15.01.2013 Views

Synthesis of Morphine Alkaloids

Synthesis of Morphine Alkaloids

Synthesis of Morphine Alkaloids

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

HO<br />

<strong>Synthesis</strong> <strong>of</strong> <strong>Morphine</strong> <strong>Alkaloids</strong><br />

NH 2<br />

CO 2H<br />

N<br />

B<br />

A<br />

D<br />

C<br />

MeO<br />

HO<br />

MeO<br />

O<br />

E<br />

OH<br />

OH<br />

NMe<br />

MeN<br />

OH<br />

O OH


Cultivation:<br />

Fig 1: Lanced Poppy with<br />

raw opium exturding<br />

Introduction<br />

• Opium is harvested from the immature poppy seed capsule<br />

MeN<br />

O OH<br />

• Primary areas <strong>of</strong> cultivation are south east and west asia and latin america<br />

• An average Indian acreage <strong>of</strong> P. somniferum yields 25-30 kg <strong>of</strong> opium<br />

OH<br />

(-)-morphine<br />

10 -15 %<br />

MeN<br />

OMe<br />

O OH<br />

MeO<br />

MeO<br />

(-)-codeine<br />

(-)-thebaine<br />

3-4% 1-2 %<br />

H<br />

O<br />

N Me


Introduction<br />

History <strong>of</strong> <strong>Morphine</strong> as a Pharmaceutical<br />

• Laudanum (16th Century):<br />

• Heroin (1898):<br />

-Developed by Swiss alchemist Paracelus<br />

-alcoholic tincture <strong>of</strong> alcohol, opium, and other herbs<br />

-Eased suffering from the plague<br />

-Developed by Heinrich Dreser at Fredich Bayer and Company<br />

-Diacetyl derivative <strong>of</strong> morphine<br />

-Marketed to the German people as a cough remedy<br />

• <strong>Morphine</strong> (Present day)<br />

-One <strong>of</strong> the most widely used drugs for treatment <strong>of</strong> severe pain


