19.01.2013 Views

The First Ten Years of the Heinrich Hertz Chair Endowed by ...

The First Ten Years of the Heinrich Hertz Chair Endowed by ...

The First Ten Years of the Heinrich Hertz Chair Endowed by ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

“Innovations are <strong>the</strong> fuel powering our future“<br />

Address<br />

<strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong> <strong>of</strong> Deutsche Telekom AG<br />

Pr<strong>of</strong>. Dr. Karsten Buse<br />

University <strong>of</strong> Bonn<br />

Institute <strong>of</strong> Physics<br />

Wegelerstraße 8<br />

53115 Bonn<br />

Germany<br />

Contact<br />

Phone: 0228/73-4898<br />

Fax: 0228/73-4038<br />

E-Mail: kbuse@uni-bonn.de<br />

Web<br />

http://www.photonik.uni-bonn.de<br />

2000 - 2010 <strong>The</strong> <strong>First</strong> <strong>Ten</strong> <strong>Years</strong> <strong>of</strong> <strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong> <strong>Endowed</strong> <strong>by</strong> Deutsche Telekom AG<br />

<strong>The</strong> <strong>First</strong> <strong>Ten</strong> <strong>Years</strong> <strong>of</strong> <strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong><br />

<strong>Endowed</strong> <strong>by</strong> Deutsche Telekom AG<br />

2000 – 2010


Publishing Details<br />

Realization<br />

Editor<br />

Pr<strong>of</strong>. Dr. Karsten Buse<br />

Layout, Graphics<br />

Bosse und Meinhard Wissenschaftskommunikation<br />

Print<br />

Druckerei Brandt, Bonn<br />

Photo credits<br />

• Cover, 58: Lightline (www.lightline.de)<br />

• 6, 12, 25, 42, 44 (right), 50, 60: Bosse und Meinhard<br />

• 7: University <strong>of</strong> Bonn<br />

• 8: Deutsche Telekom AG<br />

• 9: Frank Homann, University <strong>of</strong> Bonn<br />

• 10: wikipedia<br />

• 11, 16, 18, 19, 27-41 (except 33 (right) and 41<br />

(right)), 44 (left), 45, 51, 47, 48, 49, 55, 56, 57, 62:<br />

<strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong><br />

• 14, 20, 21: istockphoto<br />

• 15: Crystal Technology Inc.<br />

• 17: Nature Photonics<br />

• 26: Ulrike E. Klopp, University <strong>of</strong> Bonn<br />

• 33 (right): Thomas Ollendorf, Deutsche Telekom AG<br />

• 41 (right): Fig. 2 <strong>of</strong> <strong>the</strong> article: “Continuous-wave<br />

optical parametric terahertz source“ <strong>by</strong> R. Sowade,<br />

I. Breunig, I. Camara Mayorga, J. Kiessling, C. Tulea,<br />

V. Dierolf, and K. Buse, Optics Express, Vol. 17,<br />

22303 (2009)<br />

• 52: Harald Giessen, University <strong>of</strong> Stuttgart<br />

• 53: T-Labs<br />

• 61: Eric Lichtenscheidt<br />

63


<strong>The</strong> <strong>First</strong> <strong>Ten</strong> <strong>Years</strong> <strong>of</strong> <strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong><br />

<strong>Endowed</strong> <strong>by</strong> Deutsche Telekom AG<br />

2000 – 2010<br />

Pr<strong>of</strong>. Dr. Karsten Buse<br />

Institute <strong>of</strong> Physics<br />

University <strong>of</strong> Bonn<br />

3


4<br />

Content<br />

Preface 6<br />

<strong>Heinrich</strong> <strong>Hertz</strong> 10<br />

Research & Innovations 12<br />

Research: from <strong>the</strong> fundamental to <strong>the</strong> highly applied ............................................................ 14<br />

<strong>The</strong> century <strong>of</strong> photonics ....................................................................................................... 14<br />

Lithium niobate crystals: silicon <strong>of</strong> photonics ........................................................................ 15<br />

Current research in <strong>the</strong> university labs ................................................................................... 15<br />

Material research .................................................................................................................. 16<br />

New applications ................................................................................................................... 18<br />

Exemplary projects directly linked to needs <strong>of</strong> Deutsche Telekom AG ..................................... 19<br />

Patents and patent applications ............................................................................................. 22<br />

Timeline 2000 - today 25<br />

Team 42<br />

Current team ......................................................................................................................... 44<br />

<strong>The</strong>ses accomplished at <strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong> <strong>of</strong> Deutsche Telekom AG 44


Alumni network ..................................................................................................................... 45<br />

Careers ................................................................................................................................. 46<br />

Cooperation .......................................................................................................................... 50<br />

Deutsche Telekom Laboratories ............................................................................................. 53<br />

National and international close cooperation partners............................................................ 54<br />

Guest scientists ..................................................................................................................... 55<br />

Entrepreneurship ................................................................................................................... 57<br />

Outreach 58<br />

Teaching................................................................................................................................ 60<br />

University <strong>of</strong> Bonn – self-administration ................................................................................. 61<br />

Events ................................................................................................................................... 62<br />

Publishing Details 63<br />

Realization ............................................................................................................................ 63<br />

Photo credits ......................................................................................................................... 63<br />

5


Preface


Preface<br />

<strong>The</strong> University <strong>of</strong> Bonn is very proud <strong>of</strong> its cooperation<br />

with Deutsche Telekom. <strong>The</strong> resulting <strong>Heinrich</strong><br />

<strong>Hertz</strong> <strong>Chair</strong> has proved a huge success over <strong>the</strong> first<br />

decade <strong>of</strong> its existence.<br />

<strong>The</strong>re is a widespread misconception about university<br />

research. It is <strong>of</strong>ten thought that <strong>the</strong> basic research<br />

done in academic institutions rarely and only very<br />

slowly leads to applications or products ready for <strong>the</strong><br />

market. According to this common prejudice, effective<br />

applied science only takes place at places known as<br />

technical universities or even universities <strong>of</strong> applied<br />

science. Indeed, <strong>the</strong>re is an underlying misconception<br />

that basic research is far from exciting, contrary to<br />

<strong>the</strong> applied sciences. However, a closer look quickly<br />

reveals, <strong>of</strong> course, that <strong>the</strong>re can be no applied science<br />

without <strong>the</strong> solid groundwork <strong>of</strong> basic research.<br />

<strong>The</strong> ten-year anniversary <strong>of</strong> Deutsche Telekom’s commitment<br />

to <strong>the</strong> University <strong>of</strong> Bonn’s <strong>Heinrich</strong> <strong>Hertz</strong><br />

<strong>Chair</strong> is a perfect occasion for presenting a prime example<br />

<strong>of</strong> highly successful research leading to important<br />

applications. It certainly is no coincidence that<br />

<strong>the</strong> chair was named after this great physicist, a man<br />

whose research laid <strong>the</strong> groundwork for a plethora <strong>of</strong><br />

applications and products. Originally planned for a<br />

period <strong>of</strong> only five years, <strong>the</strong> co-operation between <strong>the</strong><br />

University <strong>of</strong> Bonn and Deutsche Telekom proved so<br />

successful that, in 2004, it was extended indefinitely.<br />

Pr<strong>of</strong>. Dr. Jürgen Fohrmann,<br />

Rector <strong>of</strong> <strong>the</strong> University <strong>of</strong> Bonn<br />

This collaboration has shown that <strong>the</strong> relationship<br />

between <strong>the</strong>se two ra<strong>the</strong>r different institutions<br />

brings mutual benefits, with <strong>the</strong> university‘s top-level<br />

research contributing directly and indirectly to <strong>the</strong><br />

success <strong>of</strong> Deutsche Telekom.<br />

<strong>The</strong> ongoing commitment to this chair is testimony to<br />

<strong>the</strong> excellent scientific work <strong>of</strong> its current holder, Pr<strong>of</strong>essor<br />

Dr. Karsten Buse, and his team as well as <strong>the</strong><br />

Institute <strong>of</strong> Physics as a whole. It certainly serves as<br />

an example for o<strong>the</strong>r forms <strong>of</strong> co-operation between<br />

<strong>the</strong> University <strong>of</strong> Bonn and outside institutions and<br />

organizations, whe<strong>the</strong>r academic or non-academic.<br />

We highly appreciate <strong>the</strong> fact that Deutsche Telekom<br />

values <strong>the</strong> University <strong>of</strong> Bonn as a partner with whom<br />

it actively seeks to co-operate and look forward to continuing<br />

and deepening this relationship in <strong>the</strong> years to<br />

come.<br />

7


8<br />

Preface<br />

Located on <strong>the</strong> campus <strong>of</strong> <strong>the</strong> Technical University <strong>of</strong><br />

Berlin, Deutsche Telekom Laboratories prove that Deutsche<br />

Telekom’s strategy to link <strong>the</strong> worlds <strong>of</strong> academia<br />

and industry is working. This is a viable approach to<br />

building innovation leadership in <strong>the</strong> telecommunications<br />

industry. <strong>The</strong> synergies generated here are fertilizing<br />

both university research and product development in our<br />

industry. Seven pr<strong>of</strong>essors from areas <strong>of</strong> vital interest to<br />

Deutsche Telekom, such as security, networks and usability,<br />

have been appointed in Berlin. <strong>The</strong>se pr<strong>of</strong>essors,<br />

along with more than 150 research scientists, post-docs<br />

and students belonging to <strong>the</strong>ir groups, are working<br />

desk-to-desk toge<strong>the</strong>r with more than 180 Deutsche<br />

Telekom experts.<br />

But how does basic research on physics, lasers and<br />

crystals conducted in Bonn fit into this picture? At<br />

<strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong>, <strong>the</strong> researchers are not only<br />

pursuing highly relevant specific developments and thus<br />

generating intellectual properties, <strong>the</strong>y are also providing<br />

<strong>the</strong> broad underlying know-how on applied optics and<br />

identifying – with <strong>the</strong>ir keen sense <strong>of</strong> upcoming technical<br />

trends – <strong>the</strong> innovations that will radically transform <strong>the</strong><br />

telecommunications industry. One has to keep in mind<br />

that optical technologies are crucial to <strong>the</strong> processes <strong>of</strong><br />

acquiring, transmitting and displaying information. In<br />

fact, without optics <strong>the</strong>re would be no fast Internet and<br />

no modern communications at all!<br />

Telekom Laboratories have been forging links between<br />

<strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong> and <strong>the</strong> organizational units <strong>of</strong><br />

Deutsche Telekom. <strong>The</strong> expertise <strong>of</strong> <strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong><br />

Peter Möckel,<br />

Leiter Deutsche Telekom Laboratories<br />

<strong>Chair</strong> in Bonn is accessed <strong>by</strong> Telekom Laboratories in<br />

Berlin and made available to many <strong>of</strong> Deutsche Telekom’s<br />

business units throughout <strong>the</strong> world. Suggestions<br />

for innovation projects emerging from <strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong><br />

<strong>Chair</strong> are evaluated in Berlin and have led in many cases<br />

to successful R&D projects, product recommendations<br />

and patents. Thus, an extremely encouraging and fruitful<br />

collaboration has emerged. Among many o<strong>the</strong>r examples,<br />

important breakthroughs have been made in <strong>the</strong><br />

fields <strong>of</strong> smart glasses, 3D entertainment and terahertz<br />

technology. Ano<strong>the</strong>r point I would like to emphasize is<br />

that our collaboration with Pr<strong>of</strong>essor Buse and his team<br />

has been a real pleasure, characterized <strong>by</strong> open-minded,<br />

serious, enthusiastic and dependable interaction. For<br />

instance, requests from our side always meet with a very<br />

fast, positive and competent response.<br />

<strong>The</strong> University <strong>of</strong> Bonn and Deutsche Telekom certainly<br />

made <strong>the</strong> right decision when <strong>the</strong>y agreed this close<br />

collaboration ten years ago. We appreciate <strong>the</strong> support<br />

given <strong>by</strong> <strong>the</strong> University to <strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong>. This<br />

makes us even more confident that we are investing in<br />

<strong>the</strong> right team at <strong>the</strong> right place. <strong>The</strong> extraordinary innovations<br />

that lie ahead <strong>of</strong> us will make our lives better. We<br />

are happy to play an active role in this evolution as we<br />

move forward into a new world with partners like those at<br />

<strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong> <strong>of</strong> <strong>the</strong> University <strong>of</strong> Bonn.


Preface<br />

<strong>The</strong> world is changing quickly, in academia as well as<br />

in industry. <strong>The</strong> universities are facing severe challenges:<br />

a total change <strong>of</strong> <strong>the</strong> curricula initiated <strong>by</strong><br />

<strong>the</strong> Bologna process, increased competition between<br />

<strong>the</strong> best universities in Germany under <strong>the</strong> excellence<br />

initiative, new arrangements for appointing academic<br />

staff, plus more freedom and responsibility for <strong>the</strong><br />

individual universities. <strong>The</strong>se reforms, introduced in<br />

<strong>the</strong> last decade, go deeper and fur<strong>the</strong>r than all <strong>the</strong><br />

reforms <strong>of</strong> <strong>the</strong> century before. <strong>The</strong> increased pace <strong>of</strong><br />

change is basically something very familiar to large<br />

corporations. Deutsche Telekom was created from a<br />

government institution and is now a flexible and innovative<br />

business that competes successfully for market<br />

share. This transition required a number <strong>of</strong> steps. <strong>The</strong><br />

company was overhauled to optimize its structures,<br />

processes, human resources and finances.<br />

Throughout this transition, one thing has, perhaps remarkably,<br />

not changed: Deutsche Telekom‘s commitment<br />

to its collaboration with <strong>the</strong> University <strong>of</strong> Bonn.<br />

This partnership has endured, driven forward <strong>by</strong> <strong>the</strong><br />

wealth <strong>of</strong> ideas it generates. In this context, <strong>the</strong> <strong>Heinrich</strong><br />

<strong>Hertz</strong> <strong>Chair</strong>, which is affiliated with <strong>the</strong> Deutsche<br />

Telekom Laboratories, has been particularly productive,<br />

providing an effective bridge between academia<br />

and industry. <strong>The</strong> resulting synergies provide very<br />

good reasons for continuing our collaboration. After<br />

all, ideas and innovations are <strong>the</strong> fuel that powers<br />

academia as well as industry. And innovations created<br />

at universities now find <strong>the</strong>ir way into real products<br />

faster than ever.<br />

Pr<strong>of</strong>. Dr. Karsten Buse,<br />

Holder <strong>of</strong> <strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong> endowed <strong>by</strong> Deutsche Telekom AG<br />

In our fast-changing world, <strong>the</strong> know-how available at<br />

universities is highly relevant to companies looking for<br />

new markets and making sound investment decisions.<br />

This booklet reviews our activities over <strong>the</strong> last ten<br />

years, without claiming in any way to be a full account.<br />

It shows how extensive <strong>the</strong> interaction between<br />

<strong>the</strong> University <strong>of</strong> Bonn and Deutsche Telekom has<br />

been, outlines <strong>the</strong> mutual benefits and illustrates our<br />

capabilities.<br />

<strong>The</strong> technological advances made in <strong>the</strong> last decade<br />

are enormous. Mobile communication and <strong>the</strong> internet<br />

have changed our ways <strong>of</strong> living and working. <strong>The</strong><br />

next decade will again be full <strong>of</strong> revolutionary changes<br />

and innovations. Information technologies will play a<br />

big role in helping us to conserve <strong>the</strong> natural environment;<br />

we will experience mobile communication<br />

with bandwidths <strong>of</strong> gigabits per second; and digital<br />

holographic 3D displays will open a new dimension <strong>of</strong><br />

interaction. <strong>The</strong>se are just a few examples. Each new<br />

innovation opens up new opportunities – for academia<br />

and industry. By coming toge<strong>the</strong>r on <strong>the</strong> basis <strong>of</strong><br />

common interests to combine our expertise, we can<br />

achieve a competitive edge and take maximum advantage<br />

<strong>of</strong> <strong>the</strong> new breakthroughs. This is why we look<br />

forward with such optimism to a bright future.<br />

9


10<br />

<strong>Heinrich</strong> <strong>Hertz</strong>


<strong>Heinrich</strong> <strong>Hertz</strong><br />

Our namesake<br />

<strong>The</strong> chair founded <strong>by</strong> Deutsche Telekom is named after<br />

