17.01.2013 Views

Pleats in crystals on curved surfaces

Pleats in crystals on curved surfaces

Pleats in crystals on curved surfaces

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LETTER doi:10.1038/nature09620<br />

<str<strong>on</strong>g>Pleats</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>crystals</str<strong>on</strong>g> <strong>on</strong> <strong>curved</strong> <strong>surfaces</strong><br />

William T. M. Irv<str<strong>on</strong>g>in</str<strong>on</strong>g>e 1 {, V<str<strong>on</strong>g>in</str<strong>on</strong>g>cenzo Vitelli 2 & Paul M. Chaik<str<strong>on</strong>g>in</str<strong>on</strong>g> 1<br />

Hexag<strong>on</strong>s can easily tile a flat surface, but not a <strong>curved</strong> <strong>on</strong>e.<br />

Introduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g heptag<strong>on</strong>s and pentag<strong>on</strong>s (defects with topological<br />

charge) makes it easier to tile <strong>curved</strong> <strong>surfaces</strong>; for example, soccer<br />

balls based <strong>on</strong> the geodesic domes 1 of Buckm<str<strong>on</strong>g>in</str<strong>on</strong>g>ster Fuller have<br />

exactly 12 pentag<strong>on</strong>s (positive charges). Interact<str<strong>on</strong>g>in</str<strong>on</strong>g>g particles that<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>variably form hexag<strong>on</strong>al <str<strong>on</strong>g>crystals</str<strong>on</strong>g> <strong>on</strong> a plane exhibit fasc<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

scarred defect patterns <strong>on</strong> a sphere 2–4 . Here we show that, for more<br />

general <strong>curved</strong> <strong>surfaces</strong>, curvature may be relaxed by pleats:<br />

uncharged l<str<strong>on</strong>g>in</str<strong>on</strong>g>es of dislocati<strong>on</strong>s (topological dipoles) that vanish<br />

<strong>on</strong> the surface and play the same role as fabric pleats. We experimentally<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate crystal order <strong>on</strong> <strong>surfaces</strong> with spatially vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

positive and negative curvature. On cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical capillary bridges,<br />

stretched to produce negative curvature, we observe a sequence of<br />

transiti<strong>on</strong>s—c<strong>on</strong>sistent with our energetic calculati<strong>on</strong>s—from no<br />

defects to isolated dislocati<strong>on</strong>s, which subsequently proliferate and<br />

organize <str<strong>on</strong>g>in</str<strong>on</strong>g>to pleats; f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, scars and isolated heptag<strong>on</strong>s (previously<br />

unseen) appear. This f<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>trol of crystal order with curvature<br />

will enable explorati<strong>on</strong>s of general theories of defects <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>curved</strong> spaces 5–11 . From a practical viewpo<str<strong>on</strong>g>in</str<strong>on</strong>g>t, it may be possible<br />

to eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer structures with curvature (such as waisted nanotubes<br />

and vaulted architecture) and to develop novel methods for soft<br />

lithography 12 and directed self-assembly 13 .<br />

Topological defects have played a crucial role <str<strong>on</strong>g>in</str<strong>on</strong>g> understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

order, rigidity and melt<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>crystals</str<strong>on</strong>g> and other phases of matter <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

two-dimensi<strong>on</strong>al flat space 14,15 . On a <strong>curved</strong> surface (Fig. 1), these<br />

particle-like excitati<strong>on</strong>s acquire a new life: they <str<strong>on</strong>g>in</str<strong>on</strong>g>teract not <strong>on</strong>ly with<br />

each other, but with the curvature of the substrate. In a hexag<strong>on</strong>al<br />

lattice <str<strong>on</strong>g>in</str<strong>on</strong>g> which every particle has six nearest neighbours (Fig. 1, <str<strong>on</strong>g>in</str<strong>on</strong>g>set),<br />

there are two types of topological defects (Fig. 2): discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s that<br />

disrupt orientati<strong>on</strong>al order and appear as po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of local five-fold or<br />

seven-fold symmetry, (pentag<strong>on</strong>s or heptag<strong>on</strong>s, hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g topological<br />

charge 6(2p/6), and dislocati<strong>on</strong>s, which disrupt translati<strong>on</strong>al order<br />

and appear as discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> dipoles (1/2 pairs). That discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s<br />

couple to curvature can be understood <str<strong>on</strong>g>in</str<strong>on</strong>g>tuitively by tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g a piece<br />

of paper, and add<str<strong>on</strong>g>in</str<strong>on</strong>g>g, or remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g, a p/3 wedge to ‘make’ a discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>,<br />

