14.01.2013 Views

Interfacial structure of V2AlC thin films deposited on -sapphire

Interfacial structure of V2AlC thin films deposited on -sapphire

Interfacial structure of V2AlC thin films deposited on -sapphire

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Available <strong>on</strong>line at www.sciencedirect.com<br />

Scripta Materialia 64 (2011) 347–350<br />

<str<strong>on</strong>g>Interfacial</str<strong>on</strong>g> <str<strong>on</strong>g>structure</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> V 2AlC <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> <str<strong>on</strong>g>deposited</str<strong>on</strong>g><br />

<strong>on</strong> ð1120Þ-<strong>sapphire</strong><br />

Darwin P. Sigum<strong>on</strong>r<strong>on</strong>g, a Jie Zhang, a,b,⇑ Yanchun Zhou, b Denis Music, a Jens Emmerlich, a<br />

Joachim Mayer c and Jochen M. Schneider a<br />

a Materials Chemistry, RWTH Aachen University, Mies-van-der-Rohe-Str. 10, 52074 Aachen, Germany<br />

b Shenyang Nati<strong>on</strong>al Laboratory for Materials Science, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Metal Research, Chinese Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences,<br />

Shenyang 110016, China<br />

c Central Facility for Electr<strong>on</strong> Microscopy, RWTH Aachen University, Ahornstr. 55, D-52074 Aachen, Germany<br />

Received 14 October 2010; accepted 24 October 2010<br />

Available <strong>on</strong>line 30 October 2010<br />

Local epitaxy between <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> and <strong>sapphire</strong> without intenti<strong>on</strong>ally or sp<strong>on</strong>taneously formed seed layers was observed by transmissi<strong>on</strong><br />

electr<strong>on</strong> microscopy. Our ab initio calculati<strong>on</strong>s suggest that the most stable interfacial <str<strong>on</strong>g>structure</str<strong>on</strong>g> is characterized by the stacking<br />

sequence ...C–V–Al–V//O–Al..., exhibiting the largest work <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong> for the c<strong>on</strong>figurati<strong>on</strong>s studied and hence str<strong>on</strong>g interfacial<br />

b<strong>on</strong>ding. It is proposed that a small misfit accompanied by str<strong>on</strong>g interfacial b<strong>on</strong>ding enable the local epitaxial growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g><br />

<strong>on</strong> ð1120Þ-<strong>sapphire</strong>.<br />

Ó 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.<br />

Keywords: MAX-phase <str<strong>on</strong>g>thin</str<strong>on</strong>g> film; TEM; Epitaxial growth; Ab initio calculati<strong>on</strong><br />

MAX-phases are a family <str<strong>on</strong>g>of</str<strong>on</strong>g> ternary compounds<br />

with the formula <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn+1AXn, where M is a transiti<strong>on</strong><br />

metal, A is an A group element (mostly IIIA and<br />

IVA), X is either C or N, and n = 1–3. These phases exhibit<br />

remarkable properties which are usually associated<br />

either with ceramics or with metals [1–4]. Due to the unique<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> properties, MAX-phases are promising<br />

candidates for both structural comp<strong>on</strong>ents [5] and<br />

protective <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> [6]. Recently, oxidati<strong>on</strong> induced<br />

self-healing has been reported by S<strong>on</strong>g et al. [7] in<br />

Ti3AlC2 at 1100 °C. By preferential oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al-c<strong>on</strong>taining<br />

MAX-phases during high-temperature oxidati<strong>on</strong>,<br />

crack healing was observed by the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a-Al2O3. Theoretical and experimental investigati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the interface <str<strong>on</strong>g>structure</str<strong>on</strong>g> between MAX-phase and<br />

a-Al2O3 are therefore <str<strong>on</strong>g>of</str<strong>on</strong>g> importance from a high-temperature<br />

applicati<strong>on</strong> prospective as well as from a <str<strong>on</strong>g>thin</str<strong>on</strong>g> film<br />

physics point <str<strong>on</strong>g>of</str<strong>on</strong>g> view. Epitaxial growth <str<strong>on</strong>g>of</str<strong>on</strong>g> MAX-phase<br />

<str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> <strong>on</strong> (0 0 0 1)-<strong>sapphire</strong> substrates [8–11] as well<br />

as <strong>on</strong> the binary carbide seed layer [12–16] was reported,<br />

but no stacking sequence proposal has been communi-<br />

⇑ Corresp<strong>on</strong>ding author at: Materials Chemistry, RWTH Aachen<br />

