15.01.2013 Views

Advanced Supercritical Boiler Technologies - Doosan Power Systems

Advanced Supercritical Boiler Technologies - Doosan Power Systems

Advanced Supercritical Boiler Technologies - Doosan Power Systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Advanced</strong> <strong>Supercritical</strong> <strong>Boiler</strong> <strong>Technologies</strong><br />

Official Opening of the OxyCoal TM Clean Combustion<br />

Test Facility<br />

Technical Seminar<br />

Dr David Smith<br />

Date: 24 July 2009<br />

AGENDA<br />

• Why <strong>Advanced</strong> <strong>Supercritical</strong>?<br />

• <strong>Advanced</strong> <strong>Supercritical</strong> : State of the Art<br />

• Next step: Ultra <strong>Supercritical</strong><br />

Page 1<br />

1


WHY ADVANCED SUPERCRITICAL?<br />

CO 2<br />

Reduction<br />

- 95%<br />

Baseline<br />

TRACK 2: Carbon Capture<br />

and Storage (CCS)<br />

TRACK 1: Increased Efficiency<br />

• Both tracks are required to mitigate CO 2 emissions from coal fired generation<br />

• Primary means to increase efficiency is to increase the steam conditions we use in our power plant cycle<br />

WHY ADVANCED SUPERCRITICAL?<br />

• Efficiency of the Rankine Cycle<br />

increases with increasing Turbine inlet<br />

Temperature and Pressure<br />

• Cycle efficiency of typical sub-critical<br />

plant is 38% whereas today’s<br />

supercritical technology increases this<br />

to around 45-47%<br />

<strong>Advanced</strong> Ultra<br />

Sub-Critical Super-Critical Super-Critical Super-Critical<br />

220.89 250 290<br />

Main Steam Pressure (bar)<br />

540 570 610<br />

Main Steam Temperature (°C)<br />

Time<br />

• <strong>Supercritical</strong> means above the “critical”<br />

point for water / steam (220.89 bar) after<br />

which there is no phase change between<br />

water and steam<br />

Page 2<br />

• Other terms “<strong>Advanced</strong> <strong>Supercritical</strong>” and<br />

“Ultra <strong>Supercritical</strong>” are loose definitions to<br />

indicate steps in technology as opposed to<br />

any distinction in thermodynamic<br />

properties<br />

Page 3<br />

2


DEVELOPMENT IN THERMAL EFFICIENCY<br />

Meaningful CO 2 reductions can be achieved by replacing old units with modern advanced supercritical<br />

plant<br />

Plant<br />

efficiency<br />

% NCV<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

32%<br />

UK<br />

fleet<br />

Older<br />

Plants<br />

38%<br />

Meri Pori<br />

Hemweg<br />

Sub Critical<br />

<strong>Boiler</strong>s<br />

Best Available <strong>Advanced</strong><br />

<strong>Supercritical</strong> Technology<br />

being offered now – eg<br />

Kingsnorth, Greifswald<br />

Target<br />

AD700<br />

<strong>Doosan</strong> Babcock<br />

ASC<br />

New Chinese<br />

Orders<br />

Chinese fleet 38%<br />

42%<br />

1960 1980 2000 2020<br />

STEAM CYCLE AND PLANT EFFICIENCY GAINS<br />

Efficiency (%NCV)<br />

55<br />

50<br />

45<br />

40<br />

305-585/602<br />

285-580/580<br />

275-585/602<br />

274-580/600<br />

260-540/560<br />

239-540/560<br />

50 – 55%<br />

(-29%)<br />

46%<br />

(-23%)<br />

35<br />

159-566/566<br />

166-568/568<br />

169-541/539<br />

166-568/568<br />

Main Steam Pressure (barg) – Steam Temperature Main / Reheat (°C)<br />

30<br />

1960 1970 1980 1990 2000 2010 2020<br />

Year<br />

Target<br />

AD700<br />

Year<br />

Increasing<br />

Efficiency<br />

Lower CO2 emissions<br />

<strong>Supercritical</strong><br />

<strong>Boiler</strong>s<br />

Efficiency gains have mostly been achieved by pushing the steam cycle, lower excess air and lower<br />

gas exit temperature have also contributed<br />

375-700/700<br />

Page 4<br />

Sub-Critical<br />

<strong>Supercritical</strong><br />

Page 5<br />

3


AGENDA<br />

• Why <strong>Advanced</strong> <strong>Supercritical</strong>?<br />

• <strong>Advanced</strong> <strong>Supercritical</strong> : State of the Art<br />