<strong>Heinrich</strong> <strong>Hertz</strong>, a famous physicist who worked at<br />

<strong>the</strong> University <strong>of</strong> Bonn from 1889 until his early death<br />

in 1894. Before coming to Bonn, <strong>Hertz</strong> had already<br />

demonstrated <strong>the</strong> existence <strong>of</strong> electromagnetic waves<br />

experimentally and proved <strong>the</strong> “Maxwell equations“<br />

<strong>of</strong> electromagnetic <strong>the</strong>ory. <strong>The</strong>se equations are now<br />

known as <strong>the</strong> basis <strong>of</strong> <strong>the</strong> description <strong>of</strong> all electrical<br />

and magnetic phenomena. One fundamental parameter<br />

<strong>of</strong> waves is <strong>the</strong>ir frequency, <strong>the</strong> number <strong>of</strong> oscillations<br />

per second. Honoring <strong>Heinrich</strong> <strong>Hertz</strong>, this unit<br />

is named after him (1 <strong>Hertz</strong> = 1 cycle per second).<br />

<strong>Heinrich</strong> <strong>Hertz</strong> made important contributions also to<br />

o<strong>the</strong>r fields. His discovery <strong>of</strong> <strong>the</strong> “photoelectric effect“,<br />

<strong>the</strong> emission <strong>of</strong> electrons from metals illuminated<br />

<strong>by</strong> short-wavelength light, was essential for <strong>the</strong><br />

development <strong>of</strong> quantum optics – a description <strong>of</strong><br />

“light“ complementary to wave optics.<br />

Original equipment used <strong>by</strong> <strong>Heinrich</strong> <strong>Hertz</strong> at <strong>the</strong> Institute <strong>of</strong><br />

Physics: spark gap providing experimental evidence for <strong>the</strong><br />

existence <strong>of</strong> electromagnetic waves.<br />

<strong>Heinrich</strong> <strong>Hertz</strong> also provides a good example how<br />

fundamental knowledge can attain practical relevance.<br />

He believed his research was purely academic in<br />

nature, but Guglielmo Marconi quickly recognized that<br />

<strong>the</strong> technology could be used for wireless communications.<br />

A wireless telegraph service was established<br />

across <strong>the</strong> Atlantic as early as 1907. <strong>The</strong>se days,<br />

innovations from research labs have <strong>the</strong> potential<br />

<strong>of</strong> entirely changing our world just a few years later.<br />

Indeed, <strong>the</strong> field <strong>of</strong> optics and solid state physics still<br />

holds a wealth <strong>of</strong> important developments awaiting<br />

discovery.<br />

11


Research and innovations<br />

12


14<br />

Research and Innovations<br />

Research: from <strong>the</strong> fundamental to <strong>the</strong><br />

highly applied<br />

<strong>The</strong> last ten years have seen a number <strong>of</strong> successful<br />

research projects. In <strong>the</strong> following, we shall review our<br />

ongoing activities. In all cases, we sought patent protection<br />

at a very early stage. Some specific projects<br />

relate directly to <strong>the</strong> business needs <strong>of</strong> Deutsche<br />

Telekom, <strong>of</strong>ten leading to advice or clear recommendations<br />

for company decisions, including early<br />

identification <strong>of</strong> potential breakthroughs.<br />

A bunch <strong>of</strong> optical fibers - <strong>the</strong> key technology for worldwide<br />

high-density and high-speed data transfer.<br />

<strong>The</strong> century <strong>of</strong> photonics<br />

All our projects involve know-how in <strong>the</strong> field <strong>of</strong> optics.<br />

Modern optics, <strong>of</strong>ten called “photonics” in analogy<br />

to electronics, is <strong>of</strong> great relevance for cutting-edge<br />

science as well as for telecommunications. <strong>The</strong> 2009<br />

Nobel Price for Physics <strong>of</strong>fers a striking example:<br />

Willard S. Boyle und George E. Smith were honored<br />

for <strong>the</strong>ir work on digital cameras, which revolutionized<br />

photography. Charles Kuen Kao also received <strong>the</strong><br />

2009 Prize, in his case for developing optical fibers<br />

for data transmission. Both achievements were made<br />

in <strong>the</strong> early 70s. Today, a dense optical-fiber network<br />

encompasses <strong>the</strong> globe, forming <strong>the</strong> backbone <strong>of</strong> <strong>the</strong><br />

internet. Charles Kao recognized <strong>the</strong> full potential<br />

<strong>of</strong> glass and realized that purified silica glass is so<br />

transparent that it can transmit data over hundreds <strong>of</strong><br />

kilometers without <strong>the</strong> need for amplification.


Lithium niobate crystals:<br />

silicon <strong>of</strong> photonics<br />

Our scientific core competence lies in <strong>the</strong> field <strong>of</strong><br />

nonlinear-optical crystals. Here – like in <strong>the</strong> case <strong>of</strong><br />

<strong>the</strong> silica glass for fibers – purity and full control <strong>of</strong><br />

<strong>the</strong> material properties are <strong>the</strong> enablers <strong>of</strong> applications.<br />

We are working in particular on <strong>the</strong> utilization<br />

<strong>of</strong> lithium niobate crystals, a material that is already<br />

widely used for frequency filters in mobile phones and<br />

television systems as well as for electro-optical modulators<br />

to put information into <strong>the</strong> optical waves in<br />

fiber networks. This material has ano<strong>the</strong>r fascinating<br />

but not fully explored property that has great potential<br />

for applications: It can change <strong>the</strong> color <strong>of</strong> light.<br />

This does not mean simple filtering, as in colored<br />

glass, where part <strong>of</strong> <strong>the</strong> light spectrum is thrown<br />

away. Ra<strong>the</strong>r, lithium niobate crystals really can<br />

change <strong>the</strong> color <strong>of</strong> a light beam and do so very efficiently.<br />

Low-cost infrared laser light can be transformed into<br />

<strong>the</strong> valuable visible laser light needed for compact<br />

projectors. It is also possible to generate terahertz<br />

light, opening up promising applications in high-bandwidth<br />

mobile data transmission. <strong>The</strong>se are just a few<br />

examples. Just like microelectronics became possible<br />

because <strong>of</strong> silicon technology, lithium niobate is <strong>of</strong>ten<br />

called <strong>the</strong> “silicon <strong>of</strong> photonics“ since, in many cases,<br />

it forms <strong>the</strong> basis for gaining full control <strong>of</strong> light.<br />

Boules and wafers are our working material: lithium niobate<br />

single crystals. (Copyright: Crystal Technology, Inc.)<br />

Current research in <strong>the</strong> university labs<br />

Our strategy is to combine advanced material<br />

research with <strong>the</strong> exploration and demonstration <strong>of</strong><br />

entirely new applications <strong>of</strong> lithium niobate crystals.<br />

About half <strong>of</strong> <strong>the</strong> team is working in each <strong>of</strong> <strong>the</strong>se<br />

two areas.<br />

This research has led to a total <strong>of</strong> 116 publications<br />

and 24 patents. Some patents have already been commercialized<br />

through licenses, o<strong>the</strong>rs have a very high<br />

potential to find relevant applications, e.g. in nextgeneration<br />

mobile communications.<br />

15


16<br />

Material research


Material research<br />

Lithium niobate crystals have a positively and a<br />

negatively charged end. As a non-centro-symmetric<br />

material, lithium niobate has some highly advantageous<br />

properties. <strong>The</strong> direction <strong>of</strong> this polarity can be<br />

spatially structured. Since each section with a homogeneous<br />

polarity is called “domain”, this structuring<br />

is known as “domain engineering“, i.e. <strong>the</strong> creation <strong>of</strong><br />

tailored structures for specific uses. When subjected<br />

to intense illumination, light can excite <strong>the</strong> material<br />

because <strong>the</strong> light field interacts with <strong>the</strong> domains. As<br />

a consequence, each domain emits light.<br />

<strong>The</strong> domain structure determines which color <strong>the</strong><br />

emitted light will have and what direction it will<br />

travel in. Controlling <strong>the</strong> crystals‘ domain structure<br />

is <strong>the</strong>refore <strong>of</strong> critical importance, but this can be<br />

tough since <strong>the</strong> domain formation is very difficult.<br />

Structured electrical fields exceeding 20 000 V/mm<br />

are needed to reverse <strong>the</strong> domains. We are seeking to<br />

develop smart methods for more refined domain control.<br />

One line <strong>of</strong> research uses, for instance, ultraviolet<br />

light.<br />

<strong>The</strong> lithium niobate crystals have ano<strong>the</strong>r feature that<br />

can be ei<strong>the</strong>r useful or disastrous for applications: <strong>the</strong><br />

photorefractive effect. <strong>The</strong> material is transparent for<br />

visible light, but <strong>the</strong> crystals always and unavoidably<br />

contain a small amount <strong>of</strong> transition metals like iron,<br />

typically at levels <strong>of</strong> just several parts per million.<br />

Since transition metals can occur in different valence<br />

states, <strong>the</strong>y can act as both electron sources and<br />

electron traps. Iron occurs here in forms such as Fe 2+<br />

and Fe 3+ . Light excites <strong>the</strong> electrons from <strong>the</strong> filled<br />

traps (e.g. Fe 2+ ) into <strong>the</strong> conduction band. Since <strong>the</strong><br />

material is polar, <strong>the</strong> electrons are moved on and<br />

trapped elsewhere <strong>by</strong> empty traps (e.g. Fe 3+ ). <strong>The</strong>re<br />

is a build-up <strong>of</strong> space-charge fields that can easily<br />

reach 10 000 V/m. <strong>The</strong>se fields change <strong>the</strong> refractive<br />

index. This can be used to make, for instance, volume<br />

holographic wavelength filters <strong>of</strong> <strong>the</strong> type needed in<br />

optical telecommunication fiber networks as add-drop<br />

filters.<br />

<strong>The</strong> effect, however, leads to distortions in highintensity<br />

laser beams, which limits <strong>the</strong> usefulness <strong>of</strong><br />

<strong>the</strong> crystals for changing <strong>the</strong> color <strong>of</strong> light. We have<br />

<strong>the</strong>refore developed and patented various methods to<br />

clean <strong>the</strong> crystals <strong>of</strong> <strong>the</strong>ir photo-excitable electrons.<br />

One successful approach is an “optical brush“. Here,<br />

a light beam combined with appropriate heating can<br />

reduce <strong>the</strong> density <strong>of</strong> <strong>the</strong> photo-excitable electrons <strong>by</strong><br />

a factor <strong>of</strong> 10 000 or more.<br />

17


18<br />

Effect <strong>of</strong> optical damage in lithium niobate crystals. <strong>The</strong> left<br />

side shows a laser beam that passed through a cleaned crystal,<br />

whereas <strong>the</strong> laser beam on <strong>the</strong> right was strongly distorted.<br />

In many cases one would like to combine <strong>the</strong> favorable<br />

properties <strong>of</strong> two very different materials. One possibility<br />

is to create hybrid materials that contain two<br />

or more composites. For this purpose we developed a<br />

chemical route to syn<strong>the</strong>size lithium niobate nanocrystals<br />

carefully doped with different elements. <strong>The</strong>se<br />

nanocrystals can be dispersed in various liquids and<br />

polymers. It is <strong>the</strong>n possible to orientate <strong>the</strong> nanoparticles<br />

in external electrical fields. In this way, even<br />

common materials like polymers are able to change<br />

<strong>the</strong> color <strong>of</strong> light, possibly with an even better performance<br />

than <strong>the</strong> pure crystal material itself. Ano<strong>the</strong>r<br />

line <strong>of</strong> research is <strong>the</strong> use <strong>of</strong> single nanocrystals as<br />

<strong>the</strong> best possible probes for biological applications.<br />

Since <strong>the</strong> nanocrystals are polar, a voltage between<br />

two membranes will orient <strong>the</strong> particles – an effect<br />

that is seen in <strong>the</strong> efficiency <strong>of</strong> color conversion. This<br />

would be <strong>of</strong> relevance to neuron sciences and o<strong>the</strong>r<br />

fields.<br />

New applications<br />

<strong>The</strong> understanding <strong>of</strong> materials leads to novel applications.<br />

Our group has built several high-performance<br />

optical parametrical oscillators. <strong>The</strong>se are systems<br />

in which <strong>the</strong> light <strong>of</strong> a pump laser is changed in<br />

color in a precisely defined way over a wide range<br />

<strong>of</strong> wavelengths. For this purpose, <strong>the</strong> crystals are<br />

embedded in a resonator and <strong>the</strong> pump photons are<br />

split into two parts, <strong>the</strong> signal and <strong>the</strong> idler light. <strong>The</strong><br />

signal light is trapped in <strong>the</strong> resonator and strongly<br />

enhanced. Several Watts <strong>of</strong> pump power may lead to<br />

more than 1000 W <strong>of</strong> circulating idler power. By this<br />

means we have created tunable light sources that are<br />

<strong>of</strong> relevance to applications such as in spectroscopics.<br />

We have placed particular emphasis on <strong>the</strong> generation<br />

<strong>of</strong> terahertz radiation. This frequency range is<br />

between <strong>the</strong> microwave region, which can be accessed<br />

<strong>by</strong> electronics, and <strong>the</strong> far-infrared region, which can<br />

be reached <strong>by</strong> conventional optical means. Terahertz<br />

radiation may be very useful in wireless local area<br />

networks with access speeds exceeding 10 Gbit/s. Its<br />

potential here derives from <strong>the</strong> high carrier frequency.<br />

A serious problem has so far been posed <strong>by</strong> <strong>the</strong> generation<br />

<strong>of</strong> continuous-wave narrow-band diffraction-limited<br />

terahertz radiation. But we have recently found a<br />

solution through <strong>the</strong> optical parametrical oscillators,<br />

referred to above. By setting up two cascaded parametrical<br />

oscillation processes, we have generated<br />

terahertz radiation with powers exceeding <strong>the</strong> best<br />

state-<strong>of</strong>-<strong>the</strong>-art results <strong>by</strong> a factor <strong>of</strong> a thousand.