Fig. 2c, d.<br />

A host of new discoveries 2,4,7,16 have resulted from studies of these<br />

defects <strong>on</strong> the simplest <strong>curved</strong> surface: the sphere. With <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g size,<br />

the familiar 12-pentag<strong>on</strong> soccer ball pattern gives way to ‘scars’, pentag<strong>on</strong>s<br />

dressed by str<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of dislocati<strong>on</strong>s 2–4 . In this Letter, we <str<strong>on</strong>g>in</str<strong>on</strong>g>troduce<br />

a different c<strong>on</strong>figurati<strong>on</strong> of dislocati<strong>on</strong>s, namely, ‘pleats’—topologically<br />

uncharged gra<str<strong>on</strong>g>in</str<strong>on</strong>g> boundaries with variable spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g that vanish <strong>on</strong><br />

the surface. We experimentally <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate their <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> with curvature<br />

and show when pleats are energetically favoured over undefected<br />

<str<strong>on</strong>g>crystals</str<strong>on</strong>g> or topologically charged discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s. Apart from experiments<br />

<strong>on</strong> spheres, and bubble bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g paraboloids 17 , the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong><br />

of defects with variable curvature, negative curvature and <strong>surfaces</strong> of<br />

different topologies has rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed largely unexplored experimentally<br />

and is of grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g theoretical <str<strong>on</strong>g>in</str<strong>on</strong>g>terest 8–11,18–20 .<br />

The topology of <strong>surfaces</strong> 21 places a c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t <strong>on</strong> the total defect<br />

charge—for example the net charge <strong>on</strong> a sphere must be 4p, as exemplified<br />

by a soccer ball that has 12 (54p/(p/3)) pentag<strong>on</strong>s dispersed<br />

am<strong>on</strong>g hexag<strong>on</strong>s. A hemisphere, or disk, requires half the topological<br />

1 Center for Soft Matter Research, Department of Physics, New York University, 4 Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong> Place, New York, New York 10003, USA. 2 Instituut-Lorentz for Theoretical Physics, Leiden University, 271, Niels<br />

Bohrweg 2 Leiden, NL 2333 CA, The Netherlands. {Present address: James Franck Institute and Department of Physics, The University of Chicago, Chicago, Ill<str<strong>on</strong>g>in</str<strong>on</strong>g>ois 60637, USA.<br />

a<br />

b<br />

c<br />

d<br />

Figure 1 | Colloidal <str<strong>on</strong>g>crystals</str<strong>on</strong>g> <strong>on</strong> <strong>curved</strong> oil–glycerol <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces.<br />

a–d, Fluorescent PMMA particles bound, by image attracti<strong>on</strong>, to oil–glycerol<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces <str<strong>on</strong>g>in</str<strong>on</strong>g> the shape of spheres (a), domes (b), waists (c) and barrels (d)(see<br />

Supplementary Informati<strong>on</strong> secti<strong>on</strong> 2 for details of shape). The particles <str<strong>on</strong>g>in</str<strong>on</strong>g>teract<br />

via a repulsive screened Coulomb <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> and, <strong>on</strong> a flat surface, arrange <str<strong>on</strong>g>in</str<strong>on</strong>g>to a<br />

hexag<strong>on</strong>al crystal lattice (a, <str<strong>on</strong>g>in</str<strong>on</strong>g>set). The oil phase is a mixture of cyclohexyl<br />

bromide and dodecane that matches the refractive <str<strong>on</strong>g>in</str<strong>on</strong>g>dex of glycerol, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g us<br />

to image particles <strong>on</strong> highly <strong>curved</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces by c<strong>on</strong>focal microscopy. Because<br />

of their topology, <str<strong>on</strong>g>crystals</str<strong>on</strong>g> <strong>on</strong> spheres and domes require a net defect charge of<br />

123 (2p/6) and 6 3 (2p/6), respectively, whereas waists and barrels require<br />

n<strong>on</strong>e. While spheres (a) have no boundary, the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>surfaces</strong> (b–d)do,<br />

allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g topological defects a choice between boundary and bulk.<br />

16 DECEMBER 2010 | VOL 468 | NATURE | 947<br />

©2010<br />

Macmillan Publishers Limited. All rights reserved


RESEARCH LETTER<br />

charge of a sphere, whereas a cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>der can be defect-free with a requirement<br />

of 0 total charge.<br />

Topology c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s the total charge, but it is energetics that determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es<br />

the number and the arrangement of each charge. In elasticity<br />

theory 15 , discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s appear as discrete <str<strong>on</strong>g>in</str<strong>on</strong>g>teract<str<strong>on</strong>g>in</str<strong>on</strong>g>g charges and the<br />

