24.01.2013 Views

Carl Zeiss Microscopy GmbH

Carl Zeiss Microscopy GmbH

Carl Zeiss Microscopy GmbH

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Carl</strong> <strong>Zeiss</strong> <strong>Microscopy</strong> <strong>GmbH</strong><br />

- a merger of NTS and MicroImaging<br />

Gerd Benner<br />

Principal<br />

18.06.2012


New analytical capabilities of an incolumn<br />

EFTEM with monochromator<br />

Gerd Benner<br />

<strong>Carl</strong> <strong>Zeiss</strong> <strong>Microscopy</strong> <strong>GmbH</strong>, <strong>Carl</strong>-<strong>Zeiss</strong>-Straße 22, 73447 Oberkochen, Germany<br />

Philipp Wachsmuth, Ralf Hambach and Ute Kaiser<br />

Group of EM of Material Science, Ulm University, Albert-Einstein-Allee 11, 89081<br />

Ulm, Germany<br />

Martin Pfannmoeller and Rasmus Schroder<br />

CellNetworks, BioQuant, Heidelberg University, 69120 Heidelberg, Germany<br />

EELS WS Uppsala_June 2012<br />

Company confidental 2


Outline<br />

1<br />

2<br />

3<br />

4<br />

5<br />

The Libra 200 MC<br />

Monochromator: Design and Features<br />

In-column Energy Filter: Design and Features<br />

Advantage of low beam voltages for spectroscopy<br />

New analytical capabilities<br />

EELS WS Uppsala_June 2012 Company confidental<br />

3


L200: High performance analytical EFTEM<br />

EELS WS Uppsala_June 2012<br />

• FEG with Schottky field emitter<br />

High Brightness, low energy spread (


LIBRA ® 200 MC C S TEM<br />

FEG<br />

+ Monochromator<br />

Condenser<br />

(C1, C2 & C3)<br />

Objective<br />

C S Corrector<br />

Projector 1<br />

(P1, P2 & P3)<br />

Corrected<br />

Omega Filter<br />

Projector 2<br />

(P4, P5 & P6)<br />

Viewing chamber<br />

+ Detectors<br />

EELS WS Uppsala_June 2012<br />

0<br />

OL<br />

D1<br />

Hx1<br />

D2<br />

Hx2<br />

Company confidental<br />

dispersive<br />

plane (slit)<br />

Entrance Image<br />

Plane<br />

Achromatic<br />

Image Plane<br />

Dispersive<br />

(EELS) plane<br />

5


Elemental EDS SrTiO 3<br />

C S probe corrected L200 Havard (David Bell)<br />

Gatan Drift correction<br />

and spatial image processing with<br />

Simultanious Multivariate Analysis<br />

software from Musashe Wantable<br />

Dual detector (2 x 0.2sr) EDS<br />

acquisition, collected over 1 hr.<br />

Each EDS map on the right is a sum of<br />

matching EDS maps from 2 individual<br />

detectors and<br />

Doing correlated spectrum imaging NOT<br />

possible on only one detector system.<br />

EELS WS Uppsala_June 2012<br />

Sr (M-K)<br />

Ti L O K<br />

Company confidental 6


Correlated Elemental EELS map of SrTiO 3<br />

C S probe corrected L200 Havard (David Bell)<br />

EELS WS Uppsala_June 2012<br />

Sr Ti O<br />

Simultaneous EELS map shows slightly better signal to noise<br />

than EDX map as expected.<br />

Company confidental 7


Outline<br />

1<br />

2<br />

3<br />

4<br />

5<br />

The Libra 200 MC<br />

Monochromator: Design and Features<br />

In-column Energy Filter: Design and Features<br />

Advantage of low beam voltages for spectroscopy<br />

New analytical capabilities<br />

EELS WS Uppsala_June 2012 Company confidental<br />

8


Design of the Monochromator<br />

� Electrostatic Omega-type MC<br />

without stigmatic Cross Over<br />

� Gun lens aperture<br />

for beam current limitation<br />

� High Dispersion<br />

(12 µm/eV @ 4 kV U ext)<br />

� Piezo driven multi slit array<br />

� Straight beam path (MC off)<br />

� Dispersion free; virtual, round CO image<br />

EELS WS Uppsala_June 2012<br />

Company confidental<br />

Dispersive<br />