• Next step: Ultra <strong>Supercritical</strong><br />

WANGQU, SHANXI PROVINCE, CHINA<br />

2 x 600MWe Units<br />

Evaporation 540 kg/s<br />

S/htr Outlet Press 248 bar<br />

S/htr Outlet Temperature 571°C<br />

R/htr Outlet Temperature 569°C<br />

Contract Effective 09/03<br />

Operational 36 months later<br />

SEPARATOR<br />

VESSEL<br />

REHEATER<br />

FINAL<br />

SUPERHEATER<br />

PLATEN<br />

SUPERHEATER<br />

TO STORAGE<br />

VESSEL<br />

HOPPER KNUCKLE<br />

MAIN STEAM<br />

OUTLET<br />

FURNACE ACCESS DOOR<br />

WATER<br />

IMPOUNDED<br />

HOPPER<br />

REHEATER<br />

OUTLET<br />

ECONOMISER<br />

Pr ep ar ed by Te rry E van s, J anu ar y 200 4 f or Wangqu<br />

Page 6<br />

REHEATER<br />

PRIMARY<br />

SUPERHEATER<br />

ECONOMISER<br />

Page 7<br />

4


DEPLOYMENT OF SUPERCRITICAL TECHNOLOGY<br />

China’s deployment of supercritical technology far outstrips other countries and regions – UK deployment is<br />

zero<br />

GREIFSWALD, GERMANY<br />

2 x 800MWe Units<br />

Evaporation 588 kg/s<br />

S/htr Outlet Press 277 bar<br />

S/htr Outlet Temperature 600°C<br />

R/htr Outlet Temperature 605°C<br />

PosiflowTM vertical tube furnace<br />

Page 8<br />

Page 9<br />

5


DEVELOPMENTS IN SUPERCRITICAL BOILERS<br />

• With a Posiflow TM furnace the supercritical<br />

down-shot boiler can be realised: combines the<br />

economic and environmental benefits of<br />

supercritical steam conditions with anthracite<br />

combustion for the first time<br />

• <strong>Doosan</strong> Babcock 2 x 600MW supercritical<br />

down-shot units for Zhenxiong, Yunnan<br />

Province, China.<br />

• Posiflow TM Best Available Technology for<br />

Once-Through boiler furnace<br />

• Lower pressure drop means lower feed-pump<br />

power and lower through-life energy<br />

consumption<br />

• Other advantages include better turn-down,<br />

simpler construction and improved availability<br />

DEVELOPMENTS IN SUPERCRITICAL BOILERS: PLANT UPGRADE<br />

• <strong>Supercritical</strong> Retrofit - existing plant can be<br />

upgraded to supercritical steam conditions with<br />

lower capital cost and more rapid timescale<br />

than new plant<br />

• New boiler within existing structure<br />

• POSIFLOW TM vertical tube low mass flux<br />

furnace<br />

• Re-use of other equipment (eg fans,<br />

airheaters, coal mills)<br />

• New HP and IP turbine<br />

• <strong>Doosan</strong> Babcock Upgrade of Yaomeng <strong>Power</strong><br />

Plant in China 2002<br />

• Owner chose not to upgrade to supercritical<br />

steam conditions…..<br />

• However, application of Posiflow TM furnace and<br />

combustion system modifications gave 10%<br />

lower coal consumption and availability of 96%<br />

Page 10<br />

Page 11<br />

6


AGENDA<br />

• Why <strong>Advanced</strong> <strong>Supercritical</strong>?<br />

• <strong>Advanced</strong> <strong>Supercritical</strong> : State of the Art<br />

• Next step: Ultra <strong>Supercritical</strong><br />

ULTRA SUPERCRITICAL<br />

<strong>Boiler</strong> concept for > 700°C<br />

Generation 550MW<br />

Overall cycle efficiency >50%<br />

Page 12<br />

Main Steam Pressure 365 bar-a<br />

Main Steam Temperature 705°C<br />

Reheat Steam Temperature 720°C<br />

Reduction in CO2 emission relative to sub-critical ~30%<br />

Page 13<br />

7


MATERIALS FOR ADVANCED STEAM CYCLES - TUBING<br />

Steam cycle based efficiency gains are constrained by the availability of suitable alloys<br />

Average Stress Rupture (MPa) (100000 Hours)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

