20.01.2013 Views

Neurokinin Bs and neurokinin B receptors in zebrafish- potential role ...

Neurokinin Bs and neurokinin B receptors in zebrafish- potential role ...

Neurokinin Bs and neurokinin B receptors in zebrafish- potential role ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Neurok<strong>in</strong><strong>in</strong></strong> <strong>Bs</strong> <strong>and</strong> <strong>neurok<strong>in</strong><strong>in</strong></strong> B <strong>receptors</strong> <strong>in</strong> <strong>zebrafish</strong><strong>potential</strong><br />

<strong>role</strong> <strong>in</strong> controll<strong>in</strong>g fish reproduction<br />

Jakob Biran a , Ori Palevitch a , Shifra Ben-Dor b , <strong>and</strong> Berta Levavi-Sivan a,1<br />

a Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, <strong>and</strong> Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel;<br />

<strong>and</strong> b Department of Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel<br />

Edited by John E. Halver, University of Wash<strong>in</strong>gton, Seattle, WA, <strong>and</strong> approved April 27, 2012 (received for review December 2, 2011)<br />

The endocr<strong>in</strong>e regulation of vertebrate reproduction is achieved by<br />

the coord<strong>in</strong>ated actions of several peptide neurohormones, tachyk<strong>in</strong><strong>in</strong><br />

among them. To study the evolutionary conservation <strong>and</strong><br />

physiological functions of <strong>neurok<strong>in</strong><strong>in</strong></strong> B (NKB), we identified tachyk<strong>in</strong><strong>in</strong><br />

(tac) <strong>and</strong> tac receptor (NKBR) genes from many fish species,<br />

<strong>and</strong> cloned two cDNA forms from <strong>zebrafish</strong>. Phylogenetic analysis<br />

showed that pisc<strong>in</strong>e Tac3s <strong>and</strong> mammalian <strong>neurok<strong>in</strong><strong>in</strong></strong> genes arise<br />

from one l<strong>in</strong>eage. High identity was found among different fish<br />

species <strong>in</strong> the region encod<strong>in</strong>g the NKB; all shared the common Cterm<strong>in</strong>al<br />

sequence. Although the pisc<strong>in</strong>e Tac3 gene encodes for two<br />

putative tachyk<strong>in</strong><strong>in</strong> peptides, the mammalian ortholog encodes for<br />

only one. The second fish putative peptide, referred to as <strong>neurok<strong>in</strong><strong>in</strong></strong><br />

F (NKF), is unique <strong>and</strong> found to be conserved among the fish<br />

species when tested <strong>in</strong> silico. tac3a was expressed asymmetrically <strong>in</strong><br />

the habenula of embryos, whereas <strong>in</strong> adults <strong>zebrafish</strong> tac3a-express<strong>in</strong>g<br />

neurons were localized <strong>in</strong> specific bra<strong>in</strong> nuclei that are<br />

known to be <strong>in</strong>volved <strong>in</strong> reproduction. Zebrafish tac3a mRNA levels<br />

gradually <strong>in</strong>creased dur<strong>in</strong>g the first few weeks of life <strong>and</strong> peaked at<br />

pubescence. Estrogen treatment of prepubertal fish elicited <strong>in</strong>creases<br />

<strong>in</strong> tac3a, kiss1, kiss2, <strong>and</strong> kiss1ra expression. The synthetic<br />

<strong>zebrafish</strong> peptides (NKBa, NKBb, <strong>and</strong> NKF) activated Tac3 <strong>receptors</strong><br />

via both PKC/Ca 2+ <strong>and</strong> PKA/cAMP signal-transduction pathways<br />

<strong>in</strong> vitro. Moreover, a s<strong>in</strong>gle <strong>in</strong>traperitoneal <strong>in</strong>jection of NKBa <strong>and</strong><br />

NKF significantly <strong>in</strong>creased leute<strong>in</strong>iz<strong>in</strong>g hormone levels <strong>in</strong> mature<br />

female <strong>zebrafish</strong>. These results suggest that the NKB/NKBR system<br />

may participate <strong>in</strong> neuroendocr<strong>in</strong>e control of fish reproduction.<br />

gonadotrop<strong>in</strong>-releas<strong>in</strong>g hormone | kisspept<strong>in</strong> | teleost | gonadotrop<strong>in</strong><br />

Reproduction is a highly <strong>in</strong>tegrated <strong>and</strong> complex function that<br />

requires synchronized production of gametes by both sexes at<br />

an optimum time for offspr<strong>in</strong>g survival. Fish show an enormous<br />

variety of reproductive strategies (1), <strong>and</strong> were recently chosen as<br />

models for the study of growth, metabolism, <strong>and</strong> human diseases.<br />

The hypothalamic regulation of gonadotrop<strong>in</strong> secretion <strong>in</strong> fish is<br />

different from that of mammals, from both endocr<strong>in</strong>al <strong>and</strong> anatomical<br />

aspects. In teleosts, the pituitary is <strong>in</strong>nervated directly by<br />

neurons project<strong>in</strong>g to the vic<strong>in</strong>ity of the pituitary gonadotrophs<br />

(2). Among the neuropeptides released by these nerve end<strong>in</strong>gs are<br />

gonadotroph<strong>in</strong>-releas<strong>in</strong>g hormones (GnRHs) <strong>and</strong> dopam<strong>in</strong>e,<br />

which act as stimulatory <strong>and</strong> <strong>in</strong>hibitory factors on the release of<br />

lute<strong>in</strong>iz<strong>in</strong>g hormone (LH) <strong>and</strong> follicle-stimulat<strong>in</strong>g hormone (3).<br />

However, new actors have recently entered the field of reproductive<br />

physiology: kisspept<strong>in</strong>s, <strong>neurok<strong>in</strong><strong>in</strong></strong>, <strong>and</strong> dynorph<strong>in</strong><br />

have all been implicated <strong>in</strong> controll<strong>in</strong>g GnRH (4).<br />

Topaloglu et al. (5) found that humans bear<strong>in</strong>g loss-of-function<br />

mutations of the genes encod<strong>in</strong>g either <strong>neurok<strong>in</strong><strong>in</strong></strong> B (NKB)<br />

or its cognate receptor, <strong>neurok<strong>in</strong><strong>in</strong></strong> receptor 3 (NKBR, Tac3r)<br />

displayed hypogonadotropic hypogonadism; this sem<strong>in</strong>al report<br />

implicated NKB signal<strong>in</strong>g as an essential factor <strong>in</strong> the onset of<br />

puberty <strong>and</strong> control of gonadotrop<strong>in</strong> secretion <strong>in</strong> mammals.<br />

Recent studies provided evidence that, <strong>in</strong> mammals, a group of<br />

neurons <strong>in</strong> the hypothalamic arcuate nucleus (ARC) are steroidresponsive<br />

<strong>and</strong> coexpress NKB, kisspept<strong>in</strong>, dynorph<strong>in</strong>, NKBR<br />

<strong>and</strong> estrogen receptor α(6). Compell<strong>in</strong>g evidence <strong>in</strong>dicates that<br />

these neurons function <strong>in</strong> the hypothalamic circuitry regulat<strong>in</strong>g<br />

GnRH secretion. The ma<strong>in</strong> objective of the present study, us<strong>in</strong>g<br />

<strong>zebrafish</strong> (Danio rerio) as a model, was to exam<strong>in</strong>e the <strong>in</strong>volvement<br />

of NKB <strong>in</strong> fish reproduction.<br />

NKB is a member of the tachyk<strong>in</strong><strong>in</strong> (TK) family of peptides.<br />

TKs are characterized by a common carboxyl-term<strong>in</strong>al am<strong>in</strong>o acid<br />

sequence of FXGLM-NH2 (where X is a hydrophobic residue),<br />

<strong>and</strong> <strong>in</strong>clude substance P, <strong>neurok<strong>in</strong><strong>in</strong></strong> A (NKA) <strong>and</strong> NKB, as well<br />

as neuropeptide K, neuropeptide-γ, <strong>and</strong> hemok<strong>in</strong><strong>in</strong>-1 (7). NKB is<br />

the only TK synthesized from the preprotachyk<strong>in</strong><strong>in</strong>-B gene (8),<br />

which is currently designated as TAC3 <strong>in</strong> mammals, except for<br />

rodents, where it was named Tac2. Because there are different<br />

names for the gene encod<strong>in</strong>g NKB <strong>in</strong> different species (TAC3 or<br />

Tac2), <strong>in</strong> this article we will refer to mRNA products of this gene<br />

as tac3 mRNA <strong>and</strong> to the peptides as NKB. The receptor that<br />

b<strong>in</strong>ds NKB, which is termed NKBR <strong>in</strong> humans, will be termed<br />

tac3r at the mRNA level <strong>and</strong> Tac3r at the prote<strong>in</strong> level.<br />

Until now, NKB was not cloned from any fish species, nor was<br />

the NKB/NKBR system shown to be <strong>in</strong>volved <strong>in</strong> reproduction or<br />

puberty. We report here the identification of previously unidentified<br />

fish NKB/NKBR genes <strong>and</strong> their possible <strong>in</strong>volvement<br />

<strong>in</strong> the control of reproduction.<br />

Results <strong>and</strong> Discussion<br />

Clon<strong>in</strong>g Two Types of tac3 <strong>and</strong> tac3r <strong>and</strong> Their Phylogenetic Analysis.<br />

As the first step toward exam<strong>in</strong><strong>in</strong>g the <strong>in</strong>volvement of the NKB/<br />

NKBRs (tac3r) <strong>in</strong> the control of reproduction <strong>in</strong> fish, we report<br />

here the identification of the full-length tac3a <strong>and</strong> tac3b cDNA<br />

from <strong>zebrafish</strong> bra<strong>in</strong> us<strong>in</strong>g real-time PCR with specific primers<br />

(Table S1). Tac3a conta<strong>in</strong>s the decapeptide sequence EMH-<br />

DIFVGLM (Fig. S1A) (accession no. JN392856), whereas tac3b<br />

conta<strong>in</strong>s a 24-aa peptide (STGINREAHLPFRPNMNDIFVGLL)<br />

(Fig. S1B) (accession no. JN392857), both with the TK signature<br />

motif (FXGLM-NH2) flanked by <strong>potential</strong> dibasic cleavage sites<br />

<strong>and</strong> an adjacent glyc<strong>in</strong>e at the C term<strong>in</strong>us for amidation (9). Typically,<br />

follow<strong>in</strong>g prohormone convertase action, a carboxypeptidase<br />

removes the C-term<strong>in</strong>al dibasic residues, <strong>and</strong> a peptidylglyc<strong>in</strong>e<br />

a-amidat<strong>in</strong>g enzyme converts the exposed glyc<strong>in</strong>e <strong>in</strong>to a C-term<strong>in</strong>al<br />

amide (10). At the prote<strong>in</strong> level, the result<strong>in</strong>g zfNKBa (Tac3a)<br />

hormone precursor displayed around 25% identity with human or<br />

mouse TAC3, 55% with putative salmon Tac3a, <strong>and</strong> 52% with<br />

medaka Tac3 identified <strong>in</strong> this study (accession nos. BK008102 <strong>and</strong><br />

BK008114, respectively). zfNKBb (Tac3b) showed only around<br />

18% identity with human <strong>and</strong> mouse TAC3, 40% <strong>and</strong> 36% identity<br />

with salmon <strong>and</strong> medaka Tac3b, respectively. The <strong>zebrafish</strong> tac3s<br />

shared only a 36% identity (Fig. S1 <strong>and</strong> Table S2).<br />

In our search for the identification of Tac3 sequences conta<strong>in</strong><strong>in</strong>g<br />

the NKB peptide sequence <strong>in</strong> fish mRNAs <strong>and</strong> ESTs<br />

known to date, we encountered 30 previously unidentified<br />

Author contributions: J.B. <strong>and</strong> B.L.-S. designed research; J.B. <strong>and</strong> O.P. performed research;<br />

J.B., S.B.-D., <strong>and</strong> B.L.-S. analyzed data; <strong>and</strong> J.B., O.P., <strong>and</strong> B.L.-S. wrote the paper.<br />

The authors declare no conflict of <strong>in</strong>terest.<br />

This article is a PNAS Direct Submission.<br />

Data deposition: The sequences reported <strong>in</strong> this paper has been deposited <strong>in</strong> the GenBank<br />

database [accession nos. JN392856 (zftac3a), JN392857 (zftac3b), JF317292 (zftac3ra),<br />

JF317293 (zftac3rb), <strong>and</strong> BK008087–BK008126].<br />

1<br />

To whom correspondence should be addressed. E-mail: sivan@agri.huji.ac.il.<br />

This article conta<strong>in</strong>s support<strong>in</strong>g <strong>in</strong>formation onl<strong>in</strong>e at www.pnas.org/lookup/suppl/doi:10.<br />

1073/pnas.1119165109/-/DCSupplemental.<br />

www.pnas.org/cgi/doi/10.1073/pnas.1119165109 PNAS | June 26, 2012 | vol. 109 | no. 26 | 10269–10274<br />

AGRICULTURAL<br />

SCIENCES


pisc<strong>in</strong>e Tacs. We generated a phylogenetic tree of all available<br />

vertebrate <strong>neurok<strong>in</strong><strong>in</strong></strong> genes (Fig. 1A <strong>and</strong> Fig. S2A); it showed<br />

that the vertebrate <strong>neurok<strong>in</strong><strong>in</strong></strong> genes fall <strong>in</strong>to several dist<strong>in</strong>ct<br />

l<strong>in</strong>eage groups. The identified Tac3 precursors from fish were<br />

clustered with all other previously cloned or predicted Tac3<br />

sequences from mammals, frogs, <strong>and</strong> alligators (Fig. 1A); a second<br />

l<strong>in</strong>eage <strong>in</strong>cluded Tac1 from both mammals <strong>and</strong> fish that<br />

were identified <strong>in</strong> the present study, <strong>and</strong> the third l<strong>in</strong>eage <strong>in</strong>cluded<br />

mammalian Tac4 <strong>and</strong> a unique pisc<strong>in</strong>e group, now named<br />

Tac4 (Fig. S2A). No precursors conta<strong>in</strong><strong>in</strong>g the exact NKB sequence<br />

were found <strong>in</strong> <strong>in</strong>vertebrate species (11).<br />

We cloned the full-length tac3ra <strong>and</strong> tac3rb cDNA from<br />

<strong>zebrafish</strong> bra<strong>in</strong> by PCR with specific primers (Table S1). The<br />

predicted tac3ra <strong>and</strong> tac3rb N term<strong>in</strong>i have features consistent<br />

with a signal peptide, as def<strong>in</strong>ed by SignalP program analysis<br />

(Fig. S1). Sequence analysis of the two types of <strong>zebrafish</strong><br />

<strong>receptors</strong> identified dist<strong>in</strong>ct <strong>potential</strong> sites for N-glycosylation,<br />

A<br />

B<br />

C<br />

Fig. 1. Unrooted phylogenetic tree of <strong>neurok<strong>in</strong><strong>in</strong></strong> (A) or <strong>neurok<strong>in</strong><strong>in</strong></strong> receptor<br />