Structure<br />

N<br />

B<br />

A<br />

D<br />

C<br />

<strong>Morphine</strong><br />

O<br />

E<br />

<strong>Synthesis</strong><br />

OH<br />

HO<br />

Introduction<br />

O<br />

H<br />

HO<br />

3<br />

4<br />

5<br />

6<br />

12<br />

2<br />

13<br />

14<br />

7<br />

1<br />

11<br />

15<br />

10<br />

16<br />

• Landmark synthesis was in 1952 by Gates<br />

8<br />

9<br />

H<br />

N<br />

Me<br />

Key Features: 5 rings, 5<br />

contiguous stereocenters,<br />

compact array <strong>of</strong> functionality<br />

• Since then at least 18 more total and formal synthesis<br />

<strong>of</strong> <strong>Morphine</strong> have appeared<br />

• This overview will encompass 6 unique routes


HO<br />

MeO<br />

HO<br />

MeO<br />

MeO<br />

L-Tyrosine<br />

OH<br />

salutaridinol<br />

S N2'<br />

NH 2<br />

CO 2H<br />

NMe<br />

Biosynthesis <strong>of</strong> <strong>Morphine</strong><br />

?<br />

HO<br />

HO<br />

dopamine<br />

HO<br />

MeO<br />

O<br />

MeO<br />

salutaridine<br />

MeO<br />

O<br />

NH 2<br />

CHO<br />

NMe<br />

HO<br />

HO<br />

HO<br />

NH<br />

H<br />

(S)-norcoclaurine<br />

MeO<br />

O<br />

MeO<br />

O<br />

Phenolic coupling<br />

MeO<br />

NMe<br />

O<br />

O<br />

O<br />

H<br />

NMe<br />

H<br />

NMe<br />

H<br />

H<br />

NMe<br />

MeO<br />

O<br />

O<br />

thebaine neopinone<br />

codeinone<br />

?<br />

MeO<br />

HO<br />

HO<br />

MeO<br />

MeO<br />

HO<br />

MeO<br />

HO<br />

(S)-reticuline<br />

OH<br />

(R)-reticuline<br />

O<br />

H<br />

HO<br />

H<br />

morphine<br />

NMe<br />

H<br />

NMe<br />

NMe


Retrosynthesis<br />

MeO<br />

HO<br />

O<br />

<strong>Morphine</strong><br />

MeO<br />

MeO<br />

NC<br />

H<br />

N<br />

O<br />

O<br />

[Ox]<br />

[Red]<br />

Gates <strong>Synthesis</strong><br />

[4 + 2]<br />

MeO<br />

HO<br />

O<br />

MeO<br />

MeO<br />

H<br />

N<br />

O<br />

OH<br />

CN<br />

Epimerization<br />

Reductive<br />

Amidation<br />

MeO<br />

HO<br />

O<br />

MeO<br />

MeO<br />

14<br />

H<br />

H<br />

[Red]<br />

O<br />

N<br />

O<br />

NH


Forward <strong>Synthesis</strong>: Diene<br />

HO<br />

OH<br />

Gates <strong>Synthesis</strong><br />

1. BzCl BzO<br />

2. NaNO2 3. Pd/C<br />

4. FeCl3 O<br />

(56 %)<br />

O<br />

NC<br />

O<br />

OMe<br />

OMe<br />

O<br />

1.<br />

5. SO 2<br />

6. (MeO) 2SO 2<br />

(78 %)<br />

NC CO 2Et<br />

NEt 3<br />

2. K3FeCN6 3. KOH,EtOH<br />

(82 %)<br />

BzO<br />

O<br />

O<br />

OMe<br />

OMe<br />

7. KOH<br />

8. NaNO2 9. Pd/C<br />

10. FeCl3 (69 %)<br />

OMe<br />

OMe


Forward <strong>Synthesis</strong>: <strong>Morphine</strong><br />

MeO<br />

HO<br />

O<br />

MeO<br />

MeO<br />

CN<br />

14<br />

H<br />

N<br />

O<br />

O<br />

AcOH/Δ<br />

(50 %)<br />

1. (a) Br 2<br />

(b) 2,4-DNP<br />

2. HCl<br />

3. H 2/ PtO 2<br />

(7 %)<br />

Gates <strong>Synthesis</strong><br />

MeO<br />

MeO<br />

MeO<br />

HO<br />

O<br />

14<br />

O<br />

OH<br />

CN<br />

H<br />

N<br />

27 atm H 2<br />

CuO/Cr 2O<br />

EtOH<br />

150 °C<br />

(50 %)<br />

1. H 2SO 4<br />

2. KOH,<br />

(HOCH2CH2) 2O<br />

3. KOt-Bu/Ph2CO (14 %)<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

H<br />

O<br />

O<br />

NH<br />

1. N2H4/KOH 2. MeI/NaH<br />

3. LAH<br />

(76 %)<br />

H<br />

N


Forward <strong>Synthesis</strong>: <strong>Morphine</strong><br />

MeO<br />

HO<br />

O<br />

H<br />

N<br />

Analysis: Gates Method<br />

• 29 Steps<br />

1. (a) Br 2<br />

(b) 2,4-DNP<br />

2. HCl<br />

(8 %)<br />

• Overall Yield: 0.0014%<br />

Gates <strong>Synthesis</strong><br />

MeO<br />

O<br />

• Key Disconnections: Diels-Alder & Reductive Amidation<br />

O<br />

Br<br />

H<br />

N<br />

1-Bromo-Codeinone<br />

1. LAH (44 %)<br />

2. Pyr-HCl, 220 °C<br />

(34%)<br />

MeO<br />

HO<br />

O<br />

MeO<br />

H<br />

HO<br />

N<br />

O<br />

H<br />

<strong>Morphine</strong><br />

N


Retrosynthesis<br />

HO<br />

O<br />

HO<br />

OMe<br />

N<br />

CO 2H H 2N<br />

OH<br />

OMe<br />

Rice <strong>Synthesis</strong><br />

MeO<br />

O<br />

O<br />

MeO<br />

HO<br />

MeO<br />

N<br />

H<br />

NH<br />

MeO<br />

HO<br />

O<br />

MeO<br />

HO<br />

O<br />

Br<br />

Br<br />

NCHO<br />

H<br />

NCHO


Rice <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: Grewe cyclization<br />

