17.01.2013 Views

SPINOR

SPINOR

SPINOR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SPINOR</strong><br />

Inversions based on RFs<br />

A. Lagg - Abisko Winter School 1


Asymmetric profiles and ME (1) )<br />

MHD MHD-Simulations Simulations (Vögler et al. 2005)<br />

)<br />

A. Lagg - Abisko Winter School 2


Asymmetric profiles and ME (2) )<br />

MHD MHD-Simulations Simulations (Vögler et al. 2005)<br />

)<br />

� Fe I 630.1 and 630.2 profiles<br />

degraded to SP pixel size<br />

� Maps of inferred B and v<br />

very similar to real ones!<br />

� Maps of inferred B and v LOS<br />

A. Lagg - Abisko Winter School 3


Inversions with gradients<br />

� Inversion codes capable of f deealing<br />

with gradients<br />

� Are based on numerical solution<br />

of RTE<br />

�� Provide reliable thermal info ormation<br />

� Use less free parameters thhan<br />

ME codes (7 vs 8)<br />

�� Infer stratifications of physic cal parameters with depth<br />

� Produce better fits to asymmmetric<br />

Stokes profiles<br />

� Height dependence of atmosppheric<br />

parameters is needed for<br />

� easier solution of the 180 o a<br />

� 3D structure of sunspots annd<br />

pores<br />

� Magnetic flux cancellation eevents<br />

� Polarity inversion lines<br />

� Dynamical state of coronal<br />

� wave propagation analysis<br />

� …<br />

azimuth disambiguity g y<br />

loop footpoints<br />

A. Lagg - Abisko Winter School 4


Example: SIR inversion<br />

+<br />

• Spatial resolution: ∼0.4"<br />

VIP TESOS KAOS<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

Stok tokes I/I I/IQS Stokes V/I V/IQS 0.2<br />

0 20 40 4 60 80<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

5.5<br />

• VIP + TESOS + KAOS -2<br />

• Inversion: SIR with 10 free<br />

Temper erature [kK]<br />

Field strength [kG]<br />

5.0<br />

4.5<br />

-4 -3 -2 - -1 0<br />

-4<br />

parameters -4 -3 --2<br />

lo log tau<br />

-1 0<br />

4<br />

2<br />

0<br />

Bellot Rubio et al. (2007)<br />

0.02<br />

0.01<br />

0.00<br />

-0.01<br />

-0.02<br />

-0.03<br />

-0.04<br />

0 20 40 60 80<br />

0.4<br />

LOS velo elocity [km/s] Field inclination [deg]<br />

0.7<br />

0.6<br />

0.5<br />

0.3<br />

0.2<br />

-4 -3 -2 -1 0<br />

145 145<br />

140<br />

135<br />

130<br />

125<br />

-4 -3 -2<br />

log tau<br />

-1 0<br />

A. Lagg - Abisko Winter School 5


Non Non-ME ME Inversion Codes<br />

SIR Ruiz Cobo &<br />

del Toro Iniesta (1992)<br />

1CC<br />

& 2C atmospheres, arbitrary<br />

stratifications,<br />

any photospheric line<br />

SIR/FT Bellot Rubio et al. (1996) Thin<br />

flux tube model, arbitrary stratifications,<br />

anyy<br />

photospheric line<br />

SIR/NLTE Socas-Navarro Socas Navarro et al al. (1998) NL LTE line transfer, transfer arbitrary stratifications<br />