(B) sequences generated with neighbor-jo<strong>in</strong><strong>in</strong>g (ClustalW 2.1) <strong>and</strong> maximum<br />

likelihood (Phylip 3.69, ProML) on the basis of alignments performed both by<br />

ClustalW <strong>and</strong> Muscle (3.8.31), <strong>and</strong> visualized with FigTree 1.3.1. The Tac1 <strong>and</strong><br />

Tac4 (A) <strong>and</strong> Tacr1 <strong>and</strong> Tacr2 (B) were grouped (full trees <strong>in</strong> Fig. S2). The<br />

sequences identified <strong>in</strong> this study are marked <strong>in</strong> bold. Gene nomenclature has<br />

been st<strong>and</strong>ardized to Tac3, <strong>and</strong> species are <strong>in</strong>dicated for illustration <strong>and</strong><br />

comparison. Numbers at nodes <strong>in</strong>dicate the bootstrap values from 1,000 replicates.<br />

(Scale bar: the substitution rate per residue.) GenBank accession numbers<br />

are detailed <strong>in</strong> the legend to Fig. S2. (C) Gene organization of <strong>zebrafish</strong><br />

tac3a <strong>and</strong> tac3b. Each gene is consists of seven exons <strong>and</strong> encode both NKF <strong>and</strong><br />

NKB. SP, signal peptide; ATG <strong>and</strong> TGA, start <strong>and</strong> stop codon, respectively.<br />

phosphorylation by prote<strong>in</strong> k<strong>in</strong>ase C, prote<strong>in</strong> k<strong>in</strong>ase A, case<strong>in</strong><br />

k<strong>in</strong>ase II, tyros<strong>in</strong>e k<strong>in</strong>ase, <strong>and</strong> N-myristoylation (Fig. S3). The N<br />

<strong>and</strong> C term<strong>in</strong>i are, as <strong>in</strong> other G prote<strong>in</strong>-coupled <strong>receptors</strong>, the<br />

most divergent regions. In our bio<strong>in</strong>formatic search for NKB<br />

<strong>receptors</strong> we found four additional TK receptor genes <strong>in</strong> <strong>zebrafish</strong>.<br />

To enable assignment of the genes to the three TK receptor<br />

subfamilies already def<strong>in</strong>ed <strong>in</strong> mammals (12), we identified family<br />

members <strong>in</strong> additional species, particularly <strong>in</strong> other fish. The<br />

phylogenetic tree conta<strong>in</strong><strong>in</strong>g vertebrate TK <strong>receptors</strong> form three<br />

clearly separable groups that corresponded to TAC3R, TAC1R,<br />

<strong>and</strong> TAC2R (Fig. S2B). Putative orthologs of NK receptor<br />

members were also identified <strong>in</strong> several nonvertebrate species,<br />

Caenorhabditis elegans, ciona, <strong>and</strong> octopus; these served as outgroup<br />

sequences <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the root of these three groups,<br />

which was located between TAC2R <strong>and</strong> the others, <strong>in</strong>dicat<strong>in</strong>g<br />

that these groups split early <strong>in</strong> the family evolution. The tree<br />

shows that TAC3R <strong>and</strong> TAC1R are closest to each other, suggest<strong>in</strong>g<br />

that their separation was a more recent evolutionary event<br />

(Fig. 1B <strong>and</strong> Fig. S2B). Fish have one gene of Tac2r, <strong>and</strong> two<br />

genes each of Tac1r <strong>and</strong> Tac3r. Surpris<strong>in</strong>gly, three Tac3r were<br />

found <strong>in</strong> <strong>zebrafish</strong>, the only species to have a third receptor of any<br />

one type. However, we were unable to clone this gene from bra<strong>in</strong><br />

mRNA, so it was excluded from further biological analysis. The<br />

similarity <strong>and</strong> identity among the various TAC3 <strong>receptors</strong> is<br />

shown <strong>in</strong> Table S3.<br />

We found two forms of tac3 genes <strong>in</strong> <strong>zebrafish</strong> <strong>and</strong> salmon, but<br />

more evolved fish conta<strong>in</strong>ed only one tac3 ortholog; however, all fish<br />

species exhibit two forms of NKB <strong>receptors</strong>, suggest<strong>in</strong>g that the<br />

pisc<strong>in</strong>e NKB/NKBR can provide an excellent model for underst<strong>and</strong><strong>in</strong>g<br />

the molecular coevolution of the peptide/receptor pairs.<br />

Gene Organization of tac3 <strong>and</strong> Chromosomal Synteny of Tac3 <strong>and</strong><br />

Tac3 Receptor. The <strong>in</strong> silico analyses of fish genomic structure<br />

verified that the zftac3 consists of seven exons (Fig. 1C). In<br />

mammals the tac3 gene conta<strong>in</strong>s seven exons, five of which are<br />

translated to form the prepro-NKB prote<strong>in</strong> (11). Notably, the<br />

NKBa peptide sequence was encoded <strong>in</strong> the fifth exon [like <strong>in</strong><br />

mammals (13, 14)], whereas NKBb spans exons 3–5 (Fig. 1C).<br />

Surpris<strong>in</strong>gly, unlike <strong>in</strong> mammalian NK<strong>Bs</strong> (11), the deduced<br />

am<strong>in</strong>o acid sequences of both zftac3 genes encoded an additional<br />

putative TK sequence flanked by a Gly C-term<strong>in</strong>al amidation<br />

signal, <strong>and</strong> typical endoproteolytic sites at both term<strong>in</strong>i, suggest<strong>in</strong>g<br />

that additional TK peptides (YNDIDYDSFVGLM-NH 2<br />

<strong>and</strong> YDDIDYDSFVGLM-NH 2, spliced from Tac3a <strong>and</strong> Tac3b,<br />

respectively) (Fig. 1C <strong>and</strong> Fig. S1) are produced by the same<br />

precursors. Intrigu<strong>in</strong>gly, we found this additional peptide <strong>in</strong> tac3<br />

not only <strong>in</strong> <strong>zebrafish</strong> but <strong>in</strong> all other fish species identified <strong>in</strong> this<br />

study (11 species), but not <strong>in</strong> chicken, lizard, or alligator. These<br />

peptides possess an N-term<strong>in</strong>al dibasic cleavage site with <strong>potential</strong><br />

to release the peptide, <strong>and</strong> the common NKB motif<br />

FVGLM at their C term<strong>in</strong>al; therefore, we termed this unique<br />

peptide <strong>neurok<strong>in</strong><strong>in</strong></strong> F (NKF) because it has only been found <strong>in</strong><br />

fish species to date. As Page et al. (11) anticipated, the vertebrate<br />

TAC3 gene encoded an additional TK <strong>in</strong> exon 3, <strong>in</strong><br />

a similar position to substance P <strong>in</strong> TAC1, <strong>and</strong> endok<strong>in</strong><strong>in</strong> A/B <strong>in</strong><br />

TAC4. This TK (NKF) still exists <strong>in</strong> fish but was lost from other<br />

species dur<strong>in</strong>g evolution. Interest<strong>in</strong>gly, <strong>in</strong> Tac4 there is a similar<br />

loss of one active peptide <strong>in</strong> mammals (the C-term<strong>in</strong>al peptide <strong>in</strong><br />

Tac4 as opposed to the N-term<strong>in</strong>al peptide <strong>in</strong> Tac3), whereas<br />

most fish species reta<strong>in</strong> putative active peptides <strong>in</strong> both locations.<br />

Chromosome syntenic analysis revealed that the locus of tac3<br />

is highly conserved between teleosts (Fig. S4). zftac3a is located<br />

on chromosome 23 <strong>and</strong> tac3b on chromosome 6. The only tac3<br />

found <strong>in</strong> medaka is located on chromosome 7 (Fig. S4B). For the<br />

zftac3 gene, the nearest neighbor<strong>in</strong>g gene (c1galt1a) is nonsyntenic,<br />

whereas the next nearest ones (b4galnt1a <strong>and</strong> slc6a1)<br />

were found <strong>in</strong> <strong>in</strong>verse order <strong>in</strong> humans (Fig. S4A). Despite nearly<br />

perfect preservation of synteny, we found substantial shuffl<strong>in</strong>g of<br />

gene order along correspond<strong>in</strong>g chromosome arms between<br />

<strong>zebrafish</strong> <strong>and</strong> human. The neighborhoods of gene loci of tac3a<br />

were conserved <strong>in</strong> the <strong>zebrafish</strong> <strong>and</strong> medaka (Fig. S4B). We then<br />

10270 | www.pnas.org/cgi/doi/10.1073/pnas.1119165109 Biran et al.


explored the genomic locations of tac3 <strong>receptors</strong> <strong>in</strong> humans <strong>and</strong><br />

various fish species (Fig. S4 C <strong>and</strong> D). In human, TAC3R is<br />

located on chromosome 4, whereas <strong>in</strong> <strong>zebrafish</strong>, fugu (Takifugu<br />

rubripes), medaka (Oryzias latipes), <strong>and</strong> tetraodon (Tetraodon<br />

nigroviridis) tac3ra are located on chromosome 1, unplaced<br />

(UN), 1, <strong>and</strong> 18, respectively. The nearest neighbor<strong>in</strong>g gene<br />

(cnga2) of the <strong>zebrafish</strong> tac3ra gene is nonsyntenic with human,<br />

but syntenic with the medaka, fugu, <strong>and</strong> tetraodon. The nextupstream<br />

neighbor<strong>in</strong>g genes (bdh2, nhedc2, <strong>and</strong> cisd2) were<br />

found <strong>in</strong> similar locations <strong>in</strong> all analyzed species (Fig. S4C). The<br />

human genome lacks tac3rb, which is present <strong>in</strong> tetraodon, fugu,<br />

<strong>and</strong> medaka. The next-upstream neighbor<strong>in</strong>g genes <strong>in</strong> the<br />

<strong>zebrafish</strong> (acy3.1, acy3.2, cldnd, <strong>and</strong> glb1) were found <strong>in</strong> reverse<br />

order <strong>in</strong> the tetraodon (Fig. S4D). Tac3rc had no discernible<br />

synteny to any other family members. The presence of two forms<br />

of NKB [<strong>in</strong> <strong>zebrafish</strong> <strong>and</strong> salmon (salmo salar)] <strong>and</strong> two forms of<br />

cognate receptor genes <strong>in</strong> lower-vertebrate species supports the<br />

hypothesis of two rounds of genome duplication followed by<br />

degeneration <strong>and</strong> complementation of the genes. We conclude<br />

that the synteny is better with<strong>in</strong> fish than with mammals; moreover,<br />

fish tac3 <strong>and</strong> tac3r have conserved synteny with the human<br />

genome, consistent with orthology.<br />

Tissue Distribution of tac3 <strong>and</strong> tac3 Receptors <strong>in</strong> Zebrafish. To elucidate<br />

the physiological <strong>role</strong>s of the NKB/NKBR signal<strong>in</strong>g system,<br />

we next exam<strong>in</strong>ed the tissue distribution of both lig<strong>and</strong>s<br />

(tac3a, tac3b) <strong>and</strong> <strong>receptors</strong> (tac3ra, tac3rb) mRNAs <strong>in</strong> <strong>zebrafish</strong><br />

by means of real-time PCR analysis, accord<strong>in</strong>g to Biran et al.<br />

(15). We dissected the <strong>zebrafish</strong> bra<strong>in</strong> <strong>in</strong>to three parts, of which<br />

the anterior part conta<strong>in</strong>s the telencephalon, the midbra<strong>in</strong> conta<strong>in</strong>s<br />

the optic tectum, diencephalon, <strong>and</strong> hypothalamus <strong>and</strong> the<br />

h<strong>in</strong>dbra<strong>in</strong>, the medulla oblongata <strong>and</strong> cerebellum. We mostly<br />

detected tac3a mRNA <strong>in</strong> the midbra<strong>in</strong> <strong>and</strong> tac3b mRNA was<br />

found ma<strong>in</strong>ly <strong>in</strong> the forebra<strong>in</strong>. Both tac3a <strong>and</strong> tac3ra were<br />

expressed <strong>in</strong> the pituitary (Fig. 2A), collaborat<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong><br />

mammals where NKB <strong>and</strong> NKBR were expressed <strong>in</strong> the median<br />

em<strong>in</strong>ence, which is miss<strong>in</strong>g <strong>in</strong> fish (6). tac3rb was expressed <strong>in</strong> the<br />

forebra<strong>in</strong> <strong>and</strong> was highest <strong>in</strong> the ovary. Different types of tac3<br />

<strong>and</strong> tac3r were expressed <strong>in</strong> the ovary <strong>and</strong> testis (Fig. 2A). Different<br />

levels of expression of tac3 <strong>and</strong> tac3r types were found <strong>in</strong><br />

extrabra<strong>in</strong> tissues (Fig. S5). The expression patterns of these<br />

genes <strong>in</strong> the bra<strong>in</strong>-pituitary-gonad axis further support the <strong>potential</strong><br />

<strong>role</strong> of the NKB system <strong>in</strong> fish reproduction.<br />

Gene Expression of the NKB/NKBR System Dur<strong>in</strong>g Sexual Maturation.<br />

Because it is known that the mammalian NKB/NKBR system is<br />

<strong>in</strong>volved <strong>in</strong> reproduction, <strong>and</strong> especially <strong>in</strong> puberty <strong>in</strong>itiation<br />

(16), we aimed to exam<strong>in</strong>e whether the pisc<strong>in</strong>e system fulfills<br />

a similar <strong>role</strong>. We used real-time PCR to evaluate the expression<br />

profiles of the zfNK<strong>Bs</strong> <strong>and</strong> their receptor mRNAs <strong>in</strong> the bra<strong>in</strong><br />

dur<strong>in</strong>g several development stages. Expression of tac3a mRNA<br />

was low at 2–4 wk postfertilization (wpf) (Fig. 2B); it then<br />

gradually <strong>in</strong>creased, peaked at 8 wpf, when the <strong>zebrafish</strong> go<br />

through puberty, <strong>and</strong> subsequently decreased by 12 wpf (Fig.<br />

2B), when the gonads conta<strong>in</strong>ed clear, well-developed oocytes or<br />

A B<br />

spermatozoa (15). The expression of the tac3b, tac3ra, <strong>and</strong> tac3rb<br />

mRNAs <strong>in</strong> the <strong>zebrafish</strong> bra<strong>in</strong> was low <strong>and</strong> did not change dur<strong>in</strong>g<br />

sexual maturation. The <strong>in</strong>crease of tac3a mRNA toward puberty,<br />

consistent with kisspept<strong>in</strong> signal<strong>in</strong>g <strong>in</strong>itiat<strong>in</strong>g puberty (15, 17),<br />

may <strong>in</strong>dicate a possible <strong>in</strong>volvement of the NKB/NKBR system<br />

<strong>in</strong> controll<strong>in</strong>g puberty.<br />

Localization of Embryonic tac3a Cells by Whole-Mount <strong>in</strong> Situ Hybridization.<br />