Gaussian curvature as a charge density, both act<str<strong>on</strong>g>in</str<strong>on</strong>g>g as sources of stress:<br />

1<br />

Y +4 x~G x<br />

ðÞ{ X<br />

a<br />

qadðx{xaÞ ð1Þ<br />

where G~ 1 1<br />

R1 R2 is the Gaussian curvature (with R1 and R2 the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cipal<br />

radii of curvature), qa is the charge of the discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> at xa, d represents<br />

a Dirac delta functi<strong>on</strong>, Y is Young’s modulus and x is the Airy stress<br />

functi<strong>on</strong>—and we will refer to the partial or complete cancellati<strong>on</strong> of<br />

the effects of curvature and stress by topological charges (r.h.s. of<br />

equati<strong>on</strong> (1)) as screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g. For curvature c<strong>on</strong>centrated at a po<str<strong>on</strong>g>in</str<strong>on</strong>g>t, as<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> our model paper discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of Fig. 2c, the screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g can be perfect,<br />

the lattice is stress free and the energy E~ 1<br />

Ð 2 2<br />

2Y + x dA~0<br />

(where we have assumed no bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g energy). For smooth <strong>surfaces</strong>, the<br />

screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g is more subtle. Geometry provides some <str<strong>on</strong>g>in</str<strong>on</strong>g>sight: c<strong>on</strong>sider a<br />

geodesic triangle drawn <strong>on</strong> a <strong>curved</strong> surface, for example, a sphere.<br />

Curvature causes l<str<strong>on</strong>g>in</str<strong>on</strong>g>es to diverge or c<strong>on</strong>verge, affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the angles at<br />

the vertices: the sum of the external angles will differ from 2p by<br />

Dh 5 #GdA. The same applies to any closed loop formed by c<strong>on</strong>nect<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

lattice sites and serves as a measure of angular stra<str<strong>on</strong>g>in</str<strong>on</strong>g>. If <str<strong>on</strong>g>in</str<strong>on</strong>g>stead, a<br />

discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> is encircled by the loop, by def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> this adds/removes<br />

a<br />

b<br />

c<br />

Figure 2 | Discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s and pleats <str<strong>on</strong>g>in</str<strong>on</strong>g> a hexag<strong>on</strong>al lattice. a, Discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

hexag<strong>on</strong>al lattice are topological defects that result from an extra (right panels)<br />

or miss<str<strong>on</strong>g>in</str<strong>on</strong>g>g (left panels) 60u crystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e wedge that matches their topological<br />

charge of 1/2(2p/6) marked here by cream/brick circles, respectively. At the<br />

‘core’ of the discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> is a corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g five-fold (or seven-fold) coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ated<br />

particle. In flat space, discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s produce a large amount of stress <str<strong>on</strong>g>in</str<strong>on</strong>g> a crystal,<br />

disrupt<str<strong>on</strong>g>in</str<strong>on</strong>g>g orientati<strong>on</strong>al order. b, This stress can be relieved by buckl<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

crystal to create a <strong>curved</strong> surface. Five-fold discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s are sources of positive<br />

Gaussian curvature, seven-fold discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of negative curvature. c,This<br />

coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g can be <str<strong>on</strong>g>in</str<strong>on</strong>g>tuitively understood by mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s out of paper (see<br />

Supplementary Informati<strong>on</strong> for <str<strong>on</strong>g>in</str<strong>on</strong>g>structi<strong>on</strong>s and cut-outs). Paper can be bent<br />

much more easily than it can be stretched/compressed, so it bends, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

surface free of stress, with all the Gaussian curvature c<strong>on</strong>centrated at the<br />

locati<strong>on</strong>s of the discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s. Neighbour<str<strong>on</strong>g>in</str<strong>on</strong>g>g crystal planes diverge <strong>on</strong> these<br />

<strong>surfaces</strong>, match<str<strong>on</strong>g>in</str<strong>on</strong>g>g the geodesics of the <strong>curved</strong> surface. d, Dislocati<strong>on</strong>s,<br />

a c<strong>on</strong>tributi<strong>on</strong> of 6(2p/6) regardless of the size of the loop. If sufficient<br />

curvature is enclosed, the angular stress generated by the discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> is<br />

screened <strong>on</strong> the outside. With<str<strong>on</strong>g>in</str<strong>on</strong>g> the patch the screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g is <str<strong>on</strong>g>in</str<strong>on</strong>g>complete<br />

and leads to an energetic cost. For later use we def<str<strong>on</strong>g>in</str<strong>on</strong>g>e V~ 1<br />