Terahertz waves make <strong>the</strong> leaf-veins visible: <strong>The</strong> veins absorp<br />

<strong>the</strong> THz waves stronger since <strong>the</strong>y contain more water.<br />

One critical question here is whe<strong>the</strong>r fur<strong>the</strong>r integration<br />

<strong>of</strong> nonlinear-optical devices enabling change in<br />

<strong>the</strong> color <strong>of</strong> light is possible. To answer this, we study<br />

<strong>the</strong> so-called “whispering gallery mode resonators“:<br />

In St. Paul‘s Ca<strong>the</strong>dral in London it was observed<br />

that acoustic waves can migrate for long distances<br />

in a gallery <strong>of</strong> circular shape. This becomes possible<br />

through <strong>the</strong> multiple reflections <strong>of</strong> acoustic waves at<br />

<strong>the</strong> ca<strong>the</strong>dral‘s walls. “Whispers“ can be transmitted<br />

over 50 meters or more. A similar mechanism can be<br />

utilized in optics when light is trapped in discs due to<br />

<strong>the</strong> “total internal reflection“ that lets light be carried<br />

around <strong>the</strong> globe in optical fibers.<br />

So we have been studying ways to reproduce <strong>the</strong>se<br />

properties in whispering gallery mode resonators<br />

made <strong>of</strong> lithium niobate. One aim is to make miniaturized<br />

lithium niobate terahertz generators. This<br />

demands full control <strong>of</strong> <strong>the</strong> ferroelectric domains as<br />

well as <strong>the</strong> photorefractive effect. In order to get a<br />

high efficiency and gains, one idea would be to dope<br />

<strong>the</strong> resonators with laser-active ions like erbium and<br />

thus allow additional light amplification through optical<br />

pumping. This <strong>of</strong>fers a direct path to miniaturizing<br />

our innovations and thus making <strong>the</strong>m cheap and<br />

portable.<br />

Exemplary projects directly linked to<br />

needs <strong>of</strong> Deutsche Telekom AG<br />

Optics is highly relevant to <strong>the</strong> activities <strong>of</strong> Deutsche<br />

Telekom. Optical sensors grab information, as in digital<br />

cameras, for example. In mobile communications,<br />

electromagnetic waves – light <strong>of</strong> invisible wavelengths<br />

– are employed to transmit data. <strong>The</strong> fiber-networks<br />

make high-bandwidth communication possible, with a<br />

single fiber having <strong>the</strong> capacity to transmit in parallel<br />

100 million telephone calls. Ano<strong>the</strong>r aspect is optical<br />

displays used to show information, ei<strong>the</strong>r on a mobile<br />

phone or on a large screen.<br />

Fur<strong>the</strong>r breakthroughs will be made over <strong>the</strong> next decade,<br />

again changing our way <strong>of</strong> acquiring, transmitting<br />

and receiving information. Each innovation <strong>of</strong>fers<br />

opportunities for a telecommunications provider. At<br />

an early stage <strong>of</strong> development, <strong>the</strong> relevant knowhow<br />

is brought into <strong>the</strong> various divisions <strong>of</strong> Deutsche<br />

Telekom and shared in workshops where <strong>the</strong> crossconnections<br />

can be made. Ideas formulated in <strong>the</strong>se<br />

workshops are <strong>the</strong>n patent-protected and action<br />

strategies are developed. Finally, a business unit has<br />

to decide whe<strong>the</strong>r <strong>the</strong> new technology will be utilized<br />

and given priority.<br />

It is not an easy matter to evaluate <strong>the</strong> impact <strong>of</strong> this<br />

cooperation, but our team at <strong>the</strong> University <strong>of</strong> Bonn<br />

has contributed to projects with unquestionable commercial<br />

benefits for Deutsche Telekom, certainly in<br />

excess <strong>of</strong> € 100 millions in 2010.<br />

In <strong>the</strong> following, we shall describe three <strong>of</strong> <strong>the</strong> many<br />

fields <strong>of</strong> cooperation.<br />

19


20<br />

3D entertainment<br />

<strong>The</strong> movie Avatar surpassed <strong>the</strong> one-billion-revenue<br />

threshold in just 17 days after its release. This is an<br />

all-time record. <strong>The</strong> film‘s special appeal comes from<br />

<strong>the</strong> advanced 3D technology that has been installed<br />

in many cinemas over <strong>the</strong> last two years. So far this<br />

technology is not available for <strong>the</strong> home viewing, but<br />

it is only a matter <strong>of</strong> time until 3D entertainment<br />

will enter our living rooms. Suitable displays are <strong>the</strong><br />

technological enabler here, and <strong>the</strong> relevant standards<br />

were approved in late 2009. So <strong>the</strong> race is now on<br />

to make IP TV 3D-ready, along with its many o<strong>the</strong>r<br />

advantages.<br />

For <strong>the</strong> first display generations, viewers will have<br />

to wear special glasses with polarizers or shutter<br />

technology. On a longer time-scale, it will be digital<br />

holography that provides <strong>the</strong> ultimate 3D experience.<br />

This, however, demands very large bandwidths and<br />

computing power. 3D entertainment will become a<br />

very popular and exciting field that will again change<br />

<strong>the</strong> way we live and work.<br />

Training at schools and universities, advertisements,<br />

technical consultancy and many o<strong>the</strong>r fields will be influenced<br />

<strong>by</strong> <strong>the</strong> availability <strong>of</strong> this full 3D technology.


Communication through optical fibers requires sophisticated<br />

optical control centers.<br />

Terahertz communications<br />

<strong>The</strong> frequency <strong>of</strong> a data carrier determines <strong>the</strong><br />

bandwidth. Everyone knows this from radio receivers,<br />

where <strong>the</strong> very high frequency band (VHF) has a much<br />

better quality than <strong>the</strong> bands with longer wavelengths<br />

and thus lower frequencies. <strong>The</strong> extreme transmission<br />

capacity <strong>of</strong> optical fibers also derives from <strong>the</strong> high<br />

frequency <strong>of</strong> optical waves.<br />

Mobile communication has so far worked in <strong>the</strong><br />

gigahertz range. Thousand-times higher frequencies,<br />

terahertz waves, would promise higher data rates,<br />

but until recently no useful transmitters and receivers<br />

were available. This will change as R&D is driven<br />

<strong>by</strong> various technology demands, not least <strong>by</strong> <strong>the</strong><br />

applications in <strong>the</strong> security field, which also desires<br />

waves <strong>of</strong> <strong>the</strong> same frequency. Mobile communications<br />

bandwidths exceeding 10 Gbit/s are feasible and will,<br />

in future, allow whole movies to be downloaded within<br />

seconds.<br />

Out-<strong>of</strong>-home media<br />

Advertising and signage is becoming ever more digital.<br />

Printed paper walls will be replaced step-<strong>by</strong>-step<br />

<strong>by</strong> digital walls. This will increase flexibility and boost<br />

revenues substantially. And adverts can be more local<br />

und targeted. Digital advertising can be combined<br />

with o<strong>the</strong>r telecommunication services to provide direct<br />

information about <strong>the</strong> success <strong>of</strong> <strong>the</strong> placements<br />

and exchange information with <strong>the</strong> valued customers.<br />

Although Deutsche Telekom didn‘t use to be active<br />

in <strong>the</strong> traditional out-door advertisement market, its<br />

“Out-<strong>of</strong>-home media“ division recognized <strong>the</strong> trend<br />

toward digitization a few years ago, responded flexibly<br />

and is already achieving considerable success.<br />

Contracts are made with cities, airports, arenas and<br />

shopping malls. Deutsche Telekom provides all <strong>the</strong><br />

hardware needed and receives <strong>the</strong> right to use part <strong>of</strong><br />

<strong>the</strong> display time for placing ads. It is essential here to<br />

choose <strong>the</strong> right display technology, also from an environmental<br />

perspective with regard to power consumption.<br />

Digital full-color paper would be ideal, but a lot<br />

<strong>of</strong> R&D is still needed on this.<br />

21


22<br />

Patents and patent applications<br />

A number <strong>of</strong> patents have now been registered<br />

worldwide.<br />

26. “Multiple-View“-Informationsdisplayanordnung<br />

with Ralph Michaels<br />

DE 10 2008 028 634 (2008)<br />

25. Drahtlose Datenübertragung mit Terahertz-<br />

Wellen<br />

with Ingo Breunig, Hans Joachim Einsiedler,<br />

Gerhard Kadel, Jens Kießling, Bastian<br />

Knabe, Josef Kraus, Ralph Michaels, Klaus<br />

Milczewsky, Thomas Moersdorf, Michael<br />

Neumann, and Rosita Sowade<br />

DE 10 2008 020 466 (2008)<br />

24. Verfahren zur Kontrolle elektromagnetischer<br />

Terahertz-Trägerwellen<br />

with Ingo Breunig, Hans Joachim Einsiedler,<br />

Gerhard Kadel, Jens Kießling, Bastian<br />

Knabe, Josef Kraus, Ralph Michaels, Klaus<br />

Milczewsky, Michael Neumann and Rosita<br />

Sowade<br />

DE 10 2008 020 795 (2008)<br />

23. Verfahren zur Erzeugung elektromagnetischer<br />

Terahertz-Trägerwellen<br />

with Ingo Breunig, Jens Kießling, Bastian<br />

Knabe and Rosita Sowade<br />

DE 10 2008 015 397 (2008)<br />

22. Verfahren und Vorrichtung zur Verarbeitung<br />

von Terahertz-Wellen<br />

with Ingo Breunig, Jens Kießling, Bastian<br />

Knabe and Rosita Sowade<br />

DE 10 2008 019 010 (2008)<br />

21. Hybridgepumpter optisch-parametrischer<br />

Oszillator<br />

with Ingo Breunig, Jens Kießling, Bastian<br />

Knabe and Rosita Sowade<br />

DE 10 2008 004 897 (2008)<br />

20. Optische Reinigung nichtlinear-optischer<br />

Kristalle<br />

with Daniel Haertle, Matthias Falk and<br />

Michael Kösters<br />

DE 10 2007 004 400 (2007)<br />

19. Method and apparatus for implementing a<br />

multi-channel tunable filter<br />

with Demetri Psaltis, Christophe Moser,<br />

Greg Steckman, Ingo Nee and Jörg<br />

Hukriede<br />

US Patent 7,483,190 (2006)


18. Behandlung von Kristallen zur Vermeidung<br />

optischen Schadens<br />

with Matthias Falk and <strong>The</strong>o Woike<br />

DE 10 2006 016 201 (2006)<br />

17. Holographic pump coupler and laser grating<br />

reflector<br />

with Christophe Moser and Demetri Psaltis<br />

US Patent 7,542,639 (2005)<br />

16. Behandlung von Kristallen zur Vermeidung<br />

lichtinduzierter Änderungen des Brechungsindex<br />

with Matthias Falk and Konrad Peithmann<br />

DE 10 2004 002 109 (2004)<br />

15. Method and apparatus for implementing a<br />

multi-channel tunable filter<br />

with Demetri Psaltis, Christophe Moser,<br />

Greg Steckman, Ingo Nee and Jörg<br />

Hukriede<br />

US Patent 7,136,206 (2004)<br />

14. Effiziente nichtlinear-optische Polymere mit<br />

großer Polarisierungsstabilität<br />

with Nils Benter, Horst Berneth, Ralph Bertram,<br />

Rainer Hagen, Serguei Kostromine,<br />

Ákos H<strong>of</strong>fmann and Elisabeth Soergel<br />

DE 101 47 724 and DE 102 29 779 (2003)<br />

13. Photorefraktive Lithographie<br />

with Birk Andreas and Konrad Peithmann<br />

DE 103 264 29 (2003)<br />

12. Nichtlineare Erhöhung der Photosensitivität<br />

photorefraktiver Kristalle<br />

with Marc Luennemann<br />

DE 101 375 50 (2003)<br />

11. Röntgensensor<br />

with Birk Andreas and Dirk Berben<br />

DE 101 246 61 (2003)<br />

10. Erhöhung der Resistenz von Kristallen gegen<br />

optischen Schaden<br />

with Manfred Müller and Jörg Hukriede<br />

DE 103 000 80 (2002)<br />

9. Optischer Detektor mit räumlicher Auflösung<br />

im Nanometer-Bereich<br />

with Ákos H<strong>of</strong>fmann, Jürg Hulliger and<br />

Elisabeth Soergel<br />

DE 102 219 70 (2002)<br />

8. Integrated optical wavelength division multiplexing<br />

using a bench <strong>of</strong> channel waveguides<br />

with Demetri Psaltis, Christophe Moser,<br />

Greg Steckman, Ingo Nee and Jörg<br />

Hukriede<br />

US Patent application 20020090171A1<br />

(2001)<br />

23


24<br />

7. Photorefraktiver Röntgensensor<br />

with Birk Andreas and Dirk Berben<br />

DE 101 246 61 (2001)<br />

6. Tunable holographic drop filter with quasi<br />

phase-conjugate fiber coupling<br />

with Demetri Psaltis, Christophe Moser,<br />

Greg Steckman, Ingo Nee, Jörg Hukriede<br />

and Joseph W. Goodman<br />

US Patent 6,987,907 (2001)<br />

5. Tunable holographic filter<br />

with Demetri Psaltis<br />

US Patent 6,844,946 (2001)<br />

4. Method and apparatus for implementing a<br />

multi-channel tunable filter<br />

with Demetri Psaltis, Christophe Moser,<br />

Greg Steckman, Ingo Nee and Jörg<br />

Hukriede<br />

US Patent 6,829,067 (2001)<br />

3. Verfahren und Vorrichtung zur Analyse und<br />

Aufzeichnung von Lichtwellen<br />

DE 199 190 20 (2001)<br />

2. Non-volatile holographic storage in doublydoped<br />

photorefractive material<br />

with Ali Adibi and Demetri Psaltis<br />

US 6,157,470 (1999)<br />

1. Röntgenbild-Erfassungssystem<br />

DE 199 167 08 (1998)


Timeline 2000-today<br />

25


26<br />

2000<br />

Publications<br />

2000<br />

K. Peithmann, J. Hukriede, K. Buse, E. Krätzig “Photorefractive properties<br />

<strong>of</strong> lithium niobate volume crystals doped <strong>by</strong> copper diffusion”<br />

Phys. Rev. B 61, 4615-4620 (2000)<br />

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, Th. Woike “Lifetime<br />

<strong>of</strong> small polarons in iron-doped lithium-niobate crystals” J. Appl.<br />

Phys. 87, 1034-1041 (2000)<br />

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis “Role <strong>of</strong> cerium in lithium<br />

niobate for holographic recording” J. Appl. Phys. 87, 4051-4055 (2000)<br />

In March 2000 Karsten Buse was appointed<br />

as a pr<strong>of</strong>essor at <strong>the</strong> Rheinische Friedrich<br />

Wilhelms University <strong>of</strong> Bonn. He received <strong>the</strong><br />

<strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong> endowed <strong>by</strong> Deutsche<br />

Telekom (from left to right: Joachim Klaus<br />

[Deutsche Telekom AG], Pr<strong>of</strong>. Dr. Karsten<br />

Buse, Pr<strong>of</strong>. Dr. Klaus Borchard [rector <strong>of</strong> <strong>the</strong><br />

University <strong>of</strong> Bonn, 1997-2004]).<br />

K. Peithmann, A. Wiebrock, K. Buse, E. Krätzig “Low-spatial-frequency<br />

refractive-index changes in iron-doped lithium-niobate crystals upon<br />

illumination with a focused cw laser beam” J. Opt. Soc. Am. B 17, 586-<br />

592 (2000)<br />

I. Nee, M. Müller, K. Buse “Role <strong>of</strong> iron in lithium-niobate crystals for <strong>the</strong><br />

dark-storage-time <strong>of</strong> holograms” J. Appl. Phys. 88, 4282-4286 (2000)<br />

H. Veenhuis, T. Börger, K. Peithmann, M. Flaspöhler, K. Buse,<br />

R. Pankrath, H. Hesse, E. Krätzig “Light-induced charge transport<br />

properties <strong>of</strong> photorefractive barium-calcium-titanate crystals doped with<br />

rhodium” Appl. Phys. B 70, 797-801 (2000)<br />

A. Adibi, K. Buse, D. Psaltis “Sensitivity improvement in two-center<br />

holographic recording” Opt. Lett. 25, 539-541 (2000)