The first appearance of tac3a expression was detected at 3<br />

d postfertilization (dpf) <strong>in</strong> the right habenula nuclei <strong>and</strong> the midbra<strong>in</strong><br />

(Fig. 3 A, F, <strong>and</strong>K). The earliest stage that the signal was<br />

observed <strong>in</strong> the left habenula was at 4–5 dpf, when the signal <strong>in</strong>tensity<br />

<strong>in</strong> the right habenula <strong>and</strong> midbra<strong>in</strong> <strong>in</strong>creased, probably<br />

reflect<strong>in</strong>g <strong>in</strong>creased cell numbers (Fig. 3 B, C, G, H, L, <strong>and</strong>M). In<br />

addition, there was expression <strong>in</strong> the h<strong>in</strong>dbra<strong>in</strong>. Analysis of elderly<br />

larvae (7 <strong>and</strong> 9 dpf) revealed decreased tac3a signal <strong>in</strong>tensity (Fig. 3<br />

D, E, I, J, N,<strong>and</strong>O), <strong>and</strong> at 12 dpf it was barely detected. No signal<br />

was observed at any stage by use of the tac3a sense riboprobe.<br />

Dur<strong>in</strong>g embryogenesis tac3a was dom<strong>in</strong>antly expressed <strong>in</strong> the righthabenula<br />

nuclei, but <strong>in</strong> adults it was expressed <strong>in</strong> both habenular<br />

lobes (Fig. 3P). This asymmetrical expression of tac3a <strong>in</strong> the<br />

habenula is consistent with previous f<strong>in</strong>d<strong>in</strong>gs that the habenula <strong>in</strong><br />

<strong>zebrafish</strong> displayed left-right asymmetries <strong>in</strong> gene expression (18,<br />

19). Interest<strong>in</strong>gly, it was shown that neurons appear sooner <strong>in</strong> the<br />

left than <strong>in</strong> the right habenula (20). Neuronal organization asymmetries<br />

<strong>in</strong> the epithalamus (i.e., habenular nuclei <strong>and</strong> p<strong>in</strong>eal complex)<br />

are well known among vertebrates (21).<br />

Localization of tac3a mRNA <strong>in</strong> the Bra<strong>in</strong> of Adult Zebrafish. By us<strong>in</strong>g<br />

<strong>in</strong> situ hybridization (ISH) techniques to determ<strong>in</strong>e the localization<br />

of tac3a mRNA <strong>in</strong> the <strong>zebrafish</strong> bra<strong>in</strong>, we detected tac3a mRNAexpress<strong>in</strong>g<br />

neurons <strong>in</strong> the habenula (Fig. 3P), where kisspept<strong>in</strong> 1<br />

(kiss1) was previously shown to be expressed (22). Tac3a was also<br />

detected along the periventricular hypothalamus (Fig. 3 Q <strong>and</strong> R),<br />

<strong>in</strong> the periventricular nucleus of the posterior tuberculum (Fig. 3Q),<br />

<strong>and</strong> <strong>in</strong> the posterior tuberal nucleus (Fig. 3R). These bra<strong>in</strong> nuclei<br />

were previously found to express other important neuropeptides<br />

that regulate reproduction (17, 22), metabolism (23), <strong>and</strong> stress<br />

(24). In the mammalian ARC, KISS1 neurons that coexpress NKB<br />

<strong>and</strong> dynorph<strong>in</strong> were hypothesized to be a central node through<br />

which <strong>potential</strong> stress, metabolic <strong>and</strong> photoperiodic signals regulate<br />

GnRH release (25). The nuclear lateralis tuberis is considered as the<br />

pisc<strong>in</strong>e structure homologous to the mammalian ARC (23, 26). The<br />

localization of tac3a, kisspept<strong>in</strong>2(kiss2), kiss1 receptor b (kiss1rb),<br />

lept<strong>in</strong> receptor, melan<strong>in</strong>-concentrat<strong>in</strong>g hormone (MCH) 2 <strong>and</strong> two<br />

MCH1 <strong>receptors</strong>, Urotens<strong>in</strong> I, corticotrop<strong>in</strong>-releas<strong>in</strong>g factor, <strong>and</strong><br />

corticotrop<strong>in</strong>-releas<strong>in</strong>g factor-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> to the ventral zone of<br />

the periventricular hypothalamus (Fig. 3Q) (17,22–24, 26) might<br />

suggest that not all neuropeptide pathways are as conserved as<br />

formerly thought. This suggestion is supported by the recent f<strong>in</strong>d<strong>in</strong>gs<br />

that kiss2 is not expressed <strong>in</strong> the <strong>zebrafish</strong> nuclear lateralis tuberis,<br />

<strong>and</strong> that kiss2 neurons of the periventricular hypothalamus do not<br />

directly <strong>in</strong>nervate the <strong>zebrafish</strong> pituitary (22). F<strong>in</strong>ally, the close<br />

similarity between the expression patterns of <strong>zebrafish</strong> kisspept<strong>in</strong><br />

genes <strong>and</strong> <strong>zebrafish</strong> tac3a suggests a possible <strong>in</strong>teraction between<br />

Fig. 2. Expression of <strong>zebrafish</strong> tac3a, tac3b,<br />

tac3ra, or tac3rb mRNA <strong>in</strong> various parts of the<br />

bra<strong>in</strong> (A) <strong>and</strong> changes <strong>in</strong> <strong>zebrafish</strong> tac3a at various<br />

ages toward puberty (B) as determ<strong>in</strong>ed by<br />

real-time PCR. The relative abundance of the<br />

mRNAs was normalized to the amount of elongation<br />

factor 1 α (ef1α) by the comparative<br />

threshold cycle method; the comparative threshold<br />

reflects the relative amount of the transcript.<br />

Results are means ± SEM (n = 11–15). Means<br />

marked with different letters differ significantly<br />

(P < 0.05).<br />

Biran et al. PNAS | June 26, 2012 | vol. 109 | no. 26 | 10271<br />

AGRICULTURAL<br />

SCIENCES


Fig. 3. (A–O) Localization of tac3a dur<strong>in</strong>g early stages of development, as<br />

detected by whole-mount ISH. tac3a is dom<strong>in</strong>antly expressed <strong>in</strong> the right<br />

habenular nuclei, midbra<strong>in</strong>, <strong>and</strong> h<strong>in</strong>dbra<strong>in</strong>. Dorsal view of larva heads, anterior<br />

is to the left (A–E). High magnification of boxed area <strong>in</strong> Upper panel. Note the<br />

unilateral expression of tac3a to right of the midl<strong>in</strong>e (dotted l<strong>in</strong>e) <strong>in</strong> the<br />

habenula (F–J), lateral view of larva heads (K–O). rHbn, right habenula; MB,<br />

midbra<strong>in</strong>; HB, h<strong>in</strong>dbra<strong>in</strong>. (P–R) Localization of tac3a <strong>in</strong> adult <strong>zebrafish</strong> bra<strong>in</strong> as<br />

<strong>in</strong>dicated by ISH (nomenclature accord<strong>in</strong>g to ref. 40). Tac3a mRNA-express<strong>in</strong>g<br />

cells were observed <strong>in</strong> the ventral (Hav) <strong>and</strong> medial (Ham) habenula (P) tac3a<br />

mRNA-express<strong>in</strong>g cells detected <strong>in</strong> the periventricular nucleus of posterior<br />

tuberculum (TPp), dorsal (Hd), <strong>and</strong> ventral zone (Hv) of periventricular hypothalamus<br />

(Q) tac3a mRNA-express<strong>in</strong>g cells observed <strong>in</strong> the posterior tuberal<br />

nucleus (PTN) <strong>and</strong> central zone (Hc) of periventricular hypothalamus (R).<br />

(Magnification: A–E <strong>and</strong> K–O, 40×; F–J, 120×).<br />

these two systems, as previously shown <strong>in</strong> mammals; however, this<br />

needs further <strong>in</strong>vestigation.<br />

Pharmacological Analysis <strong>and</strong> Signal Transduction Pathways of zfTac3<br />

Receptors. We used functional expression analysis with COS-7<br />

cells to evaluate the response, b<strong>in</strong>d<strong>in</strong>g selectivity, <strong>and</strong> signal<br />

transduction pathways of the unique TK <strong>receptors</strong> to their agonists.<br />

We previously showed the specificity of the reporter serum<br />

responsive element (SRE)-Luc <strong>and</strong> cAMP responsive element<br />

(CRE)-Luc, to activation of PKC/Ca 2+ <strong>and</strong> PKA/cAMP signal<br />

transduction pathways, respectively (15). Graded concentrations<br />

of the zfTKs (NKBa, NKBb, <strong>and</strong> NKF), <strong>and</strong> of hNKB <strong>and</strong> its<br />

agonist senktide were applied to COS-7 cells that expressed<br />

hNKBR, zfTac3ra, or zfTac3rb. The EC 50 values of TKs for each<br />

receptor are summarized (Table S4). Both human <strong>and</strong> pisc<strong>in</strong>e<br />

TKs <strong>in</strong>duced concentration-dependent <strong>in</strong>creases <strong>in</strong> both SRE-<br />

Luc <strong>and</strong> CRE-Luc activity (Fig. 4 A–F). For hNKBR, <strong>in</strong> both<br />

signal transduction systems, zfNKBa <strong>and</strong> NKF showed high potency,<br />

very similar to human NKB, but zfNKBb peptide exhibited<br />

relatively low potency (Fig. 4 A–D). For both zfTac3 <strong>receptors</strong>,<br />

zfNKBa <strong>and</strong> NKF (both derived from tac3a) were similarly<br />

highly potent <strong>in</strong> both signal transduction pathways (Fig. 4).<br />

These results confirmed that both zfNKBa <strong>and</strong> NKF were endogenous<br />

lig<strong>and</strong>s of Tac3 <strong>receptors</strong>, <strong>and</strong> it is noteworthy that this<br />

report of activation of TK <strong>receptors</strong> by a second peptide derived<br />

from the NKB gene (zfNKF) is unique. However, NKBb was less<br />

effective than the other forms <strong>in</strong> elicit<strong>in</strong>g luciferase activity by<br />

both signal transduction pathways. It was previously shown unequivocally<br />

that hNKBR <strong>potential</strong>ly can couple directly to both<br />

phospholipase C <strong>and</strong> adenylate cyclase, <strong>and</strong> stimulate both<br />

phospho<strong>in</strong>ositides hydrolysis <strong>and</strong> cAMP formation (27). Indeed<br />

both zftac3 <strong>receptors</strong>, as well as the hNKBR posses both PKC<br />

<strong>and</strong> PKA phosphorylation sites (Fig. S3). These f<strong>in</strong>d<strong>in</strong>gs confirm<br />

that the unique <strong>zebrafish</strong> <strong>receptors</strong> relay their signal through<br />

both PKC <strong>and</strong> PKA transduction pathways.<br />

Lig<strong>and</strong> Models. Fig. 4G is a ribbon representation of the zfNKB<br />

structural model prediction, compared with the hNKB (PDB ID<br />

1p9f). Intrigu<strong>in</strong>gly, although the three zfNK<strong>Bs</strong> vary <strong>in</strong> size—10,<br />

24, <strong>and</strong> 13 aa for NKBa, NKBb, <strong>and</strong> NKFa, respectively—all of<br />

the predicted peptides yielded high-resolution, high-quality<br />

structures with typical globular fold<strong>in</strong>g. These structures comprised<br />

α-helix-loop motifs (highlighted <strong>in</strong> red <strong>in</strong> Fig. 4G). All<br />

three zfNK<strong>Bs</strong> model structures approximated a b<strong>in</strong>d<strong>in</strong>g-competent<br />

conformation similar to the human NKB. Our results corroborate<br />

previous ones found for mammals that the formation of<br />

a helical conformation <strong>in</strong> the mid region of each of the TKs<br />

appears to be crucial for TK-receptor activation (28). Moreover,<br />

mammalian NKB were found to form a helical structure <strong>in</strong> the<br />

presence of dodecylphosphochol<strong>in</strong>e micelles (29).<br />

In Vivo Effect of Estradiol. Our next aim was to test the <strong>in</strong>volvement<br />

of the NKB system <strong>in</strong> reproduction. In fish, clear evidence<br />

exists regard<strong>in</strong>g the important <strong>role</strong> estradiol plays dur<strong>in</strong>g<br />

the period of reproduction (1). Moreover, ISH was recently used<br />

to show that estradiol <strong>in</strong>creased kisspept<strong>in</strong> cell number <strong>in</strong> the<br />

ventral hypothalamus, where the zfkiss2 neurons are homologous<br />

to the estrogen-sensitive kiss1 hypothalamic neurons <strong>in</strong> medaka<br />

(17, 22, 30). Similarly to mammals, <strong>zebrafish</strong> have two forms of<br />

GnRH: GnRH2 is localized to the midbra<strong>in</strong> tegmentum, <strong>and</strong><br />

GnRH3 (considered to be the hypophysiotropic form) is located<br />

at both the olfactory bulb term<strong>in</strong>al nerve <strong>and</strong> the preoptic area<br />

(31). Because <strong>in</strong> mammals kisspept<strong>in</strong> <strong>and</strong> NKB are expressed <strong>in</strong><br />

the same neurons <strong>in</strong> the hypothalamic ARC, <strong>and</strong> play a key <strong>role</strong><br />

<strong>in</strong> physiological regulation of GnRH neurons (25), we tested the<br />

effect of estradiol on the expression of genes along the GnRHkisspept<strong>in</strong><br />

system. Estradiol treatment of prepubertal <strong>zebrafish</strong><br />

enhanced expression of key genes <strong>in</strong>volved <strong>in</strong> reproduction<br />

(gnrh3, kiss2, <strong>and</strong> kiss1) concomitantly with significantly <strong>in</strong>creased<br />

tac3a (Fig. 5A). In parallel, we also found significantly <strong>in</strong>creased<br />

expression of tac3ra, tac3rb, <strong>and</strong> kiss1ra (Fig. 5B). Both Tac3<br />

<strong>receptors</strong> bound the zfNK<strong>Bs</strong> (Fig. 4 A–F), <strong>and</strong> Kiss1ra was shown<br />

previously to b<strong>in</strong>d Kiss2, considered to be the more important<br />

form, with higher aff<strong>in</strong>ity than Kiss1 (32). In mammals there is<br />

strong evidence of sexual dimorphism of NKB neurons: larger<br />

numbers of NKB neurons have been identified <strong>in</strong> ARC of ewes<br />

than of rams (33). The transcription of NKB could be directly<br />

altered by estrogen <strong>receptors</strong>, as sequences correspond<strong>in</strong>g to the<br />

estrogen responsive element <strong>and</strong> imperfect pal<strong>in</strong>dromic estrogen<br />

responsive element have been reported upstream of the TAC3<br />

gene transcriptional start site (8). In fish estradiol is <strong>in</strong>volved <strong>in</strong><br />

both early oogenesis <strong>and</strong> the beg<strong>in</strong>n<strong>in</strong>g of the first wave of vitellogenesis<br />

that precede puberty (34), collaborat<strong>in</strong>g our f<strong>in</strong>d<strong>in</strong>g<br />

that tac3a expression peaked <strong>in</strong> prepubertal fish (Fig. 2B).<br />

Moreover, <strong>in</strong>creased levels of estradiol are a required characteristic<br />

of both follicular growth <strong>and</strong> f<strong>in</strong>al oocyte maturation <strong>in</strong><br />

fish (3, 35), po<strong>in</strong>t<strong>in</strong>g toward the <strong>in</strong>volvement of the pisc<strong>in</strong>e NKB<br />

system <strong>in</strong> control of reproduction, probably <strong>in</strong> concert with<br />

kisspept<strong>in</strong> <strong>and</strong> GnRH.<br />

In Vivo Effect of NK<strong>Bs</strong>. We next tested the <strong>in</strong> vivo biological<br />

function of <strong>zebrafish</strong> NKB peptides. S<strong>in</strong>gle <strong>in</strong>traperitoneal <strong>in</strong>jection<br />

of zfNKBa or zfNKF elicited significant LH secretion <strong>in</strong><br />

sexually mature female <strong>zebrafish</strong> (Fig. 5C). The magnitude of the<br />

<strong>in</strong>duced LH discharge was comparable with that observed <strong>in</strong><br />

response to GnRH. LH response to the hNKBR agonist, senktide,<br />

or zfNKBb was less pronounced (Fig. 5C), <strong>in</strong> a similar way<br />

to the order of potency obta<strong>in</strong>ed <strong>in</strong> the transactivation assay (Fig.<br />

4). Our f<strong>in</strong>d<strong>in</strong>gs corroborate previous f<strong>in</strong>d<strong>in</strong>gs that activation of<br />

NKB <strong>receptors</strong> evoked potent LH-secretory responses <strong>in</strong><br />

rodents, sheep, <strong>and</strong> monkey (4, 36–38).<br />

10272 | www.pnas.org/cgi/doi/10.1073/pnas.1119165109 Biran et al.