University, Mies-van-der-Rohe-Str. 10, 52074 Aachen, Germany.<br />

Fax: +49 241 80 22295; e-mail: zhang@mch.rwth-aachen.de<br />

1359-6462/$ - see fr<strong>on</strong>t matter Ó 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.scriptamat.2010.10.035<br />

www.elsevier.com/locate/scriptamat<br />

cated so far. The stacking sequence defines the interfacial<br />

strength and therefore not <strong>on</strong>ly affects the coating adhesi<strong>on</strong><br />

but also has the ability to self-heal, since <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the requirements for self-healing materials, according to<br />

van der Zwaag [17], is that the healed material exhibits<br />

properties superior or equal to the pristine material.<br />

Clearly the stacking sequence defining the interfacial<br />

strength is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the key quantities determining whether<br />

the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the healed material is superior to that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the pristine material. Hence, the methodology <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

interface investigati<strong>on</strong> communicated here provides a<br />

pathway to improve self-healing materials by probing<br />

the interfacial b<strong>on</strong>ding.<br />

<str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> (space group P63/mmc, prototype Cr2AlC) was<br />

<str<strong>on</strong>g>deposited</str<strong>on</strong>g> <strong>on</strong> ð1120Þ-<strong>sapphire</strong> from elemental targets.<br />

Local epitaxial growth was observed <strong>on</strong> ð1120Þ-<strong>sapphire</strong><br />

substrate by high-resoluti<strong>on</strong> transmissi<strong>on</strong> electr<strong>on</strong> microscopy<br />

(HRTEM) with the orientati<strong>on</strong> relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> (0 0 0 1)//a-Al2O3 ð1120Þ and <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> ½1210Š//<br />

a-Al 2O 3 [0 0 0 1]. Furthermore, ab initio calculati<strong>on</strong>s<br />

based <strong>on</strong> density functi<strong>on</strong>al theory (DFT) have been<br />

performed to study the interface with respect to the<br />

stacking sequence.<br />

The <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> studied in this work were grown <strong>on</strong><br />

polished ð1120Þ a-Al2O3 substrates by magnetr<strong>on</strong><br />

sputtering, using an experimental apparatus and setup


348 D. P. Sigum<strong>on</strong>r<strong>on</strong>g et al. / Scripta Materialia 64 (2011) 347–350<br />

described in detail elsewhere [16]. During depositi<strong>on</strong>, the<br />

substrate was kept at floating potential and heated to<br />

750 °C. The film was grown to a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately<br />

1.5 lm (±5%), as determined by scanning electr<strong>on</strong><br />

microscopy. The chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the film<br />

was quantified using energy-dispersive X-ray analysis<br />

with an EDAX Genesis 2000 system. The atomic c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each element deviates by less than 4% from<br />

the stoichiometric value. Hence, the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

film reported here is close to stoichiometric. Phase analysis<br />

was carried out by X-ray diffracti<strong>on</strong> (XRD) with a<br />

Bruker D5000 diffractometer in Bragg–Brentano geometry<br />

and a Cu X-ray source. Figure 1 shows the X-ray<br />

diffractogram <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> film grown in this work.<br />

All major XRD peaks can be assigned to <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> except<br />

for the peak indicated by the arrow with an integrated<br />

intensity (area under the peak) <str<strong>on</strong>g>of</str<strong>on</strong>g> 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total diffracted<br />

intensity. Based <strong>on</strong> XRD, the <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> film studied<br />

in this work is 99% phase pure.<br />

Structural investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the interface was carried<br />

out by TEM using a 300 kV Tecnai G 2 F30. Fast Fourier<br />

transformati<strong>on</strong> (FFT) was carried out using the<br />

Digital Micrograph package. A low-magnificati<strong>on</strong><br />

cross-secti<strong>on</strong>al image <str<strong>on</strong>g>of</str<strong>on</strong>g> the film is depicted in Figure 2a,<br />

which reveals that the <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> film is polycrystalline. At<br />

the interface, the orientati<strong>on</strong> relati<strong>on</strong>ship between the<br />

film and the substrate is determined by the corresp<strong>on</strong>ding<br />

selected area diffracti<strong>on</strong> (SAED) pattern (shown in<br />

Fig. 2b) as follows:<br />

– <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> (0 0 0 1)//a-Al2O3 ð1120Þ,<br />

<str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> ð2020Þ//a-Al2O3 ð3300Þ,<br />

and <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> ½1210Š//a-Al2O3 [0001]<br />