Ð<br />

p=3 G dA,<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated curvature <str<strong>on</strong>g>in</str<strong>on</strong>g> units of discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s.<br />

The <str<strong>on</strong>g>crystals</str<strong>on</strong>g> we create c<strong>on</strong>sist of poly(methyl methacrylate)<br />

(PMMA) particles (,2 mm diameter) that are bound to an oil–glycerol<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terface and repel each other. By <str<strong>on</strong>g>in</str<strong>on</strong>g>dex-match<str<strong>on</strong>g>in</str<strong>on</strong>g>g the oil to the<br />

glycerol, we can image the full <strong>surfaces</strong> (Fig. 1, Methods). The first<br />

<strong>surfaces</strong> we <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate are domes (truncated spheres), created by<br />

droplets sitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a coverslip, with a circular c<strong>on</strong>tact l<str<strong>on</strong>g>in</str<strong>on</strong>g>e. The c<strong>on</strong>tact<br />

angle, c<strong>on</strong>trolled by treat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the glass surface, determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the solid<br />

angle of the spherical droplet.<br />

The domes (Fig. 3) exhibit both discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s and scars as previously<br />

seen <strong>on</strong> spherical <strong>surfaces</strong>. However, for domes, the net discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

charge <strong>on</strong> the surface can vary as the dome <str<strong>on</strong>g>in</str<strong>on</strong>g>flates from a disk to a full<br />

sphere. In Fig. 3b we show the topological charge that is <strong>on</strong> the surface of<br />

the dome and detached from the boundary as a functi<strong>on</strong> of V.Wef<str<strong>on</strong>g>in</str<strong>on</strong>g>d<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>tuitive result that the detached charge varies approximately l<str<strong>on</strong>g>in</str<strong>on</strong>g>early<br />

with V. That is, for a full sphere there are 12 pentag<strong>on</strong>s (1p/3)s, for<br />

a hemisphere there are 6 pentag<strong>on</strong>s (1p/3)s and <strong>on</strong> smaller fracti<strong>on</strong>s<br />

the two rema<str<strong>on</strong>g>in</str<strong>on</strong>g> approximately proporti<strong>on</strong>al. Note that the topological<br />

requirement of a total of 6 (1p/3)s is satisfied at all times by compensat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

charges <strong>on</strong> the boundary.<br />

Negative curvature <strong>surfaces</strong> lack the simplicity and familiarity that<br />

we associate with positive curvature <strong>surfaces</strong> such as the sphere. For<br />

e f<br />

948 | NATURE | VOL 468 | 16 DECEMBER 2010<br />

Macmillan Publishers Limited. All rights reserved<br />

©2010<br />

d<br />

uncharged pairs of seven- and five-fold discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s, can also be made by<br />

fold<str<strong>on</strong>g>in</str<strong>on</strong>g>g and glu<str<strong>on</strong>g>in</str<strong>on</strong>g>g hexag<strong>on</strong>al paper. A set of three closely spaced, aligned<br />

dislocati<strong>on</strong>s (7-5,7-5,7-5) are shown <strong>on</strong> an approximately relaxed sheet. This is a<br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g> boundary which vanishes at the centre of the sheet—a ‘pleat’. Note that<br />

negative curvature emanates from the vanish<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of the pleat, as evidenced<br />

both by the buckl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the sheet and by the 30u divergence of parallel l<str<strong>on</strong>g>in</str<strong>on</strong>g>es<br />

imp<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the top. e, A stress-free pleat can be achieved by allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g steps<br />

out of the surface. The pleat reta<str<strong>on</strong>g>in</str<strong>on</strong>g>s the property that width is added al<strong>on</strong>g the<br />

pleat length <str<strong>on</strong>g>in</str<strong>on</strong>g> proporti<strong>on</strong> to the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear density of dislocati<strong>on</strong>s. f, The top of the<br />

Chrysler build<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> New York c<strong>on</strong>sists of four vertical pleats <strong>on</strong> a cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>der. Here<br />

the pleats are formed from dislocati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a square field. Count<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the top,<br />

steps 3, 4, 5, 6 are approximately equally spaced at 8.4 m and form a c<strong>on</strong>e with no<br />

Gaussian curvature. A gradient <str<strong>on</strong>g>in</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear dislocati<strong>on</strong> density is achieved by<br />

spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g the sec<strong>on</strong>d and first step at 9.4 m and 9.8 m spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a spike<br />

with negative Gaussian curvature crown<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>e.