SIR/GAUS Bellot Rubio (2003) Unncombed<br />

penumbral model, arbitrary<br />

stratifications<br />

<strong>SPINOR</strong> Frutiger & Solanki (2001) 1CC<br />

& 2C (nC) atmospheres, arbitrary<br />

stratifications,<br />

any photospheric line,<br />

moolecular<br />

lines, flux tube model,<br />

un combed model<br />

LILIA Socas-Navarro (2001) 1CC<br />

atmospheres, arbitrary stratifications<br />

MISMA IC Sánchez Almeida (1997) MI SMA model, arbitrary stratifications,<br />

anyy<br />

photospheric line<br />

A. Lagg - Abisko Winter School 6


<strong>SPINOR</strong> core: the synthesis<br />

RTE has h tto bbe solved l d ffor<br />

each spectral line<br />

each line-of sight<br />

each h it iteration ti<br />

� efficient computation<br />

required!<br />

height / tau depen ndent<br />

height independ dent<br />

atmospheric parameters:<br />

T ... gas temperature<br />

B ... magn magn. field strength<br />

γ,φ ... incl. / azimuth angle of B<br />

vLOS ... line-of sight velocity<br />

v vmic ... micro micro-turbulent turbulent velocity<br />

AX ... abundance (AH=12) G ... grav. acc. at surface<br />

vmac... macro-turbulence<br />

vinst ... instr. broadening<br />

vabs ... abs. velocity Sun-Earth<br />

A. Lagg - Abisko Winter School 7


Stokes sepctrum diagn nostics<br />

CFs and RFs<br />

A. Lagg - Abisko Winter School 8


Contribution Functions (1)<br />

The contribution function (CF)<br />

describes how different atmospheric<br />

layers y contribute to the observed<br />

spectrum.<br />

Mathematical definition:<br />

CF ≡ integrand of formal sol sol. of RTE<br />

(here isotropic case, no B field):<br />

line core: highest formation<br />

wings: lowest formation<br />

Intuitively: profile shape indicates<br />

atmospheric opacity. Medium is more<br />

transparent (less heavily absorbed) in wings.<br />

�� one can see „deeper deeper“ into the atmosphere<br />

at the wings.<br />

A. Lagg - Abisko Winter School 9


Contribution functions (2)<br />

The general case:<br />

Height of formation:<br />

„This This line is formed at x km<br />

above the reference, the<br />

other line is formed at y km<br />

…“ “<br />

�� caution caution with this<br />

statement is highly<br />

recommended!<br />

� CF CFs are strongly t l<br />

dependent on model<br />

atmosphere<br />

� different physical<br />

quantities are measured<br />

at different atmospheric<br />

heights<br />

A. Lagg - Abisko Winter School 10


Response Functions<br />

A. Lagg - Abisko Winter School 11


Response Functions<br />

„brute force method“:<br />

1. synthesis of Stokes spectrum in<br />

given model atmosphere<br />

2. perturbation of one atm.<br />

parameter<br />

3. synthesis of „perturbed“ Stokes<br />

spectrum<br />

4. calculation of ratio between<br />

both spectra<br />

5. repeat (2)-(4) (2) (4) for all τ τi, i, λ λi,atm. i, atm.<br />

parameter, atm. comp.<br />

The smart way:<br />

� knowledge of source function,<br />

evolution operator and<br />

propagation matrix<br />

� direct computation of RFs<br />

possible (all parameters known<br />

from solution of RTE RTE, simple<br />

derivatives)<br />

A. Lagg - Abisko Winter School 12


Response functions<br />

Linearization: small perturbation in pphysical<br />

parameters of the model<br />

atmosphere propagate „linearly“ to ssmall<br />

changes in the observed<br />

Stokes spectrum. p<br />

introduce these modifications into RRTE:<br />

only take 1st y order terms, , and introduuce<br />

contribution function to<br />

perturbations of observed<br />

Stokes profiles<br />

response functions<br />

A. Lagg - Abisko Winter School 13


Response Functions (2)<br />

RFs have the role of partial derivatives<br />

of the Stokes profiles<br />

with respect to the physical quaantities<br />

of the model<br />

atmosphere:<br />

In words:<br />