The small deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the two-z<strong>on</strong>e axis is most likely<br />

due to the finite size effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the SAED aperture used.<br />

The lattice mismatch between the film and substrate<br />

can be calculated by f =(as af)/af; in which as and af<br />

are the d-spacings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Al2O3 and <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> planes which<br />

are perpendicular to the interface [18]. The d-spacings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Al2O3 ð3300Þ and <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> ð2020Þ employed are the<br />

stress-free lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> and Al2O3. The<br />

interfacial mismatch is calculated to be 8.16%.<br />

Figure 2(c) shows an HRTEM image obtained from<br />

the interface, indicating (local) epitaxial growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> <str<strong>on</strong>g>thin</str<strong>on</strong>g> film <strong>on</strong> ð1120Þ a-Al2O3. In Figure 2(c),<br />

the ð2110Þ plane <str<strong>on</strong>g>of</str<strong>on</strong>g> Al2O3 transfers c<strong>on</strong>tinously into<br />

Figure 1. X-ray diffractogram <str<strong>on</strong>g>of</str<strong>on</strong>g> the V 2AlC film grown <strong>on</strong> ð1120Þ<br />

a-Al2O3 substrate at 750 °C.<br />

the ð1013Þ plane <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g>, both <str<strong>on</strong>g>of</str<strong>on</strong>g> which are inclined<br />

to the interface. This feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the interfacial micro<str<strong>on</strong>g>structure</str<strong>on</strong>g><br />

is more clearly revealed by Figure 2d, in which<br />

the processed image obtained by calculating the FFT<br />

after masking both the Al2O3 {2110} and <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g><br />

{1013} reflecti<strong>on</strong>s <strong>on</strong> the opposite side <str<strong>on</strong>g>of</str<strong>on</strong>g> the unscattered<br />

beam, as shown in the inset image in Figure 2d.<br />

For the <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> film grown <strong>on</strong> a-Al2O3 substrates, a<br />

semicoherent interface forms which is characterized by<br />

coherent regi<strong>on</strong>s separated by misfit dislocati<strong>on</strong>s. Thus<br />

the lattice mismatch at the interface is accommodated<br />

by the misfit dislocati<strong>on</strong>s. In Figure 2d, the misfit dislocati<strong>on</strong>s<br />

are evenly distributed in V 2AlC near the interface.<br />

This is expected since <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> is less stiff than<br />

Al2O3 [19]. Hence, epitaxial growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> <strong>on</strong><br />

ð1120Þ Al 2O 3 substrates may at least in part be caused<br />

by small lattice mismatch, compensated by misfit dislocati<strong>on</strong>s.<br />

It is important to note that the thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

interfacial regi<strong>on</strong> where local epitaxy observed is <strong>on</strong> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 nm. It may be speculated that the relatively<br />

high depositi<strong>on</strong> rate employed here hinders global epitaxy.<br />

The growth rate, at 37.5 nm min 1 , was <strong>on</strong>e order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude larger than the rates reported in the literature<br />

resulting in the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epitaxial Ti2AlC <str<strong>on</strong>g>thin</str<strong>on</strong>g><br />

<str<strong>on</strong>g>films</str<strong>on</strong>g> [12,13].<br />

In order to investigate the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the experimentally<br />

observed local epitaxy, we applied ab initio calculati<strong>on</strong>s<br />

to probe the atomistic and electr<strong>on</strong>ic nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

V 2AlC//a-Al 2O 3 interface. These ab initio calculati<strong>on</strong>s<br />

were performed using the OpenMX code [20], based<br />

<strong>on</strong> DFT [21] and basis functi<strong>on</strong>s in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> linear<br />

combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> localized pseudoatomic orbitals [22].<br />

The electr<strong>on</strong>ic potentials were fully relativistic pseudopotentials<br />

with partial core correcti<strong>on</strong> [23,24], and a local<br />

density approximati<strong>on</strong> was applied [25]. The basis<br />

functi<strong>on</strong>s used were generated based <strong>on</strong> a c<strong>on</strong>finement<br />

scheme [26] and specified as follows: Al6.0-s2p2d1,<br />

O5.0-s2p2, V7.5-s2p2d2 and C4.5-s2p2. The energy cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

