>CT</strong> and MRI <strong>for</strong><br />

detec3on <strong>of</strong> node metastases in<br />

the neck, and it is the best non-­‐<br />

invasive instrument available<br />

Impact on treatment<br />

! Upgrade elec3ve nodal field areas to high dose RT<br />

11<br />

/ 86


Characterizing extra findings<br />

Coin lesion FDG <strong>PET</strong>/<strong>CT</strong><br />

! Sensi3vity 97%<br />

! Specificity 79%<br />

Impact on treatment<br />

! Nega3ve Follow-­‐up<br />

! Posi3ve Biopsy<br />

(or treatment)<br />

12<br />

/ 86


Are there distant metastases?<br />

For the presence <strong>of</strong> M1 disease<br />

! Sensi3vity 93%<br />

! Specificity 96%<br />

Impact on treatment<br />

! Swith RT from cura3ve to<br />

pallia3ve intent in 15% <strong>of</strong> cases<br />

afer M0 conven3onal workup.<br />

Na3onal Ins3tute <strong>for</strong> Clinical Excellence (NICE). Lung <strong>cancer</strong>: the<br />

diagnosis and treatment <strong>of</strong> lung <strong>cancer</strong>. In: Clinical Guideline No.: 24.<br />

NICE Web site. 2005<br />

13<br />

/ 86


Conclusion<br />

! FDG-­‐<strong>PET</strong>/<strong>CT</strong> is important <strong>for</strong> <strong>radiotherapy</strong><br />

be<strong>for</strong>e you even started<br />

Examples <strong>of</strong> diseases where RT treatment<br />

is currently selected with <strong>PET</strong>/<strong>CT</strong><br />

! Lung <strong>cancer</strong><br />

! Head-­‐neck<br />

! Lymphoma<br />

! Gynaecological<br />

! Melanoma<br />

! Breast <strong>cancer</strong> (recurrence)<br />

! Prostate <strong>cancer</strong> (recurrence, choline)<br />

! Brain tumors (methionine)<br />

! … et cetera<br />

14<br />

/ 86


MulAmodality<br />

more than nice colors ?


Understanding molecular imaging<br />

The in<strong>for</strong>ma3on <strong>of</strong> molecular imaging on its own<br />

can be virtually meaningless<br />

16<br />

/ 86


MulAmodality: the greater perspecAve<br />

The in<strong>for</strong>ma3on <strong>of</strong> molecular imaging on its own<br />

is virtually meaningless<br />

17<br />

/ 86


Imaging modaliAes<br />

1895 X-­‐ray Wilhelm C. Röntgen<br />

1940 Fluorescence microsc. Coons and Kaplan<br />

1946 NMR spectroscopy F. Bloch and E. Purcell<br />

1948 Ultrasound George Ludwig<br />

1953 ScinAgraphy Hal Anger<br />

1963 SPE<strong>CT</strong> Kuhl and Edwards<br />

1970 <strong>PET</strong> Brownell<br />

1973 MRI Paul Lauterbur<br />

1975 <strong>CT</strong> Robert S. Ledley<br />

1979 US doppler Ge<strong>of</strong>f Stevenson<br />

New techniques never replace old ones,<br />

we are just ge\ng more opAons.<br />

18<br />

/ 86


Planar image fusion<br />

1953 Thyroid scin3graphy and photograph <strong>of</strong> a pa3ent<br />

1960 Bonescan and X-­‐rays<br />

19<br />

/ 86


Common pracAce today<br />

21<br />

/ 86


Radiotherapy<br />

what do we need?


