21.01.2013 Views

The Additivity Theorem in K

The Additivity Theorem in K

The Additivity Theorem in K

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

188<br />

where the maps are def<strong>in</strong>ed as follows.<br />

gðx; u : gx V tÞ ¼ðx; Þ<br />

aðx; u : gx V tÞ ¼ðfx; tÞ<br />

bðx; u : gx V tÞ ¼ðfx; u : gx V tÞ<br />

cðy; u : t 0 V tÞ ¼ðy; tÞ<br />

dðy; u : t 0 V tÞ ¼½ðy; t 0 Þ; Š<br />

Once we show that a; c; d and g are homotopy equivalences it follows that<br />

ðf; gÞ is a homotopy equivalence, by commutativity of the diagram. We shall<br />

show that each map is a homotopy equivalence by apply<strong>in</strong>g the realization<br />

lemma [6, Lemma 5.1].<br />

Fix<strong>in</strong>g q, we have the follow<strong>in</strong>g commutative diagram of simplicial sets.<br />

ðgjTÞ q ƒƒ ƒ!<br />

a q<br />

ðY TÞ<br />

?<br />

? q<br />

?<br />

?<br />

ffi ?<br />

?<br />

y<br />

y ffi<br />

‘<br />

‘<br />

wt ‘<br />

ðgjtÞ ƒƒ ƒ! Y<br />

t2Tq<br />

t2Tq<br />

<strong>The</strong> vertical maps are the obvious isomorphisms of simplicial sets. <strong>The</strong><br />

bottom map is a disjo<strong>in</strong>t union of homotopy equivalences, by hypothesis, so<br />

a q is a homotopy equivalence. By the realization lemma, a is a homotopy<br />

equivalence.<br />

Similarly c; d and g are shown to be homotopy equivalences by the follow<strong>in</strong>g<br />

diagrams.<br />

c q<br />

W q ƒƒƒƒƒƒƒƒƒ!<br />

ðY TÞ<br />

?<br />

? q<br />

?<br />

?<br />

ffi ?<br />

?<br />

y<br />

y ffi<br />

‘<br />

Y ðTjtÞƒƒ ƒ! ‘<br />

Y<br />

t2Tq<br />

Wp ƒƒ ƒ!<br />

dp<br />

ððY TÞ D 0 Þ<br />

?<br />

? p<br />

?<br />

?<br />

ffi ?<br />

?<br />

y<br />

y ffi<br />

‘<br />

ðt0jTÞƒƒƒƒƒƒ! ‘<br />

D 0<br />

y2Yp<br />

t 0 2Tp<br />

y2Yp<br />

t 0 2Tp<br />

t2Tq<br />

ðgjTÞp ƒƒ ƒ!<br />

gp ðX D 0 Þ<br />

?<br />

? p<br />

?<br />

?<br />

ffi ?<br />

?<br />

y<br />

y ffi<br />

‘<br />

ðgxjTÞƒƒ ƒ! ‘<br />

D 0<br />

x2Xp<br />

KEVIN CHARLES JONES ET AL.<br />

<strong>The</strong> bottom maps are homotopy equivalences because Tjt; t 0 jT, and gxjT are<br />

contractible [1, Lemma 1.4]. This completes the proof. h<br />

x2Xp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!