(150 Ryd) and k-point grid (1 1 1) wi<str<strong>on</strong>g>thin</str<strong>on</strong>g> the real<br />

space grid technique [27] were adjusted to reach an accuracy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 10 6 H atom 1 . Spin polarizati<strong>on</strong> was not c<strong>on</strong>sidered<br />

since the total energy differences between spin<br />

polarized and n<strong>on</strong>-polarized <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong>s are<br />

negligible [28]. The interface was described using a slab<br />

model where periodic boundary c<strong>on</strong>diti<strong>on</strong>s are broken<br />

in <strong>on</strong>e crystallographic directi<strong>on</strong> by inserting a vacuum<br />

layer (here thickness = 10 A ˚ ).<br />

Two interface c<strong>on</strong>figurati<strong>on</strong>s have been studied in this<br />

work. V 2AlC (0001)//a-Al 2O 3 ð1120Þ and V 2AlC<br />

½1210Š//a-Al2O3 [0 0 0 1], which is identical to the <strong>on</strong>e<br />

observed by TEM; as well as <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> (0 0 0 1)//a-Al2O3<br />

ð1120Þ and V 2AlC ½1100Š//a-Al 2O 3 [0 0 0 1] each c<strong>on</strong>sist<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 60 atoms corresp<strong>on</strong>ding to the substrate and 128 and 94<br />

atoms, respectively, corresp<strong>on</strong>ding to the film. The most<br />

stable surface terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ð1120Þ a-Al 2O 3 reported<br />

in the literature is oxygen [29,30]; c<strong>on</strong>sequently, this terminati<strong>on</strong><br />

was adopted here. In both c<strong>on</strong>figurati<strong>on</strong>s, the<br />

substrate is stoichiometric a-Al2O3 with six atomic layers<br />

in thickness and the film is stoichiometric V 2AlC with<br />

eight atomic layers in thickness. Two layers at the bottom<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the interface bel<strong>on</strong>ging to a-Al2O3 were fixed to represent<br />

the (infinite) bulk. For each <str<strong>on</strong>g>of</str<strong>on</strong>g> these interfacial<br />

c<strong>on</strong>figurati<strong>on</strong>s, the following stacking sequences were


studied: ...V–C–V–Al//O–Al..., ...C–V–Al–V//O–Al<br />

... and ...Al–V–C–V//O–Al.... The stacking sequences<br />

...V–Al–V–C//O–Al...have been excluded because c<strong>on</strong>vergence<br />

could not be obtained. The most stable interface<br />

c<strong>on</strong>figurati<strong>on</strong> is characterized by the largest work <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong>,<br />

calculated from the energy change per unit area<br />

corresp<strong>on</strong>ding to the introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the interface in comparis<strong>on</strong><br />

to two separated slabs [31]. For the <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g><br />

(0 0 0 1)//a-Al2O3 ð1120Þ and <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> ½1210Š//a-Al2O3<br />

[0 0 0 1] interface, the calculated work <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong><br />

values are 2.86, 2.73 and 1.90 J m 2 , corresp<strong>on</strong>ding to<br />

the ...C–V–Al–V//O–Al..., ...Al–V–C–V//O–Al...<br />

and ...V–C–V–Al//O–Al... stacking sequences, respectively.<br />

Furthermore, for the <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> (0 0 0 1)//a-Al2O3<br />

ð1120Þ and <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> ½1100Š//a-Al2O3 [0 0 0 1] interface,<br />

the calculated work <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong> values are 1.72, 1.60<br />

and 1.40 J m –2 , corresp<strong>on</strong>ding to ...C–V–Al–V//O–Al<br />

..., ...Al–V–C–V//O–Al... and ...V–C–V–Al//O–Al...<br />

stacking, respectively.<br />

Based <strong>on</strong> our calculati<strong>on</strong> results, the str<strong>on</strong>gest interfacial<br />

b<strong>on</strong>ding and also the most stable interface are<br />

obtained for ...C–V–Al–V//O–Al... stacking. The electr<strong>on</strong><br />

density distributi<strong>on</strong> in Figure 3 shows that the bulk<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> a-Al2O3 exhibits mostly i<strong>on</strong>ic and covalent b<strong>on</strong>ding<br />

since electr<strong>on</strong>s are transferred from Al to O and<br />

some charge is shared. In V–C slabs <str<strong>on</strong>g>of</str<strong>on</strong>g> V 2AlC, electr<strong>on</strong>s<br />

are shared and partly transferred, which is c<strong>on</strong>sistent<br />

with a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> covalent and i<strong>on</strong>ic b<strong>on</strong>ding. The b<strong>on</strong>ding<br />

between V and Al is characterized by more uniform<br />

electr<strong>on</strong> density as well as some shared charge. This is<br />

c<strong>on</strong>sistent with metallic b<strong>on</strong>ding with some covalent<br />