Plane (Slit)<br />

9


1,20<br />

ratio<br />

1.0 1,00<br />

0,80 0.8<br />

0,60 0.6<br />

Ratio<br />

0.4 0,40<br />

0,20 0.2<br />

Features of the Monochromator<br />

0.2eV<br />

0.14eV<br />

peak<br />

EELS WS Uppsala_June 2012<br />

0.68eV<br />

0.24eV<br />

Current<br />

0,00<br />

0,1 0,15 0,2 0,25<br />

Energy width (FWHM)<br />

0,3 0,35 0,4<br />

0.4<br />

0.1 0.2 0.3 0.4<br />

energy width (FWHM) / eV<br />

Ref: Peak ratio Tenn: Peak ratio Ref: Filter Factor Tenn: Filter Factor<br />

�� FWHM @ 200kV<br />

Deep drop of ZL peak<br />

�� FWGM @ 40kV<br />

(Exp. Time 1.2s<br />

MC slit 0.5µm)<br />

L200<br />

MC<br />

VG<br />

VG<br />

44meV*<br />

* D.C. Bell, et al., Ultramicroscopy (2012),<br />

doi:10.1016/j.ultramic.2011.12.001<br />

Company confidental 10


Highly Resolved Low Loss Spectroscopy (VEELS)<br />

EELS WS Uppsala_June 2012<br />

ROI<br />

1 st plasmon<br />

2 nd plasmon<br />

Company confidental<br />

20 kV<br />

Seite<br />

11


Monochromated HAADF STEM<br />

Uncorrected Beam Profile<br />

EELS WS Uppsala_June 2012<br />

I @ 0,7eV<br />

I @ 0.2eV<br />

4x scalled<br />

0.28nm<br />

0.25nm<br />

-0.5 0 0,5<br />

Si <br />

raw data<br />

�E = 250 meV<br />

Si <br />

Fourier filtering<br />

�E = 93 meV<br />

FFT shows 422 reflexes<br />

b<br />

FWHM of ZL peak with = 93 meV<br />

Company confidental 12


Highly resolved core loss spectroscopy<br />

A B<br />

EELS WS Uppsala_June 2012<br />

C S STEM<br />

d = 0.2 - 1nm<br />

Exp. time: 4s<br />

Pre-peaks A and B and shape indicates<br />

electronic structure of anatase<br />

Electronic structure of<br />

titania aerogels from soft<br />

x-ray absorption<br />

spectroscopy,<br />

Cheynet et al.,Ultramicroscopy,110 (2010)<br />

Company confidental 13


Improved Resolution & Contrast enhancement at low kV<br />

FFT FFT<br />

Without Monochromator With Monochromator<br />

Double wall carbon nanotubes at 80 kV<br />

EELS WS Uppsala_June 2012<br />

Sample courtesy of X. Devaux, Ecole de Mines, Nancy, France<br />

Company confidental<br />

14


Outline<br />

1<br />

2<br />

3<br />

4<br />

5<br />

The Libra 200 MC<br />

Monochromator: Design and Features<br />

In-column Energy Filter: Design and Features<br />

Advantage of low beam voltages for spectroscopy<br />

New analytical capabilities<br />

EELS WS Uppsala_June 2012 Company confidental<br />

15


Imaging Energy Filter<br />

conjugate<br />

EELS WS Uppsala_June 2012<br />

conjugate<br />

Entrance Pupil Plane<br />

Entrance Image Plane<br />

Achromatic Image Plane<br />

Image points focusing<br />

Dispersive Plane<br />

Slit<br />

Energy focusing<br />

Company confidental 16


Corrected Omega Performance<br />

Excellent energy resol.<br />

Drift [eV/min]<br />

0,250<br />

0,200<br />

0,150<br />

0,100<br />

0,050<br />

0,000<br />

EELS WS Uppsala_June 2012<br />

44meV*<br />

0,5 um<br />

MC-Spalt<br />

(0.05eV)<br />

at 40kV<br />

CBED Si 100<br />

Spectrum drift<br />

Low spectrum drift rate<br />

Drift<br />

Mean (0,036 eV/min)<br />

Specification<br />

1 2 3 4 5 6 7 8 9 10<br />

Time [min]<br />

120-144 meV<br />

96-120 meV<br />

72-96 meV<br />

48-72 meV<br />

24-48 meV<br />

0-24 meV<br />

Large acceptance angle<br />

8 eV<br />

High Isochromaticity<br />

Company confidental 17<br />

2k


Application: Zero Loss (ZL) Energy Filtering<br />

Exampel: Precession Electron Diffraction (PED) of Mayenite<br />

EELS WS Uppsala_June 2012<br />

unfiltered ZL - filtered<br />

FOLZ<br />

PED angle 0.3º<br />

�<br />

P<br />