MeO<br />

CHO<br />

OMe<br />

HO<br />

O<br />

OH<br />

Br<br />

1. a) NaHSO 3<br />

b) KCN, H 2SO 4<br />

2. SnCl2, HCl<br />

HOAc<br />

(67 %)<br />

NCHO<br />

NH 4F/HF<br />

TfOH<br />

(60 %)<br />

MeO<br />

HO<br />

OMe<br />

O<br />

CO 2H<br />

OH<br />

1.<br />

Br<br />

NH 2<br />

OMe<br />

MeO<br />

200 °C<br />

2. a) POCl3 b) NaCNBH4 HO<br />

MeO<br />

H<br />

NH<br />

(86 %) 1. Li/NH3 2. PhOCHO,<br />

EtOAc<br />

(85 %)<br />

H<br />

NCHO<br />

1. a) MeSO3H b) (CH2OH) 2<br />

c) NBS<br />

d) HCO2H (aq)<br />

(90 %)<br />

MeO<br />

HO<br />

MeO<br />

H<br />

NH


Forward <strong>Synthesis</strong>: End Game<br />

MeO<br />

HO<br />

O<br />

Br<br />

Analysis: Rice Method<br />

• 16 steps<br />

NCHO<br />

• Overall yield 12 %<br />

Rice <strong>Synthesis</strong><br />

MeO<br />

1. ClCO2Et 1. Br2, AcOH<br />

2. PhSeCl<br />

2. CHCl3, NaOH<br />

3. NaIO4 O<br />

3. H2, Pd(C),<br />

4. NaBH4 CH2O, NaOAc<br />

N 5. BBr3, CHCl3 (79 %)<br />

O<br />

(42 %)<br />

Dihydrocodeinone<br />

• Grewe cyclization was key disconnection<br />

• Practical method for conversion <strong>of</strong> dihydrocodeinone to morphine<br />

HO<br />

O<br />

HO<br />

HO<br />

O<br />

HO<br />

N<br />

<strong>Morphine</strong><br />

N


Retrosynthesis<br />

HO<br />

N<br />

Me<br />

O<br />

OMe<br />

OMe<br />

OH<br />

H<br />

N<br />

Me<br />

Br<br />

Br<br />

Evans <strong>Synthesis</strong><br />

O<br />

MeO<br />

OMe<br />

H<br />

N<br />

Me<br />

Gates Intermediate<br />

Br<br />

OMe<br />

OMe<br />

N<br />

Me<br />

H 2C<br />

MeO<br />

H<br />

H<br />

N<br />

Me<br />

- [CH 2]<br />

OMe<br />

OMe<br />

OMe<br />

N Me<br />

ClO 4


Evans <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: Immonium Perchlorate<br />