TherapeuAc raAo<br />

100%<br />

Effect<br />

Tumour control<br />

Slide 23<br />

Normal tissue damage<br />

/ 86


Increase therapeuAc raAo<br />

• Increase tumour sensitivity to irradiation<br />

• eg add chemotherapy, decrease hypoxia<br />

• Decrease normal tissue sensitivity to irradiation<br />

• eg amifostine<br />

• Increase con<strong>for</strong>mality <strong>of</strong> irradiation<br />

• Focus on tumour<br />

• Avoid organs at risk<br />

This is where <strong>PET</strong> comes into play<br />

Slide 24<br />

/ 86


GTV<br />

Gross Tumor Volume<br />

based on:<br />

Imaging modalities<br />

Diagnostic modalities<br />

(pathology/histology)<br />

Clinical examination<br />

Slide 25<br />

/ 86


<strong>CT</strong>V<br />

Clinical Target Volume<br />

GTV with margin<br />

accounting <strong>for</strong> sub-clinical<br />

microscopic extension<br />

This volume needs to be<br />

treated accurately to<br />

assure treatment efficacy.<br />

e.g.: <strong>CT</strong>V=GTV+0.5 cm<br />

<strong>CT</strong>V is a anatomicalclinical<br />

volume<br />

Slide 26<br />

/ 86


PTV<br />

Planning Target Volume<br />

<strong>CT</strong>V encompassed with<br />

margin <strong>for</strong>:<br />

Organ motion<br />

Daily patient setup<br />

Machine setup<br />

Intra-treatment<br />

variations<br />

…<br />

PTV is a geometrical<br />

concept<br />

Slide 27<br />

/ 86


RT <strong>planning</strong> process<br />

Item<br />

Item 1<br />

• Item 2<br />

• Item 3<br />

Slide 28<br />

/ 86


RT <strong>planning</strong> process<br />

Radiotherapy requires a uni<strong>for</strong>m dose distribution within the tumor.<br />

Target dose uni<strong>for</strong>mity within +7% and -5% <strong>of</strong> the prescribed tumor dose.<br />

While sparing surrounding normal tissues<br />

To achieve this goal multiple beams are used<br />

Main steps in Treatment Planning<br />

1. Define treatment volumes and risk organs<br />

2. Define optimal beam setup<br />

3. Calculate dose distribution within the patient<br />

and treatment times per beam<br />

4. Plan evaluation<br />

Slide 29<br />

/ 86


Sources <strong>of</strong> errors<br />

Inaccurate beam data<br />

Wrong monitor unit calibration<br />

Inaccurate beam measurements<br />

Wrong beam geometry<br />

Slide 30<br />

Accuracy <strong>of</strong> volume definition<br />

With advanced treatment techniques only voxels labeled as tumor will be<br />

irradiated<br />

Target volume delineation becomes extremely important<br />

Inter- and Intra-observer variations should be mimimized<br />

Accuracy <strong>of</strong> image fusion<br />

Patient repositioning<br />

Image registration <strong>CT</strong> / MR / <strong>PET</strong><br />

Data transfer/consistency between RTP and Linac<br />

And many more potential problems...<br />

/ 86


The result we try to get<br />

You need <strong>CT</strong><br />

! Anatomical reference<br />

! Tumor delinea3on<br />

! Electron density map<br />

PaAent benefit<br />

! Bener cura3on/survival<br />

! Less side-­‐effects<br />

! Bener quality <strong>of</strong> life<br />

<strong>PET</strong> imaging adds<br />

! Sensi3ve tumor detec3on<br />

! Discrimina3on tumor / benign<br />

! Consistent tumor delinea3on<br />

! Quan3fy tumor characteris3cs<br />

Impact on <strong>planning</strong><br />

! Improve <strong>planning</strong> accuracy<br />

! Higher dose to tumor<br />

! Lower dose to normal 3ssues<br />

! (Adapt to tumor characteris3cs)<br />

31<br />

/ 86


PotenAal problems<br />

<strong>PET</strong>/<strong>CT</strong> imaging can cause<br />

! FN: missing tumor 3ssue<br />

! FP: including benign 3ssues<br />

! Misposi3on tumor 3ssue<br />

! False tumor characteris3cs<br />

ResulAng in<br />

! Decreased curaAon/survival<br />

! More side-­‐effects<br />

! Reduced quality <strong>of</strong> life<br />

Impact on <strong>planning</strong><br />

! Degrade <strong>planning</strong> accuracy<br />

! Reduce effec3ve dose to tumor<br />

! Increase dose to normal 3ssues<br />

32<br />

/ 86


Technical<br />

requirements


StandardizaAon <strong>of</strong> <strong>PET</strong>/<strong>CT</strong> imaging<br />