A B C<br />

SRE-Luc activity<br />

(fold <strong>in</strong>duction)<br />

CRE-Luc activity<br />

(fold <strong>in</strong>duction)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

. 0<br />

hNKBR zfTac3ra zfTac3rb<br />

-11 -10 -9 -8 -7 -6 -5<br />

peptide (logM)<br />

In conclusion, we provided detailed <strong>in</strong>formation on the organization<br />

of the NKB systems <strong>in</strong> teleosts, <strong>in</strong>clud<strong>in</strong>g the splice tac3<br />

(NKF). We also show that the zftac3a, unlike zftac3b, expression<br />

<strong>in</strong>creased toward puberty, <strong>in</strong>creased <strong>in</strong> response to estradiol<br />

treatment, caused <strong>in</strong>crease <strong>in</strong> LH secretion, <strong>and</strong> was abundantly<br />

expressed <strong>in</strong> the bra<strong>in</strong>, notably <strong>in</strong> the hypothalamus. Tac3<br />

<strong>receptors</strong> were expressed <strong>in</strong> the pituitary <strong>and</strong> gonads, suggest<strong>in</strong>g<br />

that these lig<strong>and</strong>-receptor pairs are likely <strong>in</strong>volved <strong>in</strong> the control<br />

of reproductive functions, dur<strong>in</strong>g puberty or dur<strong>in</strong>g diverse steps<br />

of reproduction.<br />

Materials <strong>and</strong> Methods<br />

Animals. Wild-type <strong>zebrafish</strong> were purchased from a commercial supplier (A &<br />

H). All experimental procedures were approved by the Hebrew University<br />

Adm<strong>in</strong>istrative Panel for Laboratory Animal Care.<br />

Data M<strong>in</strong><strong>in</strong>g, Phylogenetic Analysis, <strong>and</strong> Chromosomal Synteny. The putative<br />

Tac3 gene sequences were isolated from <strong>zebrafish</strong> by us<strong>in</strong>g a stepwise<br />

evolutionary strategy, with the mouse Tac2 prote<strong>in</strong> (NP_033338.2) as firststep<br />

<strong>in</strong>put, <strong>and</strong> extension to other genomes <strong>and</strong> ESTs, as described <strong>in</strong> the SI<br />

Materials <strong>and</strong> Methods. Details of sequences, phylogenetic analyses <strong>and</strong><br />

synteny are presented <strong>in</strong> SI Materials <strong>and</strong> Methods.<br />

4<br />

3<br />

2<br />

1<br />

0<br />

. 0 -11 -10 -9 -8 -7 -6 -5<br />

0<br />

. 0 -11 -10 -9 -8 -7 -6 -5<br />

0<br />

. 0<br />

D 12 E F<br />

10<br />

10<br />

8<br />

8<br />

8<br />

6<br />

6<br />

6<br />

4<br />

4<br />

4<br />

2<br />

2<br />

2<br />

0<br />

. 0<br />

-11 -10 -9 -8 -7 -6 -5<br />

peptide (logM)<br />

3<br />

2<br />

1<br />

0<br />

. 0<br />

-11 -10 -9 -8 -7 -6 -5<br />

-11 -10 -9 -8 -7 -6 -5<br />

peptide (logM)<br />

zfNKBa<br />

zfNKBb<br />

zfNKF<br />

hNKB<br />

Senktide<br />

zfNKBa<br />

zfNKBb<br />

zfNKF<br />

hNKB<br />

Senktide<br />

Fig. 4. Lig<strong>and</strong> selectivity of the NKB <strong>receptors</strong>. Human NKBR (A <strong>and</strong> D) <strong>zebrafish</strong> Tac3ra (B <strong>and</strong> E) or <strong>zebrafish</strong> Tac3rb (C <strong>and</strong> F), each together with SRE-Luc<br />

(A–C) or CRE-Luc (D–F). The cells were treated with various concentrations of human (hu) NKB: DMHDFFVGLM-NH 2; <strong>zebrafish</strong> (zf) NKBa: EMHDIFVGLM-NH 2;<br />

zfNKBb: STGINREAHLPFRPNMNDIFVGLL-NH 2; or zfNKF: YNDIDYDSFVGLM-NH 2. Data are expressed as the <strong>in</strong>crease <strong>in</strong> luciferase activity over basal activity.<br />

Each po<strong>in</strong>t was determ<strong>in</strong>ed <strong>in</strong> quadruplicate <strong>and</strong> is given as a mean ± SEM. (G) Ribbon representation of human <strong>and</strong> <strong>zebrafish</strong> NK<strong>Bs</strong> structural model. The<br />

PDB ID for the human structure is 1p9f.<br />

A B C<br />

Isolation of Zebrafish tac3 Lig<strong>and</strong>s <strong>and</strong> Receptors. We designed specific primers<br />

for clon<strong>in</strong>g the putative zfTac3 lig<strong>and</strong>s <strong>and</strong> <strong>receptors</strong> (Table S1). The<br />

fragments were PCR-amplified from an adult <strong>zebrafish</strong> bra<strong>in</strong> cDNA library<br />

<strong>and</strong> were cloned <strong>in</strong>to pCRII-TOPO vector (Invitrogen).<br />

Tissue Distribution <strong>and</strong> Expression Profiles. Tissue distributions of zftac3a,<br />

zftac3b, zftac3ra, <strong>and</strong> zftac3rb were determ<strong>in</strong>ed by real-time PCR as previously<br />

described (15). Tissue samples were collected from sexually mature postvitellogenic<br />

female <strong>and</strong> milt-produc<strong>in</strong>g male <strong>zebrafish</strong>, total RNA extraction,<br />

<strong>and</strong> cDNA samples were prepared as previously described (15). To study gene<br />

expression of the NKB/NKBR system at different ages, 15 fish were r<strong>and</strong>omly<br />

sampled at ages 2, 4, 6, 8, <strong>and</strong> 12 wpf. The bra<strong>in</strong> was removed, <strong>and</strong> the pubertal<br />

stage classification was determ<strong>in</strong>ed as described previously (15). Elongation<br />

factor 1α (39) was used as a reference gene. The primer sequences, R 2 values,<br />

<strong>and</strong> slopes of the real-time PCR analyses, calculated by l<strong>in</strong>ear regression, are<br />

presented <strong>in</strong> Table S1.<br />

ISH Analysis of Embryos <strong>and</strong> Adults. ISH was conducted on embryos <strong>and</strong> adults<br />

accord<strong>in</strong>g to Mitani et al. (30) <strong>and</strong> Palevitch et al. (40) respectively, as detailed<br />

<strong>in</strong> SI Materials <strong>and</strong> Methods.<br />

Peptide Synthesis. Zebrafish NKBa (EMHDIFVGLM-NH2), NKBb (STGIN-<br />

REAHLPFRPNMNDIFVGLLEMHDIFVGLM-NH2), <strong>and</strong> NKF (YNDIDYDSFVG-<br />

LM-NH 2) were synthesized by the automated solid-phase method by<br />

Fig. 5. Exposure to estradiol (18 nM) by immersion caused a significant <strong>in</strong>crease <strong>in</strong> mRNA expression of lig<strong>and</strong>s (A) or receptor (B) genes, <strong>in</strong> the bra<strong>in</strong> of<br />

juvenile <strong>zebrafish</strong>. sGnRHa, zfNKBa, zfNKBb, zfNKF, or senktide (see legend to Fig. 4 for details), were <strong>in</strong>jected <strong>in</strong>traperitoneally to mature <strong>zebrafish</strong> <strong>and</strong><br />

blood was collected 6 h thereafter (C). Hormone values are means ± SEM. Statistical significance vs. correspond<strong>in</strong>g control values: **P < 0.01; *P < 0.05.<br />

Biran et al. PNAS | June 26, 2012 | vol. 109 | no. 26 | 10273<br />

G<br />

AGRICULTURAL<br />

SCIENCES


apply<strong>in</strong>g Fmoc active-ester chemistry, purified by HPLC to >95% purity<br />

(GeneMed), <strong>and</strong> the carboxyl term<strong>in</strong>us of each peptide was amidated.<br />

Receptor Transactivation Assay <strong>and</strong> Prote<strong>in</strong> Structure Model<strong>in</strong>g. To study the<br />

signal<strong>in</strong>g pathways of the recently identified zfNK<strong>Bs</strong>, the entire cod<strong>in</strong>g<br />

regions of zftac3ra <strong>and</strong> zftac3rb were <strong>in</strong>serted <strong>in</strong>to pcDNA3.1 (Invitrogen).<br />

The cDNA clone for hNKBR was obta<strong>in</strong>ed from the Missouri S&T cDNA Resource<br />

Center (www.cdna.org), <strong>and</strong> the luciferase assay was conducted (15).<br />

Prote<strong>in</strong> structures of <strong>zebrafish</strong> NKBa, NKBb, or NKF were predicted on the<br />

I-Tasser server (41, 42).<br />

In Vivo Experiments. Two-month-old prepubertal <strong>zebrafish</strong> were exposed to<br />

E 2 (Sigma) at a concentration of 5 μg/L (18 nM), or to vehicle (ethanol 100%<br />

to a f<strong>in</strong>al concentration of 33 μL/L), by immersion for 3 d. This relatively low<br />

concentration was used because the natural E 2 concentration <strong>in</strong> the plasma<br />

of adult vitellogenic female <strong>zebrafish</strong> was determ<strong>in</strong>ed as 3–4 ng/mL (43).<br />

1. Yaron Z, Levavi-Sivan B (2006) Fish reproduction. Physiology of Fishes, eds Evans DH,<br />

Claiborne JB (CRC, New York), 3rd Ed, pp 345–388.<br />

2. Ball JN (1981) Hypothalamic control of the pars distalis <strong>in</strong> fishes, amphibians, <strong>and</strong><br />

reptiles. Gen Comp Endocr<strong>in</strong>ol 44:135–170.<br />

3. Levavi-Sivan B, Bogerd J, Mañanós EL, Gómez A, Lareyre JJ (2010) Perspectives on fish<br />

gonadotrop<strong>in</strong>s <strong>and</strong> their <strong>receptors</strong>. Gen Comp Endocr<strong>in</strong>ol 165:412–437.<br />

4. Navarro VM, et al. (2011) Interactions between kisspept<strong>in</strong> <strong>and</strong> <strong>neurok<strong>in</strong><strong>in</strong></strong> B <strong>in</strong> the<br />

control of GnRH secretion <strong>in</strong> the female rat. Am J Physiol Endocr<strong>in</strong>ol Metab 300:<br />

E202–E210.<br />

5. Topaloglu AK, et al. (2009) TAC3 <strong>and</strong> TACR3 mutations <strong>in</strong> familial hypogonadotropic<br />

hypogonadism reveal a key <strong>role</strong> for <strong>Neurok<strong>in</strong><strong>in</strong></strong> B <strong>in</strong> the central control of reproduction.<br />

Nat Genet 41:354–358.<br />

6. Rance NE, Krajewski SJ, Smith MA, Cholanian M, Dacks PA (2010) <strong>Neurok<strong>in</strong><strong>in</strong></strong> B <strong>and</strong><br />

the hypothalamic regulation of reproduction. Bra<strong>in</strong> Res 1364:116–128.<br />

7. Page NM (2004) Hemok<strong>in</strong><strong>in</strong>s <strong>and</strong> endok<strong>in</strong><strong>in</strong>s. Cell Mol Life Sci 61:1652–1663.<br />

8. Page NM, Woods RJ, Lowry PJ (2001) A regulatory <strong>role</strong> for <strong>neurok<strong>in</strong><strong>in</strong></strong> B <strong>in</strong> placental<br />

physiology <strong>and</strong> pre-eclampsia. Regul Pept 98:97–104.<br />

9. Seidah NG, Prat A (2002) Precursor convertases <strong>in</strong> the secretory pathway, cytosol <strong>and</strong><br />

extracellular milieu. Essays Biochem 38:79–94.<br />

10. Eipper BA, Stoffers DA, Ma<strong>in</strong>s RE (1992) The biosynthesis of neuropeptides: Peptide<br />

alpha-amidation. Annu Rev Neurosci 15:57–85.<br />

11. Page NM, Morrish DW, Weston-Bell NJ (2009) Differential mRNA splic<strong>in</strong>g <strong>and</strong> precursor<br />

process<strong>in</strong>g of <strong>neurok<strong>in</strong><strong>in</strong></strong> B <strong>in</strong> neuroendocr<strong>in</strong>e tissues. Peptides 30:1508–1513.<br />

12. Maggi CA (1995) The mammalian tachyk<strong>in</strong><strong>in</strong> <strong>receptors</strong>. Gen Pharmacol 26:911–944.<br />

13. Bonner TI, Affolter H-U, Young AC, Young WS, 3rd (1987) A cDNA encod<strong>in</strong>g the<br />

precursor of the rat neuropeptide, <strong>neurok<strong>in</strong><strong>in</strong></strong> B. Bra<strong>in</strong> Res 388:243–249.<br />

14. Kotani H, Hoshimaru M, Nawa H, Nakanishi S (1986) Structure <strong>and</strong> gene organization<br />

of bov<strong>in</strong>e neuromed<strong>in</strong> K precursor. Proc Natl Acad Sci USA 83:7074–7078.<br />