O<br />

N<br />

Me<br />

H<br />

1.<br />

OMe<br />

OMe<br />

Li<br />

2. TsOH, 110 °C<br />

OMe<br />

OMe<br />

N Me<br />

Thermodynamic<br />

Product<br />

(43 %)<br />

ClO 4<br />

N<br />

Me<br />

MeOH<br />

50 °C<br />

60 % overall,<br />

95:5 cis:trans<br />

OMe<br />

OMe<br />

1. n-BuLi<br />

2.<br />

Br<br />

Br<br />

H<br />

OMe<br />

OMe<br />

N Me<br />

Kinetic<br />

Product<br />

ClO 4<br />

OMe<br />

OMe<br />

N<br />

Me<br />

HClO 4<br />

Br<br />

OMe<br />

OMe<br />

N<br />

Me<br />

3. NaI<br />

OMe<br />

OMe<br />

N Me


Forward <strong>Synthesis</strong>:<br />

OMe<br />

Evans <strong>Synthesis</strong><br />

OMe<br />

OMe<br />

CH2N2 DCM<br />

OMe<br />

H<br />

N<br />

Me<br />

ClO4 (95 %)<br />

H<br />

N Me<br />

Stereochemical Analysis:<br />

H<br />

Me N Ar<br />

Nu<br />

MeN H<br />

Nu<br />

H<br />

Ar<br />

DMSO<br />

(95 %)<br />

?<br />

H<br />

MeO<br />

?<br />

OMe<br />

OMe<br />

N<br />

CHO<br />

Me<br />

BF 3-Et 2O<br />

OMe<br />

OH<br />

H<br />

N<br />

Me


Forward <strong>Synthesis</strong>:<br />

OMe<br />

Evans <strong>Synthesis</strong><br />

OMe<br />

OMe<br />

CH2N2 DCM<br />

OMe<br />

H<br />

N<br />

Me<br />

ClO4 (95 %)<br />

H<br />

N Me<br />

Stereochemical Analysis:<br />

H<br />

Me N Ar Nu<br />

MeN H<br />

Nu<br />

H<br />

Ar<br />

DMSO<br />

(95 %)<br />

H<br />

MeO<br />

OMe<br />

OMe<br />

N<br />

CHO<br />

Me<br />

BF 3-Et 2O<br />

OMe<br />

OH<br />

H<br />

N<br />

Me


Forward <strong>Synthesis</strong>: End Game<br />

MeO<br />

OMe<br />

OH<br />

H<br />

N<br />

Me<br />

Evans <strong>Synthesis</strong><br />

1. MsCl, TEA<br />

2. LiEt3BH 3. OsO4, NaIO4 (80 %)<br />

Analysis: Evans <strong>Synthesis</strong><br />

O<br />

MeO<br />

OMe<br />

H<br />

N<br />

Me<br />

Gates Intermediate<br />

• Short sequence to achieve the gates intermediate (10 steps)<br />

• Cleaver and original disconnect<br />

• Major limitation is having to go through gates intermediate<br />

HO<br />

O<br />

H<br />

N<br />

Me<br />

OMe


Retrosynthesis<br />

MeN<br />

(-)-morphine<br />

OH<br />

O OH<br />

Overman <strong>Synthesis</strong><br />

Rice<br />

SiMe 2Ph<br />

MeN<br />

HN DBS<br />

OHC<br />

OMe<br />

O O<br />

OMe<br />

I<br />

OBn<br />

Epoxide<br />

Opening<br />

Mannich<br />

DBS<br />

DBS<br />

N<br />

N<br />

I<br />

OMe<br />

OBn<br />

Heck<br />

Cyclization<br />

OBn<br />

OMe


Overman <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: amine component<br />

OCH 3<br />

CO 2H<br />

1.a) NH 3 (l)<br />

b.) Li wire<br />

c.)<br />

d.) HCl aq<br />

(27 %)<br />

Stereochemical Analysis:<br />

Cu<br />

R 1<br />

R 2<br />

O<br />

N O<br />

Ph<br />

Cl<br />

Syn Facial<br />

Oxidative<br />

Addition<br />

O<br />

?<br />

H<br />

R Cu 1 (III)<br />

N<br />

Ph<br />

2.<br />

3.<br />

H Ph<br />

Ph<br />

O<br />

N<br />

BH<br />

catechol borane<br />

PhN C P<br />

4. OsO4/NMO, Acetone<br />

(90 % ee, 68 %)<br />

R 2<br />

,<br />

Reductive<br />

Elimination<br />

OCONHPh<br />

H<br />

R 1<br />

O<br />

O<br />

R 2<br />

5. n-BuLi,<br />

CuI(Ph 3P) 2<br />

PhMe 2SiLi<br />

(81 %)<br />

DBS =<br />

SiMe 2Ph<br />

O<br />

6. a) TsOH,<br />

NaIO 4<br />

SiMe 2Ph<br />

O<br />

b) DBS-NH 2,<br />

NaCNBH 3<br />

(83 %)<br />

HN DBS


Overman <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: amine component<br />