PED angle 3º<br />

Company confidental 18<br />


Application: Electron Spectroscopic Imaging<br />

Example: Analysis of failing vias<br />

100 nm O map<br />

100 nm N map 100 nm<br />

Ti map<br />

EELS WS Uppsala_June 2012<br />

CBED Si 100<br />

ESI Maps<br />

20eV<br />

Plasmon Image<br />

BF<br />

15eV<br />

Company confidental 19


Application: Plasmon Loss Imaging<br />

Surface and volume plasmon of Nanoparticel<br />

58 eV 4 eV<br />

Nanoparticle Sample<br />

EELS WS Uppsala_June 2012<br />

Volume Plasmons<br />

Surface Plasmons<br />

Company confidental<br />

Seite<br />

20


Application: Electron Energy Loss Spectroscopy (EELS)<br />

Example: Different materials<br />

Co Nanoparticle<br />

EEL spectrum of the Co L 2,3<br />

with a FWHM of �E = 0,7eV (blue) and �E =<br />

0,2eV (red). For better comparability the<br />

latter one has be scaled by a factor 2.5<br />

EELS WS Uppsala_June 2012<br />

Co L 2,3 edge<br />

Mn xO y<br />

ELNES for the idendification of<br />

ocidations states<br />

y<br />

y<br />

SrTiO 3/Cr Interface:<br />

E<br />

E<br />

Lateral resolved EELS across<br />

interfaces and multilayer systems<br />

Company confidental 21


Application: Energy–loss Magnetic Chiral Dichroism (EMCD)<br />

Example: Cobalt ferrite nano crystal<br />

EELS WS Uppsala_June 2012<br />

Fe L 2,3<br />

EMCD<br />

10 µm Kondensorblende<br />

200 nm<br />

STEM DF image<br />

EMCD signal of a cobalt<br />

ferrite nano crystal I. Ennen, TU Wien, Austria<br />

A. Hütten, Bielefeld University, Germany<br />

0<br />

A<br />

B<br />

g<br />

Company confidental<br />

Seite<br />

22


Outline<br />

1<br />

2<br />

3<br />

4<br />

5<br />

The Libra 200 MC<br />

Monochromator: Design and Features<br />

In-column Energy Filter: Design and Features<br />

Advantage of low beam voltages for spectroscopy<br />

New analytical capabilities<br />

EELS WS Uppsala_June 2012 Company confidental<br />

23


SALVE II Microscope<br />

@ <strong>Carl</strong> <strong>Zeiss</strong><br />

EELS WS Uppsala_June 2012<br />

Imaging of beam sensitive materials<br />

with atomic resolution at low voltages (20kV-80kV)<br />

Company confidental<br />

24


Atomic resolution @ 20kV with Cs-Corretion & MC (0.15eV)<br />

�E 0.15eV<br />

India customer visit_ Jan. 2012<br />

FFT<br />

Si(110)<br />

�E 0.7eV w/o MC<br />

272<br />

pm<br />

Si(110)<br />

Seite<br />

25


Advantages of LV – Spectroscopy:<br />

High Dispersion<br />

Beam<br />

Voltage /kV<br />

EELS WS Uppsala_June 2012<br />

Dispersion<br />

µm/eV<br />

200<br />

(SESAM)<br />

6.4<br />

200<br />

(LIBRA)<br />

1.84<br />

80 4.26<br />

40 8.25<br />

20 16.2<br />

Intensity [a.u.]<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4<br />

Energy [eV]<br />

�� FWHM @ 20kV<br />

(Exp. Time 1sec)<br />

0.5um slit, FWHM 0.054 eV<br />

2.0um slit, FWHM 0.095 eV<br />

Company confidental 26


Advantages of LV – Spectroscopy:<br />

High Isochromatic Image<br />

CMOS F416 (4k x4k pixel, 15.6µm)<br />

TVIPS <strong>GmbH</strong>,<br />

EELS WS Uppsala_June 2012<br />

~ 0.13 eV<br />

Company confidental 27


Advantages of LV – Spectroscopy:<br />

Higher inelastic cross section (for core loss EELS)<br />

EELS WS Uppsala_June 2012<br />

Jump ratio ~4.2<br />

Jump ratio ~3.6<br />

pi*<br />

sigma*<br />

High signal to noise, high jump ratio, high EELS resolution<br />

Graphene 20kV(ZEISS)<br />

Graphene 80kV(TITAN)<br />

Amorphous C 80kV(TITAN)<br />

Company confidental<br />

Seite<br />

28


Advantages of LV – Spectroscopy:<br />