a<br />

Figure 3 | Topological charge <strong>on</strong> domes and waists. a, Isolated seven-fold<br />

discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s, observed here for the first time, can be seen at the neck of the<br />

capillary bridge (top). On the dome, sphere and barrel (bottom), the defects<br />

group <str<strong>on</strong>g>in</str<strong>on</strong>g>to gra<str<strong>on</strong>g>in</str<strong>on</strong>g> boundaries each hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle five-fold discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> excess.<br />

The angular length of these scars is uniform, the number of dislocati<strong>on</strong>s<br />

depends <strong>on</strong>ly <strong>on</strong> R/a. The defect c<strong>on</strong>figurati<strong>on</strong>s <strong>on</strong> both <strong>surfaces</strong> are similar to<br />

the arrangement of defects <strong>on</strong> the surface of a sphere with no boundary. Both<br />

<strong>surfaces</strong> have uniform positive curvature. The black dots represent particles<br />

stuck to the glass surface, defects with charge 1p/3 are coloured brick, defects<br />

with charge 2p/3 are coloured cream. b, Detached topological charge <strong>on</strong><br />

d<br />

c<br />

b<br />

a<br />

Figure 4 | Pleat<str<strong>on</strong>g>in</str<strong>on</strong>g>g and discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> unb<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a stretched capillary<br />

bridge. a–d, C<strong>on</strong>focal images of a capillary bridge that was stretched from<br />

quasi-cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical to highly <strong>curved</strong>. h–k, The corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g rec<strong>on</strong>structed and<br />

triangulated <strong>surfaces</strong>. a, h, The compressed bridge exhibits very few defects. In<br />

this regime, the bridge is weakly <strong>curved</strong> and therefore a large patch of <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated<br />

curvature is required to screen the charge of a discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. The circle that<br />

encloses such a patch is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> e; clearly its radius exceeds the height of the<br />

bridge. As the bridge is stretched (i–j), we observe the appearance of<br />

dislocati<strong>on</strong>s, neutral discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> dipoles, polarized with the seven-fold defects<br />

towards the maximally negatively <strong>curved</strong> neck. The crystal planes can be seen to<br />

g<br />

f<br />

e<br />

b 12<br />

Free defect charge<br />

6<br />

0<br />

–6<br />

–12<br />

–12 –6 0 6 12<br />

Integrated Gaussian curvature<br />

domes and waists versus the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated Gaussian curvature, V. Detached<br />

charge is the sum of the charge of isolated discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s and of scars that are not<br />

c<strong>on</strong>nected to the boundary. On domes (blue symbols), we f<str<strong>on</strong>g>in</str<strong>on</strong>g>d the <str<strong>on</strong>g>in</str<strong>on</strong>g>tuitive<br />

result that there is approximately <strong>on</strong>e (p/3) topological charge per unit’s p/3<br />

worth of <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated curvature. On negatively <strong>curved</strong> capillary bridges (red<br />

symbols), we f<str<strong>on</strong>g>in</str<strong>on</strong>g>d no net discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <strong>on</strong> the surface for an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated curvature<br />

down to 210. For total curvature bey<strong>on</strong>d the threshold of 210, discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s<br />

rapidly fill the surface until 12 (2p/3) discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s match the V 5212<br />

curvature. The dashed l<str<strong>on</strong>g>in</str<strong>on</strong>g>es are guides to the eye.<br />

k<br />

j<br />

i<br />

h<br />

LETTER RESEARCH<br />

diverge around these dislocati<strong>on</strong> pairs, heal<str<strong>on</strong>g>in</str<strong>on</strong>g>g the stress <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by the<br />

negative curvature. As the bridge is stretched further, these dislocati<strong>on</strong>s<br />

proliferate, form<str<strong>on</strong>g>in</str<strong>on</strong>g>g ‘pleats’, neutral gra<str<strong>on</strong>g>in</str<strong>on</strong>g> boundaries that vanish <str<strong>on</strong>g>in</str<strong>on</strong>g> proximity<br />

of the neck. Uniform pleats <strong>on</strong> a skirt (f) reduce the circumference with height,<br />

produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a c<strong>on</strong>ical shape. Decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the pleat density with height would lead<br />

to negative curvature flar<str<strong>on</strong>g>in</str<strong>on</strong>g>g the skirt. The divergence of the crystal planes at the<br />

open<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a high-density pleat (grey l<str<strong>on</strong>g>in</str<strong>on</strong>g>es) is roughly half that observed around<br />

an isolated discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (k). F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, as the size of a patch required to screen the<br />

topological charge of an isolated seven-fold defect fits <strong>on</strong> the surface (g), we<br />

observe the appearance of isolated discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s.<br />

16 DECEMBER 2010 | VOL 468 | NATURE | 949<br />

©2010<br />

Macmillan Publishers Limited. All rights reserved


RESEARCH LETTER<br />

Total defect charge <str<strong>on</strong>g>in</str<strong>on</strong>g> pillbox<br />