15. Biran J, Ben-Dor S, Levavi-Sivan B (2008) Molecular identification <strong>and</strong> functional<br />

characterization of the kisspept<strong>in</strong>/kisspept<strong>in</strong> receptor system <strong>in</strong> lower vertebrates.<br />

Biol Reprod 79:776–786.<br />

16. Navarro VM, et al. (2012) Role of <strong>neurok<strong>in</strong><strong>in</strong></strong> B <strong>in</strong> the control of female puberty <strong>and</strong> its<br />

modulation by metabolic status. J Neurosci 32:2388–2397.<br />

17. Kitahashi T, Ogawa S, Parhar IS (2009) Clon<strong>in</strong>g <strong>and</strong> expression of kiss2 <strong>in</strong> the <strong>zebrafish</strong><br />

<strong>and</strong> medaka. Endocr<strong>in</strong>ology 150:821–831.<br />

18. Aizawa K, et al. (2007) Responses of embryonic germ cells of the radiation-sensitive<br />

Medaka mutant to gamma-irradiation. J Radiat Res (Tokyo) 48:121–128.<br />

19. Bianco IH, Carl M, Russell C, Clarke JD, Wilson SW (2008) Bra<strong>in</strong> asymmetry is encoded<br />

at the level of axon term<strong>in</strong>al morphology. Neural Dev 3:9.<br />

20. Roussigné M, Bianco IH, Wilson SW, Blader P (2009) Nodal signall<strong>in</strong>g imposes leftright<br />

asymmetry upon neurogenesis <strong>in</strong> the habenular nuclei. Development 136:<br />

1549–1557.<br />

21. Concha ML, Wilson SW (2001) Asymmetry <strong>in</strong> the epithalamus of vertebrates. J Anat<br />

199:63–84.<br />

22. Servili A, et al. (2011) Organization of two <strong>in</strong>dependent kisspept<strong>in</strong> systems derived<br />

from evolutionary-ancient kiss genes <strong>in</strong> the bra<strong>in</strong> of <strong>zebrafish</strong>. Endocr<strong>in</strong>ology 152:<br />

1527–1540.<br />

23. Berman JR, Skariah G, Maro GS, Mignot E, Mourra<strong>in</strong> P (2009) Characterization of two<br />

melan<strong>in</strong>-concentrat<strong>in</strong>g hormone genes <strong>in</strong> <strong>zebrafish</strong> reveals evolutionary <strong>and</strong> physiological<br />

l<strong>in</strong>ks with the mammalian MCH system. J Comp Neurol 517:695–710.<br />

24. Alderman SL, Bernier NJ (2007) Localization of corticotrop<strong>in</strong>-releas<strong>in</strong>g factor, urotens<strong>in</strong><br />

I, <strong>and</strong> CRF-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> gene expression <strong>in</strong> the bra<strong>in</strong> of the <strong>zebrafish</strong>,<br />

Danio rerio. J Comp Neurol 502:783–793.<br />

25. Lehman MN, Coolen LM, Goodman RL (2010) M<strong>in</strong>ireview: Kisspept<strong>in</strong>/<strong>neurok<strong>in</strong><strong>in</strong></strong> B/<br />

dynorph<strong>in</strong> (KNDy) cells of the arcuate nucleus: A central node <strong>in</strong> the control of gonadotrop<strong>in</strong>-releas<strong>in</strong>g<br />

hormone secretion. Endocr<strong>in</strong>ology 151:3479–3489.<br />

Each group of 10 fish was kept <strong>in</strong> a 3-L aquarium with water ma<strong>in</strong>ta<strong>in</strong>ed at<br />

28 °C <strong>and</strong> replaced daily. After 3 d, fish were anesthetized <strong>and</strong> bra<strong>in</strong>s were<br />

removed. RNA extraction, reverse transcription of RNA <strong>and</strong> real-time PCR<br />

were carried out as previously described (15).<br />

Adult female <strong>zebrafish</strong> were <strong>in</strong>jected <strong>in</strong>traperitoneally with 20 pmol/g<br />

body weight of either sal<strong>in</strong>e, salmon GnRH analog [(D-Ala 6 ,Pro 9 -Net)mammalian<br />

GnRH], zfNKBa, zfNKBb, zfNKF, or senktide (n =8fish per<br />

group). Six hours post<strong>in</strong>jection the fish were bled (44). Blood was<br />

centrifuged at 970 × g 30 m<strong>in</strong> <strong>and</strong> the plasma was separated <strong>and</strong> stored at<br />

−20 °C. Plasma from two animals were pooled (with<strong>in</strong> each treatment)<br />

<strong>and</strong> analyzed for LH us<strong>in</strong>g ELISA for other Cypr<strong>in</strong>idae, carp, accord<strong>in</strong>g to<br />

Aizen et al. (35, 45).<br />

ACKNOWLEDGMENTS. This research was funded by United States-Israel<br />

B<strong>in</strong>ational Science Foundation Grant 2005096, <strong>and</strong> by B<strong>in</strong>ational Agricultural<br />

Research <strong>and</strong> Development Fund MD-8719-08.<br />

26. Liu Q, et al. (2010) Expression of lept<strong>in</strong> receptor gene <strong>in</strong> develop<strong>in</strong>g <strong>and</strong> adult <strong>zebrafish</strong>.<br />

Gen Comp Endocr<strong>in</strong>ol 166:346–355.<br />

27. Nakajima Y, Tsuchida K, Negishi M, Ito S, Nakanishi S (1992) Direct l<strong>in</strong>kage of three<br />

tachyk<strong>in</strong><strong>in</strong> <strong>receptors</strong> to stimulation of both phosphatidyl<strong>in</strong>ositol hydrolysis <strong>and</strong> cyclic<br />

AMP cascades <strong>in</strong> transfected Ch<strong>in</strong>ese hamster ovary cells. J Biol Chem 267:<br />

2437–2442.<br />

28. Almeida TA, et al. (2004) Tachyk<strong>in</strong><strong>in</strong>s <strong>and</strong> tachyk<strong>in</strong><strong>in</strong> <strong>receptors</strong>: Structure <strong>and</strong> activity<br />

relationships. Curr Med Chem 11:2045–2081.<br />

29. Mantha AK, Ch<strong>and</strong>rashekar IR, Baquer NZ, Cowsik SM (2004) Three dimensional<br />

structure of mammalian tachyk<strong>in</strong><strong>in</strong> peptide <strong>neurok<strong>in</strong><strong>in</strong></strong> B bound to lipid micelles.<br />

J Biomol Struct Dyn 22:137–148.<br />

30. Mitani Y, K<strong>and</strong>a S, Akazome Y, Zempo B, Oka Y (2010) Hypothalamic Kiss1 but not<br />

Kiss2 neurons are <strong>in</strong>volved <strong>in</strong> estrogen feedback <strong>in</strong> medaka (Oryzias latipes). Endocr<strong>in</strong>ology<br />

151:1751–1759.<br />

31. Steven C, et al. (2003) Molecular characterization of the GnRH system <strong>in</strong> <strong>zebrafish</strong><br />

(Danio rerio): Clon<strong>in</strong>g of chicken GnRH-II, adult bra<strong>in</strong> expression patterns <strong>and</strong> pituitary<br />

content of salmon GnRH <strong>and</strong> chicken GnRH-II. Gen Comp Endocr<strong>in</strong>ol 133:27–37.<br />

32. Lee YR, et al. (2009) Molecular evolution of multiple forms of kisspept<strong>in</strong>s <strong>and</strong> GPR54<br />

<strong>receptors</strong> <strong>in</strong> vertebrates. Endocr<strong>in</strong>ology 150:2837–2846.<br />

33. Cheng G, Coolen LM, Padmanabhan V, Goodman RL, Lehman MN (2010) The kisspept<strong>in</strong>/<strong>neurok<strong>in</strong><strong>in</strong></strong><br />

B/dynorph<strong>in</strong> (KNDy) cell population of the arcuate nucleus: Sex<br />

differences <strong>and</strong> effects of prenatal testosterone <strong>in</strong> sheep. Endocr<strong>in</strong>ology 151:<br />

301–311.<br />

34. Lubzens E, Young G, Bobe J, Cerdà J (2010) Oogenesis <strong>in</strong> teleosts: How eggs are<br />

formed. Gen Comp Endocr<strong>in</strong>ol 165:367–389.<br />

35. Aizen J, Kasuto H, Levavi-Sivan B (2007) Development of specific enzyme-l<strong>in</strong>ked immunosorbent<br />

assay for determ<strong>in</strong><strong>in</strong>g LH <strong>and</strong> FSH levels <strong>in</strong> tilapia, us<strong>in</strong>g recomb<strong>in</strong>ant<br />

gonadotrop<strong>in</strong>s. Gen Comp Endocr<strong>in</strong>ol 153:323–332.<br />

36. Ramaswamy S, et al. (2010) <strong>Neurok<strong>in</strong><strong>in</strong></strong> B stimulates GnRH release <strong>in</strong> the male monkey<br />

(Macaca mulatta) <strong>and</strong> is colocalized with kisspept<strong>in</strong> <strong>in</strong> the arcuate nucleus. Endocr<strong>in</strong>ology<br />

151:4494–4503.<br />

37. Bill<strong>in</strong>gs HJ, et al. (2010) <strong>Neurok<strong>in</strong><strong>in</strong></strong> B acts via the <strong>neurok<strong>in</strong><strong>in</strong></strong>-3 receptor <strong>in</strong> the retrochiasmatic<br />

area to stimulate lute<strong>in</strong>iz<strong>in</strong>g hormone secretion <strong>in</strong> sheep. Endocr<strong>in</strong>ology<br />

151:3836–3846.<br />

38. García-Galiano D, et al. (2012) Kisspept<strong>in</strong> signal<strong>in</strong>g is <strong>in</strong>dispensable for <strong>neurok<strong>in</strong><strong>in</strong></strong> B,<br />

but not glutamate, stimulation of gonadotrop<strong>in</strong> secretion <strong>in</strong> mice. Endocr<strong>in</strong>ology<br />

153:316–328.<br />

39. Tang R, Dodd A, Lai D, McNabb WC, Love DR (2007) Validation of <strong>zebrafish</strong> (Danio<br />

rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim<br />

Biophys S<strong>in</strong> (Shanghai) 39:384–390.<br />

40. Palevitch O, et al. (2007) Ontogeny of the GnRH systems <strong>in</strong> <strong>zebrafish</strong> bra<strong>in</strong>: In situ<br />

hybridization <strong>and</strong> promoter-reporter expression analyses <strong>in</strong> <strong>in</strong>tact animals. Cell Tissue<br />

Res 327:313–322.<br />

41. Zhang Y (2008) I-TASSER server for prote<strong>in</strong> 3D structure prediction. BMC Bio<strong>in</strong>formatics<br />

9:40.<br />

42. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: A unified platform for automated<br />

prote<strong>in</strong> structure <strong>and</strong> function prediction. Nat Protoc 5:725–738.<br />

43. Heiden TK, Carvan MJ, 3rd, Hutz RJ (2006) Inhibition of follicular development, vitellogenesis,<br />

<strong>and</strong> serum 17beta-estradiol concentrations <strong>in</strong> <strong>zebrafish</strong> follow<strong>in</strong>g<br />

chronic, sublethal dietary exposure to 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong>. Toxicol Sci<br />

90:490–499.<br />

44. Detrich HW, Westerfield M, Zon LI (2011) The Zebrafish: Cellular <strong>and</strong> Developmental<br />

Biology (Elsevier, Amsterdam), Vol 101, p 92.<br />

45. Aizen J, et al. (2012) Steroidogenic response of carp ovaries to pisc<strong>in</strong>e FSH <strong>and</strong> LH depends<br />

on the reproductive phase. Gen Comp Endocr<strong>in</strong>ol 178:28–36.<br />

10274 | www.pnas.org/cgi/doi/10.1073/pnas.1119165109 Biran et al.


Support<strong>in</strong>g Information<br />

Biran et al. 10.1073/pnas.1119165109<br />

SI Materials <strong>and</strong> Methods<br />

Data M<strong>in</strong><strong>in</strong>g, Phylogenetic Analysis, <strong>and</strong> Chromosomal Synteny. The<br />

putative Tac3 gene sequences were isolated from <strong>zebrafish</strong> us<strong>in</strong>g<br />

a stepwise evolutionary strategy. First, a prote<strong>in</strong> blast was run<br />

us<strong>in</strong>g the mouse Tac2 prote<strong>in</strong> (NP_033338.2) as <strong>in</strong>put. The lowest<br />

scor<strong>in</strong>g sequence that still had the <strong>neurok<strong>in</strong><strong>in</strong></strong> signature of<br />

FxGLM (XP_001365310, Monodelphis domesitca) was used as<br />

<strong>in</strong>put for a genomic search aga<strong>in</strong>st the platypus genome. One<br />

region was found (ornAna1, Contig39139:6403–6445), which<br />

translated to GDMHDFFVGLMGKR. This sequence was used<br />

as <strong>in</strong>put to translated blast of fish DNA <strong>and</strong> EST sequences.<br />

Several ESTs were found that were built <strong>in</strong>to two consensus<br />

contigs (tac3a <strong>and</strong> tac3b), align<strong>in</strong>g to two dist<strong>in</strong>ct regions <strong>in</strong> the<br />

<strong>zebrafish</strong> genome (chr 23 <strong>and</strong> 6, respectively). The cDNAs were<br />

cloned based on the EST contigs, <strong>and</strong> the sequences have been<br />

submitted to GenBank (tac3a: JN392856; tac3b: JN392857).<br />

Because of the fact that these genes had more than one putative<br />

active peptide, <strong>and</strong> the difference <strong>in</strong> sequence between the<br />

mammalian <strong>and</strong> fish sequences, it was decided to isolate as many<br />

fish <strong>and</strong> mammalian sequences as possible to be sure of the<br />

identification of orthology as opposed to paralogy. An additional<br />

27 fish tac genes were found, us<strong>in</strong>g the <strong>zebrafish</strong> prote<strong>in</strong> as an<br />

<strong>in</strong>put to tblastn aga<strong>in</strong>st the nucleotide <strong>and</strong> EST databases at the<br />

National Center for Biotechnology Information; 23 of the fish<br />

<strong>and</strong> 4 of the nonfish (alligator, frog, chicken, <strong>and</strong> pig) tacs were<br />

built from ESTs, <strong>and</strong> these have been submitted to GenBank<br />

with the follow<strong>in</strong>g accession numbers BK008100–BK008126.<br />

The human TAC genes have several isoforms, the ones that<br />

didn’t cause species-specific gaps or extensions <strong>in</strong> prelim<strong>in</strong>ary<br />

alignments were chosen for the f<strong>in</strong>al alignments <strong>and</strong> trees. The<br />

tac3ra <strong>and</strong> tac3rb sequences were cloned based on the predicted<br />

gene sequences <strong>in</strong> GenBank. The tac3rc was found <strong>in</strong> a genomic<br />

search, <strong>and</strong> once aga<strong>in</strong>, more sequences were then sought to<br />

ensure proper classification of the <strong>receptors</strong>. Additional 19 fish<br />

tac3 <strong>receptors</strong> were found, many with genomic predictions. The<br />

genomic predictions were manually created, <strong>and</strong> 13 were improved<br />