! Indica3ons<br />

! Pa3ent prepara3on<br />

! Image acquisi3on<br />

! Image reconstruc3on<br />

! Viewing<br />

! Quan3fica3on<br />

! Delinea3on<br />

! Repor3ng<br />

! Impact<br />

35<br />

/ 86


<strong>PET</strong> <strong>for</strong> radiaAon oncology<br />

! Large bore<br />

! Flat table<br />

! Laser posi3oning<br />

! Posi3oning aids<br />

! Planning <strong>CT</strong><br />

! (4D gated)<br />

36<br />

/ 86


AddiAonal paAent posiAoning<br />

Repeated posiAoning is not a problem !<br />

Modality Repeats<br />

! Planning <strong>CT</strong> / MR 1 – 2<br />

! Addi3onal <strong>PET</strong> (/<strong>CT</strong>) 1<br />

! Radia3on treament 25 – 50<br />

37<br />

/ 86


Required accuracy<br />

Small errors in pa3ent (re)posi3oning are expected,<br />

and are compensated with a margin around the GTV.<br />

This is the PTV.<br />

Acceptable PTV margins<br />

depend on the body part<br />

! Head/neck ~ 5 mm<br />

! Colorectal ~ 10 mm<br />

! Lungs ~ 20 mm<br />

craniocaudal<br />

PosiAoning or image fusion errors on <strong>PET</strong>/<strong>CT</strong><br />

should not exceed the standard PTV margins<br />

38<br />

/ 86


Head/neck<br />

Required<br />

! Flat table<br />

! Customised <strong>head</strong>/neck support<br />

! Personalised mask<br />

! Mask clamps<br />

! Knee support<br />

! (Laser guides)<br />

39<br />

/ 86


Example: NO MASK<br />

40<br />

/ 86


Example: NO MASK<br />

Please don’t<br />

try this at<br />

home<br />

41<br />

/ 86


Example: SubopAmal mask placement<br />

42<br />

/ 86


Example: SubopAmal mask placement<br />

Validate your new<br />

approach and skills<br />

with experts<br />

43<br />

/ 86


Well-­‐trained personnel<br />

RecommendaAons<br />

! Accept a learning curve <strong>for</strong> pa3ent posi3oning<br />

! Collaborate with <strong>radiotherapy</strong> department staff<br />

! Train a dedicated <strong>PET</strong> <strong>planning</strong> staff<br />

44<br />

/ 86


Example: Success<br />

Results<br />

! Image registra3on error < 3 mm (Vogel et al, JNM 2007)<br />

! Correla3on <strong>of</strong> lesions < 5 mm possible<br />

! PTV margins 0.5 cm<br />

45<br />

/ 86


Tumor contouring<br />

using a <strong>PET</strong> signal


DelineaAon: a mulAmodality procedure<br />

Clinical evaluaAon<br />

! History<br />

! Inspec3on<br />

! Biopsy, histology<br />

! Experience<br />

AddiAonal imaging<br />

! Ultrasound<br />

! (ce)<strong>CT</strong><br />

! (ce)MRI, DWI, spectro<br />

! Endoscopy, et cetera…<br />

47<br />

/ 86


What does FDG <strong>PET</strong> show ?<br />

The signal comes from<br />

! Cells that proliferate<br />

! Cells that have de-­‐differen3ated<br />

! Cells that have high Glut-­‐1 expression<br />

! Cells that are hypoxic<br />

<strong>PET</strong> iden3fies voxels that<br />

contain a lot <strong>of</strong> cells, that<br />

tend to be radioresistent<br />

48<br />

/ 86


What does FDG <strong>PET</strong> not show ?<br />

Volumes with a low<br />

concentraAon <strong>of</strong><br />

vital tumor cells<br />

! Microscopic extent<br />

! Superficial spread<br />

! Diffuse infiltra3on<br />

! Necro3c parts<br />

! (Well-­‐differen3ated<br />

tumor parts)<br />

49<br />

/ 86


What volume do you need to know?<br />

From a surgical point <strong>of</strong> view<br />

! All tumor<br />

From a biological point <strong>of</strong> view<br />

! All tumor mee3ng certain diagnos3c criteria<br />

! All tumor relevant <strong>for</strong> a treatment decision<br />

From a radiotherapeuAc point <strong>of</strong> view<br />

! PTV The total volume to be irradiated<br />

! <strong>CT</strong>V The clinically relevant area, likely to contain tumor<br />