12<br />

6<br />

0<br />

–6<br />

–12<br />

–12 –6 0 6 12<br />

Integrated Gaussian curvature <str<strong>on</strong>g>in</str<strong>on</strong>g> pillbox<br />

Figure 5 | Discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> and polarizati<strong>on</strong> charge <strong>on</strong> the <strong>surfaces</strong> of waists,<br />

domes and barrels. On each surface <str<strong>on</strong>g>in</str<strong>on</strong>g> our ensemble, we c<strong>on</strong>sidered a patch<br />

(‘pillbox’) of variable size, for example as represented by the area between the<br />

red l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>set (bottom right) and computed the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated Gaussian<br />

curvature (horiz<strong>on</strong>tal axis) versus the accumulated discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> plus<br />

polarizati<strong>on</strong> charge <str<strong>on</strong>g>in</str<strong>on</strong>g> the patch (vertical axis). All topological charges <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Charged catenoids<br />

Pulled catenoids<br />

Neutral catenoids<br />

Charged domes<br />

Charged barrels<br />

Neutral barrels<br />

patch (exclud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the edges) c<strong>on</strong>tribute, whether isolated or c<strong>on</strong>nected by a pleat<br />

to the edge. Once pleats and scars are taken <str<strong>on</strong>g>in</str<strong>on</strong>g>to account, we rega<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tuitive<br />

result of a l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear relati<strong>on</strong> between Gaussian curvature and defect charge. Note<br />

that the triangular symbols corresp<strong>on</strong>d to samples with no detached charge <strong>on</strong><br />

the surface.<br />

example, it is not possible to embed a complete pseudo-sphere (sphere<br />

of negative curvature) <str<strong>on</strong>g>in</str<strong>on</strong>g> three-dimensi<strong>on</strong>al space. We create negative<br />

curvature <strong>surfaces</strong> by form<str<strong>on</strong>g>in</str<strong>on</strong>g>g capillary bridges between two <strong>surfaces</strong><br />

treated to have partially wett<str<strong>on</strong>g>in</str<strong>on</strong>g>g glycerol c<strong>on</strong>tacts. These <strong>surfaces</strong>,<br />

shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Figs 1, 3 and 4, are c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to have c<strong>on</strong>stant mean<br />

curvature, 1 1 z , and enclose a fixed volume. They are unduloids,<br />

R1 R2<br />

nodoids and for some specific c<strong>on</strong>structi<strong>on</strong>s catenoids or secti<strong>on</strong>s of<br />

spheres22,23 At the po<str<strong>on</strong>g>in</str<strong>on</strong>g>t where the pleat beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s, the open<str<strong>on</strong>g>in</str<strong>on</strong>g>g angle Dh is deter-<br />

(See Supplementary Informati<strong>on</strong> secti<strong>on</strong> 2). Topologically<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the dislocati<strong>on</strong> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e density nd accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

equivalent to cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>ders and therefore requir<str<strong>on</strong>g>in</str<strong>on</strong>g>g zero net charge, these<br />

<strong>surfaces</strong> typically have vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g Gaussian curvature, as shown by the<br />

colour shad<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. 3b. On highly <strong>curved</strong> <strong>surfaces</strong>, we observe isolated<br />

2p/3 discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s (heptag<strong>on</strong>s) for the first time (Fig. 3a). These<br />

are the negative curvature counterpart of the pentag<strong>on</strong>s <strong>on</strong> the sphere<br />

and can also appear as ‘scars’ with an excess heptag<strong>on</strong>. However, if we<br />

plot (Fig. 3) the charge detached from the boundary versus V for an<br />

ensemble of capillary bridges, we f<str<strong>on</strong>g>in</str<strong>on</strong>g>d no net topological charge <strong>on</strong> the<br />

surface for an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated curvature down to 210. For total curvature<br />

bey<strong>on</strong>d this threshold, discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s rapidly fill the surface until 12<br />

heptag<strong>on</strong>s, each (2p/3), match the V 5212 curvature. If no isolated<br />

charges are present below threshold, how does the crystal screen the<br />

curvature? A glance at <strong>surfaces</strong> below threshold (Fig. 4i, j) immediately<br />

suggests an answer: charge neutral dislocati<strong>on</strong>s.<br />

To <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate this regime, we pulled apart the coverslips that c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>e<br />

the capillary bridges. As the boundary of the bridges is p<str<strong>on</strong>g>in</str<strong>on</strong>g>ned and<br />

their volume c<strong>on</strong>served, their shape changes from almost cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical to<br />

highly <strong>curved</strong>, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g us to follow the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> of defects below<br />

threshold (see Fig. 4). The first defects that we observe as the (negative)<br />

curvature is <str<strong>on</strong>g>in</str<strong>on</strong>g>creased are dislocati<strong>on</strong>s, dom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly polarized with their<br />