<strong>and</strong> deposited <strong>in</strong> GenBank (accession nos.: BK008087–<br />

BK008099). Phylogenetic analysis was performed us<strong>in</strong>g both<br />

neighbor-jo<strong>in</strong><strong>in</strong>g (ClustalW 2.1) <strong>and</strong> maximum likelihood (Phylip<br />

3.69, ProML (1) on the basis of alignments performed both by<br />

ClustalW (2) <strong>and</strong> Muscle (3.8.31) (3). The topologies were the<br />

same <strong>in</strong> all comb<strong>in</strong>ations of multiple alignment <strong>and</strong> tree construction<br />

programs. Bootstrapp<strong>in</strong>g of 1,000 was performed on<br />

the neighbor-jo<strong>in</strong><strong>in</strong>g <strong>and</strong> of 100 on the maximum-likelihood<br />

trees. Trees were visualized with FigTree 1.3.1 (4). Synteny was<br />

observed us<strong>in</strong>g the University of California at Santa Cruz genome<br />

browser <strong>and</strong> the follow<strong>in</strong>g genome builds: human: hg19<br />

(5); <strong>zebrafish</strong>: Zv9/danRer7; medaka: oryLat2; Tetraodon: tet-<br />

Nig2; Fugu: fr2.<br />

In Situ Hybridization Analysis of Embryos <strong>and</strong> Adults. Adult wild-type<br />

<strong>zebrafish</strong> were ma<strong>in</strong>ta<strong>in</strong>ed at 27–28 °C on a 14 h:10 h (light:dark)<br />

1. Felsenste<strong>in</strong> J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. (Distributed by<br />

the author, Department of Genome Sciences) (University of Wash<strong>in</strong>gton, Seattle, WA).<br />

2. Lark<strong>in</strong> MA, et al. (2007) Clustal W <strong>and</strong> Clustal X version 2.0. Bio<strong>in</strong>formatics 23:<br />

2947–2948.<br />

3. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy <strong>and</strong> high<br />

throughput. Nucleic Acids Res 32:1792–1797.<br />

4. Rambaut A (2007) FigTree, a graphical viewer of phylogenetic trees. Available at:<br />

http://tree.bio.ed.ac.uk/software/figtree/. Accessed July, 2011.<br />

cycle, <strong>and</strong> fed a range of dry fish food <strong>and</strong> artemia twice daily.<br />

Embryos were generated from natural crosses by breed<strong>in</strong>g the<br />

male/female pairs.<br />

A fragment of <strong>zebrafish</strong> tac3a (Table S1) was cloned <strong>in</strong>to<br />

pGEM-T easy vector. Antisense <strong>and</strong> sense riboprobes were synthesized<br />

(Dig RNA label<strong>in</strong>g kit; Roche Diagnostics) us<strong>in</strong>g SpeI or<br />

NcoI l<strong>in</strong>earized (respectively) plasmids as templates <strong>and</strong> wholemount<br />

<strong>in</strong> situ hybridization was conducted accord<strong>in</strong>g to ref. 6.<br />

We used 0.6–0.8 g sexually mature <strong>zebrafish</strong>. Fish were first<br />

anesthetized with MS-222 (Sigma) <strong>and</strong> decapitated. Bra<strong>in</strong>s were<br />

removed <strong>and</strong> fixed with 4% (wt/vol) paraformaldehyde <strong>in</strong> PBS<br />

for 6 h at 4 °C <strong>and</strong> immersed <strong>in</strong> PBS conta<strong>in</strong><strong>in</strong>g 20% (wt/vol)<br />

sucrose <strong>and</strong> 30% (vol/vol) optimal cutt<strong>in</strong>g temperature (OCT)<br />

(Sakura) for about 24 h. Bra<strong>in</strong>s were then embedded <strong>in</strong> OCT,<br />

frozen <strong>in</strong> liquid nitrogen, sectioned frontally at 12 μm on<br />

a cryostat at −18 °C, <strong>and</strong> mounted onto Superfrost plus glass<br />

slides (Thermo Scientific).<br />

To detect tac3a <strong>and</strong> tac3b mRNA, we prepared a specific digoxigen<strong>in</strong><br />

(DIG)-labeled riboprobe for tac3a (position 122–360<br />

<strong>in</strong> GenBank accession no. JN392856), tac3b (position 17–246 <strong>in</strong><br />

GenBank accession no. JN392857). Probes were prepared us<strong>in</strong>g<br />

DIG RNA label<strong>in</strong>g kit (SP6/T7; Roche).<br />

In situ hybridization was generally performed as described <strong>in</strong> ref.<br />

7, with slight modifications. Briefly, sections were washed twice <strong>in</strong><br />

PBS, treated with 1 μg/mL protease K for 15 m<strong>in</strong> at 37 °C,<br />

postfixed with 4% paraformaldehyde <strong>in</strong> PBS for 15 m<strong>in</strong>, <strong>and</strong> <strong>in</strong>cubated<br />

with 0.25% acetic anhydride <strong>in</strong> 0.1 M triethanolam<strong>in</strong>e for<br />

10 m<strong>in</strong>. Then the sections were prehybridized at 58 °C for 1 h <strong>in</strong><br />

hybridization buffer conta<strong>in</strong><strong>in</strong>g 50% (vol/vol) formamide, 5× sal<strong>in</strong>e<br />

sodium citrate (SSC), 0.12 M phosphate buffer (pH 7.4), 100<br />

μg/mL tRNA. Slides were <strong>in</strong>cubated at 58 °C overnight <strong>in</strong> the<br />

same solution conta<strong>in</strong><strong>in</strong>g 1 μg/mL denatured riboprobe. We used<br />

diethyl pyrocarbonate-treated water for the preparation of all<br />

solutions for treatment before hybridization.<br />

After hybridization, sections were washed twice with 50%<br />

formamide <strong>and</strong> 2× SSC followed by two washes of 2× SSC <strong>and</strong><br />

two washes of 0.5× SSC for 15 m<strong>in</strong> each at 58 °C. Slides were<br />

immersed <strong>in</strong> DIG-1 (0.1 M Tris-HCl, 0.16 M NaCl, <strong>and</strong> 0.1%<br />

Tween 20) for 5 m<strong>in</strong>, 1.5% (vol/vol) block<strong>in</strong>g reagent with DIG-1<br />

for 30 m<strong>in</strong>, <strong>and</strong> DIG-1 for 15 m<strong>in</strong>, <strong>and</strong> then <strong>in</strong>cubated with an<br />

alkal<strong>in</strong>e phosphatase-conjugated anti-DIG antibody (diluted<br />

1:1,000 with DIG-1; Roche) for at least 2 h. Sections were<br />

washed with DIG-1 twice for 15 m<strong>in</strong> each, <strong>and</strong> DIG-3 (0.1 M<br />

Tris-HCl, pH 9.5; 0.1 M NaCl; 0.05 M MgCl2) for 5 m<strong>in</strong>. Sections<br />

were then treated with a chromogenic substrate NBT/BCIP<br />

stock solution (Roche) diluted 1:250 (vol/vol) <strong>in</strong> DIG-3 until<br />

a visible signal was detected. Sections were immersed <strong>in</strong> a reaction<br />

stop solution (10 mM Tris-HCl, pH8.0; 1 mM EDTA,<br />

pH8.0) to stop the chromogenic reaction. Sections were then<br />

dehydrated, covered us<strong>in</strong>g ClearMount Mount<strong>in</strong>g Solution (Invitrogen)<br />

<strong>and</strong> exam<strong>in</strong>ed us<strong>in</strong>g light microscopy.<br />

5. Kent WJ, et al. (2002) The human genome browser at UCSC. Genome Res 12:996–1006.<br />

6. Palevitch O, et al. (2007) Ontogeny of the GnRH systems <strong>in</strong> <strong>zebrafish</strong> bra<strong>in</strong>: In situ<br />

hybridization <strong>and</strong> promoter-reporter expression analyses <strong>in</strong> <strong>in</strong>tact animals. Cell Tissue<br />

Res 327:313–322.<br />

7. Mitani Y, K<strong>and</strong>a S, Akazome Y, Zempo B, Oka Y (2010) Hypothalamic Kiss1 but not<br />

Kiss2 neurons are <strong>in</strong>volved <strong>in</strong> estrogen feedback <strong>in</strong> medaka (Oryzias latipes).<br />

Endocr<strong>in</strong>ology 151:1751–1759.<br />

Biran et al. www.pnas.org/cgi/content/short/1119165109 1of9


A<br />

1 ccctgtctctgtgtcttgtctgatagatagtccatcacaaaaggatt<br />

107 taactctccaagcagaaactggaactgagctcttttctacagatctacatcctcagctca<br />

167 gagtaatctgtaaagatgtaccgtggacttgtgttactgttcttggttttggtgctggaa<br />

M Y R G L V L L F L V L V L E<br />

247 actcgatggagtgagtcgagctgtcagcagtcagagtctcaaagatcagtttcaagcgag<br />

15<br />

T R W S E S S C Q Q S E S Q R S V S S E 35<br />

307 agtccaagttttcggatgtcgactcataacttgctgaagaggtataatgacatagattat<br />

S P S F R M S T H N L L K R Y N D I D Y 55<br />

367 gacagtttcgtcggattaatggggcgcagaaacgccgaaacagatgatataccaccccaa<br />

D S F V G L M G R R N A E T D D I P P Q 75<br />

427 cgtaaaagggaaatgcacgatatctttgttggactcatgggtcgacgaagcgctgaacct<br />

R K R E M H D I F V G L M G R R S A E P 95<br />

487 gaatccggacgtcaatggaggaaagagtacccagaaccaagcggaggaatcttcttcaac<br />

E S G R Q W R K E Y P E P S G G I F F N 115<br />

547 aaatgcaaactgaggtttcgtcgtgggttatag<br />

K C K L R F R R G L - 125<br />

B<br />

1 ctgaacagcatcctgttaacaccagctcatacgagtacttggataaggtgtgcgaggatg<br />

M<br />

61 tcctgcggctggctgctcgcgctgctcgtccacgtgctgctgctgctcgcgtgcccgaga<br />

1<br />

S C G W L L A L L V H V L L L L A C P R 21<br />

121 ctctcgcggagcgccctcgactactccttcactgacaacagcgacgcccagccggagcgc<br />

L S R S A L D Y S F T D N S D A Q P E R 41<br />

181 tacgacaaacgatatgatgatattgattacgacagtttcgtcggcctgatgggcaggagg<br />

Y D K R Y D D I D Y D S F V G L M G R R 61<br />

241 agcacaggaataaatcgtgaggcacatttgccatttagaccgaatatgaatgacatcttt<br />

S T G I N R E A H L P F R P N M N D I F<br />

301 gtcggactgttaggacggagaaacactttgtcgtctatgagaaaagaaaggagagggaac<br />

81<br />

V G L L G R R N T L S S M R K E R R G N 101<br />

361 attttcttcaaggatggaagactgaggttttgctgtggtgtatga<br />

I F F K D G R L R F C C G V - 115<br />

Fig. S1. Nucleotide <strong>and</strong> deduced am<strong>in</strong>o acid sequences of the <strong>zebrafish</strong> tac3a (A) <strong>and</strong> tac3b (B). Number<strong>in</strong>g of the deduced am<strong>in</strong>o acid sequences beg<strong>in</strong>s with<br />

the first methion<strong>in</strong>e of the ORF to the right of each l<strong>in</strong>e. Nucleotide numbers are to the left of each l<strong>in</strong>e. The start <strong>and</strong> stop codons are shaded <strong>in</strong> gray, signal<br />

peptide am<strong>in</strong>o acids are underl<strong>in</strong>ed (as def<strong>in</strong>ed by SignalP program analysis http://www.cbs.dtu.dk/services/SignalP/), <strong>and</strong> the putative secreted peptides are<br />

underl<strong>in</strong>ed (nucleotides) <strong>and</strong> bold (am<strong>in</strong>o acids). These sequences have been deposited <strong>in</strong> the GenBank nucleotide database under accession numbers JN392856<br />

<strong>and</strong> JN392857, respectively. Prediction of peptides cleavage sites was conducted us<strong>in</strong>g NeuroPred application (1).<br />

1. Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006) NeuroPred: A tool to predict cleavage sites <strong>in</strong> neuropeptide precursors <strong>and</strong> provide the masses of the<br />

result<strong>in</strong>g peptides. Nucleic Acids Res 34(Web Server issue):W267–W272.<br />

Biran et al. www.pnas.org/cgi/content/short/1119165109 2of9


Fig. S2. Unrooted phylogenetic tree of <strong>neurok<strong>in</strong><strong>in</strong></strong> (A) or <strong>neurok<strong>in</strong><strong>in</strong></strong> receptor (B) sequences generated with both neighbor-jo<strong>in</strong><strong>in</strong>g (ClustalW 2.1) <strong>and</strong><br />

maximum likelihood (Phylip 3.69, ProML) on the basis of alignments performed both by ClustalW <strong>and</strong> Muscle (3.8.31). Trees were visualized with FigTree<br />

(1.3.1). The sequences identified <strong>in</strong> this study are marked <strong>in</strong> bold. Gene nomenclature has been st<strong>and</strong>ardized to tac3, <strong>and</strong> species are <strong>in</strong>dicated for illustration<br />

<strong>and</strong> comparison. Numbers at nodes <strong>in</strong>dicate the bootstrap values from 1,000 replicates. (Scale bar <strong>in</strong>dicates the substitution rate per residue.) GenBank accession<br />

numbers: Lig<strong>and</strong>s: Danio rerio, <strong>zebrafish</strong>, tac3a (JN392856); <strong>zebrafish</strong>, tac3b (JN392857); Pimephales promelas, fathead m<strong>in</strong>now tac3 (BK008100);<br />

Ictalurus punctatus, channel catfish, tac3 (BK008101); Salmo salar, Atlantic salmon, tac3a (BK008102); Atlantic salmon, tac3b (BK008103); Dissostichus mawsoni,<br />

Antarctic toothfish, tac3 (BK008104); Sebastes rastrelliger, grass rockfish, tac3 (BK008105); Gadus morhua, Atlantic cod, tac3 (BK008107); Boreogadus saida,<br />

Legend cont<strong>in</strong>ued on follow<strong>in</strong>g page<br />

Biran et al. www.pnas.org/cgi/content/short/1119165109 3of9


Arctic cod, tac3 (BK008109); Xenopus tropicalis, western clawed frog, tac3 (BK008110); Osmerus mordax, ra<strong>in</strong>bow smelt, tac3 (BK008111); Oryzias latipes,<br />

medaka, tac3 (BK008114); Alligator mississippiensis, American alligator, tac3 (BK008115); Dicentrarchus labrax, European seabass, tac3 (BK008116); <strong>zebrafish</strong>,<br />

tac1 (BK008124); Gallus gallus, chicken, tac1 (BK008126); Sebastes rastrelliger, grass rockfish, tac1 (K008106); Oncorhynchus mykiss, ra<strong>in</strong>bow trout, tac1<br />