No Cerenkov radiation allows VEELS close to ZL<br />

EELS WS Uppsala_June 2012<br />

200kV, 200nm<br />

Cerencov<br />

20kV, 20nm<br />

VEELS Spectrum of Ge (20kV)<br />

Row spectrum<br />

U. Kaiser et al., Ultramicroscopy,111 (2011), 1239 -1246<br />

Energy loss function<br />

Refractive index<br />

Company confidental<br />

Seite<br />

29


Advantages of LV – Spectroscopy:<br />

Delocalization in Low Loss Spectroscopy<br />

Delocalization at �E = 16,5 eV<br />

(theoretrical and experimental)<br />

M. Stöger-Pollach, Micron 41 (2010), pp. 577-584<br />

EELS WS Uppsala_June 2012<br />

Delocalization as a function of the energy<br />

loss for different voltages<br />

Company confidental 30


Advantages of Low Voltage Spectroscopy<br />

Summary<br />

• High dispersion of spectrometer (16,4eV @20kV)<br />

� Point spread function of SSCCD less critical => better energy resolution =>better<br />

access to band gaps in the very low loss<br />

� Improved Non-Isochromaticity and Transmissivity<br />

• Less beam damage (depending on damage mechanism)<br />

• Higher inelastic cross section => better signal/noise (= nanoparticles!)<br />

• No Cerenkov radiation<br />

� Excitation of relativistic energy losses in the band gap of semiconductors and insulators as<br />

soon as v e>c 0/n<br />

• Less delocalization at Low Energy Losses (classical picture)<br />

� Reduced Coulomb interaction between the probe electron and the sample.<br />

But:<br />

Sample preparation more critical for bulk samples, since thinn samples are needed.<br />

EELS WS Uppsala_June 2012<br />

Company confidental 31


Outline<br />

1<br />

2<br />

3<br />

4<br />

5<br />

The Libra 200 MC<br />

Monochromator: Design and Features<br />

In-column Energy Filter: Design and Features<br />

Advantage of low beam voltages for spectroscopy<br />

New analytical capabilities<br />

EELS WS Uppsala_June 2012 Company confidental<br />

32


Organic solar cells:<br />

Low Loos Spectroscopy_TEM Kolloquium_GBn_July 2010<br />

Lateral distribution of Polymers<br />

Challenge:<br />

Polymers only distinguish in<br />

electronic structure<br />

� not visible in normal TEM<br />

images<br />

Solution:<br />

Phase contrast microscopy<br />

Low Loss spectroscopy<br />

33


VEELS Spectrum of polymers for an organic solar cell<br />

0 eV<br />

15 eV<br />

Pol. 1<br />

EELS WS Uppsala_June 2012<br />

Pol. 2<br />

Pol. 1+2<br />

Pol. 2<br />

Pol. 1<br />

1 5 10 15<br />

Energy Loss [eV]<br />

Company confidental<br />

34


Segmentation of a polymer:fullerene blend<br />

EELS WS Uppsala_June 2012<br />

Spectrum Image 3 -10eV<br />

nonlinear statistical<br />

methods =><br />

Principal components<br />

Pfannmöller et al., Nano Lett. 11 (2011), 3099–3107<br />

Company confidental 35<br />

HJ<br />

P3HT<br />

PCBM


Principal of �-q Maps<br />

conjugate<br />

Electron Energy Loss<br />

Spectrum<br />

EELS WS Uppsala_June 2012<br />

� EPA < �E FWHM x D<br />

(Strongly) demagnified SA Image<br />

limited by illumination aperture<br />

Slit aperture<br />

Diffraction Pattern<br />

Energy Filter<br />

eV<br />

Graphite<br />

Company confidental 36<br />

qx


�-q map in low loss range and carbon K-edge<br />

Spectrum elongation<br />

can be streched<br />

EELS WS Uppsala_June 2012<br />

Resolution<br />

Energy: 0.2eV<br />

Momentum: 0.1-0.2Å -1<br />

P. Wachsmuth, R. Hambach, U. Kaiser<br />

Ulm University, Ulm, Germany<br />

Company confidental<br />

Seite<br />

37


EELS WS Uppsala_June 2012 Company confidental<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!