(2p/3) discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s po<str<strong>on</strong>g>in</str<strong>on</strong>g>t<str<strong>on</strong>g>in</str<strong>on</strong>g>g towards the regi<strong>on</strong> of highest negative<br />

curvature, the waist of the capillary bridge. As the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated negative<br />

curvature is <str<strong>on</strong>g>in</str<strong>on</strong>g>creased, these polarized dislocati<strong>on</strong>s proliferate and<br />

organize <str<strong>on</strong>g>in</str<strong>on</strong>g>to l<str<strong>on</strong>g>in</str<strong>on</strong>g>es. In flat space these l<str<strong>on</strong>g>in</str<strong>on</strong>g>es, known as gra<str<strong>on</strong>g>in</str<strong>on</strong>g> boundaries,<br />

close <strong>on</strong> themselves or span the whole sample. Here we observe neutral<br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g> boundaries which vanish <strong>on</strong> the surface. They are analogous to<br />

fabric ‘pleats’. In cloth<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the different circumference of the waist and<br />

the hips is often accommodated by vertical pleats (Fig. 4f). Al<strong>on</strong>g the<br />

length of the pleat, extra fabric is added to the width.<br />

24<br />

Dh~nd2a p<br />

ð2Þ<br />

6<br />

where a is the lattice spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g. If Dh perfectly matches the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated<br />

Gaussian curvature, the stress <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by the substrate is completely<br />

screened. The smallest Dh is achieved by a pleat for which nd is so low<br />

that <strong>on</strong>ly a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle dislocati<strong>on</strong> is present <strong>on</strong> a surface of characteristic<br />

length H. Equati<strong>on</strong> (2) then gives a geometric criteri<strong>on</strong> for the <strong>on</strong>set of<br />

pleat<str<strong>on</strong>g>in</str<strong>on</strong>g>g: Dh 5 j#GdAj < a/H which can be arbitrarily small. Perfect<br />

screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g cannot be achieved <strong>on</strong> a smooth surface. However, balanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the energy of a stretched but un-defected crystal, YDh 2 H 2 ,withthe<br />

energy of a pleat, YaHDhlog(Dh), gives an energetic criteri<strong>on</strong> for the<br />

<strong>on</strong>set of pleat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, j#GdAj < (a/H)log(H/a), that agrees with the geometric<br />

criteri<strong>on</strong> up to logarithmic correcti<strong>on</strong>s (Supplementary Informati<strong>on</strong>).<br />

There is a maximum open<str<strong>on</strong>g>in</str<strong>on</strong>g>g angle for pleats Dhmax~ p<br />

6 that corresp<strong>on</strong>ds<br />

to the maximum dislocati<strong>on</strong> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e density nd~ 1<br />

2a <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong><br />

(2), see Fig. 2d. If we place these pleats al<strong>on</strong>g the axis of a cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>der the<br />

result is a c<strong>on</strong>e, as illustrated <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. 2f, which shows the c<strong>on</strong>ical shape<br />

of the top of the Chrysler build<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>in</str<strong>on</strong>g> New York. If the dislocati<strong>on</strong><br />

density <str<strong>on</strong>g>in</str<strong>on</strong>g> the pleats (or the density of pleats) varies, then we can have<br />

Gaussian curvature. On the Chrysler build<str<strong>on</strong>g>in</str<strong>on</strong>g>g, such a gradient <str<strong>on</strong>g>in</str<strong>on</strong>g> spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

produces a negative curvature spike that crowns the c<strong>on</strong>e.<br />

When our capillary bridges are str<strong>on</strong>gly <strong>curved</strong>, multiple pleats and<br />

scars act <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>cert to relieve the stra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by the curvature. This<br />

cooperativescreen<str<strong>on</strong>g>in</str<strong>on</strong>g>gcanbeunderstoodbytreat<str<strong>on</strong>g>in</str<strong>on</strong>g>gdislocati<strong>on</strong>sasdipoles<br />

of discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s. Just as <str<strong>on</strong>g>in</str<strong>on</strong>g> electrostatics, a divergence <str<strong>on</strong>g>in</str<strong>on</strong>g> polarizati<strong>on</strong><br />

producesapolarizati<strong>on</strong> charge, pleat gradients can produce an effective<br />

discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> polarizati<strong>on</strong> charge, which al<strong>on</strong>g with isolated discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s<br />

c<strong>on</strong>tributes to screen curvature so that<br />

ð<br />

G dA< Xn<br />

ð<br />

qaz dA +<br />

a~1<br />

: Px ðÞ ð3Þ<br />

where P(x) is the dislocati<strong>on</strong> density per unit area. In Fig. 5, we verify<br />

that the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated Gaussian curvature over a ‘patch’ of variable size <strong>on</strong><br />

each surface <str<strong>on</strong>g>in</str<strong>on</strong>g> our ensemble (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g domes, barrels and waists) is<br />

approximately equal to the accumulated discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> and polarizati<strong>on</strong><br />