(BK008119); Salvel<strong>in</strong>us font<strong>in</strong>alis, brook trout, tac1 (BK008120); Anoplopoma fimbria, sablefish tac1 (BK008121); Sebastes caur<strong>in</strong>us, copper rockfish, tac1<br />

(BK008122); Carassius auratus goldfish tac1 (AAB86991.1); ra<strong>in</strong>bow smelt, tac4a (BK008112); ra<strong>in</strong>bow smelt, tac4b (BK008113); Gasterosteus aculeatus, threesp<strong>in</strong>ed<br />

stickleback, tac4 (BK008117); ra<strong>in</strong>bow trout, tac4 (BK008118); Sus scrofa, pig, Tac4 (BK008123); <strong>zebrafish</strong> tac4 (BK008125); Arctic cod, tac4 (BK008108);<br />

<strong>zebrafish</strong>, tac 4 (BK008125); catfish tac1 (NP_001187697); salmon tac1a (ACI67317); salmon, tac1b (ACI68385); frog, tac1 (NP_001165757.1); Japanese medaka,<br />

tac1 (BAH03329); ra<strong>in</strong>bow smelt, tac1 (ACO10148.1); human, TAC1g (NP_054703.1); human, TAC3a (NP_037383.1); human, TAC4a2 (NP_001070974.1); rabbit,<br />

Tac4 (NP_001075634.1); mouse, Tac4 (NP_444323.1); rat, Tac4 (NP_758831.1); mouse, Tac1 (AAI44738.1); cow, Tac1 (AAI42366.1); cow, Tac3 (NP_851360.1); pig,<br />

Tac3 (NP_001007197.1); mouse, Tac3 (NP_033338.2); rabbit, Tac1 (NP_001095168.1). Receptors: <strong>zebrafish</strong>, tac3ra (JF317292); <strong>zebrafish</strong> tac3rb (JF317293); <strong>zebrafish</strong><br />

tacr3c (XP_002666594); Japanese medaka, tac3ra (BK008087); Japanese medaka, tacr3b (BK008088); Takifugu rubripes, fugu, tacr3a (BK008092); fugu<br />

tacr3b (BK008093); Tetraodon nigroviridis, spotted green pufferfish tacr3a (BK008096); spotted green pufferfish, tacr3b (BK008097); medaka, tacr1a<br />

(BK008089); medaka, tacr1b (BK008090); fugu, tacr1a (BK008095); spotted green pufferfish, tacr1a (BK008099); medaka, tacr2 (BK008091); fugu, tacr2<br />

(BK008094); spotted green pufferfish, tacr2 (BK008098); <strong>zebrafish</strong>, tacr1a (XP_001343073); <strong>zebrafish</strong>, tacr1b (XP_692469); <strong>zebrafish</strong>, tacr2 (XP_001341981.1);<br />

human, TACR1 (NP_001049.1); human, TACR2 (NP_001048.2); human TACR3 (NP_001050); chicken, tacr3 (XM_001232173); chicken, tacr2 (XP_001232177.1);<br />

chicken, tacr1 (NP_990199.1); Neoceratodus forsteri, lungfish, tacr1 (AAZ82194.1); fugu, tacr1b (AAQ02694.1); Octopus vulgaris, octopus, tkr (BAD93354.1);<br />

spotted green pufferfish, tacr1b (CAG05392.1); frog, tacr1 (NP_001106489.1); frog, tacr3 (XP_002934808.1); cow, Tacr3 (NP_001179262.1); cow, Tacr1<br />

(XP_002691234.1); cow Tacr2 (NP_776894.1); rabbit, Tacr3 (NP_001075524.1); rabbit, Tacr1 (XP_002709748.1); rabbit, Tacr2 (NP_001075800.1); mouse, Tacr3<br />

(NP_067357.1); mouse Tacr2 (NP_033340.3); mouse, Tacr1 (NP_033339.2); Caenorhabditis elegans, C. elegans, tkr (NP_500930.1); Ciona <strong>in</strong>test<strong>in</strong>alis, ciona, tkr<br />

(NP_001027809.1).<br />

Biran et al. www.pnas.org/cgi/content/short/1119165109 4of9


A<br />

1 tatatctaaatatttctggacatttctggcatggcacagtcacagaacggatctaaccta<br />

M A Q S Q N G S N L 10<br />

61 acggggaactttacgaaccagttcgtgcagccgccgtggcgcgtggcgctgtggtcggtg<br />

T G N F T N Q F V Q P P W R V A L W S V<br />

121 gcgtacagctccatcctggcgatcgcggtgttcgggaatctgatcgtcatgtggatcatt<br />

A Y S S I L A I A V F G N L I V M W I I 50<br />

181 ctggctcataagcggatgcgaaccgtcaccaactactttctgctcaacctggcgttttcg<br />

L A H K R M R T V T N Y F L L N L A F S<br />

241 gacgcctccatggccgccttcaacactttgatcaatttcgtttacgccacacacggagat<br />

D A S M A A F N T L I N F V Y A T H G D 90<br />

301 tggtatttcggagaagcctactgcaaatttcacaactttttccccgtcacctccgtgttt<br />

W Y F G E A Y C K F H N F F P V T S V F<br />

361 gccagcatttactccatgagcgcaatcgcagtcgacaggtacatggccatcatccatcct<br />

A S I Y S M S A I A V D R Y M A I I H P 130<br />

421 ctgaaaccacgactctcggcgacggccaccaaagtgatcattgtgtgtatctgggtgctc<br />

L K P R L S A T A T K V I I V C I W V L<br />

481 gctgtggttttggccttcccgctgtgtttcttttcaaccatcaaaaaactgcccaaacga<br />

A V V L A F P L C F F S T I K K L P K R 170<br />

541 actctctgctatgttgcctggccgagaccttcagaagaccctttcatgtatcatatcatt<br />

T L C Y V A W P R P S E D P F M Y H I I<br />

601 gtggcgatgctggtgtatgttctgccgctggtggtcatgggtatcaactacactattgtc<br />

V A M L V Y V L P L V V M G I N Y T I V 210<br />

661 ggattgaccctttggggaggagagattcctggtgactcctcagacaactatcagggccag<br />

G L T L W G G E I P G D S S D N Y Q G Q 230<br />

721 ctcagggccaagaggaaggtggtgaaaatgatgatcattgtagtggtgacctttgccttc<br />

L R A K R K V V K M M I I V V V T F A F<br />

781 tgctggctgccgtaccatgtgtatttcctggtgacgggattgaacaagcagctggctcga<br />

C W L P Y H V Y F L V T G L N K Q L A R 270<br />

841 tggaagttcattcagcagatctatctgtccatcatgtggcttgccatgagctccaccatg<br />

W K F I Q Q I Y L S I M W L A M S S T M<br />

TM7<br />

901 tataaccccattatttactgctgcctaaacagccggtttcgcgctggcttcaaacgtgtt<br />

Y N P I I Y C C L N S R F R A G F K R V 310<br />

961 ttccgctggtgcccttttgtgcaagtctctgactatgacgagcttgagctgcgggctatg<br />

F R W C P F V Q V S D Y D E L E L R A M 330<br />

1021 aggcataaagtagcgcggcagagcagcatgtacacaatgtcacgaatggagaccaccgta<br />

R H K V A R Q S S M Y T M S R M E T T V 350<br />

1081 gtcaccgtgtgtgacccatcagagccaaacacccagccaggccggaagagcctgcttaac<br />

V T V C D P S E P N T Q P G R K S L L N 370<br />

1141 caccaccaccaccacaacggctgctccaacccagccaagagcaaagaaataacatacatg<br />

H H H H H N G C S N P A K S K E I T Y M 390<br />

1201 caaagcgacccgaaggaggaattctcctgagaaggacttttgatgtaagattcacac<br />

Q S D P K E E F S * 399<br />

1261 tgaagcattaag<br />

TM4<br />

TM3<br />

TM6<br />

TM5<br />

TM2<br />

TM1<br />

30<br />

70<br />

110<br />

150<br />

190<br />

250<br />

290<br />

B<br />

1 tttaagaaggatttcacggttaaatctaccatggctggtcctcagagcggctcaaatgtg<br />

M A G P Q S G S N V 10<br />

61 acgcgtaatttcacaaatcagttcgtgcagccgccgtggcgggtcgccgtctggtcggtc<br />

T R N F T N Q F V Q P P W R V A V W S V<br />

121 gcttacagctcggtgctcgcggtcgccgtgttcggaaacctcattgttatttggatcatt<br />

A Y S S V L A V A V F G N L I V I W I I 50<br />

181 ttggcccataaacggatgcgcaccgtcaccaactattttttgctcaacctggcgttttcc<br />

L A H K R M R T V T N Y F L L N L A F S<br />

241 gacgcgtccatggccgccttcaacacgctcatcaacttcatttacgccacgcacggagag<br />

D A S M A A F N T L I N F I Y A T H G E 90<br />

301 tggtacttcggagaggtttactgcaagttccacaacttcttccctgtgaccgccgtgttt<br />

W Y F G E V Y C K F H N F F P V T A V F<br />

361 gccagcatttactccatgacagcgattgcagtcgacaggtacatggccataatacatcct<br />

A S I Y S M T A I A V D R Y M A I I H P 130<br />

421 ctgaagcctcgtctgtcagccacggctactaaagtggtgattgtctgtatttgggcactg<br />

L K P R L S A T A T K V V I V C I W A L<br />

481 gcagtgattttggctttcccgctgtgtttctactccaccacgagaaccatgcctcgcaga<br />

A V I L A F P L C F Y S T T R T M P R R 170<br />

541 accatttgctacgtcgcctggccaagaccggctgaggattcattcatgtatcacatcata<br />

T I C Y V A W P R P A E D S F M Y H I I<br />

601 gtgacggtgctggtctacatgctgcccctagtggtgatgggcatcacctacactatagtc<br />

V T V L V Y M L P L V V M G I T Y T I V 210<br />

661 ggggttacactttggggaggagagattcctggagactcgtcggacaattatgttggacag<br />

G V T L W G G E I P G D S S D N Y V G Q 230<br />

721 ctacgtgctaagaggaaggtggtgaagatgatgatcgtggtggtggtgactttcgccctc<br />

L R A K R K V V K M M I V V V V T F A L<br />

781 tgctggttgccgtatcacatctatttcatcgtaacaggcctgaacaaacgcctgaacaag<br />

C W L P Y H I Y F I V T G L N K R L N K 270<br />

841 tggaagtccatccagcaggtgtatctgtctgtgctgtggctggccatgagctccaccatg<br />

W K S I Q Q V Y L S V L W L A M S S T M<br />

TM7<br />

901 tacaaccccatcatttactgctgtctgaatggcagatttcgcgcgggcttcaagcgggcc<br />

Y N P I I Y C C L N G R F R A G F K R A 310<br />

961 ttcaggtggtgtcccttcattcaggtgtccagctatgacgaactggaactccgtcccacc<br />

F R W C P F I Q V S S Y D E L E L R P T 330<br />

1021 cggctccatccacgcaaccagagcagcatgtgcaccctgtcccgcgtcgacaccagcctc<br />

R L H P R N Q S S M C T L S R V D T S L 350<br />

1081 catggtgaggacccacgacgcagtcagcggaagagcaccaaatcccaatgtctggtggag<br />

H G E D P R R S Q R K S T K S Q C L V E 370<br />

1141 gtcagagacgaaaacacaccagccacgaaactctgtcttaatagagatcaagcgttcgca<br />

V R D E N T P A T K L C L N R D Q A F A 390<br />

1201 acagagcagctcagctgaagagtgcatgattatagaattaaagcatattctaaaaatgca<br />

T E Q L S * 395<br />

1281 tttaagtgtgcattgagactcaaagctgcagcgtgatgaggttacactgcctccaagt<br />

Fig. S3. Nucleotide <strong>and</strong> deduced am<strong>in</strong>o acid sequences of the <strong>zebrafish</strong> tac3ra (A) <strong>and</strong> tac3rb (B). Number<strong>in</strong>g of the deduced am<strong>in</strong>o acid sequences beg<strong>in</strong>s<br />

with the first methion<strong>in</strong>e of the ORF to the right of each l<strong>in</strong>e. Nucleotide numbers are to the left of each l<strong>in</strong>e. The start <strong>and</strong> stop codons are shaded <strong>in</strong> gray.<br />

These sequences have been deposited <strong>in</strong> the GenBank nucleotide database under accession numbers JF317292 <strong>and</strong> JF317293, respectively. Open circles, putative<br />

N-glycosylation sites; open squares, putative prote<strong>in</strong> k<strong>in</strong>ase C phosphorylation sites; open triangle, putative cAMP <strong>and</strong> cGMP-dependent prote<strong>in</strong> k<strong>in</strong>ase<br />

phosphorylation site; open diamonds, putative Case<strong>in</strong> k<strong>in</strong>ase II phosphorylation sites; open trapezoid, putative tyros<strong>in</strong>e k<strong>in</strong>ase phosphorylation site; open<br />

octagons, putative N-myristoylation sites. Predicted transmembrane doma<strong>in</strong>s (TM1–TM7) are underl<strong>in</strong>ed; arrowheads <strong>in</strong>dicate the exon-<strong>in</strong>tron boundaries.<br />

Biran et al. www.pnas.org/cgi/content/short/1119165109 5of9<br />

TM3<br />

TM4<br />

TM6<br />

TM2<br />

TM1<br />

TM5<br />

30<br />

70<br />

110<br />

150<br />

190<br />

250<br />

290


A B<br />

Zfish chr23<br />

Human chr12 Zfish chr6 Zfish chr23<br />

Synteny to chr 12 con nues<br />

28M<br />

mll2/3<br />

C D<br />

CISD2<br />

NHEDC1<br />

NHEDC2<br />

BDH2<br />

CENPE<br />

TACR3<br />

acvr1b<br />

acvrl1<br />

arhgef25<br />

sp5l<br />

slc26a10<br />

b4galnt1a<br />

c1galt1a<br />

tac3a<br />

28.4MM<br />

znf385a<br />

birc5b<br />

neurod4<br />

myl6b<br />

c1ql4<br />

Synteny to chr x<br />

103.75<br />

104.7 44.25<br />

Chr4<br />

Human<br />

28.7M<br />

44.00<br />

Chr1<br />

<strong>zebrafish</strong><br />

suclg1<br />

cisd2<br />

nhedc2 h d 2<br />

bdh2<br />

54.76M<br />

18.97<br />

tac3r tac3r<br />

cnga cnga<br />

19.2<br />

Chr1<br />

medaka<br />

ZNF385A<br />

10 genes<br />

55.41M<br />

NEUROD4<br />

57.4M<br />

TTAC3<br />

29 genes +<br />

14 OR genes<br />

56.54M<br />

MYL6B<br />

12 gen geness<br />

SSTAT2<br />

APOF<br />

16 genes<br />

21 genes<br />

suclg1<br />

cisd2<br />

nhedc2<br />

bdh2<br />

39.07M<br />

39.11M<br />

tac3b<br />

c1galt1b<br />

os9<br />

39.2M<br />

stat2<br />

apof<br />

b4galnt1a<br />

arhgef25<br />

ARHGEF25 A<br />

SLC26A10<br />

B4GALNT1<br />

OS9<br />

58.12M<br />

TAC3<br />

Syntenic gene<br />

Non-syntenic gene<br />

Genes miss<strong>in</strong>g <strong>in</strong> fish <strong>in</strong> this region<br />