In 2000 <strong>the</strong> start-up company Ondax<br />

Inc., located in Monrovia, California,<br />

was founded toge<strong>the</strong>r with colleagues<br />

from <strong>the</strong> California Institute <strong>of</strong><br />

Technology. It produces, for instance,<br />

volume holographic gratings that can<br />

filter light in optical networks using<br />

dense wavelength multiplexing.<br />

H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, E. Krätzig “Lightinduced<br />

charge-transport properties <strong>of</strong> photorefractive barium-calciumtitanate<br />

crystals doped with iron” J. Appl. Phys. 88, 1042-1049 (2000)<br />

K. Peithmann, N. Korneev, M. Flaspöhler, K. Buse, E. Krätzig “Investigation<br />

<strong>of</strong> small polarons in reduced iron-doped lithium-niobate crystals<br />

<strong>by</strong> non-steady-state photocurrent techniques” phys. stat. sol. (a) 178,<br />

R1-R3 (2000)<br />

K. Buse, M. Luennemann “3D imaging: wave front sensing utilizing a<br />

birefringent crystal” Phys. Rev. Lett. 85, 3385-3387 (2000)<br />

2001<br />

I. Nee, M. Müller, K. Buse “Development <strong>of</strong> <strong>the</strong>rmally fixed photorefractive<br />

holograms without light“ Appl. Phys. B 72, 195-200 (2001)<br />

Research laboratories and <strong>of</strong>fices<br />

were renovated to fit our needs. In<br />

some cases we also got “hands on“ in<br />

order to speed up <strong>the</strong> construction.<br />

A. Adibi, K. Buse, D. Psaltis “<strong>The</strong>oretical analysis <strong>of</strong> two-step holographic<br />

recording with high-intensity pulses“ Phys. Rev. A 63, 3813-3829<br />

(2001)<br />

D. Berben, B. Andreas, K. Buse “X-ray-induced photochromic effects<br />

in copper-doped lithium-niobate crystals” Appl. Phys. B 72, 729-732<br />

(2001)<br />

T. Woike, D. Berben, M. Imlau, K. Buse, R. Pankrath, E. Krätzig “Lifetime<br />

<strong>of</strong> small polarons in strontium-barium-niobate crystals doped with cerium<br />

or chromium” J. Appl. Phys. 89, 5663-5666 (2001)<br />

A. Adibi, K. Buse, D. Psaltis “<strong>The</strong> role <strong>of</strong> carrier mobility in holographic<br />

recording in LiNbO 3 ” Appl. Phys. B 72, 653-659 (2001)<br />

27


2001<br />

28<br />

We moved into <strong>the</strong> newly<br />

renovated <strong>of</strong>fices and labs.<br />

A. Adibi, K. Buse, D. Psaltis “Two-center holographic recording” J. Opt.<br />

Soc. Am. B 18, 584-601 (2001)<br />

Y. Yang, I. Nee, K. Buse, D. Psaltis “Ionic and electronic dark decay<br />

<strong>of</strong> holograms in LiNbO 3 :Fe crystals” Appl. Phys. Lett. 78, 4076-4078<br />

(2001)<br />

N. Korneev, H. Veenhuis, K. Buse, E. Krätzig “<strong>The</strong>rmal fixing <strong>of</strong> holograms<br />

and <strong>the</strong>ir electrically assisted development in barium-calciumtitanate<br />

crystals” J. Opt. Soc. Am. B 18, 1570-1577 (2001)<br />

H. Vogt, K. Buse, H. Hesse, E. Krätzig, R. R. García “Growth and holographic<br />

characterization <strong>of</strong> nonstoichiometric sillenite-type crystals”<br />

J. Appl. Phys. 90, 3167-3173 (2001)<br />

A novel sensor for complete analysis<br />

and recording <strong>of</strong> wavefronts was<br />

developed and tested.<br />

A. Adibi, K. Buse, D. Psaltis “System measure for persistence in holographic<br />

recording and application to singly- and doubly-doped lithium<br />

niobate” Appl. Opt. 40, 5175-5182 (2001)<br />

2002<br />

Y. Yang, K. Buse, D. Psaltis “Photorefractive recording in<br />

LiNbO 3 :Mn” Opt. Lett. 27, 158-160 (2002)<br />

M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann,<br />

M. Flaspöhler, K. Buse “Atom lithography with a holographic light mask”<br />

Phys. Rev. Lett. 88, 083601/1–4 (2002)<br />

K. Peithmann, K. Buse, E. Krätzig “Dark conductivity in copper-doped<br />

lithium-niobate crystals“ Appl. Phys. B 74, 549-552 (2002)


Electro-optic modulators that are<br />

based on electro-optic polymers were<br />

fabricated in cooperation with <strong>the</strong><br />

Bayer AG.<br />

G. Panotopoulos, M. Luennemann, K. Buse, D. Psaltis “Temperature<br />

dependence <strong>of</strong> absorption in photorefractive iron-doped lithium niobate<br />

crystals” J. Appl. Phys. 92, 793-796 (2002)<br />

N. Korneev, O. Flores Ramirez, R. P. Bertram, N. Benter, E. Soergel,<br />

K. Buse, R. Hagen, S. G. Kostromine “Pyroelectric properties <strong>of</strong> electrically<br />

poled photo-addressable polymers“ J. Appl. Phys. 92, 1500-1503<br />

(2002)<br />

D. Berben, B. Andreas, K. Buse “Photorefractive X-ray imaging“ Appl.<br />

Phys. Lett. 81, 1567-1569 (2002)<br />

2002<br />

2003<br />

Poled lithium niobate crystal: <strong>The</strong> direction <strong>of</strong><br />

<strong>the</strong> c-axis was inverted in a predefined area.<br />

In <strong>the</strong> region with <strong>the</strong> cross-like structure, <strong>the</strong><br />

former direction <strong>of</strong> polarization is preserved.<br />

Such structures are useful for <strong>the</strong> generation<br />

<strong>of</strong> light.<br />

O. Beyer, I. Nee, F. Havermeyer, K. Buse “Holographic recording <strong>of</strong><br />

Bragg gratings for wavelength division multiplexing in doped and partially<br />

polymerized polymethylmethacrylate” Appl. Opt. 42, 30-37 (2003)<br />

K. Buse, E. Soergel “Holographie in Wissenschaft und Technik” Physik<br />

Journal 2, 337-343 (2003)<br />

Ch. Bäumer, D. Berben, K. Buse, H. Hesse, J. Imbrock “Determination<br />

<strong>of</strong> <strong>the</strong> composition <strong>of</strong> lithium tantalate crystals <strong>by</strong> zero-birefringence<br />

measurements” Appl. Phys. Lett. 82, 2248-2250 (2003)<br />

M. Luennemann, U. Hartwig, G. Panotopoulos, K. Buse “Electro-optic<br />

properties <strong>of</strong> lithium niobate crystals for extremely high external electric<br />

fields” Appl. Phys. B 76, 403-406 (2003)<br />

29


30<br />

Filter characteristics <strong>of</strong> a holographic<br />

grating in Plexiglas. <strong>The</strong> grating<br />

has a diffraction efficiency <strong>of</strong> 99.5%<br />

and a full-width-at-half-maximum <strong>of</strong><br />

approx. 1 nm. Such filters can be <strong>of</strong><br />

relevance for fiber-optical telecommunications<br />

networks and low-cost<br />

fiber-to-<strong>the</strong>-home solutions.<br />

M. C. Wengler, M. Müller, E. Soergel, K. Buse “Poling dynamics <strong>of</strong><br />

lithium niobate crystals” Appl. Phys. B 76, 393-396 (2003)<br />

Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig,<br />

K. Buse “Photorefractive properties <strong>of</strong> lithium niobate crystals doped with<br />

manganese“ J. Opt. Soc. Am. B 20, 1491-1502 (2003)<br />

M. Luennemann, U. Hartwig, K. Buse “Improvements <strong>of</strong> sensitivity and<br />

refractive-index changes in photorefractive iron-doped lithium-niobate<br />

crystals <strong>by</strong> application <strong>of</strong> extremely large external electrical fields” J. Opt.<br />

Soc. Am. B 20, 1643-1648 (2003)<br />

B. Andreas, K. Peithmann, E. Soergel, K. Buse “Photorefractive lithography<br />

with synchrotron light in poly(methyl methacrylate) (PMMA)“, Appl.<br />

Phys. Lett. 83, 1116-1118 (2003)<br />

X-ray image <strong>of</strong> a test mask<br />

recorded with a novel highly<br />

resolving image converter.<br />

<strong>The</strong> distance <strong>of</strong> <strong>the</strong> thinnest<br />

lines in <strong>the</strong> right part <strong>of</strong> <strong>the</strong><br />

image is 25 µm.<br />

Giant values <strong>of</strong> <strong>the</strong> refractive index<br />

changes in photorefractive lithium<br />

niobate upon <strong>the</strong> presence <strong>of</strong> external<br />

electric fields. A high-voltage amplifier<br />

allows to apply 60 000 V/mm to<br />

<strong>the</strong> crystals. <strong>The</strong> index modulations<br />

can be used for optical filters and optical<br />

switches.<br />

D. Berben, B. Sturman, A. A. Freschi, K. Buse “X-ray-induced conductivity<br />

in iron-doped lithium-niobate crystals“ Phys. Rev. B 68, 035120/1-4<br />

(2003)<br />

I. Nee, O. Beyer, M. Müller, K. Buse “Multi-channel wavelength-divisionmultiplexing<br />

with <strong>the</strong>rmally-fixed Bragg gratings in photorefractive<br />

lithium-niobate crystals“ J. Opt. Soc. Am. B 20, 1593-1602 (2003)<br />

M. Mützel, U. Rasbach, D. Meschede, C. Burstedde, J. Braun, A. Kunoth,<br />

K. Peithmann, K. Buse “Atomic nan<strong>of</strong>abrication with complex light<br />

fields“ Appl. Phys. B 77, 1-9 (2003)<br />

M. Müller, E. Soergel, K. Buse “Influence <strong>of</strong> UV illumination on <strong>the</strong> poling<br />

characteristics <strong>of</strong> lithium niobate crystals“ Appl. Phys. Lett. 83, 1824-<br />

1826 (2003)


2003<br />

Finally!<br />

Labs and <strong>of</strong>fices in <strong>the</strong> second<br />

section (basement in<br />

<strong>the</strong> Wegelerstraße 10) are<br />

ready to be equipped.<br />

M. Gorkunov, B. Sturman, M. Luennemann, K. Buse “Feedback-controlled<br />

two-wave coupling in reflection geometry: application to lithium niobate<br />

crystals subjected to extremely high external electric fields“ Appl.<br />

Phys. B 77, 43-48 (2003)<br />

R. P. Bertram, E. Soergel, H. Blank, N. Benter, K. Buse, R. Hagen,<br />

S. G. Kostromine “Strong electro-optic effect in electrically-poled photoaddressable<br />

polymers“ J. Appl. Phys. 94, 6208-6211 (2003)<br />

M. Luennemann, K. Buse, B. Sturman “Coupling effects for counterpropagating<br />

light beams in lithium niobate crystals studied <strong>by</strong> grating<br />

translation technique for extremely high external electric fields“ J. Appl.<br />

Phys. 94, 6274-6279 (2003)<br />

M. Müller, E. Soergel, K. Buse “Visualization <strong>of</strong> ferroelectric domains with<br />

coherent light“ Opt. Lett. 28, 2515-2517 (2003)<br />

Integrated-optical<br />

waveguide made<br />

<strong>of</strong> Plexiglas,<br />

fabricated with<br />

synchrotron radiation<br />

from <strong>the</strong> local<br />

electron accelerator<br />

in <strong>the</strong> Institute<br />

<strong>of</strong> Physics.<br />

Magnesium-doped lithium niobate:<br />

<strong>The</strong> photorefactive material is intensively<br />

investigated since it is ideally<br />

suited for high-density holographic<br />

data storage using blue light. Oxidizing<br />

improves <strong>the</strong> performance <strong>of</strong> <strong>the</strong><br />

material.<br />

E. Soergel, R. Pankrath, K. Buse “Investigation <strong>of</strong> photorefractive SBN<br />

crystals with atomic force microscopy“ Ferroelectrics 296, 19-27<br />

(2003)<br />

2004<br />

M. Müller, E. Soergel, M. C. Wengler, K. Buse “Light deflection from<br />

ferroelectric domain boundaries“ Appl. Phys. B 78, 367-370 (2004)<br />

B. Andreas, K. Peithmann, K. Maier, K. Buse “Modification <strong>of</strong> <strong>the</strong> refractive<br />

index <strong>of</strong> lithium niobate crystals <strong>by</strong> transmission <strong>of</strong> high-energy<br />

4He 2+ and D + particles“ Appl. Phys. Lett. 84, 3813-3815 (2004)<br />

M. C. Wengler, B. Schreder, E. Soergel, J. Zimmer, K. Buse “Spectral<br />

photosensitivity and holographic performance <strong>of</strong> europium-doped fluorophosphate<br />

glass” Appl. Phys. B 79, 597-601 (2004)<br />

31


32<br />

Domain pattern <strong>of</strong> a lithium niobate<br />

crystal generated <strong>by</strong> UV-illumination.<br />

Tailored domain patterns are needed<br />

for efficient frequency conversion <strong>of</strong><br />

light, i.e., <strong>the</strong> generation <strong>of</strong> brilliant<br />

light at any color wanted.<br />

2004<br />

M. C. Wengler, B. Fassbender, E. Soergel, K. Buse “Impact <strong>of</strong> ultraviolet light<br />

on coercive field, poling dynamics and poling quality <strong>of</strong> various lithium niobate<br />

crystals from different sources” J. Appl. Phys. 96, 2816-2820 (2004)<br />

H. A. Eggert, B. Hecking, K. Buse “Electrical fixing in near-stoichiometric<br />

lithium niobate crystals” Opt. Lett. 29, 2476-2478 (2004)<br />

R. P. Bertram, N. Benter, D. Apitz, E. Soergel, K. Buse, R. Hagen,<br />

S. G. Kostromine “Increased <strong>the</strong>rmal stability <strong>of</strong> a poled electro-optic<br />

polymer using high-molar-mass fractions” Phys. Rev. E 70, 041802/1-5<br />

(2004)<br />

A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov,<br />

K. Buse “Slowing-down <strong>of</strong> light in photorefractive crystals with beam<br />

intensity coupling reduced to zero” Phys. Rev. Lett. 93, 243604/1–4<br />

(2004)<br />

As advertisement for an<br />

event we sent a laser beam<br />

across Bonn and <strong>the</strong> Rhineland.<br />

It has been recognized<br />

still 100 km away from<br />

Bonn, although <strong>the</strong> light<br />

power was just 20 W. This<br />

demonstrates impressively<br />

<strong>the</strong> brilliance <strong>of</strong> laser light.<br />

Light deflection at ferroelectric<br />

domain boundaries:<br />

A novel deflection effect<br />

allows visualization <strong>of</strong> <strong>the</strong><br />

domain patterns during <strong>the</strong>ir<br />

generation. This enables<br />

faster development <strong>of</strong> suitable<br />

domain-structuring<br />

technologies.<br />

M. Müller, E. Soergel, K. Buse “Light deflection from ferroelectric domain<br />

structures in congruently melting lithium tantalate crystals”, Appl. Opt.<br />

43, 6344-6347 (2004)<br />

2005<br />

U. Hartwig, K. Peithmann, B. Sturman, K. Buse “Strong permanent<br />

reversible diffraction gratings in copper-doped lithium niobate crystals<br />

caused <strong>by</strong> a zero-electric-field photorefractive effect” Appl. Phys. B 80,<br />

227-230 (2005)<br />

M. Müller, C. Langrock, E. Soergel, K. Buse, M. M. Fejer “Investigation<br />

<strong>of</strong> periodically-poled lithium niobate crystals <strong>by</strong> light diffraction” J. Appl.<br />

Phys. 97, 044102/1-4 (2005)