950 | NATURE | VOL 468 | 16 DECEMBER 2010<br />

Macmillan Publishers Limited. All rights reserved<br />

©2010


charges <str<strong>on</strong>g>in</str<strong>on</strong>g> the patch (exclud<str<strong>on</strong>g>in</str<strong>on</strong>g>g surface edges), for all regimes of<br />

deformati<strong>on</strong>.<br />

<str<strong>on</strong>g>Pleats</str<strong>on</strong>g> allow a f<str<strong>on</strong>g>in</str<strong>on</strong>g>er screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g of curvature than scars, as the angular<br />

deficit produced by discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s is not tunable but quantized <str<strong>on</strong>g>in</str<strong>on</strong>g> units<br />

of p/3. Up<strong>on</strong> equat<str<strong>on</strong>g>in</str<strong>on</strong>g>g p/3 to the Gaussian curvature multiplied by the<br />

areaqof ffiffiffiffiffiffiffi a patch of radius r, we have a heuristic criteri<strong>on</strong> for scarr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

r~<br />

R1R2<br />

3<br />

that is c<strong>on</strong>sistent with our observati<strong>on</strong>s. If the distance to the<br />

boundary of our <strong>curved</strong> substrates is greater than r, isolated discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s<br />

or scars are observed; if less than r, pleats arise as the generic<br />

mode of stress relaxati<strong>on</strong>.<br />

In summary, pleats (neutral dislocati<strong>on</strong> l<str<strong>on</strong>g>in</str<strong>on</strong>g>es that vanish <strong>on</strong> the <strong>on</strong><br />

the surface) afford a much f<str<strong>on</strong>g>in</str<strong>on</strong>g>er screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g of Gaussian curvature than<br />

do discl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of quantized topological charge, because the area<br />

surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g the vanish<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of a pleat can have a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously<br />

c<strong>on</strong>trollable angle deficit between 0 and p/6. Whether pleats may have<br />

a role to play <str<strong>on</strong>g>in</str<strong>on</strong>g> the design of geodetic-dome-like structures with equal<br />

length struts we leave open for explorati<strong>on</strong>. Bey<strong>on</strong>d the physics of<br />

crystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e defects, the experimental playground we have developed<br />

is ideal for explor<str<strong>on</strong>g>in</str<strong>on</strong>g>g general questi<strong>on</strong>s c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the physics of order<br />

and disorder 25 <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>curved</strong> space.<br />

METHODS SUMMARY<br />

Sample preparati<strong>on</strong>. The oil–glycerol <strong>surfaces</strong> coated with PMMA particles are<br />

prepared as follows. First, the glycerol droplets and capillary bridges are prepared<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact with air <str<strong>on</strong>g>in</str<strong>on</strong>g> a capillary channel. Then, the channel is filled with particles<br />

suspended <str<strong>on</strong>g>in</str<strong>on</strong>g> the oil. Particles <str<strong>on</strong>g>in</str<strong>on</strong>g> the bulk can be removed by subsequently flush<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the channel with clean oil. The PMMA particles, prepared follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g refs 26, 27, are<br />

coated with a layer of poly(hydroxy stearic acid) (PHSA), which charges positively<br />

(,100 charges per particle) <str<strong>on</strong>g>in</str<strong>on</strong>g> the oil 28 . The oil phase is a mixture of cyclohexyl<br />

bromide (CHB) and dodecane that matches the refractive <str<strong>on</strong>g>in</str<strong>on</strong>g>dex of glycerol, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

us to image with m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal distorti<strong>on</strong> the full surface even when it is highly<br />

<strong>curved</strong> (Fig. 1). The particles are highly hydrophobic, but n<strong>on</strong>etheless b<str<strong>on</strong>g>in</str<strong>on</strong>g>d to the<br />

glycerol–oil <str<strong>on</strong>g>in</str<strong>on</strong>g>terface by image charge attracti<strong>on</strong> to the higher dielectric glycerol<br />

(eglycerol

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!