! GTV All known tumor containing areas<br />

! Boost A biological subvolume <strong>of</strong> the tumor volume<br />

50<br />

/ 86


<strong>PET</strong> <strong>for</strong> GTV<br />

GTV involves all known tumor locaAons<br />

! GTV involves all known tumor loca3ons<br />

! <strong>PET</strong> does not show them all<br />

! <strong>PET</strong> does not provide the GTV<br />

! <strong>PET</strong> can contribute to GTV defini3on, just like any other scan<br />

51<br />

/ 86


DelineaAon methods<br />

Available strategies<br />

! Visual / manual<br />

! SUV<br />

! % <strong>of</strong> tumor ac3vity<br />

! % <strong>of</strong> background ac3vity<br />

! Ra3o tumor -­‐ background<br />

! Advanced algorithms<br />

This choice is not trivial !<br />

! Resul3ng volume depends heavily on the method<br />

! There is insufficient valida3on <strong>for</strong> all methods<br />

! At least a fixed SUV threshold is not suitable<br />

! A “best method” is currently not iden3fiable<br />

Schinagl et al., IJRBOP 2007<br />

52<br />

/ 86


Impact on volumes<br />

Method<br />

! GTV 40 53.6 mL<br />

! GTV bg 94.7 mL<br />

! GTV vis 157.7 mL<br />

! GTV 2.5 164.6 mL<br />

(Nestle, JNM 2005)<br />

53<br />

/ 86


FDG <strong>PET</strong> versus pathology<br />

Every technique<br />

has issues<br />

! False posi3ves<br />

! False nega3ves<br />

! Limited resolu3on<br />

! Non-­‐linearity<br />

! Mul3-­‐factorial signal<br />

! Interpreta3on issues<br />

Tumor volume in pharyngolaryngeal<br />

squamous cell carcinoma: comparison at <strong>CT</strong>,<br />

MR imaging, and FDG <strong>PET</strong> and valida3on<br />

with surgical specimen.<br />

Daisne et al. Radiology. 2004;233(1):93-­‐100<br />

54<br />

/ 86


A visual mulAmodality approach<br />

x<br />

! x<br />

55<br />

/ 86


Reduce interobserver variaAon<br />

Observer varia3on in target volume delinea3on <strong>of</strong> lung <strong>cancer</strong> related to radia3on<br />

oncologist-­‐computer interac3on: a 'Big Brother' evalua3on. Steenbakkers RJ et al.<br />

Radiother Oncol. 2005 Nov;77(2):182-­‐90.<br />

56<br />

/ 86


Interobserver variaAon – No <strong>PET</strong><br />

57<br />

/ 86


Interobserver variaAon – With FDG-­‐<strong>PET</strong><br />

Huge improvement !<br />

58<br />

/ 86


StandardizaAon <strong>of</strong> delineaAon<br />

! Delinea3on algorithm<br />

! Image reconstruc3on<br />

! Color scales<br />

! Protocols<br />

Whatever you choose, it will instantly fail when<br />

! Switching from 3D to 4D in lung <strong>cancer</strong><br />

! Buying a new <strong>PET</strong> scanner<br />

! Using a different tracer<br />

59<br />

/ 86


Non-­‐homogeneous <strong>PET</strong><br />

<strong>PET</strong> oIen does not represent the tumor as a whole, and will not<br />

replace <strong>CT</strong>, MR, or other means to find tumor volume and borders<br />

<strong>PET</strong> can be used to idenAfy a biological subvolume<br />

Defining Radiotherapy Target Volumes Using (18)F-­‐Fluoro-­‐Deoxy-­‐Glucose Positron<br />