If x k is modified by a unit perturb bation in a restricted<br />

neighborhood around τ0, then thhe<br />

values of Rk around τ0 give<br />

us the ensuing variation of the SStokes<br />

vector.<br />

Response function units are invverse<br />

of their corresponding<br />

quantities (e.g RFs to temperatuure<br />

have units K-1 )<br />

A. Lagg - Abisko Winter School 14


RFs – Example: Fe 6302.5<br />

model on the left is:<br />

�� 500 K hotter<br />

� 500 G stronger<br />

� 20° more inclined<br />

�� 50° 50° larger azimuth<br />

� no VLOS gradient<br />

(right: linear gradient)<br />

Temp<br />

|B|<br />

VLOS<br />

A. Lagg - Abisko Winter School 15


<strong>SPINOR</strong>: complex model atmos atmospheres spheres<br />

A. Lagg - Abisko Winter School 18


The even more complex case:<br />

A. Lagg - Abisko Winter School 19


The fluxtube case:<br />

A. Lagg - Abisko Winter School 20


The complex fluxtube case:<br />

A. Lagg - Abisko Winter School 21


<strong>SPINOR</strong>: Versatility<br />

� Plane-parallel, 1-component models to<br />

obtain averaged properties of the<br />

atmosphere<br />

� Multiple components (e.g. to take caree<br />

of scattered light, or unresolved<br />

features on the Sun). Allows for arbitraary<br />

number of magnetic or field-free<br />

components (turns out to be important,<br />

e.g. in flare observations, where we<br />

have seen 4-5 components).<br />

� Flux-tubes in total pressure equilibriumm<br />

with surroundings, at arbitrary<br />

inclination<br />

� in field-free (or weak-field surrounddings)<br />

� embedded in strong fields (e.g. sunnspot<br />

penumbra, or umbral dots)<br />

� includes the presence of multiple flux<br />

tubes along a ray when computing<br />

away from disk centre<br />

�� efficient computation of lines acros s jumps in atmospheric quantities<br />

� Integration over solar or stellar disk, inncluding<br />

solar/stellar rotation<br />

� molecular lines (S. ( Berdyugina) y g )<br />

� non-LTE (MULTI 2.2, not tested yet, reequires<br />

brave MULTI expert)<br />

A. Lagg - Abisko Winter School 22


Penumbral Flux Tubes<br />

� <strong>SPINOR</strong> applied to:<br />

Fe I 6301 + 6302 6302<br />

Fe I 6303.5<br />

Ti I 6303.75<br />

� 1st component:<br />

tube ray (discontinuity<br />

at boundary)<br />

� 22nd d component: t<br />

surrounding ray<br />

Borrero et al. 2006<br />

A. Lagg - Abisko Winter School 23


<strong>SPINOR</strong> & HINODE<br />

Hinode SOT: 10-11-2006<br />

A. Lagg - Abisko Winter School 24


<strong>SPINOR</strong> & HINODE<br />

inv_070214.051204_hinode_test.tgz<br />

I/I c<br />

Δ(I/I c) [%]<br />

Q/I c [%]<br />

Δ(Q/I Δ( c) [%]<br />

1.00<br />

0.83<br />

0.66<br />

0.49<br />

0.32<br />

3.00<br />

0<br />

−3.00<br />

14.80<br />

7.40<br />

0.00<br />

−7.40<br />

−14.80<br />

2.90<br />

0<br />

−2.90<br />

6301.5<br />

6302.5<br />

−0.17 0.17<br />

−0.17 0.17<br />

λ−λ λ−λ0 [Å] λ−λ 0 [Å]<br />

6301.5<br />

−0.17 0.17<br />

λ−λ 0 [Å]<br />

FINAL ATM IC= 1 WL= 5000.0000<br />

6302.5<br />

−0.17 0.17<br />

λ−λ 0 [Å]<br />

1 magnetic component, 5 nodes<br />

V/Ic [%] ]<br />

Δ(V/I c) [%]<br />

U/I c [%]<br />

Δ(U/I Δ( c) [%]<br />

11.50<br />

5.75<br />

0.00<br />

−5.75<br />

−11.50<br />

2.05<br />

−2.05<br />

FINAL ATM IC= 1 WL= 5000.0000<br />

0<br />

4.50<br />

2.25<br />

0.00<br />

−2.25<br />

−4.50<br />

2.25<br />

0<br />

−2.25<br />

6301.5<br />

6302.5<br />

−0.17 0.17<br />

−0.17 0.17<br />

λ−λ λ−λ0 [Å] λ−λ 0 [Å]<br />

6301.5<br />

−0.17 0.17<br />

λ−λ 0 [Å]<br />

6302.5<br />

−0.17 0.17<br />

λ−λ 0 [Å]<br />

FINAL ATM IC= 1 WL= 5000.0000<br />

A. Lagg - Abisko Winter School 25


<strong>SPINOR</strong> & HINODE<br />

inv_070214.024925_hinode_test.tgz<br />

I/I c<br />

Δ(I/I c) [%]<br />

Q/I c [%]<br />

Δ(Q/I Δ( c) [%]<br />

1.00<br />

0.83<br />

0.66<br />

0.49<br />