A 1-mm-thick lithium niobate crystal<br />

during <strong>the</strong> transformation <strong>of</strong> iron in<br />

<strong>the</strong> valence state 2+ (bottom, brownish)<br />

into iron in <strong>the</strong> valence state 3+<br />

(top, transparent). <strong>The</strong> treatment<br />

allows adjusting <strong>of</strong> <strong>the</strong> strength <strong>of</strong> <strong>the</strong><br />

photorefractive effect in a very wide<br />

range. In particular <strong>the</strong> transparent,<br />

cleaned regions are useful for<br />

nonlinear-optical applications where<br />

<strong>the</strong> crystal changes <strong>the</strong> color <strong>of</strong> light.<br />

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason,<br />

K. Buse “Light-induced order-<strong>of</strong>-magnitude decrease in <strong>the</strong> electric field<br />

for domain nucleation in MgO-doped lithium niobate crystals” Appl.<br />

Phys. Lett. 86, 212901/1-3 (2005)<br />

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, D. Psaltis “Femtosecond<br />

time-resolved absorption processes in lithium niobate crystals”<br />

Opt. Lett. 30, 1366-1368 (2005)<br />

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, D. Psaltis “Investigation<br />

<strong>of</strong> nonlinear absorption processes with femtosecond light pulses<br />

in lithium niobate crystals” Phys. Rev. E 71, 056603/1-8 (2005)<br />

M. Koesters, H. Hsieh, D. Psaltis, K. Buse “Holography in commercially<br />

available photo-etchable glasses” Appl. Opt. 44, 3399-3402 (2005)<br />

Deutsche Telekom and <strong>the</strong> University <strong>of</strong> Bonn<br />

continue <strong>the</strong>ir successful collaboration.<br />

Ralph Michaels (Deutsche Telekom AG), Dr.<br />

Reinhardt Lutz (Chancelor <strong>of</strong> <strong>the</strong> University <strong>of</strong><br />

Bonn), Pr<strong>of</strong>. Dr. Karsten Buse (Holder <strong>of</strong> <strong>the</strong><br />

endowed chair ), Hans Albert Aukes (Deutsche<br />

Telekom AG) und Pr<strong>of</strong>. Dr. Klaus Borchard<br />

(Rector <strong>of</strong> <strong>the</strong> University <strong>of</strong> Bonn from 1997-<br />

2004).<br />

(from left to right)<br />

H. T. Hsieh, D. Psaltis, O. Beyer, D. Maxein, K. Buse, B. Sturman “Enhanced<br />

temporal resolution in femtosecond dynamic-grating experiments”<br />

J. Appl. Phys. 97, 113107/1-5 (2005)<br />

B. Andreas, I. Breunig, K. Buse “Modeling <strong>of</strong> X-ray-induced refractiveindex<br />

changes in poly (methyl methacrylate)” ChemPhysChem 6,<br />

1544-1553 (2005)<br />

H. T. Hsieh, D. Psaltis, O. Beyer, D. Maxein, C. v. Korff Schmising,<br />

K. Buse, B. Sturman “Femtosecond holography in lithium niobate crystals”<br />

Opt. Lett. 30, 2233-2235 (2005)<br />

33


2005<br />

34<br />

Interferogram <strong>of</strong> a lithium niobate<br />

crystal after treatment with highenergy<br />

He ions. Irradiation resulted<br />

in a change <strong>of</strong> <strong>the</strong> refractive index,<br />

as it is clearly visible in <strong>the</strong> central,<br />

irradiated area. Structuring <strong>of</strong> materials<br />

<strong>by</strong> this method may lead, e.g., to<br />

optical waveguides or o<strong>the</strong>r photonic<br />

structures.<br />

D. Apitz, R. P. Bertram, N. Benter, W. Hieringer, J. W. Andreasen,<br />

M. M. Nielsen, P. M. Johansen, K. Buse “Investigation <strong>of</strong> chromophorechromophore<br />

interaction <strong>by</strong> electro-optic measurements, linear dichroism,<br />

X-ray scattering and density-functional calculations” Phys. Rev. E<br />

72, 036610/1-10 (2005)<br />

M. C. Wengler, U. Heinemeyer, E. Soergel, K. Buse “UV-assisted domain<br />

inversion in magnesium-doped lithium niobate crystals” J. Appl. Phys.<br />

98, 064104/1-7 (2005)<br />

N. Benter, R. P. Bertram, E. Soergel, K. Buse, D. Apitz, L. Bang Jacobsen,<br />

P. M. Johansen “Large-area Fabry-Pérot modulator based on electrooptic<br />

polymers” Appl. Opt. 44, 6235-6239 (2005)<br />

Transmission <strong>of</strong> fs light pulses <strong>of</strong> <strong>the</strong> wavelength<br />

388 nm (photon energy 3.2 eV) through lithium<br />

niobate crystals plotted versus <strong>the</strong> absorption<br />

parameter, <strong>the</strong> product <strong>of</strong> <strong>the</strong> two-photon-absorption<br />

coefficient, <strong>the</strong> light intensity and <strong>the</strong> crystal<br />

thickness. <strong>The</strong> transition is shown schematically<br />

in a band diagram (VB, valence band; LB, conduction<br />

band). <strong>The</strong> material might be <strong>of</strong> interest<br />

for manipulation <strong>of</strong> ultrashort laser pulses, being<br />

as short as 0.000 000 000 001 seconds.<br />

H. A. Eggert, F. Kalkum, B. Hecking, K. Buse “Optimization <strong>of</strong> electrical<br />

fixing in near-stoichiometric iron-doped lithium niobate crystals” J. Opt.<br />

Soc. Am. B 22, 2553–2559 (2005)<br />

M. C. Falk, K. Buse “<strong>The</strong>rmo-electric method for nearly complete oxidization<br />

<strong>of</strong> highly iron-doped lithium niobate crystals”, Appl. Phys. B 81,<br />

853-855 (2005)<br />

2006<br />

K. Peithmann, M. R. Zamani Meymian, M. Haaks, K. Maier, B. Andreas,<br />

K. Buse, H. Modrow “Fabrication <strong>of</strong> embedded waveguides in lithiumniobate<br />

crystals <strong>by</strong> radiation damage” Appl. Phys. B 82, 419-422<br />

(2006)


Diffraction efficiency <strong>of</strong> a holographic<br />

grating versus read-out wavelength.<br />

Dashed line: contribution <strong>of</strong> an absorption<br />

grating. Dotted line: contribution<br />

<strong>of</strong> <strong>the</strong> refractive index grating<br />

which evolves from <strong>the</strong> absorption<br />

grating due to <strong>the</strong> Kramers-Kronig<br />

relationship. Solid line: Sum <strong>of</strong> both<br />

effects: A new approach to get strong<br />

non-electro-optic gratings for photonic<br />

applications has been discovered.<br />

J. R. Adleman, H. A. Eggert, K. Buse, D. Psaltis “Holographic grating<br />

formation in a colloidal suspension <strong>of</strong> silver nanoparticles” Opt. Lett. 31,<br />

447-449 (2006)<br />

D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev,<br />

N. A. Gippius, H. Giessen “Optical switching in metallic photonic<br />

crystal slabs with photo-addressable polymers” Appl. Phys. B 82, 543-<br />

547 (2006)<br />

O. Beyer, I. Breunig, F. Kalkum, K. Buse “Photorefractive effect in irondoped<br />

lithium niobate crystals induced <strong>by</strong> femtosecond pulses <strong>of</strong> 1.5 µm<br />

wavelength” Appl. Phys. Lett. 88, 051120/1-3 (2006)<br />

D. Apitz, R. P. Bertram, N. Benter, P. Sommer-Larsen, P. M. Johansen,<br />

K. Buse “Conductivity <strong>of</strong> oriented bis-azo polymer films“ ChemPhysChem<br />

7, 468-474 (2006)<br />

2006<br />

Photon splitting: Optical parametric<br />

oscillator (pump beam: 1030 nm,<br />

17 W, signal beam: 1470 nm, idler<br />

beam: 3440 nm, 1.8 W). <strong>The</strong> nonlinear<br />

material is periodically poled<br />

lithium niobate. Additionally, various<br />

lines <strong>of</strong> visible light are created <strong>by</strong><br />

sum frequency mixing.<br />

U. Hartwig, M. Kösters, Th. Woike, K. Buse, S. Shumelyuk, S. Odoulov<br />

“Frequency mixing <strong>of</strong> photorefractive and ferroelectric gratings in<br />

lithium niobate crystals” Opt. Lett. 31, 583-585 (2006)<br />

H. A. Eggert, F. Kalkum, K. Buse, B. Sturman “Bragg selectivity <strong>of</strong> spacecharge<br />

gratings in multidomain lithium niobate crystals“ Opt. Lett. 31,<br />

1256-1258 (2006)<br />

A. Shumelyuk, U. Hartwig, K. Buse, S. Odoulov, Th. Woike “Linearity<br />

<strong>of</strong> index grating recording with spatially oscillating photovoltaic currents”<br />

J. Opt. Soc. Am. B 23, 857-860 (2006)<br />

M. Kösters, U. Hartwig, Th. Woike, K. Buse, B. Sturman “Quantitative<br />

characterization <strong>of</strong> periodically poled lithium niobate <strong>by</strong> electrically<br />

induced Bragg diffraction” Appl. Phys. Lett. 88, 182910/1-3 (2006)<br />

35


36<br />

Frequency mixing <strong>of</strong> domain<br />

gratings with photorefractive<br />

gratings (a) leading to<br />

additional light-diffraction<br />

orders (b).<br />

O. Beyer, D. Maxein, Th. Woike, K. Buse “Generation <strong>of</strong> small bound polarons<br />

in lithium niobate crystals on <strong>the</strong> subpicosecond time scale” Appl.<br />

Phys. B 83, 527-530 (2006)<br />

Kh. Olimov, M. Falk, K. Buse, Th. Woike, J. Hormes, H. Modrow “X-ray<br />

absorption near edge spectroscopy investigations <strong>of</strong> valency and lattice<br />

occupation site <strong>of</strong> Fe in highly iron-doped lithium niobate crystals”<br />

J. Phys. Condens. Matter 18, 5135-5146 (2006)<br />

O. Beyer, C. von Korff Schmising, M. Luennemann, K. Buse, B. Sturman<br />

“Long-living currents induced <strong>by</strong> nanosecond light pulses in LiNbO 3<br />

crystals” Optics Express 14, 1533-1540 (2006)<br />

U. Hartwig, K. Peithmann, Th. Woike, K. Buse “Determination <strong>of</strong> <strong>the</strong><br />

absorption cross section <strong>of</strong> dopants in lithium niobate crystals” J. Phys.:<br />

Condens. Matter 18, L447-L450 (2006)<br />

All-optical switching: A red light beam propagates<br />

through a suspension <strong>of</strong> silver nano<br />

particles. Without blue light (left) <strong>the</strong> red beam<br />

is not affected, but with blue light turned on<br />

(right) <strong>the</strong> liquid acts as a defocusing lens. Optical<br />

nonlinearities <strong>of</strong> <strong>the</strong> nanoparticle suspension<br />

are <strong>the</strong> origin <strong>of</strong> this effect.<br />

2007<br />

U. Heinemeyer, M. C. Wengler, K. Buse “Annihilation <strong>of</strong> <strong>the</strong> OHabsorption<br />

due to domain inversion in MgO-doped lithium niobate<br />

crystals” Appl. Phys. Lett. 89, 112910/1-2 (2006)<br />

U. Hartwig, M. Kösters, Th. Woike, K. Buse “High-temperature-recorded<br />

index gratings in periodically-poled lithium niobate” Opt. Lett. 31, 3267-<br />

3269 (2006)<br />

2007<br />

B. Sturman, O. Beyer, D. Maxein, K. Buse “Femtosecond recording and<br />

time-resolved readout <strong>of</strong> spatial gratings in lithium niobate crystals”<br />

J. Opt. Soc. Am. B 24, 419-429 (2007)


Transmission <strong>of</strong> a focused<br />

5 W beam <strong>of</strong> 532 nm wavelength<br />

through undoped<br />

congruent LiNbO <strong>the</strong>rmo-<br />

3<br />

electrically oxidized (left)<br />

and as-grown (right); <strong>the</strong><br />

treatment refines <strong>the</strong> material<br />

and avoids <strong>the</strong> so-called<br />

“optical damage“.<br />

M. Falk, J. Japs, Th. Woike, K. Buse “Charge transport in highly irondoped<br />

oxidized lithium niobate single crystals” Appl. Phys. B 87, 119-<br />

122 (2007)<br />

I. Breunig, R. Sowade, K. Buse “Limitations <strong>of</strong> <strong>the</strong> tunability <strong>of</strong> dualcrystal<br />

optical parametric oscillators” Opt. Lett. 32, 1450-1452 (2007)<br />

O. Caballero-Calero, M. Kösters, T. Woike, K. Buse, A. García-Cabañes,<br />

M. Carrascosa “Electric field periodical poling <strong>of</strong> lithium niobate crystals<br />

after s<strong>of</strong>t-proton-exchanged waveguide fabrication” Appl. Phys. B 88,<br />

75-78 (2007)<br />

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, D. Psaltis “Trapping<br />

<strong>of</strong> dielectric particles with light-induced space-charge fields” Appl. Phys.<br />

Lett. 90, 241909/1-3 (2007)<br />

Transmission <strong>of</strong> blue light (wavelength<br />

488 nm) through a hole <strong>of</strong> 150 nm<br />

diameter in a silver film on top <strong>of</strong> a<br />

lithium niobate crystal. A hologram<br />

in <strong>the</strong> crystal confines <strong>the</strong> light <strong>by</strong> <strong>the</strong><br />

so-called phase conjugation such that<br />

it is transmitted through <strong>the</strong> hole.<br />

Light wavelength <strong>of</strong> a highpower<br />

laser diode stabilized<br />

with <strong>the</strong> help <strong>of</strong> a Bragg<br />

grating. This Bragg grating<br />

locks <strong>the</strong> emission wavelength<br />

over a large range<br />

<strong>of</strong> diode currents and diode<br />

temperatures.<br />

M. Falk, Th. Woike, K. Buse “Reduction <strong>of</strong> optical damage in lithium<br />

niobate crystals <strong>by</strong> <strong>the</strong>rmo-electric oxidization” Appl. Phys. Lett. 90,<br />

251912/1-3 (2007)<br />

F. Kalkum, H. A. Eggert, T. Jungk, K. Buse “A stochastical model for<br />

periodic domain structuring in ferroelectric crystals” J. Appl. Phys. 102,<br />

014104/1-5 (2007)<br />

J. R. Schwesyg, H. A. Eggert, K. Buse, E. Sliwinska, S. Khalil, M. Kaiser,<br />

K. Meerholz “Fabrication and optical characterization <strong>of</strong> stable suspensions<br />

<strong>of</strong> iron- or copper-doped lithium niobate nanocrystals in heptane”<br />

Appl. Phys. B 89, 15-17 (2007)<br />

M. Falk, Th. Woike, K. Buse “Charge compensation mechanism for<br />

<strong>the</strong>rmo-electric oxidization <strong>of</strong> lithium niobate crystals” J. Appl. Phys.<br />