D. P. Sigum<strong>on</strong>r<strong>on</strong>g et al. / Scripta Materialia 64 (2011) 347–350 349<br />

Figure 2. (a) Cross-secti<strong>on</strong>al TEM micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the V 2AlC film. (b) SAED pattern corresp<strong>on</strong>ding to the V 2AlC/a-Al 2O 3 interface. (c) HRTEM<br />

image <str<strong>on</strong>g>of</str<strong>on</strong>g> the interface recorded with the incident beam parallel to the ½1210Š directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> V 2AlC and [0 0 0 1] <str<strong>on</strong>g>of</str<strong>on</strong>g> a-Al 2O 3. (d) One-dimensi<strong>on</strong>al<br />

Fourier-filtered image <str<strong>on</strong>g>of</str<strong>on</strong>g> (c) by a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> as well as a-Al2O3 reflecti<strong>on</strong>s, which are shown in the inset pattern.<br />

Figure 3. The interface c<strong>on</strong>figurati<strong>on</strong> studied in this work with the<br />

largest work <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong> value, overlapped with the corresp<strong>on</strong>ding<br />

electr<strong>on</strong> density distributi<strong>on</strong>.<br />

c<strong>on</strong>tributi<strong>on</strong>s, in agreement with the literature [32,33].<br />

At the interface, namely between V and O, charge transfer<br />

occurs and some charge is shared. These b<strong>on</strong>ds are <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an i<strong>on</strong>ic–covalent nature and are expected to be str<strong>on</strong>g,<br />

resulting in a very stable interface, which may enhance<br />

the self-healing ability <str<strong>on</strong>g>of</str<strong>on</strong>g> MAX-phase at high<br />

temperatures.<br />

In c<strong>on</strong>clusi<strong>on</strong>, the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>V2AlC</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> <strong>on</strong> ð1120Þ<br />

a-Al2O3 was reported. Local epitaxy without intenti<strong>on</strong>ally<br />

or sp<strong>on</strong>taneously formed seed layers was observed<br />

by transmissi<strong>on</strong> electr<strong>on</strong> microscopy. Based <strong>on</strong> the<br />

experimental and ab initio data presented, it is proposed


350 D. P. Sigum<strong>on</strong>r<strong>on</strong>g et al. / Scripta Materialia 64 (2011) 347–350<br />

that the stable interfacial b<strong>on</strong>ding in c<strong>on</strong>juncti<strong>on</strong> with<br />

the small lattice mismatch compensated by misfit dislocati<strong>on</strong>s<br />

enable the local epitaxial growth <str<strong>on</strong>g>of</str<strong>on</strong>g> V 2AlC <strong>on</strong><br />

ð1120Þ a-Al2O3. Therefore, interfacial design based <strong>on</strong><br />

misfit minimizati<strong>on</strong> and interface stabilizati<strong>on</strong> by str<strong>on</strong>g<br />

interfacial b<strong>on</strong>ding may enable local epitaxial growth.<br />

The methodology <str<strong>on</strong>g>of</str<strong>on</strong>g> the theoretical interface investigati<strong>on</strong><br />

communicated here provides a pathway to improving<br />

self-healing materials by probing the interfacial<br />

b<strong>on</strong>ding.<br />

The authors gratefully acknowledge the financial<br />

support by the Deutsche Forschungsgemeinschaft<br />

(DFG) wi<str<strong>on</strong>g>thin</str<strong>on</strong>g> the Collaborative Research Center 561<br />

“Thermally highly loaded, porous, and cooled multilayer<br />

systems for combined cycle power plants”.<br />

[1] J.C. Schuster, H. Nowotny, C. Vaccaro, J. Solid State<br />

Chem. 32 (1980) 213.<br />

[2] M.W. Barsoum, Prog. Solid State Chem. 28 (2000) 201.<br />

[3] D. Music, J.M. Schneider, JOM 59 (2007) 60.<br />

[4] J. Wang, Y. Zhou, Annu. Rev. Mater. Res. 39 (2009) 31.<br />

[5] H.B. Zhang, Y.W. Bao, Y.C. Zhou, J. Mater. Sci.<br />

Technol. 25 (2009) 1.<br />

[6] P. Eklund, M. Beckers, U. Janss<strong>on</strong>, H. Högberg, L.<br />

Hultman, Thin Solid Films 518 (2009) 1851.<br />

[7] G.M. S<strong>on</strong>g, Y.T. Pei, W.G. Slo<str<strong>on</strong>g>of</str<strong>on</strong>g>, S.B. Li, J. Th, M. De<br />