0.32<br />

3.00<br />

0<br />

−3.00<br />

14.90<br />

7.45<br />

0.00<br />

−7.45<br />

−14.90<br />

1.75<br />

0<br />

−1.75<br />

6301.5<br />

6302.5<br />

−0.17 0.17<br />

−0.17 0.17<br />

λ−λ λ−λ0 [Å] λ−λ 0 [Å]<br />

6301.5<br />

−0.17 0.17<br />

λ−λ 0 [Å]<br />

FINAL ATM IC= 2 WL= 5000.0000<br />

9<br />

6302.5<br />

−0.17 0.17<br />

λ−λ 0 [Å]<br />

FINAL ATM IC= 2 WL= 5000.0000<br />

2.4<br />

flux tube model<br />

V/Ic [%] ]<br />

Δ(V/I c) [%]<br />

U/I c [%]<br />

Δ(U/I Δ( c) [%]<br />

11.50<br />

5.75<br />

0.00<br />

−5.75<br />

−11.50<br />

1.70<br />

0<br />

−1.70<br />

5.00<br />

3.33<br />

1.67<br />

−0.00<br />

−1.67<br />

1.90<br />

0<br />

−1.90<br />

6301.5<br />

6302.5<br />

−0.17 0.17<br />

−0.17 0.17<br />

λ−λ λ−λ0 [Å] λ−λ 0 [Å]<br />

6301.5<br />

−0.17 0.17<br />

λ−λ 0 [Å]<br />

6302.5<br />

−0.17 0.17<br />

λ−λ 0 [Å]<br />

FINAL ATM IC= 2 WL= 5000.0000<br />

A. Lagg - Abisko Winter School 26<br />

4


Penumbral Flux Tubes<br />

�� confirms uncombed model<br />

�� flux tube thickness 100 100-300 300 km<br />

Borrero et al. 2006<br />

A. Lagg - Abisko Winter School 27


Multi Ray Flux Tube<br />

multiple utpe rays ays<br />

�� pressure balance<br />

�� broadening of flux tube<br />

Frutiger (2000)<br />

A. Lagg - Abisko Winter School 28


2-comp comp model Sunspot + molec cular lines<br />

<strong>SPINOR</strong> applied to:<br />

Fe I 15648 / 15652<br />

1 magn magn. . comp (6 nodes)<br />

1 straylight comp.<br />

molecular OH lines<br />

without OH<br />

with OH<br />

Mathew et al. 2003<br />

A. Lagg - Abisko Winter School 29


Wilson Depression<br />

<strong>SPINOR</strong> applied to:<br />

Fe I 15648 / 15652<br />

1 magn. comp (4 nodes)<br />

1 straylight comp.<br />

molecular OH lines<br />

investigation of<br />

thermal thermal-magnetic magnetic<br />

relation<br />

Mathew et al. 2003<br />

A. Lagg - Abisko Winter School 30


Penumbral Oscillations<br />

oscillations observed in<br />

Stokes-Q of<br />

FeI 15662 and 15665<br />

calc. l phase h diff difference<br />

between Q-osc.<br />

� time delay<br />

22-C Cin inversion ersionwith ith<br />

straylight:<br />

� FT-component<br />

�� magn magn. background<br />

RF-calc: difference in<br />

formation height<br />

(velocity): ~20 20 km<br />

relate time delay to<br />

speed of various wave<br />

modes<br />

Bloomfield et al. [2007]<br />

A. Lagg - Abisko Winter School 31


Penumbral Oscillations<br />

oscillations observed in<br />

Stokes-Q of<br />

FeI 15662 and 15665<br />

calc. l phase h diff difference<br />

between Q-osc.<br />

� time delay<br />

22-C Cin inversion ersionwith ith<br />

straylight:<br />

� FT-component<br />

�� magn magn. background<br />

RF-calc: difference in<br />

formation height<br />

(velocity): ~20 20 km<br />

relate time delay to<br />

speed of various wave<br />

modes<br />

Bloomfield et al. [2007]<br />

A. Lagg - Abisko Winter School 32


Penumbral Oscillations<br />

oscillations observed in<br />

Stokes-Q of<br />

FeI 15662 and 15665<br />

calc. l phase h diff difference<br />

between Q-osc.<br />

� time delay<br />

RF RF-calc: calc difference in<br />

formation height<br />

(velocity): ~20 km<br />

22-C C inversion with<br />

straylight:<br />

� FT-component<br />

�� magn. background<br />

relate time delay to<br />

speed of various wave<br />

modes<br />

Bloomfield et al. [2007]<br />

A. Lagg - Abisko Winter School 33


Penumbral Oscillations<br />

oscillations observed in<br />

Stokes-Q of<br />

FeI 15662 and 15665<br />

calc. l phase h diff difference<br />

between Q-osc.<br />

� time delay<br />

22-C Cin inversion ersionwith ith<br />

straylight:<br />

� FT-component<br />

�� magn magn. background<br />

RF-calc: difference in<br />

formation height<br />

(velocity): ~20 20 km<br />

relate time delay to<br />