OCH 3<br />

CO 2H<br />

1.a) NH 3 (l)<br />

b.) Li wire<br />

c.)<br />

d.) HCl aq<br />

(27 %)<br />

Stereochemical Analysis:<br />

Cu<br />

R 1<br />

R 2<br />

O<br />

N O<br />

Ph<br />

Cl<br />

Syn Facial<br />

Oxidative<br />

Addition<br />

O<br />

H<br />

R Cu 1 (III)<br />

N<br />

Ph<br />

2.<br />

3.<br />

H Ph<br />

Ph<br />

O<br />

N<br />

BH<br />

catechol borane<br />

PhN C P<br />

4. OsO4/NMO, Acetone<br />

(90 % ee, 68 %)<br />

R 2<br />

,<br />

Reductive<br />

Elimination<br />

OCONHPh<br />

H<br />

R 1<br />

O<br />

O<br />

R 2<br />

5. n-BuLi,<br />

CuI(Ph 3P) 2<br />

PhMe 2SiLi<br />

(81 %)<br />

DBS =<br />

SiMe 2Ph<br />

O<br />

6. a) TsOH,<br />

NaIO 4<br />

SiMe 2Ph<br />

O<br />

b) DBS-NH 2,<br />

NaCNBH 3<br />

(83 %)<br />

HN DBS


Overman <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: aldehyde component<br />

HO<br />

CHO<br />

OMe<br />

1. HC(OMe) 3, H<br />

MeO OMe<br />

n-BuLi; I 2; HCl<br />

2. NaH, ClCH2OMe MOMO<br />

BnBr, K2CO 2. BF<br />

3<br />

3 -THF<br />

BnO<br />

(96 %)<br />

OMe (78 %)<br />

(84 %)<br />

OMe<br />

Forward <strong>Synthesis</strong>: mannich reaction<br />

SiMe 2Ph<br />

HN DBS<br />

OHC<br />

OMe<br />

I<br />

OBn<br />

ZnI 2<br />

EtOH<br />

60 °C<br />

PhMe 2Si<br />

Me 3Si<br />

N<br />

R 2<br />

N<br />

DBS<br />

R 1<br />

H<br />

H<br />

Stereochemical Analysis:<br />

Ar<br />

CHO<br />

I 1. CH2SMe2 I<br />

Vs.<br />

80 %<br />

dr > 20:1<br />

Me 3Si<br />

N<br />

R 2<br />

H<br />

DBS<br />

R 1<br />

Favored for large R 1 Favored for small R 1<br />

N<br />

BnO<br />

I<br />

OMe<br />

CHO<br />

OBn<br />

OMe


Overman <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: Heck Cyclization and End Game<br />

DBS<br />

N<br />

I<br />

(1)<br />

OBn<br />

OMe<br />

Pd(TFA) 2(PPh 3) 2<br />

PMP, 120 °C<br />

(60 %)<br />

DBS<br />

N<br />

MeN<br />

OMe<br />

OBn<br />

(-)-morphine<br />

OH<br />

O OH<br />

1. BF 3-OEt<br />

2. ArCO3H, CSA<br />

(60 %)<br />

1. ClCO 2Et<br />

2. PhSeCl<br />

3. NaIO 4<br />

4. LAH<br />

5. BBr 3<br />

(36 %)<br />

DBS<br />

N<br />

MeN<br />

HO<br />

OMe<br />

O<br />

1. TPAP/NMO<br />

2. H 2, Pd/C,<br />

CH 2O<br />

(69 %)<br />

OMe<br />

O O


Overman <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: Bis-Heck Cyclizations<br />

1<br />

MeO 2C<br />

1. a) CH 2O, Δ<br />

b) ClCO 2Me<br />

2. a) EtSH, BF 3<br />

b) TMDSOTf<br />

3. CrO 3, 3-5-dimethyl<br />

pyrazole<br />

OMe<br />

O O<br />

OsO 4<br />

NaIO 4<br />

(70 %)<br />

MeO 2C<br />

N<br />

MeO 2CN<br />

I<br />

O<br />

OTBDMS<br />

OMe<br />

OMe<br />

O<br />

1. H2C PPh3 N<br />

MeO2C 2. TBAF, THF<br />

(47 %)<br />

MeO 2CN<br />

OMe<br />

OH<br />

PdL n<br />

I<br />

OH<br />

OMe<br />

Pd(TFA) 2(PPh 3) 2<br />

PMP, 120 °C<br />

(58 %)


Analysis: Overman Approach<br />

Overman <strong>Synthesis</strong><br />

• 1st enantioselective synthesis that did not contain a resolution<br />

• Natural and unnatural morphine available<br />

• 23 steps with an overall yield <strong>of</strong> 0.56 % (single heck)<br />

• 26 steps with an overall yield <strong>of</strong> 0.184 % (bis-cyclization)<br />