T24<br />

T23<br />

Ferritic Alloys<br />

All available now Austenitic Alloys<br />

Super 304H, 347HFG available now<br />

Sanicro 25 available – not yet codified<br />

Steam Temperature<br />

P92<br />

Super 304H<br />

347 HFG<br />

Nickel Alloys<br />

Validation ongoing<br />

Alloy 617<br />

Sanicro 25<br />

Alloy 263<br />

Alloy 740<br />

~550°C ~600°C<br />

~650°C ~700°C<br />

0<br />

500 550 600 650 700 750<br />

Metal Temperature (°C)<br />

Page 14<br />

Note – maximum allowable temperatures are also limited by steam-side oxidation<br />

MATERIALS FOR ADVANCED STEAM CYCLES - TUBING<br />

To put that in context consider a 48mm tube operating at 700°C with a design pressure of 380 bar:<br />

Allowable Stress @ 750°C<br />

(MPa)<br />

Calculated thickness<br />

t = P.D / 2.σ (mm)<br />

HR3C<br />

Austenitic<br />

Alloy 617mod<br />

Nickel Alloy<br />

Alloy 740<br />

Nickel Alloy<br />

44.5 56.0 96.0<br />

20.5 16.2 9.5<br />

Page 15<br />

8


MATERIALS FOR ADVANCED STEAM CYCLES – HEADERS AND PIPEWORK<br />

Austenitic alloys suffer from thermal fatigue, making them less suitable for thicker wall section<br />

components<br />

Average Stress Rupture (MPa) (100000 Hours)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

T24<br />

T23<br />

Ferritic Alloys<br />

All available now<br />

Steam Temperature<br />

P92<br />

Nickel Alloys<br />

Validation ongoing<br />

Alloy 617<br />

~600°C ~650°C<br />

~700°C<br />

Alloy 263<br />

Alloy 740<br />

0<br />

500 550 600 650 700 750<br />

Metal Temperature (°C)<br />

Page 16<br />

Note – maximum allowable temperatures are also limited by steam-side oxidation<br />

MATERIALS FOR ADVANCED STEAM CYCLES – MANUFACTURING<br />

Manufacturing processes for components from new materials require extensive validation<br />

Test bending furnace wall panels in T23 material<br />

Alloy 263 pipe production Alloy 263 weld qualification<br />

Bend tests in Sanicro 25<br />

Page 17<br />

9


ULTRA SUPERCRITICAL – CYCLE OPTIMISATION<br />

• In addition to improvements in Rankine Cycle efficiency from increasing steam temperatures we can make<br />

better use of low grade heat in our power plant cycle<br />

• Feedwater heating can be optimised to reduce the quantity of high grade bled steam taken from the turbine<br />

and better utilise the low grade heat in the flue gas leaving the boiler<br />

SUMMARY<br />

• Increasing plant efficiency is fundamental to reducing all emissions including CO 2<br />

• Primary means to increase efficiency is to increase the steam pressure and temperature at the turbine<br />

inlet<br />

• This means using steam at supercritical pressures – we use terms such as “<strong>Advanced</strong> <strong>Supercritical</strong>” and<br />

“Ultra <strong>Supercritical</strong>” to indicate higher ranges of temperatures and pressures<br />

• We can make improvements to the basic once-through boiler concept like the Posiflow TM furnace to<br />

further increase efficiency and operating flexibility<br />

• <strong>Supercritical</strong> technology can be readily retrofitted to life-expired existing plant<br />

• Today’s <strong>Advanced</strong> <strong>Supercritical</strong> plant will achieve around 46-47% cycle efficiency (LHV basis) and about<br />

20% reduction in CO 2 for the same MWe output as existing sub-critical plant<br />

• Ultra <strong>Supercritical</strong> plant operating at steam temperatures above 700°C is the next step. Together with<br />

improved cycles this will achieve a plant efficiency over 50% and about a 30% reduction in CO 2<br />

compared to existing sub-critical plant<br />

• Attainment of 700°C is constrained by the availability of suitable materials for the highest temperature<br />

components and development programmes are underway<br />

Page 18<br />

Page 19<br />

10


Commercial Contact Details<br />

<strong>Doosan</strong> Babcock is committed to delivering unique and advanced supercritical<br />

boiler technologies.<br />

Steve Whyley<br />

Global Sales Director<br />

<strong>Doosan</strong> Babcock Energy<br />

11 The Boulevard<br />

CRAWLEY<br />

West Sussex<br />

RH10 1UX<br />

T +44 (0) 1293 612888<br />

D +44 (0) 1293 584908<br />

E swhyley2@doosanbabcock.com<br />

Page 20<br />

11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!