Emission Tomography/Computed Tomography: S3ll a Pandora's Box?<br />

Devic S et al. Int J Radiat Oncol Biol Phys. 2010 Jun 18.<br />

60<br />

/ 86


<strong>PET</strong> <strong>for</strong> Boost definiAon<br />

A boost field involves an important tumor subvolume<br />

! A boost is required <strong>for</strong> areas with<br />

! A high number <strong>of</strong> cells to kill<br />

! Rela3vely radioresistent cells (hypoxia)<br />

! FDG <strong>PET</strong> shows exactly those areas<br />

! <strong>PET</strong> can define a boost area<br />

When <strong>PET</strong> dictates the shape <strong>of</strong> a high-­‐dose RT field,<br />

the procedure needs to be highly standardized!<br />

61<br />

/ 86


Day-­‐to-­‐day problems<br />

Scans have different characterisAcs with regard to<br />

! Image resolu3on, par3al volume effects, blurring<br />

! Involuntary pa3ent mo3on, swallowing<br />

What is the truth ???<br />

62<br />

/ 86


Day-­‐to-­‐day problems<br />

Factors leading to significant tumor locaAon differences in mask<br />

! Positron drif (2-­‐5 mm)<br />

! Pa3ent mo3on (swallowing)<br />

What is the truth ???<br />

63<br />

/ 86


Summary <strong>of</strong> delineaAon<br />

Who needs <strong>PET</strong> <strong>for</strong> volume definiAon ?<br />

! GTV delinea3on when difficult on <strong>CT</strong>/MR/clinical evalua3on<br />

! Boost defini3on in scien3fic research<br />

And how to do it?<br />

! Be aware <strong>of</strong> the limita3ons <strong>of</strong> <strong>PET</strong><br />

! GTV: No definite strategy yet, use a holis3c approach<br />

! Boost: Prefer automa3c, use one algorithm and s3ck to that<br />

64<br />

/ 86


Moving from<br />

tumor contouring<br />

to<br />

biological evaluaAon


Contouring a signal<br />

66<br />

/ 86<br />

Claude Monet<br />

Impression, Sunrise<br />

(1874)<br />

Considered to be<br />

the first<br />

impressionist<br />

pain3ng


From where to what<br />

The Roman Dodecahedra<br />

Courtesy U. Nestle, Freiburg<br />

67<br />

/ 86


What are we currently NOT doing ?<br />

InterpretaAon <strong>of</strong> the biological acAvity inside the GTV/boost<br />

! Op3mal dose ?<br />

! Op3mal frac3ona3on scheme ?<br />

! Inhomogeneous treatment ?<br />

! Radiotherapy the best choice ?<br />

! Radiosensi3zers needed ?<br />

! Is the tumor responding ?<br />

! Adapt or switch treatment ?<br />

! Adjuvant chemo or surgery ?<br />

68<br />

/ 86


FDG uptake predicts RT outcome<br />

[18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome <strong>of</strong> non-­‐small-­‐cell lung <strong>cancer</strong>.<br />

Sasaki R et al. J Clin Oncol. 2005 Feb 20;23(6):1136-­‐43.<br />

69<br />

/ 86<br />

! Poten3al impact<br />

on required RT<br />

dose, but<br />

unverified


Does the tumor respond to treatment?<br />

Stage III NSCLC<br />

! <strong>PET</strong>/<strong>CT</strong> 2 weeks afer CRT<br />

<strong>PET</strong> CR<br />

! Good prognosis<br />

! Succesful resec3on defines outcome<br />

<strong>PET</strong> PD<br />

! Poor prognosis<br />

! Resec3on no longer defines outcome<br />

18F-­‐FDG <strong>PET</strong> <strong>for</strong> assessment <strong>of</strong> therapy response and<br />

preopera3ve re-­‐evalua3on afer neoadjuvant radio-­‐<br />

chemotherapy in stage III non-­‐small cell lung <strong>cancer</strong>.<br />

Eschmann SM, EJNMMI 2007 Apr;34(4):463-­‐71.<br />

70<br />

/ 86


A different place <strong>for</strong> <strong>PET</strong> <strong>of</strong> nodes ?<br />