• Key disconnections were the Heck and Mannich<br />

MeN<br />

OH<br />

O OH


Retrosynthesis<br />

MeO<br />

O<br />

H H<br />

HO<br />

MeO<br />

HO<br />

NMe<br />

MeO<br />

HO<br />

HO2C CHO<br />

MeO<br />

O<br />

H H<br />

O<br />

White <strong>Synthesis</strong><br />

O<br />

NMe<br />

MeO<br />

Rice Beckman C-H<br />

CO 2Me<br />

1. Stobbe<br />

2. Hydrogenation<br />

MeO<br />

MeO<br />

O<br />

O<br />

S EAr<br />

MeO<br />

HO<br />

MOMO<br />

O<br />

O<br />

O<br />

H H<br />

CO 2H<br />

O<br />

Insertion<br />

Robinson<br />

MeO<br />

H<br />

MOMO<br />

MeO<br />

HO<br />

O<br />

O<br />

H<br />

H<br />

H<br />

O<br />

N 2<br />

OH<br />

O


Forward <strong>Synthesis</strong>:<br />

MeO<br />

HO<br />

MeO<br />

O<br />

O<br />

Br<br />

CHO<br />

O<br />

OMe<br />

(CH 2CO 2Me) 2<br />

1.<br />

2. H 2, [RhCl(COD)] 2,<br />

(-)-MOD-DIOP<br />

MeO<br />

HO<br />

Br<br />

O<br />

White <strong>Synthesis</strong><br />

Br<br />

MeO<br />

HO<br />

HO2C O<br />

OMe<br />

DBU<br />

70 °C<br />

(80 %)<br />

CO 2Me<br />

MeO<br />

HO<br />

Br<br />

O<br />

1. P 2O 5, MeOH<br />

2. H2, Pd(OH) 2<br />

3. LiOH (aq), THF<br />

H<br />

Br<br />

O<br />

OMe<br />

MeO<br />

HO<br />

O<br />

MeO<br />

1. CH2N2 HO<br />

2. Br2, NaHCO3 O<br />

CO 2H<br />

1. KH, HCO 2Me<br />

2. MVK, NEt 3<br />

3. NaOH, THF<br />

H<br />

OH<br />

O


Forward <strong>Synthesis</strong>:<br />

MeO<br />

O<br />

MeO<br />

O<br />

O<br />

Br<br />

O<br />

OMe<br />

MeO<br />

O<br />

1. NaBH 4<br />

2. H 2, Pd/C<br />

(77 %)<br />

H<br />

MOMO<br />

H<br />

NH H<br />

O MOMO<br />

H N<br />

H<br />

11 1<br />

White <strong>Synthesis</strong><br />

O<br />

MeO<br />

H<br />

HO<br />

O<br />

H<br />

H<br />

22:1<br />

MeO<br />

MOMO<br />

O<br />

O<br />

OMe<br />

H H<br />

AcO<br />

1. CH2(OMe) 2<br />

2. LiOH<br />

3.( COCl) 2<br />

4. CH2N2 (50 %)<br />

OBs<br />

NH<br />

MeO<br />

H<br />

MOMO<br />

O<br />

H<br />

MeO<br />

H<br />

1. NH2OH-HCl O<br />

2. p-BrPhSO2Cl, NaOAc H H<br />

(63 %)<br />

MOMO<br />

O<br />

N 2<br />

Rh 2(OAc) 4<br />

(50 %)<br />

O


End Game:<br />

MeO<br />

MOMO<br />

O<br />

H H<br />

O<br />

NH<br />

Analysis: White Approach<br />

• 29 steps<br />

1. NaH/MeI<br />

2. HBr, MeCN<br />

3. D-Mperiodinane<br />

(90 %)<br />

• Overall yield <strong>of</strong> 1.73 %<br />

White <strong>Synthesis</strong><br />

MeO<br />

O<br />

H H<br />

O<br />

O<br />

NMe<br />

1. PhSeCl/MsOH<br />

2. NaIO 4<br />

3. LiAlH 4<br />

4. BBr 3<br />

(52 %)<br />

MeO<br />

O<br />

H H<br />

• Asymmetry was introduced early via enantioselective hydrogenation<br />