TAC3R<br />

Syntenic gene<br />

Non-syntenic gene<br />

glb1<br />

cldnd<br />

acy3.2<br />

acy3.1<br />

tac3rb<br />

mll2/3<br />

acvr1b<br />

acvrl1<br />

arhgef25<br />

sp5l<br />

52.95M<br />

Chr1<br />

<strong>zebrafish</strong><br />

28M<br />

slc26a10<br />

b4galnt1a<br />

c1galt1a<br />

tac3a<br />

28.4M<br />

znf385a<br />

birc5b<br />

neurod4<br />

myl6b<br />

c1ql4<br />

28.7M<br />

acsl6<br />

ccdc111<br />

tac3rb<br />

6.48M<br />

53.05M 6.5M<br />

ccdc111<br />

abca1a aacy3<br />

cldnd<br />

glb1<br />

acsl6<br />

6.51M 306.21M<br />

Chr18<br />

tetroadon<br />

Medaka chr7<br />

12.1M<br />

znf385a<br />

12.25M<br />

306.17M<br />

ChrUn<br />

fugu<br />

c1ql4<br />

myl6b<br />

neurod4<br />

birc5b<br />

tac3<br />

c1galt1a<br />

b4galnt1a b<br />

slc26a10<br />

12.43M<br />

sp5l<br />

arhgef25<br />

acvrl1<br />

acvr1b<br />

mll2/3<br />

glb1<br />

cldnd<br />

acy3<br />

tac3rb<br />

Zfish chr6<br />

39.07M<br />

stat2<br />

apof<br />

39.11M<br />

tac3b<br />

c1galt1b<br />

os9<br />

39.2M<br />

b4galnt1a<br />

arhgef25<br />

TAC3<br />

Syntenic gene<br />

Non-syntenic gene<br />

TAC3R<br />

Syntenic gene<br />

Non-syntenic gene<br />

Fig. S4. Chromosomal locations of <strong>zebrafish</strong> tac3 <strong>and</strong> tac3 <strong>receptors</strong> <strong>in</strong> various vertebrate species. Genes adjacent to tac3 <strong>and</strong> tac3r <strong>in</strong> different genomes are<br />

shown. The genes are named accord<strong>in</strong>g to their annotation <strong>in</strong> the human genome. (A) Comparison between <strong>zebrafish</strong> tac3a <strong>and</strong> human. (B) Comparison<br />

between <strong>zebrafish</strong> tac3b <strong>and</strong> medaka tac3. (C) Comparison between human, <strong>zebrafish</strong> <strong>and</strong> medaka tac3ra. Stickleback had identical synteny, <strong>and</strong> fugu <strong>and</strong><br />

green spotted pufferfish differ with dctd <strong>in</strong> place of suclg1 upstream of tac3ra. (D) Comparison between <strong>zebrafish</strong>, green spotted pufferfish, <strong>and</strong> fugu tac3rb.<br />

Biran et al. www.pnas.org/cgi/content/short/1119165109 6of9


Fig. S5. Localization by real-time PCR of <strong>zebrafish</strong> tac3a, tac3b, tac3ra, <strong>and</strong> tac3rb mRNA <strong>in</strong> various tissues. The relative abundances of the mRNAs were<br />

normalized to the amount of elongation factor 1-α (ef1α) by the comparative threshold cycle method, where the comparative threshold reflects the relative<br />

amount of the transcript. Ant. Intest+ panc., anterior <strong>in</strong>test<strong>in</strong>e <strong>and</strong> pancreas; post. Intes, posterior <strong>in</strong>test<strong>in</strong>e. We found low levels of mRNA expression of all<br />

four transcripts <strong>in</strong> the liver, ret<strong>in</strong>a, <strong>and</strong> adipose tissue. However, relatively high mRNA levels of tac3a <strong>and</strong> tac3rb were expressed <strong>in</strong> the gills, tac3a <strong>in</strong> the<br />

posterior <strong>in</strong>test<strong>in</strong>e <strong>and</strong> tac3ra <strong>in</strong> the muscle.<br />

Table S1. Primers used for clon<strong>in</strong>g, quantitative real-time PCR, <strong>and</strong> <strong>in</strong> situ hybridization<br />

Primer Position 5′ to 3′ sequence Slope R 2<br />

Application<br />

zf ef1a-1237F 1,237 aagacaaccccaaggctctca −3.708 0.999 Quantitative<br />

zf ef1a-1419R 1,491 cctttggaacggtgtgattga<br />

real-time PCR<br />

GnRH2-36F 36 gctgatgctgtgtctgagt −3.337 0.994<br />

GnRH2-196R 196 tgtcttgaggatgtttcttc<br />

GnRH3-47F 47 gtgtgttggaggtcagtct −3.103 0.997<br />

GnRH3-208R 208 tccacctcattcactatgtg<br />

kiss1-10F 158 acagacactcgtcccacagatg −3.468 0.991<br />

kiss1-210R 357 caatcgtgtgagcatgtcctg<br />

kiss2-137F 137 gcgttttctgtcaatggag −3.475 0.998<br />

kiss2-317R 317 cgcttcgtttctctttccg<br />

kiss1ra-856F 856 cctaacttcaaggccaac −3.424 0.987<br />

kiss1ra-1095R 1,095 cctctcagtgttgctttc<br />

kiss1rb-755F 755 agacgtcatcggagcgtg −3.305 0.954<br />

kiss1rb-1041R 1,041 cctccttttgaagatcagaggac<br />

zf tac3a-F29 29 tggttttggtgctggaaacc −3.513 0.997<br />

zf tac3a-R191 191 tctgtttcggcgtttctgc<br />

zf tac3b-F86 86 ctccttcactgacaacagcgac −3.239 0.988<br />

zf tac3b-R246 246 gtttctccgtcctaacagtccg<br />

zf tac3ra F154 154 gctcataagcggatgcgaac −3.502 0.969<br />

zf tac3ra R334 334 tggcaaacacggaggtgac<br />

zf tac3rb F343 343 tccatgacagcgattgcagt −3.322 0.964<br />

zf tac3rb R523 523 cgtagcaaatggttctgcgag<br />

zf tac3a F-122 −122 ccctgtctctgtgtcttgtctg In situ<br />

zf tac3a R360 360 gcctataacccacgacgaaac<br />

hybridizaiton/<br />

zf tac3b F-17 −17 ggataaggtgtgcgaggatg<br />

Clon<strong>in</strong>g<br />

zf tac3b stop 382 tcatacaccacagcaaaacctcag<br />

zf tac3Ra start 1 atggcacagtcacagaacgg Clon<strong>in</strong>g<br />

zf tac3Ra stop 1,180 tcaggagaattcctccttcg<br />

zf tac3Rb start 1 atggctggtcctcagagcgg<br />

zf tac3Rb stop 1,161 tcagctgagctgctctgttgc<br />

Biran et al. www.pnas.org/cgi/content/short/1119165109 7of9


Table S2. Percent am<strong>in</strong>o acid sequence identities (black) <strong>and</strong> similarities (red) among Tac3 of different species as determ<strong>in</strong>ed by EMBOSS*<br />

Stretcher alignment tool<br />

Zebrafish<br />

Tac3a<br />

Zebrafish<br />

Tac3b<br />

Human<br />

Tac3<br />

Sheep<br />

Tac3<br />

Mouse<br />

Tac2<br />

Salmon<br />

Tac3a<br />

Salmon<br />

Tac3b<br />

European<br />

Seabass<br />

Tac3<br />

Medaka<br />

Tac3a<br />

Ra<strong>in</strong>bow<br />

Smelt<br />

Tac3<br />

Zebrafish Tac3A<br />

(cypr<strong>in</strong>iformes)<br />

— 35.7 25 18.1 24.8 55.3 43.9 27.8 52 59.2 50 31.8 25.4<br />

Zebrafish Tac3B<br />

(cypr<strong>in</strong>iformes)<br />

45.2 — 18.2 19.7 18.9 40.2 40.4 30.4 36.3 40.6 38.3 30.7 20.5<br />

Human Tac3 41.7 34.7 — 55.6 61.1 24.2 24.4 13.2 25.2 25.8 28.6 29.1 39.2<br />

Sheep Tac3 37 38.5 66.7 — 66.7 23 18.9 14.2 24.6 23.4 26 34.9 38.5<br />

Mouse Tac3 45 37.7 73 73.3 — 26.9 27.6 17.2 24.6 26 28.5 36.7 43.9<br />

Salmon Tac3A<br />

(salmoniformes)<br />

71.2 50.8 43.2 37.8 41 — 38.2 23.6 56.1 65.9 57.2 40.2 28.6<br />

Salmon Tac3B<br />

(salmoniformes)<br />

62.1 52.9 34.4 32.6 38.1 55.9 — 35.1 38.9 39.7 34.1 32.1 20.3<br />

European<br />

Seabass Tac3<br />

(perciformes)<br />

42.1 43.2 32.6 30 33.6 41.4 43.3 — 24.4 25.6 26.7 21.8 18<br />

Medaka Tac3A<br />

(beloniformes)<br />

72.8 48.4 40.2 41.5 40.5 72 53.4 43 — 64.5 56.2 31.2 27.2<br />

Ra<strong>in</strong>bow Smelt<br />

Tac3A<br />

(osmeriforms)<br />

74.4 48.4 43 39.1 42.5 77.3 54.2 41.4 78.2 — 63.4 36.4 29.6<br />

Arctic Cod Tac3<br />

(gadiforms)<br />

68.9 49.2 42.1 38.9 43.8 69.6 54.1 40 70.8 73.3 — 34.6 23.4<br />

Frog Tac3 53.5 40.9 48 47.3 50.8 60.6 49.3 39.1 55.5 60.5 54.9 — 36<br />

Aligator Tac3 45.2 37.7 56 54.1 59.3 45.9 38.3 33.1 43.2 47.2 35.9 51.2 —<br />

—, Same species, not applicable.<br />

*http://www.ebi.ac.uk/Tools/psa.<br />

Arctic<br />

Cod<br />

Tac3<br />

Frog<br />

Tac3<br />

Aligator<br />

Tac3<br />

Table S3. Percent am<strong>in</strong>o acid sequence identities (black) <strong>and</strong> similarities (red) among Tac3r of different species as determ<strong>in</strong>ed by<br />

EMBOSS* Stretcher alignment tool<br />

Zebrafish<br />

Tac3ra<br />

Zebrafish<br />

Tac3rb<br />

Zebrafish<br />

Tac3rc<br />

Human<br />

TAC3R<br />

cow<br />

Tac3r<br />

Mouse<br />

Tac3r<br />

Chicken<br />

Tac3r<br />

medaka<br />

Tac3ra<br />

Medaka<br />

Tac3rb<br />

Tetraodon<br />

Tac3ra<br />

Tetraodon<br />

Tac3rb<br />

Zebrafish TacR3A<br />

(cypr<strong>in</strong>iformes)<br />

— 74.9 60.7 56.4 57.3 59.2 60.6 73.8 68.4 71.8 65.7 60<br />

Zebrafish TacR3B<br />

(cypr<strong>in</strong>iformes)<br />

85 — 61.3 57.5 57.7 59.7 62 74.5 72.7 73.3 71.1 59.4<br />

Zebrafish TacR3C<br />

(cypr<strong>in</strong>iformes)<br />

75.9 71.7 — 50.5 51.3 53.1 52.2 61.9 61.3 62.4 58.6 52.3<br />

Human TacR3 67.6 67.3 63.8 — 90.1 86 75.3 59.3 54.2 57.6 52.5 68.8<br />

Cow TacR3 67.9 67.4 64.2 93.1 — 86 76.3 60.3 54 57.2 52.1 69.7<br />

Mouse TacR3 70.4 69.5 64.9 90.5 90.3 — 76.6 59.7 54.6 59.7 54 70.3<br />

Chicken TacR3 73.8 72.7 67.4 82.6 83.8 84.1 — 61.7 57.9 60.7 55.1 71.2<br />

Medaka Tac3RA<br />

(beloniformes)<br />

84 84 71.4 69.5 70.2 71.7 74 — 70.4 83.3 67.2 61<br />

Medaka Tac3RB<br />

(beloniformes)<br />

80.5 82 74.7 63.7 63.3 65 68.8 79.9 — 68.8 74.9 54.4<br />

Tetraodon Tac3RA<br />

(tetraodontiformes)<br />

82.5 82.3 75.5 68 68.3 70.4 73.5 92 77.2 — 66.7 57.4<br />

Tetraodon Tac3RB<br />

(tetraodontiformes)<br />

75.2 79 72.3 62.2 61.3 63.3 64.5 75.7 82.7 74 — 53.2<br />

Frog TacR3 73.8 72.4 68.3 78.6 78.2 80.4 83.4 75.9 67.8 73.6 66 —<br />

—, Same species, not applicable.<br />

*http://www.ebi.ac.uk/Tools/psa.<br />

Biran et al. www.pnas.org/cgi/content/short/1119165109 8of9<br />

Frog<br />

Tac3r


Table S4. EC 50 values (nM) of human <strong>and</strong> unique pisc<strong>in</strong>e NK<strong>Bs</strong><br />

CRE or SRE NKBR zfTac3ra zfTac3rb huNK3R<br />

NKBRs EC 50s CRE-Luc (nM)<br />

zfNKBa 5.75 ± 1.45 4.55 ± 1.57 3.73 ± 1.25<br />

zfNKBb 237.20 ± 134.20 519.20 ± 160.30 605.00 ± 132.00<br />

zfNKF 4.94 ± 1.83 1.80 ± 1.55 4.36 ± 1.25<br />

huNKB 12.94 ± 13.3 8.12 ± 1.56 4.71 ± 2.08<br />

Senktide 48.95 ± 14.89 20.10 ± 15.1 17.41 ± 1.26<br />

NKBRs EC 50s SRE-Luc (nM)<br />

zfNKBa 0.50 ± 0.17 1.47 ± 1.66 0.49 ± 0.18<br />

zfNKBb 8.96 ± 1.19 33.83 ± 14.7 204.40 ± 138.60<br />

zfNKF 0.54 ± 0.13 0.36 ± 0.16 0.52 ± 0.18<br />

huNKB 2.20 ± 1.49 0.82 ± 0.16 0.67 ± 0.16<br />

Senktide 2.67 ± 1.44 2.72 ± 1.54 1.51 ± 1.63<br />

Serum responsive element (SRE)-Luc was used as a reporter gene that follows PKC activation; cAMP responsive<br />

element (CRE)-Luc was used to follow PKA activation. Mean ± SEM.<br />

Biran et al. www.pnas.org/cgi/content/short/1119165109 9of9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!