Pre<br />

! T1 N2b oropharynx carcinoma<br />

Standard treatment<br />

! Chemoradia3on<br />

! RT 66 Gy / 35 frac3ons<br />

! Cispla3na weekly 40 mg/m 2<br />

In case <strong>of</strong> residual nodes<br />

! Addi3onal neck dissec3on<br />

71<br />

/ 86


A different place <strong>for</strong> <strong>PET</strong> <strong>of</strong> nodes ?<br />

Pre 12 weeks<br />

72<br />

/ 86<br />

Complete metabolic<br />

response 12 weeks<br />

afer treatment<br />

What does this<br />

mean ?


A different place <strong>for</strong> <strong>PET</strong> <strong>of</strong> nodes ?<br />

Pre 12 weeks 1 year<br />

73<br />

/ 86


ScienAfic evaluaAon<br />

! 112 pa3ents with (chemo)radia3on <strong>for</strong> a N2 <strong>head</strong>neck tumor<br />

! FDG-­‐<strong>PET</strong>/<strong>CT</strong> scan 3 months afer CRT<br />

! Only FDG-­‐posi3ve necks received node dissec3on<br />

! All others wait-­‐and-­‐see<br />

! Average follow-­‐up 2,5 years<br />

Results<br />

! 50 pa3ents with residual nodes on <strong>CT</strong><br />

! 9 posi3ve on <strong>PET</strong>: PPV = 22%<br />

! 41 nega3ve on <strong>PET</strong>: NPV = 100%<br />

Results <strong>of</strong> a prospec3ve study <strong>of</strong> positron emission tomography-­‐directed management <strong>of</strong> residual nodal abnormali3es in node-­‐posi3ve<br />

<strong>head</strong> and neck <strong>cancer</strong> afer defini3ve <strong>radiotherapy</strong> with or without systemic therapy.<br />

Porceddu SV et al., Head Neck 2011. (Aus)<br />

74<br />

/ 86


PotenAal impact<br />

! Less opera3ons needed afer CRT<br />

! Quality <strong>of</strong> life bener afer cura3on<br />

75<br />

/ 86


Different biological pathways<br />

Planning <strong>CT</strong> FDG FAZA<br />

Anatomy Metabolism Hypoxia<br />

76<br />

/ 86


<strong>PET</strong> <strong>for</strong> imaging <strong>of</strong><br />

the delivered RT dose


Radionuclide therapy<br />

Iodine MIBG<br />

We can<br />

! SEE our treatment<br />

79<br />

/ 86<br />

! Verify the predicted distribu3on<br />

! Quan3fy the given radia3on dose


External beam <strong>radiotherapy</strong><br />

! Looks very well guided<br />

! But is based on predic3ons<br />

and indirect measurements<br />

80<br />

/ 86


Protons vs photons<br />

Protons have a sharp<br />

energy release pr<strong>of</strong>ile<br />

Courtesy D. Schaart, TU Delf, the Netherlands<br />

81<br />

/ 86


Uncertain proton range<br />

! Proton depth is very exact<br />

Beam Beam<br />

! But may change with tumor reduc3on during treatment<br />

! This threatens the safety <strong>of</strong> the procedure<br />

Courtesy D. Schaart, TU Delf, the Netherlands<br />

82<br />

/ 86


Place a <strong>PET</strong> in the proton beam setup<br />

Visualise and quan3fy<br />

energy release DURING<br />

(or very shortly afer)<br />

proton treament !<br />

Courtesy D. Schaart, TU Delf, the Netherlands<br />

84<br />

/ 86


In-­‐line <strong>PET</strong> images<br />

Image quality is s3ll limited, but quan3fica3on seems valid<br />

Courtesy D. Schaart, TU Delf, the Netherlands<br />

Prediced dose Measured <strong>PET</strong><br />

85<br />

/ 86


Dr. Wouter V. Vogel<br />

Nuclear medicine physician<br />

NKI-­‐AvL, Amsterdam, the Netherlands<br />

Thank you<br />

<strong>for</strong> your arenAon

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!