• Key disconnect was the Rhodium (II) catalyzed C-H insertion<br />

MeO<br />

O<br />

H H<br />

HO<br />

HO<br />

NMe<br />

NMe


Retrosynthesis:<br />

HO<br />

H<br />

O<br />

HO morphine<br />

N Me<br />

Rice<br />

PhS<br />

MeO<br />

H<br />

O<br />

O<br />

Br<br />

Parker <strong>Synthesis</strong><br />

OMe<br />

OH<br />

N Me<br />

TBDMSO<br />

[Ox]<br />

MeO<br />

H<br />

HO<br />

O<br />

NTs<br />

HO Me<br />

N Me<br />

Mitusunobo<br />

MeO<br />

H<br />

HO<br />

MeO<br />

H<br />

HO<br />

O<br />

O<br />

X<br />

S<br />

R<br />

Me<br />

N<br />

Ts<br />

Radical<br />

Cyclization<br />

Me<br />

N<br />

Ts


Forward <strong>Synthesis</strong>:<br />

MeO<br />

1<br />

• Racemic Route:<br />

NH 2<br />

1. Br 2, TEA<br />

2. catechol<br />

borane<br />

(76 %, 80 % ee)<br />

1. Li, NH 3<br />

2. a) TsCl, TEA<br />

b) 1N HCl<br />

3. MeI, K2CO3 (75 %)<br />

•Asymmetric Route:<br />

Br<br />

HO<br />

Parker <strong>Synthesis</strong><br />

NTs<br />

Me<br />

O<br />

NTs<br />

Me<br />

1. NaBH4, CeCl3 2. MCPBA<br />

3. Ti(Oi-Pr) 4<br />

HO<br />

NTs<br />

Me<br />

4. TBDMSCl TBDMSO<br />

(1) (63 %)<br />

racemic<br />

Na(Hg)<br />

(90 %)<br />

Failed routes included direct CBS reduction <strong>of</strong> 1 (35 % ee) and<br />

Sharpless kinetic resolution <strong>of</strong> the allylic alcohol (44 %ee)<br />

HO<br />

NTs<br />

Me<br />

1. MCPBA<br />

2. Ti(Oi-Pr) 4<br />

3. TBDMSCl<br />

(52 %)<br />

TBDMSO<br />

NTs<br />

HO Me<br />

enantiomerically<br />

enriched<br />

(S)-B-Me =<br />

H Ph<br />

Ph<br />

O<br />

N<br />

BMe


Parker <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: Mitsunobu Coupling<br />

PhS<br />

MeO<br />

HO CHO<br />

Br<br />

Br<br />

OMe<br />

OH<br />

PhS<br />

TBDMSO<br />

O<br />

P<br />

(OEt) 2<br />

n-BuLi<br />

HO<br />

NTs<br />

Me 1. PBu3, DEAD<br />

MeO<br />

THF HO<br />

SPh<br />

(82 %)<br />

Br<br />

2. 10 % HF<br />

MeO<br />

O Br<br />

H<br />

HO<br />

SPh<br />

Me<br />

N<br />

Ts


Parker <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: Radical Cyclization<br />

MeO<br />

O Br<br />

H<br />

HO<br />

MeO<br />

O<br />

H<br />

HO<br />

SPh<br />

SPh<br />

Me<br />

N<br />

Ts<br />

-[ SPh]<br />

Me<br />

N<br />

Ts<br />

Bu 3SnH<br />

AIBN<br />

Bond<br />

Rotation<br />

MeO<br />

H<br />

HO<br />

MeO<br />

O<br />

O<br />

HO<br />

N<br />

Me<br />

N<br />

Ts<br />

Ts<br />

N<br />

Me<br />

(35 %) (11 %)<br />

Me<br />

Ts<br />

H<br />

SPh<br />

O<br />

OH<br />

Ts<br />

N<br />

Me


Parker <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: Radical Cyclization<br />