102, 063529/1-4 (2007)<br />

37


38<br />

Cage for light. <strong>The</strong> bright round disk is<br />

a whispering-gallery-mode resonator<br />

made <strong>of</strong> a lithium niobate crystal.<br />

Once light is coupled into <strong>the</strong> resonator<br />

<strong>by</strong> a prism, it is kept inside <strong>by</strong> total<br />

internal reflections, and very high<br />

intensities can be achieved. <strong>The</strong>se<br />

resonators are a path to miniaturize<br />

devices to make <strong>the</strong>n cheap and<br />

portable.<br />

2008<br />

P. Reckenthaeler, D. Maxein, Th. Woike, K. Buse, B. Sturman “Separation<br />

<strong>of</strong> optical Kerr and free-carrier nonlinear responses with femtosecond<br />

light pulses in lithium niobate crystals” Phys. Rev. B 76, 195117/1-4<br />

(2007)<br />

I. Breunig, M. Falk, B. Knabe, R. Sowade, K. Buse, P. Rabiei,<br />

D. H. Jundt “Second harmonic generation <strong>of</strong> 2.6 W green light with<br />

<strong>the</strong>rmoelectrically oxidized undoped congruent lithium niobate crystals<br />

below 100 °C” Appl. Phys. Lett. 91, 221110/1-3 (2007)<br />

2008<br />

I. Breunig, J. Kiessling, B. Knabe, R. Sowade, K. Buse “Hybridly-pumped<br />

continuous-wave optical parametric oscillator” Opt. Express 16, 5662-<br />

5666 (2008)<br />

An intra-cavity amplifier, being pumped incoherently<br />

(pump power P ), is able to lower <strong>the</strong><br />

D<br />

threshold <strong>of</strong> an optical parametric oscillator <strong>by</strong><br />

more than one order <strong>of</strong> magnitude. Thus instead<br />

<strong>of</strong> expensive high-power pump lasers cheap<br />

laser diodes can be employed.<br />

K. Brands, M. Falk, D. Haertle, Th. Woike, K. Buse “Impedance spectroscopy<br />

<strong>of</strong> iron-doped lithium niobate crystals” Appl. Phys. B 91, 279-281<br />

(2008)<br />

I. Breunig, J. Kiessling, R. Sowade, B. Knabe, K. Buse “Generation <strong>of</strong><br />

tunable continuous-wave terahertz radiation <strong>by</strong> photomixing <strong>the</strong> signal<br />

waves <strong>of</strong> a dual-crystal optical parametric oscillator” New Journal <strong>of</strong><br />

Physics 10, 073003 (2008)<br />

J. R. Schwesyg, H. A. Eggert, J. R. Adleman, K. Buse “Spatially resolved<br />

holographic measurements <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal diffusivity in liquids” Appl.<br />

Phys. B 92, 79-81 (2008)<br />

D. Maxein, S. Kratz, P. Reckenthaeler, J. Bückers, D. Haertle, T. Woike,<br />

K. Buse “Polarons in magnesium-doped lithium niobate crystals induced<br />

<strong>by</strong> femtosecond light pulses” Appl. Phys. B 92, 543-547 (2008)


Tunable continuous-wave<br />

terahertz radiation is generated<br />

<strong>by</strong> photomixing <strong>the</strong><br />

signal waves <strong>of</strong> a dual-crystal<br />

optical parametric oscillator.<br />

S. Gronenborn, B. Sturman, M. Falk, D. Haertle, K. Buse “Ultraslow<br />

shock waves <strong>of</strong> electron density in LiNbO 3 crystals” Phys. Rev. Lett. 101,<br />

116601/1-4 (2008)<br />

2009<br />

J. Kiessling, R. Sowade, I. Breunig, K. Buse, V. Dierolf “Cascaded optical<br />

parametric oscillations generating tunable terahertz waves in periodically<br />

poled lithium niobate crystals” Optics Express 17, 87-91 (2009)<br />

J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse,<br />

D. Haertle “Fabrication and characterization <strong>of</strong> whispering-gallery-mode<br />

resonators made <strong>of</strong> polymers“ Optics Express 17, 2573-2578 (2009)<br />

Ultraslow shock-waves <strong>of</strong> electron density are<br />

obtained through <strong>the</strong>rmo-electrical oxidization<br />

<strong>of</strong> iron-doped lithium niobate crystals.<br />

F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, M. Carrascosa<br />

“Correlation between photorefractive index changes and optical damage<br />

thresholds in z-cut proton-exchanged-LiNbO 3 waveguides” Optics<br />

Express 17, 658-665 (2009)<br />

F. Kalkum, K. Peithmann, K. Buse “Dynamics <strong>of</strong> holographic recording<br />

with focused beams in iron-doped lithium niobate crystals” Optics<br />

Express, 17, 1321-1329 (2009)<br />

M. Kösters, B. Sturmann, D. Haertle, K. Buse “Kinetics <strong>of</strong> photorefractive<br />

recording for circular light beams“ Opt. Lett. 34, 1036-1038 (2009)<br />

T. Vitova, J. Hormes, M. Falk, K. Buse “Site-selective investigation <strong>of</strong><br />

site-symmetry and site-occupation <strong>of</strong> iron in Fe-doped lithium niobate<br />

crystals” J. Appl. Phys. 105, 013524/1-6 (2009)<br />

39


2009<br />

40<br />

A whispering-gallery mode coupled out (left)<br />

and a simulation <strong>of</strong> <strong>the</strong> corresponding mode in<br />

<strong>the</strong> resonator (right). <strong>The</strong> simulation gives <strong>the</strong><br />

intensity <strong>of</strong> <strong>the</strong> light along a vertical cut <strong>of</strong> <strong>the</strong><br />

resonator, whose surface is shown in white. It<br />

corresponds to <strong>the</strong> near field <strong>of</strong> <strong>the</strong> out-coupled<br />

mode. <strong>The</strong> values q, l, m are <strong>the</strong> quantum numbers<br />

<strong>of</strong> <strong>the</strong> mode. Studies like this allow fur<strong>the</strong>r<br />

miniaturization <strong>of</strong> frequency converters.<br />

H. Steigerwald, F. Luedtke, K. Buse “Ultraviolet-light assisted periodic<br />

poling <strong>of</strong> near-stoichiometric, magnesium-doped lithium niobate crystals”<br />

Appl. Phys. Lett. 94, 032906/1-3 (2009)<br />

F. Kalkum, S. Broch, T. Brands, K. Buse “Holographic phase conjugation<br />

through a sub-wavelength hole” Appl. Phys. B 95, 637-645 (2009)<br />

J. Japs, M. Falk, Th. Woike, K. Buse, B. Sturman “Relaxation dynamics <strong>of</strong><br />

space-charge gratings excited <strong>by</strong> nanosecond light pulses in highly irondoped<br />

LiNbO 3 crystals” Appl. Phys. B 95, 413-419 (2009)<br />

E. Sliwinska, S. Mansurova, U. Hartwig, K. Buse, K. Meerholz “Effect <strong>of</strong><br />

co-sensitization in new hybrid photorefractive materials based on PVK<br />

polymer matrix and inorganic LiNbO 3 nano-crystals” Appl. Phys. B 95,<br />

519-524 (2009)<br />

A light brush cleans nonlinear crystals,<br />

suppresses optical damage, and<br />

hence enables efficient generation <strong>of</strong><br />

high-power laser light.<br />

F. Kroeger, I. Breunig, K. Buse “Frequency stabilization and output power<br />

undulations <strong>of</strong> diode lasers with feedback <strong>by</strong> volume holographic gratings”<br />

Appl. Phys. B 95, 603-608 (2009)<br />

D. Maxein, J. Bueckers, D. Haertle, K. Buse “Photorefraction in<br />

LiNbO 3 :Fe crystals with femtosecond pulses at 532 nm” Appl. Phys. B<br />

95, 399-405 (2009)<br />

J. Bueckers, D. Maxein, D. Haertle, K. Buse “Light-induced scattering <strong>of</strong><br />

femtosecond laser pulses in iron-doped lithium niobate crystals” J. Opt.<br />

Soc. Am. B 26, 1018-1022 (2009)<br />

R. Sowade, I. Breunig, J. Kiessling, K. Buse “Influence <strong>of</strong> <strong>the</strong> pump<br />

threshold on <strong>the</strong> single-frequency output power <strong>of</strong> singly-resonant optical<br />

parametric oscillators” Appl. Phys. B 96, 25-28 (2009)


Cascaded nonlinear processes are<br />

observed in optical parametrical oscillators<br />

at high pump powers. Here <strong>the</strong><br />

primary signal wave acts as <strong>the</strong> pump<br />

wave for <strong>the</strong> generation <strong>of</strong> terahertz<br />

radiation.<br />

M. Kösters, B. Sturmann, P. Werheit, D. Haertle, K. Buse “Optical cleaning<br />

<strong>of</strong> lithium niobate crystals” Nature Photonics 3, 510-513 (2009)<br />

S. Mansurova, K. Meerholz, E. Sliwinska, U. Hartwig, K. Buse “Enhancement<br />

<strong>of</strong> <strong>the</strong> charge carrier transport <strong>by</strong> doping PVK-based photoconductive<br />

polymers with LiNbO 3 nanocrystals” Phys. Rev. B 79, 174208/1-7<br />

(2009)<br />

P. Ganguly, C. L. Sones, Y. J. Ying, H. Steigerwald, K. Buse, E. Soergel,<br />

R. W. Eason, S. Mailis “Determination <strong>of</strong> refractive indices from <strong>the</strong><br />

mode pr<strong>of</strong>iles <strong>of</strong> UV-written channel waveguides in LiNbO 3 crystals for<br />

optimization <strong>of</strong> writing conditions” Journal <strong>of</strong> Lightwave Technology 27,<br />

3490-3497 (2009)<br />

2010<br />

Cascaded nonlinear processes in optical<br />

parametric oscillators based on periodicallypoled<br />

lithium niobate allow generation <strong>of</strong><br />

narrow-band, tunable, and diffraction-limited<br />

continuous-wave terahertz radiation with more<br />

than 2 µW power.<br />

M. Kösters, C. Becher, D. Haertle, B. Sturman, K. Buse “Charge transport<br />

properties <strong>of</strong> undoped congruent lithium niobate crystals” Appl. Phys. B<br />

97, 811-815 (2009)<br />

R. Sowade, I. Breunig, I. C. Mayorga, J. Kiessling, C. Tulea, V. Dierolf,<br />

K. Buse “Continuous-wave optical parametric terahertz source” Optics<br />

Express 17, 22303-22310 (2009)<br />

41


42<br />

Team


44<br />

<strong>The</strong> team during an internal workshop at Maria in der Aue.<br />

Team<br />

Current team<br />

We are very happy about <strong>the</strong> strong interest raised <strong>by</strong><br />

our activities. This is reflected in <strong>the</strong> high number <strong>of</strong><br />

applications <strong>of</strong> students who want to conduct scientific<br />

work in <strong>the</strong> “<strong>Hertz</strong> team”.<br />

PhD students<br />

• Tobias Beckmann<br />

• Jens Kießling<br />

• Bastian Knabe<br />

• Fabian Lüdtke<br />

• Michael Kösters<br />

• Dominik Maxein<br />

• Judith Schwesyg<br />

• Daniel Schütze<br />

• Rosita Sowade<br />

• Hendrik Steigerwald<br />

• Niklas Waasem<br />

Diploma students<br />

• Felix von Cube<br />

• Heiko Linnenbank<br />

<strong>The</strong>ses accomplished at <strong>the</strong> <strong>Heinrich</strong><br />

<strong>Hertz</strong> <strong>Chair</strong> <strong>of</strong> Deutsche Telekom AG<br />

Each student receives a special training that goes<br />

beyond physics. We are putting also attention on organization,<br />

documentation, and presentation <strong>of</strong> projects.<br />

Active participation in international conferences and<br />

research occupations for some months abroad at internationally<br />

leading institutions are a must at least for<br />

our PhD students.<br />

PhD <strong>the</strong>ses<br />

• Dr. Felix Kalkum (2009 - Dt. Telekom AG)<br />

• Dr. Ingo Breunig (2009 - University <strong>of</strong> Bonn)<br />

• Dr. Matthias Falk (2008 - Crystal Technology, USA)<br />

• Dr. Witold Kandulski (2007 - Stevenage Circuits, UK)<br />

• Dr. Helge Eggert (2006 - light power instruments, Berlin)<br />

• Dr. Ulrich Hartwig (2006 - Osram, Berlin)<br />

• Dr. Dirk Apitz (2005)<br />

• Dr. Oliver Beyer (2005 - Carl Zeiss SMT, Oberkochen)<br />

• Dr. Mark Wengler (2005 - Carl Zeiss SMT, Oberkochen)<br />

• Dr. Nils Benter (2005 - Philips, Aachen)<br />

• Dr. Birk Andreas (2005 - PTB Braunschweig)<br />

• Dr. Ralph Bertram (2004 - Osram, Regensburg)<br />

• Dr. Manfred Müller (2004 - Philips, Eindhoven)<br />

• Dr. Dirk Berben (2003 - Osram, München)<br />

• Dr. Marc Lünnemann (2003 - Osram, Herbrechtingen)<br />

Diploma <strong>the</strong>ses<br />

• Carsten Becher (2009)<br />

• Frank Lars Behm (2009)<br />

• Sergej Hermann (2009)


• Cristian Tulea (2009)<br />

• Johanna Bückers (2008)<br />

• Anne Zimmermann (2008)<br />

• Stephan Gronenborn (2008)<br />

• Dennis Beckmann (2007)<br />

• Sebastian Broch (2007)<br />

• Patrick Werheit (2007)<br />

• Stephan Kratz (2007)<br />

• Katharina Brands (2006)<br />

• Thorsten H<strong>of</strong>fmann (2006)<br />

• Roland Krüppel (2006)<br />

• Peter Reckenthäler (2006)<br />

• Felix Kuhnert (2006)<br />

• Felix Kröger (2006)<br />

• Ute Heinemeyer (2005)<br />

• Julius Japs (2005)<br />

• Benedikt Hecking (2004)<br />

• Boris Faßbender (2004)<br />

• Clemens von Korff Schmising (2003)<br />

• Holger Blank (2003)<br />

• Johannes Spanier (2002)<br />

Master <strong>the</strong>ses<br />

• Mathieu Gentile (2007)<br />

Bachelor <strong>the</strong>ses<br />

• Manuel Peter (2009)<br />

• Matthias Schönborn (2009)<br />

Alumni hiking along <strong>the</strong> Rhine river.<br />

Alumni network<br />

Many <strong>of</strong> our alumni keep in close contact on a personal<br />

basis. Once a year we also organize a meeting<br />

in Bonn where all alumni are invited to exchange<br />

information, to keep up to date on current research<br />

projects, and just to enjoy meeting old friends again.<br />

This network is very relevant, especially to younger<br />

students who need access to trainee programs, job<br />

openings and practical advice from those who have<br />

built a career in industry.<br />

45


46<br />

Careers


Careers<br />

To give readers an idea <strong>of</strong> how <strong>the</strong> careers <strong>of</strong> our<br />

alumni have evolved, we asked five <strong>of</strong> our former students<br />

to tell us about what <strong>the</strong>y have been doing. <strong>The</strong>y<br />

were all keen to provide <strong>the</strong> information, so we have<br />

compiled <strong>the</strong> following brief CVs.<br />

Dr. Ingo Gerhard Nee<br />

Dr. Ingo Gerhard Nee<br />

Dr. Ingo Gerhard Nee (*1973) studied physics at <strong>the</strong><br />

University <strong>of</strong> Osnabrück, where he also obtained his<br />

PhD working under Pr<strong>of</strong>. Dr. K. Buse. Toge<strong>the</strong>r with<br />

a team <strong>of</strong> researchers from <strong>the</strong> Universities <strong>of</strong> Bonn<br />

and Osnabrück as well as <strong>the</strong> California Institute <strong>of</strong><br />

Technology (Caltech), he co-founded <strong>the</strong> start-up company<br />

Ondax, Inc. in Los Angeles in 2001. He became<br />

<strong>the</strong> director <strong>of</strong> R&D responsible for <strong>the</strong> development<br />

<strong>of</strong> optical filters for telecommunication technology. In<br />

2003, following a post-doc posting at <strong>the</strong> University <strong>of</strong><br />