speed of various wave<br />

modes<br />

Bloomfield et al. [2007]<br />

� best agreement for:<br />

fast-mode waves<br />

propagating 50° to the vertical<br />

A. Lagg - Abisko Winter School 34


Analysis of Umbral Dots (1)<br />

Analysis of 51 umbral dots<br />

using <strong>SPINOR</strong>:<br />

�� 30 peripheral peripheral, 21 central UDs<br />

� nodes in log(τ): -3,-2,-1,0<br />

(spline-interpolated)<br />

� of interest:<br />

atomspheric stratification<br />

�� T(τ) T(τ), B(τ), B(τ) VLOS(τ)<br />

� INC, AZI, V MIC, V MAC const.<br />

� no straylight (extensive tests<br />

showed, that inversions did<br />

not improve significantly)<br />

Riethmüller et al., 2008<br />

A. Lagg - Abisko Winter School 35


Analysis of Umbral Dots (2)<br />

center of f UD:<br />

Riethmüller et al., 2008<br />

A. Lagg - Abisko Winter School 36


Analysis of Umbral Dots (3)<br />

atmospheric stratification<br />

retrieved in center (red) and the<br />

diffuse surrounding (blue)<br />

Riethmüller et al., 2008<br />

A. Lagg - Abisko Winter School 37


Analysis of Umbral Dots (4)<br />

Vertical V cut through UD<br />

Riethmüller et al., 2008<br />

A. Lagg - Abisko Winter School 38


Analysis of Umbral Dots (5)<br />

Conclusions:<br />

Riethmüller et al., 2008<br />

�� inversion results are<br />

remarkably similar to<br />

simulations of Schüssler &<br />

Vögler (2006)<br />

� UDs differ from their surrounding<br />

mainly y in lower layers y<br />

� T higher by ~ 550 K<br />

� B lower by ~ 500 G<br />

�� upflow ~ 800 m/s<br />

� differences to V&S:<br />

� field strength g of DB is found to be<br />

depth dependent<br />

� surrounding downflows are<br />

present, but not as strong and as<br />

narrow as in MHD (resolution?)<br />

A. Lagg - Abisko Winter School 39


Analysis of Hi Hi-Res Res Simulations<br />

= 200 G; Grid: 576 x 5776<br />

x 100 (10 km horiz. cell size)<br />

Brightness<br />

(forward calc.)<br />

Vö Vögler l & Schüssler S hü l<br />

Magnetic field .<br />

A. Lagg - Abisko Winter School 40


Pore simulation: brightening nea ar the limb R. Cameron et al.<br />

μ=1<br />

μ=0.3<br />

μ=0 μ=0.5 5<br />

μ=0.7<br />

A. Lagg - Abisko Winter School 41


<strong>SPINOR</strong>: GG-band<br />

band spectrum syn thesis<br />

G-Band (Fraunhofer): spectral rang ge from 4295 to 4315 Å<br />

contains many temperature-sensitive<br />

molecular lines (CH)<br />

For comparison with observatioons,<br />

we define as G-band<br />

intensity the integral of the speectrum<br />

obtained from the<br />

simulation data:<br />

I<br />

G<br />

=<br />

4315<br />

∫<br />

4295<br />

A<br />

I ( λ λ ) d dλλ<br />

A<br />

241 CH lines + 87 atomic lines<br />

[Shelyag, 2004]<br />

A. Lagg - Abisko Winter School 42


<strong>SPINOR</strong>: Installation and first us sage<br />

Download from http://www.mps .mpg.de/homes/lagg<br />

GBSO download-section � spinor<br />

use invert and IR$soft<br />

A. Lagg - Abisko Winter School 43


Exercise ecse IV<br />

<strong>SPINOR</strong> installation and b basic usage<br />

� install and run <strong>SPINOR</strong><br />

� atomic data file, wavelength bound<br />

�� use xinv interface<br />

� <strong>SPINOR</strong> in synthesis (STOPRO)-m<br />

� 1st inversion:<br />

Hinode dataset of HeLIx +<br />

Hinode dataset of HeLIx<br />

� play with noise level / initial values<br />

� change log(τ) scale<br />

�� try to get the atmospheric stratifica<br />

ation of an<br />

asymmetric profile<br />

� invert HeLIx + synthetic profiles<br />

dary file<br />

mode<br />

/ parameter range<br />

Examples: http://www.mpss.mpg.de/homes/lagg<br />

� Abisko 2009 � spinor � abisko_spinor.tgz<br />

unpack in spinor/inversion ns:<br />

cd spinor/inversions ; ttar<br />

xfz abisko_spinor.tgz<br />

A. Lagg - Abisko Winter School 44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!