MeO<br />

O Br<br />

H<br />

HO<br />

MeO<br />

O<br />

H<br />

HO<br />

SPh<br />

Me<br />

N<br />

Ts<br />

-[ SPh]<br />

Bu 3SnH<br />

AIBN<br />

MeO<br />

H<br />

HO<br />

MeO<br />

Bond<br />

O<br />

Draw a mechanism that HO H accounts<br />

Me<br />

SPh<br />

N Rotation<br />

SPh for formation <strong>of</strong> the side product<br />

Ts<br />

O<br />

N<br />

Me<br />

N<br />

Ts<br />

Ts<br />

N<br />

Me<br />

(35 %) (11 %)<br />

Me<br />

Ts<br />

O<br />

OH<br />

Ts<br />

N<br />

Me


Parker <strong>Synthesis</strong><br />

Forward <strong>Synthesis</strong>: Radical Cyclization<br />

MeO<br />

O Br<br />

H<br />

HO<br />

MeO<br />

O<br />

H<br />

HO<br />

SPh<br />

SPh<br />

Me<br />

N<br />

Ts<br />

-[ SPh]<br />

Me<br />

N<br />

Ts<br />

Bu 3SnH<br />

AIBN<br />

Bond<br />

Rotation<br />

MeO<br />

H<br />

HO<br />

MeO<br />

O<br />

O<br />

HO<br />

N<br />

Me<br />

N<br />

Ts<br />

Ts<br />

N<br />

Me<br />

(35 %) (11 %)<br />

Me<br />

Ts<br />

H<br />

SPh<br />

O<br />

OH<br />

Ts<br />

N<br />

Me


End Game<br />

MeO<br />

H<br />

HO<br />

O<br />

Me<br />

N<br />

Ts<br />

Li/NH 3<br />

t -BuOH<br />

(85 %)<br />

MeO<br />

H<br />

HO<br />

Parker <strong>Synthesis</strong><br />

O<br />

MeO<br />

Me O<br />

N<br />

H<br />

HO<br />

HO<br />

H<br />

O<br />

HO<br />

morphine<br />

DMSO<br />

Me<br />

N<br />

(COCl) 2<br />

(83 %)<br />

N Me<br />

MeO<br />

H<br />

O<br />

O<br />

dihydrocodeinone<br />

Rice<br />

Method<br />

N Me


Analysis: Parker Method<br />

(+/-) <strong>Morphine</strong>:<br />

• 22 steps<br />

• Overall yield <strong>of</strong> 2.07 %<br />

Parker <strong>Synthesis</strong><br />

• Radical cyclization was the key disconnect<br />

• First published in August, 1992<br />

(-) <strong>Morphine</strong>:<br />

• 24 steps<br />

• Overall yield <strong>of</strong> 1.7 %<br />

• CBS reduction <strong>of</strong> α-bromoenone was key step<br />

• Published in January, 2006<br />

MeO<br />

H<br />

O<br />

HO morphine<br />

Br<br />

HO<br />

N Me<br />

NTs<br />

Me


Conclusions<br />

Disconnection approaches have evolved with the<br />

methods <strong>of</strong> synthetic chemistry<br />

N<br />

B<br />

A<br />

D<br />

C<br />

<strong>Morphine</strong><br />

O<br />

E<br />

OH<br />

Gates (1952): Diels-Alder<br />

Rice (1980): Grewe Cyclization<br />

Evans (1982): Iminium Salts<br />

Overman (1993): Heck chemistry<br />

White (1997): C-H insertion<br />

Parker (2006): Radical Cyclization<br />

<strong>Morphine</strong> approaches will continue to grow<br />

(Only Rice has come close to synthetically viable route)<br />

Racemic<br />

Asymmetric<br />

Continued need for developing morphine derivatives<br />

which can attenuate addictive properties


Review:<br />

References<br />

Taber, D.F. The Enantioselective <strong>Synthesis</strong> <strong>of</strong> <strong>Morphine</strong>: Strategies and<br />

Tactics in Organic <strong>Synthesis</strong> 2004, 5, 353<br />

Lead References for Syntheses:<br />

Gates, M.J. J. Am. Chem. Soc. 1953, 75, 4340<br />

Rice, C.; Brossi, A. J. Org. Chem. 1980, 45, 592<br />

Evans, D.A.; Mitch, C.H. Tetrahedron Lett. 1982, 23, 285<br />

Overman, L.E. Pure and Appl. Chem. 1994, 66, 1423<br />

White, J.D. J. Org. Chem. 1999, 64, 7871<br />

Parker, K.A. J. Org. Chem. 2006, 71, 449

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!