Bonn, again in Pr<strong>of</strong>. Buse‘s group, he moved to Auto-<br />

Vision GmbH, a company belonging to Volkswagen AG.<br />

<strong>The</strong>re, he led various projects as a consultant in <strong>the</strong><br />

incubator section for internal consulting. Since 2004,<br />

Dr. Nee has been employed at <strong>the</strong> Rosen Research and<br />

Technology Center (RTRC) in Lingen. <strong>The</strong> RTRC is part<br />

<strong>of</strong> <strong>the</strong> Rosen group and a market leader in services<br />

for nondestructive inspection <strong>of</strong> pipelines and fuel<br />

depots. Rosen operates globally and employs over<br />

1700 people worldwide. Dr. Nee began as a physicist<br />

and became head <strong>of</strong> R&D for novel and innovative<br />

technologies and products in 2005. Within this function<br />

he heads an international team <strong>of</strong> more than 140<br />

researchers, engineers, and technicians, covering <strong>the</strong><br />

fields <strong>of</strong> machine construction, electrical engineering,<br />

computing, physics and chemistry.<br />

Dr. Marc Lünnemann<br />

Dr. Marc Lünnemann<br />

Dr. Marc Lünnemann (*1974) studied physics at<br />

<strong>the</strong> University <strong>of</strong> Osnabrück and <strong>the</strong>n moved to <strong>the</strong><br />

University <strong>of</strong> Bonn in order to work on his PhD in <strong>the</strong><br />

<strong>Hertz</strong> team. His studies focused on <strong>the</strong> effects occurring<br />

in nonlinear crystals for very large externally<br />

applied electrical fields.<br />

After finishing his PhD, he decided to join <strong>the</strong> OSRAM<br />

Automotive Application Center near Ulm in April<br />

2004. Three years <strong>of</strong> developing new light sources<br />

and lighting applications for <strong>the</strong> automotive industry<br />

gave him significant insights into <strong>the</strong> industry. In<br />

mid-2007, Dr. Lünnemann decided to join OSRAM<br />

47


48<br />

Corporate Strategy in Munich, giving him a broader<br />

perspective on <strong>the</strong> company and <strong>the</strong> lighting industry<br />

as a whole. In parallel, OSRAM sent him to take part<br />

in <strong>the</strong> Executive MBA Corporate Management program<br />

at <strong>the</strong> University <strong>of</strong> Augsburg, which is run in collaboration<br />

with <strong>the</strong> Katz Graduate School <strong>of</strong> Business at<br />

<strong>the</strong> University <strong>of</strong> Pittsburgh (USA). He successfully<br />

completed this program in October 2008. In January<br />

2009 <strong>the</strong> former Automotive Lighting and Display/<br />

Optics business units were consolidated into a single<br />

business unit called Specialty Lighting (SP). In his<br />

corporate strategy function Dr. Lünnemann assisted<br />

<strong>the</strong> business heads in completing <strong>the</strong> merger and was<br />

asked in April 2010 to join <strong>the</strong> new SP business unit<br />

in <strong>the</strong> newly created position <strong>of</strong> Manager <strong>of</strong> Business<br />

Development & Strategy.<br />

In this function Dr. Marc Lünnemann is responsible for<br />

<strong>the</strong> development and execution <strong>of</strong> SP’s long term<br />

strategy. Given <strong>the</strong> dynamic nature <strong>of</strong> today’s lighting<br />

market, an ongoing effort is needed to make sure that<br />

SP has <strong>the</strong> right products, technologies, core competencies,<br />

business partners and organizational structure<br />

to assure future success. Strategy development<br />

involves analyzing market trends, analyzing competitive<br />

developments, defining <strong>the</strong> business unit‘s value<br />

proposition, and identifying new business opportunities,<br />

potential new market segments and potential<br />

new business models. Additionally, Dr. Lünnemann<br />

consults top management on strategic matters and is<br />

tasked with steering and driving specific projects (i.e.<br />

merger and acquisition projects) across all <strong>the</strong> global<br />

functions required to support <strong>the</strong> overall strategy.<br />

Dr. Mark Wengler<br />

Dr. Mark Wengler<br />

Dr. Mark Wengler (*1976) performed his studies in<br />

physics at <strong>the</strong> Universities <strong>of</strong> Dortmund, Sydney and<br />

Bonn. In his diploma project at <strong>the</strong> <strong>Heinrich</strong> <strong>Hertz</strong><br />

Foundation <strong>Chair</strong> <strong>of</strong> <strong>the</strong> Deutsche Telekom he investigated<br />

<strong>the</strong> domain inversion <strong>of</strong> lithium niobate crystals,<br />

developing and implementing novel experimental<br />

methods for this purpose in Karsten Buse’s brand new<br />

laboratories. Mark Wengler continued his research as<br />

a scholarship holder <strong>of</strong> <strong>the</strong> Deutsche Telekom Stiftung<br />

during his PhD project. He graduated in 2005. His<br />

investigations <strong>of</strong> light-supported domain inversion<br />

improved <strong>the</strong> understanding <strong>of</strong> <strong>the</strong>se effects and<br />

enabled simplified production processes for special<br />

optical components (i.e. periodically-poled lithium<br />

niobate, PPLN) to be widely used for frequency conversion<br />

applications.<br />

In 2005 Mark Wengler started his career in industry<br />

as a research scientist at <strong>the</strong> Philips Research Laboratories,<br />

investigating pharmacokinetic models and<br />

developing molecular imaging solutions for medical<br />

applications. Since 2006 he works for <strong>the</strong> Carl Zeiss<br />

SMT AG in various development projects for optical<br />

lithography systems. After working as a development<br />

engineer and part-project leader for conventional il-


lumination systems, he headed a project in 2009 as<br />

part <strong>of</strong> a major development program for next-generation<br />

extreme ultra-violet lithography systems.<br />

Dr. Felix Kalkum<br />

Dr. Felix Kalkum<br />

Dr. Felix Kalkum (*1980) graduated from <strong>the</strong> University<br />

<strong>of</strong> Bonn in 2005, receiving diplomas in physics<br />

and ma<strong>the</strong>matics. He received his PhD in physics in<br />

<strong>the</strong> <strong>Hertz</strong> group in 2009. During his time at <strong>the</strong> University<br />

<strong>of</strong> Bonn he was active as a student representative,<br />

being president <strong>of</strong> <strong>the</strong> student‘s parliament and<br />

member <strong>of</strong> <strong>the</strong> University Senate. He was awarded a<br />

scholarship <strong>by</strong> <strong>the</strong> Deutsche Telekom Stiftung during<br />

his PhD studies.<br />

In 2010 he joined <strong>the</strong> Detecon, an affiliate <strong>of</strong> <strong>the</strong><br />

Deutsche Telekom specializing in integrated management<br />

and technology consulting.<br />

Manuel Peter<br />

Manuel Peter<br />

Manuel Peter (*1988) is <strong>the</strong> first student to complete<br />

his Bachelor <strong>the</strong>sis in <strong>the</strong> new Bachelor/Master<br />

study program <strong>of</strong> <strong>the</strong> Department <strong>of</strong> Physics and<br />

Astronomy at <strong>the</strong> University <strong>of</strong> Bonn. In his threemonth<br />

internship in spring 2009 with <strong>the</strong> <strong>Hertz</strong> team,<br />

he contributed successfully to <strong>the</strong> realization <strong>of</strong> an<br />

“optical hammer“, which pushes light through holes<br />

<strong>of</strong> subwavelength dimension (smaller than 1/1000 <strong>of</strong><br />

a millimeter). We are glad that outstanding students<br />

like him are attracted <strong>by</strong> <strong>the</strong> work performed in <strong>the</strong><br />

<strong>Hertz</strong> research group: Manuel Peter had already<br />

shown at high school his outstanding capabilities and<br />

started to attend classes at <strong>the</strong> University even before<br />

completing his school leaving exam. He completed his<br />

Bachelor studies ahead <strong>of</strong> time, and received a degree<br />

at <strong>the</strong> age <strong>of</strong> 21. He was also recently awarded a<br />

grant <strong>by</strong> <strong>the</strong> “Studienstiftung des Deutschen Volkes“.<br />

In addition to his pr<strong>of</strong>essional activities, he is socially<br />

and politically committed, including being a member<br />

<strong>of</strong> <strong>the</strong> board <strong>of</strong> <strong>the</strong> Lohmar City Council in charge for<br />

environmental issues and young people‘s issues.<br />

49


50<br />

Cooperation


Cooperation<br />

<strong>The</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong> is very well connected,<br />

within Bonn, across Germany, and internationally.<br />

In Bonn, we took <strong>the</strong> responsibility <strong>of</strong> coordinating<br />

research activities in <strong>the</strong> fields <strong>of</strong> photonics and<br />

condensed-matter physics.<br />

<strong>The</strong> main achievement has been gaining DFG approval<br />

<strong>of</strong> our research unit on “Light confinement and control<br />

with structured dielectrics and metals“. This unit<br />

has total funding <strong>of</strong> about € 3 million has brought<br />

toge<strong>the</strong>r about 40 scientists from eight different<br />

research teams since 2004. Pr<strong>of</strong>. Dr. Karsten Buse is<br />

<strong>the</strong> spokesperson for <strong>the</strong> research unit.<br />

Workshop <strong>of</strong> <strong>the</strong> DFG research unit in <strong>the</strong> Physics<br />

Centre <strong>of</strong> <strong>the</strong> DPG at Bad Honnef.<br />

Participating Principal Investigators<br />

• Dr. Wolfgang Alt: Quantum Optics,<br />

University <strong>of</strong> Bonn<br />

• Pr<strong>of</strong>. Dr. Karsten Buse: Applied Optics,<br />

University <strong>of</strong> Bonn<br />

• Dr. Dmitry N. Chigrin: Condensed Matter <strong>The</strong>ory,<br />

University <strong>of</strong> Wuppertal<br />

• Pr<strong>of</strong>. Dr. Manfred Fiebig: Nonlinear Magnetooptics,<br />

University <strong>of</strong> Bonn<br />

• Pr<strong>of</strong>. Dr. Harald Giessen: Ultrafast Nano-Optics,<br />

University <strong>of</strong> Stuttgart<br />

• Dr. Daniel Haertle: Nonlinear Optics,<br />

University <strong>of</strong> Bonn<br />

• Pr<strong>of</strong>. Dr. Hans Kroha: Condensed Matter <strong>The</strong>ory,<br />

University <strong>of</strong> Bonn<br />

• Pr<strong>of</strong>. Dr. Karl Maier: Condensed Matter Physics,<br />

University <strong>of</strong> Bonn<br />

• Pr<strong>of</strong>. Dr. Dieter Meschede: Quantum Optics,<br />

University <strong>of</strong> Bonn<br />

• Dr. Konrad Peithmann: Nonlinear Materials,<br />

University <strong>of</strong> Bonn<br />

• Pr<strong>of</strong>. Dr. Arno Rauschenbeutel: Quantum Optics,<br />

University <strong>of</strong> Mainz<br />

• Pr<strong>of</strong>. Dr. Moritz Sokolowski: Organic Films,<br />

University <strong>of</strong> Bonn<br />

• Pr<strong>of</strong>. Dr. Martin Weitz: Ultracold Gases,<br />

University <strong>of</strong> Bonn<br />

51


52<br />

Dielectrics and metals are structured in order to<br />

enhance <strong>the</strong> light-matter interaction. Enhanced<br />

interaction strengths promise increased sensitivity, efficiency,<br />

compactness, and speed <strong>of</strong> photonic devices.<br />

Waveguides as well as resonators are used. Clusters<br />

<strong>of</strong> projects employ <strong>the</strong> following principles in order to<br />

enhance <strong>the</strong> light-matter interaction:<br />

Trapping <strong>of</strong> light<br />

Whispering-gallery-mode and Bragg resonators with<br />

very high quality factors and finesse are directly made<br />

<strong>of</strong> nonlinear-optical crystals. Nonlinear optics with<br />

outstanding efficiencies is envisaged.<br />

Evanescent waves<br />

In ultrathin fibers light waves will be transformed<br />

almost completely into evanescent waves. Very strong<br />

interaction <strong>of</strong> <strong>the</strong> surface layer with <strong>the</strong> propagating<br />

light field promises interesting applications in sensing<br />

and nonlinear optics.<br />

Electronic resonances<br />

Resonances <strong>of</strong> electronic transitions in atoms,<br />

molecules, or nanoscopic resonators will be used to<br />

enhance, e.g., <strong>the</strong> second- or third-order nonlinearities.<br />

Atoms will be combined especially with fiber<br />

resonators, invented within <strong>the</strong> research unit.<br />

Three dimensional metamaterial made out <strong>of</strong> stacked gold nanoantennas<br />

in order to realize a new optical sensor (Na Liu, Lutz<br />

Langguth, Thomas Weiss, Jürgen Kästel, Michael Fleischhauer,<br />

Tilman Pfau, Harald Giessen, Nature Materials 8, 758 - 762<br />

(2009)).<br />

Plasmonic resonances<br />

Excitation <strong>of</strong> plasmons can cause field enhancements.<br />

<strong>The</strong> underlying physics will be explored and <strong>the</strong> field<br />

enhancement will be maximized. In combination with<br />

nonlinear dielectrics, composite materials promise<br />

superior nonlinear-optical functionalities.<br />

It is extremely fascinating to explore how far <strong>the</strong> limits<br />

<strong>of</strong> strong light-matter interaction can be pushed.<br />

One may envision nonlinear optics at <strong>the</strong> level <strong>of</strong> few<br />

photons, <strong>the</strong> convenient optical detection <strong>of</strong> single<br />

atoms and molecules, and <strong>the</strong> deterministic coupling<br />

<strong>of</strong> single photons to single atoms.


