18.01.2013 Views

Abstracts of Posters 8-th European Conference on Mathematical ...

Abstracts of Posters 8-th European Conference on Mathematical ...

Abstracts of Posters 8-th European Conference on Mathematical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Elisenda Feliu, Carsten Wiuf<br />

Bioinformatics Research Centre<br />

e-mail: feliu.elisenda@gmail.com, wiuf@cs.au.dk<br />

Cellular Systems Biology; Thursday, June 30, 11:30<br />

Enzyme sharing as a cause <str<strong>on</strong>g>of</str<strong>on</strong>g> multistati<strong>on</strong>arity in signaling<br />

systems<br />

Bistability, and more generally multistability, in biological systems is seen as a<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular decisi<strong>on</strong> making. Compared to systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a single steady<br />

state, <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple stable steady states provide a possible switch between<br />

different resp<strong>on</strong>ses and increased robustness wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to envir<strong>on</strong>mental<br />

noise. To understand cellular signaling, it is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental importance to<br />

know i) which systems can exhibit multistati<strong>on</strong>arity and ii) what are <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological<br />

c<strong>on</strong>diti<strong>on</strong>s enabling it.<br />

Here, we c<strong>on</strong>sider biological systems where a signal is transmitted by phosphorylati<strong>on</strong>.<br />

Kinases catalyze phosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (protein) substrates, and phosphatases<br />

catalyse dephosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same substrates. Biological systems are<br />

known in which several different kinases phosphorylate a single substrate and o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers<br />

where a single kinase phosphorylate several different substrates. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore,<br />

phosphorylati<strong>on</strong> in more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e site can be carried out by a unique kinase or, as<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> priming kinases, different <strong>on</strong>es. The same phenomena are observed<br />

c<strong>on</strong>cerning phosphatases and dephosphorylati<strong>on</strong>.<br />

The interplay between kinases, phosphatases and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir substrates increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong> we determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> multistati<strong>on</strong>arity in small motifs <str<strong>on</strong>g>th</str<strong>on</strong>g>at repeatedly occur in signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways.<br />

Our simple modules are built <strong>on</strong> a <strong>on</strong>e-site modificati<strong>on</strong> cycle and c<strong>on</strong>tain <strong>on</strong>e or two<br />

cycles combined in all possible ways wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e above features regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> modificati<strong>on</strong> sites, and competiti<strong>on</strong> and n<strong>on</strong>-specificity <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes, incorporated.<br />

We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

a) Multistati<strong>on</strong>arity arises whenever a single enzyme is resp<strong>on</strong>sible for catalyzing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two different but linked substrates.<br />

b) The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple steady states requires substrate saturati<strong>on</strong> and<br />

two opposing dynamics acting <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same substrate.<br />

c) Multistati<strong>on</strong>arity in some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e systems occurs independently <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong><br />

rates.<br />

The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling is based <strong>on</strong> mass-acti<strong>on</strong> kinetics. This implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

steady states are soluti<strong>on</strong>s to a system <str<strong>on</strong>g>of</str<strong>on</strong>g> polynomial equati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemical<br />

c<strong>on</strong>centrati<strong>on</strong>s and enables <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic arguments as previously proven<br />

successful, e.g. [1], [3]. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>clusi<strong>on</strong>s are derived in full generality<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out restoring to simulati<strong>on</strong>s or random generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters. See [2].<br />

References.<br />

[1] E. Feliu, M. Knudsen, L. N. Andersen, and C. Wiuf. An algebraic approach to signaling<br />

cascades wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n layers. arXiv, q-bio.QM, Aug 2010.<br />

[2] E. Feliu, and C. Wiuf. Enzyme sharing as a cause <str<strong>on</strong>g>of</str<strong>on</strong>g> multistati<strong>on</strong>arity in signaling systems.<br />

arXiv, q-bio.QM, Feb 2011.<br />

296

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!