Hoss<strong>on</strong>, S. van der Zwaag, Scripta Mater. 58 (2008) 13.<br />

[8] H. Högberg, P. Eklund, J. Emmerlich, J. Birch, L.<br />

Hultman, J. Mater. Res. 20 (2005) 779.<br />

[9] J. Rosén, L. Ryves, P.O.A ˚ . Perss<strong>on</strong>, M.M.M. Bilek,<br />

Appl. Phys. 101 (2007) 056101.<br />

[10] P.O.A ˚ . Perss<strong>on</strong>, S. Kodambaka, I. Petrov, L. Hultman,<br />

Acta Mater. 55 (2007) 4401.<br />

[11] O. Wilhelmss<strong>on</strong>, P. Eklund, H. Högberg, L. Hultman, U.<br />

Janss<strong>on</strong>, Acta Mater. 56 (2008) 2563.<br />

[12] O. Wilhelmss<strong>on</strong>, J.-P. Palmquist, T. Nyberg, U. Janss<strong>on</strong>,<br />

Appl. Phys. Lett. 85 (2004) 1066.<br />

[13] O. Wilhelmss<strong>on</strong>, J.-P. Palmquist, E. Lewin, J. Emmerlich,<br />

P. Eklund, P.O.A ˚ . Perss<strong>on</strong>, H. Högberg, S. Li, R. Ahuja,<br />

O. Erikss<strong>on</strong>, L. Hultman, U. Janss<strong>on</strong>, J. Cryst. Growth<br />

291 (2006) 290.<br />

[14] J. Emmerlich, P. Eklund, D. Rittrich, H. Högberg, L.<br />

Hultman, J. Mater. Res. 22 (2007) 2279.<br />

[15] P.O.A ˚ . Perss<strong>on</strong>, J. Rosén, D.R. McKenzie, M.M.M.<br />

Bilek, C. Höglund, J. Appl. Phys. 103 (2008) 066102.<br />

[16] D.P. Sigum<strong>on</strong>r<strong>on</strong>g, J. Zhang, Y. Zhou, D. Music, J.M.<br />

Schneider, J. Phys. D: Appl. Phys. 42 (2009) 185408.<br />

[17] S. van der Zwaag (Ed.), Self Healing Materials, Springer,<br />

Dordrecht, 2007.<br />

[18] F.R.N. Nabaroo (Ed.), Dislocati<strong>on</strong>s in Crystals, vol. 7,<br />

North-Holland, Amsterdam, 1979, p. 466.<br />

[19] G. Guterkunst, J. Mayer, M. Rühle, Philos. Mag. A 75<br />

(1997) 1329.<br />

[20] T. Ozaki, H. Kino, Phys. Rev. B 72 (2005) 045121.<br />

[21] P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864.<br />

[22] T. Ozaki, Phys. Rev. B 67 (2003) 155108.<br />

[23] N. Troullier, J.L. Martins, Phys. Rev. B 43 (1991) 1993.<br />

[24] P.E. Blochl, Phys. Rev. B 41 (1990) 5414.<br />

[25] D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45 (1980) 566.<br />

[26] T. Ozaki, H. Kino, Phys. Rev. B 69 (2004) 195113.<br />

[27] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera,<br />

P. Ordejón, D. Sánchez-Portal, J. Phys.: C<strong>on</strong>dens. Matter<br />

14 (2002) 2745.<br />

[28] J.M. Schneider, Z. Sun, R. Mertens, F. Uestel, R. Ahuja,<br />

Solid State Commun. 130 (2004) 445.<br />

[29] J. Guom, D.E. Ellis, D.J. Lam, Phys. Rev. B 45 (1992)<br />

13647.<br />

[30] S. Bl<strong>on</strong>ski, S.H. Gar<str<strong>on</strong>g>of</str<strong>on</strong>g>alini, Surf. Sci. 295 (1993) 263.<br />

[31] Z.S. Lin, P.D. Bristowe, Phys. Rev. B 75 (2007) 205423.<br />

[32] D. Music, Z. Sun, R. Ahuja, J.M. Schneider, Surf. Sci.<br />

601 (2007) 896.<br />

[33] J.M. Wang, J.Y. Wang, Y.C. Zhou, J. Phys.: C<strong>on</strong>dens.<br />

Matter 20 (2008) 225006.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!