Deutsche Telekom Laboratories<br />

Deutsche Telekom Laboratories were founded in<br />

2005 as <strong>the</strong> research and development establishment<br />

<strong>of</strong> Deutsche Telekom, but also as an associated<br />

scientific institute <strong>of</strong> <strong>the</strong> Technical University <strong>of</strong><br />

Berlin resourced with seven pr<strong>of</strong>essorships. <strong>The</strong> link<br />

between Deutsche Telekom’s R&D activities and <strong>the</strong><br />

TU Berlin along with o<strong>the</strong>r universities, institutes and<br />

industry partners has led to ever closer ties between<br />

<strong>the</strong> worlds <strong>of</strong> science and business. For Telekom, <strong>the</strong><br />

major benefit <strong>of</strong> this partnership is that new solutions<br />

are being identified, matured and brought onto<br />

market in a very short time.<br />

Deutsche Telekom Laboratories are mainly situated<br />

directly on <strong>the</strong> TU Berlin campus. <strong>The</strong>re are more<br />

than 350 Deutsche Telekom experts and scientists<br />

in various disciplines from all over <strong>the</strong> world working<br />

here and at o<strong>the</strong>r sites in Berlin and Darmstadt to<br />

engineer solutions and innovations for <strong>the</strong> simple, fast<br />

and secure communications <strong>of</strong> tomorrow. Telekom<br />

Laboratories collaborate closely with <strong>the</strong> Ben-Gurion<br />

University in Israel and Deutsche Telekom’s R&D lab<br />

in Los Altos (Silicon Valley), United States.<br />

Research and development at Deutsche Telekom<br />

Laboratories is user-driven. It is based on an open<br />

innovation model and <strong>the</strong> conviction that collective<br />

know-how can only be developed within a network <strong>of</strong><br />

partners. Organizationally, <strong>the</strong> labs are divided up<br />

into <strong>the</strong> Innovation Development Laboratory and <strong>the</strong><br />

Strategic Research Laboratory.<br />

<strong>The</strong> centre <strong>of</strong> <strong>the</strong> Deutsche Telekom Laboratories is located in<br />

Berlin at <strong>the</strong> Ernst Reuter Platz on <strong>the</strong> campus <strong>of</strong> <strong>the</strong> Technical<br />

University <strong>of</strong> Berlin.<br />

<strong>The</strong> Innovation Development Laboratory develops new<br />

services and solutions for Deutsche Telekom customers<br />

over a project period <strong>of</strong> one-and-a-half to three<br />

years. <strong>The</strong> experts work with both external and internal<br />

partners and transfer <strong>the</strong> results to <strong>the</strong> marketoriented<br />

Group units for commercial application.<br />

<strong>The</strong> Strategic Research Laboratory focuses on longterm<br />

technology research and applied research. <strong>The</strong><br />

groundwork for tomorrow’s communications technologies<br />

is being laid in its scientific research projects.<br />

Teaching is provided at <strong>the</strong> TU Berlin <strong>by</strong> <strong>the</strong> seven<br />

pr<strong>of</strong>essorships. <strong>The</strong> researchers are also actively<br />

involved in international standardization bodies. As an<br />

integral part <strong>of</strong> a global scientific network, TU Berlin<br />

acts as a hub for new ideas.<br />

Telekom Laboratories are headed <strong>by</strong> Peter Möckel<br />

and his team: Dr. <strong>Heinrich</strong> Arnold, Dr. Udo Bub, Dr.<br />

Raimund Schmolze and Klaus J. Buß.<br />

53


54<br />

National and international close<br />

cooperation partners:<br />

• Autonomous University <strong>of</strong> Madrid<br />

• California Institute<br />

<strong>of</strong> Technology (Caltech)<br />

• EPFL Lausanne<br />

• Lehigh University<br />

• Massachusetts Institute<br />

<strong>of</strong> Technology (MIT)<br />

• PennState University<br />

• Stanford University<br />

• University <strong>of</strong> Cologne<br />

• University <strong>of</strong> Paderborn<br />

• University <strong>of</strong> Southampton<br />

• Bayer AG<br />

• Crystal Technology, Inc.<br />

• Ondax, Inc.<br />

• Schott AG<br />

• Deutsche Telekom AG<br />

• caesar<br />

• Deutsche Forschungsgemeinschaft (DFG)<br />

• Deutsche Telekom Stiftung<br />

• VolkswagenStiftung


Guest Scientists<br />

Over <strong>the</strong> years we had many visitors from several<br />

institutions around <strong>the</strong> world, working with us just<br />

for some weeks or for up to half a year. Just three<br />

occupations are highlighted in <strong>the</strong> following. All sides<br />

benefited strongly from this personal exchange.<br />

Pr<strong>of</strong>. Dr. Volkmar Dierolf<br />

Volkmar Dierolf<br />

Volkmar Dierolf was with us for half a year as a DFG<br />

Mercator Guest pr<strong>of</strong>essor. He is Pr<strong>of</strong>essor <strong>of</strong> Physics<br />

and <strong>Chair</strong> <strong>of</strong> <strong>the</strong> Department <strong>of</strong> Physics at <strong>the</strong> Lehigh<br />

University, USA and also holds a joint appointment<br />

with <strong>the</strong> Materials Science and Engineering Department.<br />

He obtained his PhD in physics at <strong>the</strong> University<br />

<strong>of</strong> Utah, Salt Lake City, Utah (USA) and returned<br />

to Germany to work at <strong>the</strong> University <strong>of</strong> Paderborn,<br />

as a research scientist and group leader in <strong>the</strong> field<br />

<strong>of</strong> “Optical Spectroscopy <strong>of</strong> LiNbO 3 waveguides”. He<br />

also obtained his “habilitation” in experimental physics<br />

at <strong>the</strong> same place before leaving again to <strong>the</strong> USA,<br />

this time as an Associate Pr<strong>of</strong>essor, Lehigh University,<br />

Bethlehem.<br />

Volkmar Dierolf pr<strong>of</strong>essional expertise can – among<br />

o<strong>the</strong>rs – be deduced from <strong>the</strong> large number <strong>of</strong> highly<br />

recognized publications, his appointment <strong>of</strong> a Mercator<br />

Visiting Pr<strong>of</strong>essor at <strong>the</strong> University <strong>of</strong> Bonn and<br />

<strong>the</strong> Lehigh University Joseph F. Libsch Early Career<br />

Research Award, which honors faculty members<br />

who are early in <strong>the</strong>ir research career and who have<br />

demonstrated <strong>the</strong> potential for high-quality research<br />

and scholarship. Since 2006, Volkmar Dierolf and<br />

Karsten Buse lead a NSF/DFG funded Materials World<br />

Network collaboration on in which five groups from<br />

<strong>the</strong> USA and Germany work on questions related to<br />

<strong>the</strong> Nanoscale Structure and Shaping <strong>of</strong> Ferroelectric<br />

Domain Walls.<br />

55


56<br />

Pr<strong>of</strong>. Dr. Boris I. Sturman<br />

Pr<strong>of</strong>. Dr. Boris I. Sturman<br />

Boris I. Sturman works in Bonn for about four months<br />

each year. He is affiliated with <strong>the</strong> Institute <strong>of</strong> Automation<br />

and Electrometry in Novosibirsk, Russia and<br />

has recently been elected for <strong>the</strong> highest possible research<br />

position in <strong>the</strong> Russian Academy <strong>of</strong> Sciences,<br />

he became a “General Research Fellow”. This position<br />

is reserved for only a few percent <strong>of</strong> <strong>the</strong> research<br />

staff and requires outstanding scientific results and<br />

achievements. Pr<strong>of</strong>essor Sturman studied in Russia<br />

at highly respected institutions and joined in 1976<br />

<strong>the</strong> Institute <strong>of</strong> Automation <strong>of</strong> Electrometry (IAE) in<br />

Novosibirsk, first as a Junior Researcher, followed <strong>by</strong><br />

a Senior Research Fellow and finally, after having been<br />

Assistant Pr<strong>of</strong>essor at <strong>the</strong> Novosibirsk State University<br />

for a decade, he became <strong>the</strong> head <strong>of</strong> <strong>the</strong> laboratory <strong>of</strong><br />

nonlinear optics at <strong>the</strong> IAE being a Leading Research<br />

Fellow at <strong>the</strong> IAE.<br />

In parallel to his impressive carrier at <strong>the</strong> IAE he took<br />

<strong>the</strong> opportunity to work for longer periods <strong>of</strong> time as<br />

a guest researcher in Denmark, Germany, Finland,<br />

France and Spain, where he was highly welcome owing<br />

to his outstanding expertise in nonlinear optics and<br />

transport phenomena in solid state materials. Since<br />

2001 he is a regular guest in <strong>the</strong> group <strong>of</strong> Pr<strong>of</strong>. Dr. K.<br />

Buse. More than a dozen <strong>of</strong> common publications in<br />

reputed journals attest for this very fruitful cooperation<br />

which is to be continued.<br />

Pr<strong>of</strong>. Dr. Demetri Psaltis<br />

Pr<strong>of</strong>. Dr. Demetri Psaltis<br />

Demetri Psaltis has collaborated with Karsten Buse<br />

since 1996. He was awarded a Humboldt Research<br />

Prize, allowing him to spend longer periods <strong>of</strong> time in<br />

Bonn. At present he is Pr<strong>of</strong>essor and Director <strong>of</strong> <strong>the</strong><br />

Optics Laboratory at <strong>the</strong> École polytechnique fédérale<br />

de Lausanne (EPFL) as well as Dean <strong>of</strong> <strong>the</strong> School<br />

<strong>of</strong> Engineering at <strong>the</strong> EPFL. He obtained his PhD in<br />

Electrical Engineering at <strong>the</strong> Carnegie-Mellon University<br />

in 1977. He <strong>the</strong>n became Assistant Pr<strong>of</strong>essor <strong>of</strong><br />

Electrical Engineering at <strong>the</strong> California Institute <strong>of</strong><br />

Technology (Caltech), where he pursued his career<br />

up to <strong>the</strong> position <strong>of</strong> Thomas G. Myers Pr<strong>of</strong>essor <strong>of</strong><br />

Electrical Engineering.<br />

Thanks to his broad range <strong>of</strong> research interests – from<br />

nonlinear optics and holography combined with optical<br />

information data processing to opto-fluidics and<br />

bio-photonics – he has received a number <strong>of</strong> honors,<br />

such as his appointment as Fellow <strong>of</strong> <strong>the</strong> Optical Society<br />

<strong>of</strong> America or award <strong>of</strong> <strong>the</strong> Humboldt Research<br />

Prize for Senior U.S. Scientists. He is considered to<br />

be one <strong>of</strong> <strong>the</strong> most influential scientists in applied<br />

optics. Besides his academic career, he is also a successful<br />

entrepreneur, as indicated <strong>by</strong> over 45 patents<br />

and, moreover, <strong>by</strong> his successful start-ups, including<br />

Ondax Inc.


Entrepreneurship<br />

It is our goal to turn <strong>the</strong> scientific results we achieve<br />

into applications that can drive our economy and<br />

provide benefits for our society. To this end we license<br />

research outcomes <strong>by</strong> registering patents and, in one<br />

case so far, founding start-up companies.<br />

In 2000, we developed optical filters that can split<br />

optical waves – based on <strong>the</strong>ir color – with very high<br />

selectivity. <strong>The</strong> filters employ “volume holograms“.<br />

Photorefractive lithium niobate crystals were used<br />

first. Later we developed, toge<strong>the</strong>r with a large German<br />

glass-maker, a photosensitive glass that is now<br />

being used in <strong>the</strong> manufacture <strong>of</strong> such filters. <strong>The</strong><br />

filters have a unique property: Waves with a relative<br />

difference <strong>of</strong> light wavelengths <strong>of</strong> less than 1/1000<br />

can be separated. This is <strong>of</strong> relevance to, for instance,<br />

fiber-optical networks.<br />

Having grasped <strong>the</strong> commercial potential <strong>of</strong> our<br />

development, we joined with colleagues from <strong>the</strong><br />

California Institute <strong>of</strong> Technology to found Ondax Inc.,<br />

a company located in Monrovia, California. Ondax Inc.<br />

received about € 10 million in venture funds and after<br />

just 18 months released its first product.<br />

<strong>The</strong> headquarter <strong>of</strong> <strong>the</strong> Ondax company.<br />

With <strong>the</strong> downturn <strong>of</strong> economy in 2001 we added new<br />

products to broaden our portfolio, using <strong>the</strong> same<br />

optical filtering technique. Laser diodes were stabilized<br />

<strong>by</strong> providing a wavelength-selective feedback.<br />

Telescope filters were developed to suppress special<br />

light wavelengths originating from, for instance, excitations<br />

<strong>of</strong> water in <strong>the</strong> atmosphere. <strong>The</strong> company also<br />

produces filters for Raman spectroscopy.<br />

Most recently we released chirped filters for compression<br />

and expansion <strong>of</strong> ultrashort light pulses. – <strong>The</strong><br />

Ondax filters are used <strong>the</strong>se days in many devices and<br />

labs around <strong>the</strong> world, including <strong>the</strong> quantum optics<br />

labs run <strong>by</strong> our colleagues in Bonn.<br />

57


Outreach


Teaching


Outreach<br />

Teaching<br />

According to <strong>the</strong> Humboldt principle, research and<br />

teaching are mutually complementary and should be<br />

conducted toge<strong>the</strong>r. Indeed, <strong>the</strong> interaction between<br />

pr<strong>of</strong>essors engaged in research and students, who are<br />

<strong>the</strong> up-coming generation <strong>of</strong> scientists, is extremely<br />

fruitful, raising many good questions and producing<br />

new ideas. This is essential for <strong>the</strong> work <strong>of</strong> universities.<br />

<strong>The</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong> has contributed significantly<br />

to <strong>the</strong> teaching effort. We run seminars, lab<br />

courses and colloquia, as well as many o<strong>the</strong>r classes.<br />

To illustrate <strong>the</strong> kind <strong>of</strong> classes we <strong>of</strong>fer, here is a<br />

brief selection:<br />

• Laser physics and quantum optics<br />

• Holography<br />

• Optical measurement techniques<br />

• Optical image processing<br />

• Integrated optics<br />

• Optical material processing<br />

• Applied optics<br />

• Atomic physics<br />

• Photonics<br />

• Solid state physics<br />

• Advanced photonics and quantum optics<br />

Education <strong>of</strong> future scientists: Pr<strong>of</strong>. K. Buse giving a lecture at<br />

<strong>the</strong> Wolfgang Paul lecture hall in Bonn.<br />

University <strong>of</strong> Bonn – self-administration<br />

Today, German universities fortunately enjoy a pretty<br />

large degree <strong>of</strong> autonomy. This independence demands,<br />

however, that all pr<strong>of</strong>essors spend time on <strong>the</strong><br />

processes <strong>of</strong> self-administration to ensure effective<br />

management and a forward-looking strategy. We have<br />

contributed in various ways to this self-government.<br />

<strong>The</strong> <strong>Heinrich</strong> <strong>Hertz</strong> <strong>Chair</strong> was deeply involved in setting<br />

up a tenure-track system for appointing <strong>of</strong> pr<strong>of</strong>essors.<br />

Pr<strong>of</strong>. Dr. Karsten Buse also spend two one-year<br />

terms as <strong>the</strong> elected director <strong>of</strong> <strong>the</strong> Institute <strong>of</strong> Physics,<br />

overseeing about 200 employees.<br />

61


62<br />

Events<br />

It is fun showing our work to <strong>the</strong> public, to experts or<br />

to students. We have had some excellent opportunities<br />

to do so. Not only have plenty <strong>of</strong> talks been given<br />

over <strong>the</strong> years, but also more than 100 guided tours<br />

arranged through our research labs. Here is a small<br />

selection <strong>of</strong> special events in recent years:<br />

At <strong>the</strong> 2003 “Internationale Funkausstellung“ in Berlin<br />

we presented some <strong>of</strong> our photonic developments<br />

in <strong>the</strong> booth <strong>of</strong> Deutsche Telekom and drew strong<br />

attention.<br />

For <strong>the</strong> open day at <strong>the</strong> headquarters <strong>of</strong> <strong>the</strong> Deutsche<br />

Telekom on August 17, 2007, we put on a presentation<br />

and laser shows for <strong>the</strong> public.<br />

Laser beam leaving <strong>the</strong> physics building in <strong>the</strong> Wegelerstr. 8<br />

and shining across <strong>the</strong> city <strong>of</strong> Bonn.<br />

<strong>The</strong> key-note speech was given for <strong>the</strong> “Science Days“<br />

held at <strong>the</strong> University <strong>of</strong> Applied Sciences/University<br />

<strong>of</strong> Telecommunications in Leipzig.<br />

On <strong>the</strong> occasion <strong>of</strong> <strong>the</strong> 150th birthday <strong>of</strong> our namesake,<br />

<strong>Heinrich</strong> <strong>Hertz</strong>, we invited <strong>the</strong> public to meet us<br />

and tour <strong>the</strong> labs on a Sunday afternoon, December<br />

9, 2007. More than 400 people came and were excited.<br />

This was ano<strong>the</strong>r opportunity to illuminate <strong>the</strong><br />

sky over Bonn with laser beams.<br />

From June 11, 2009 to June 15, 2009 <strong>the</strong> international<br />

conference on “Photorefractive Materials, Effects, and<br />

Devices: Control <strong>of</strong> Light and Matter“ was held at <strong>the</strong><br />

Deutsche Telekom Tagungshotel in Bad Honnef. More<br />

than 180 participants from all around <strong>the</strong> globe attended<br />

this very lively meeting.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!