06.01.2015 Views

Basics and applications of low-loss EELS

Basics and applications of low-loss EELS

Basics and applications of low-loss EELS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Basics</strong> <strong>and</strong> Applications<br />

<strong>of</strong> Low-<strong>loss</strong> <strong>EELS</strong><br />

W. Sigle, B. Ögüt, N. Talebi, C. T. Koch, L. Gu, M. Rohm, P. A. van Aken<br />

Max Planck Institute for Intelligent Systems, Stuttgart<br />

R. Vogelgesang<br />

Max Planck Institute for Solid State Research, Stuttgart<br />

1<br />

MPI for Intelligent Systems


Outline<br />

I. Dielectric formulation<br />

II.<br />

III.<br />

IV.<br />

Low-<strong>loss</strong> mechanisms in bulk <strong>and</strong> finite media<br />

Instrumentation <strong>and</strong> methods<br />

Applications<br />

2<br />

MPI for Intelligent Systems


The energy-<strong>loss</strong> process<br />

+<br />

+<br />

+<br />

-<br />

-<br />

-<br />

Electron probes<br />

z-component<br />

<strong>of</strong> electric field<br />

Path<br />

3<br />

Energy <strong>loss</strong>:<br />

<br />

Path<br />

<br />

E ( r,<br />

t)<br />

dt<br />

v – electron velocity<br />

t - time<br />

MPI for Intelligent Systems


The dielectric function<br />

Polarizability<br />

Absorption<br />

Dielectric function<br />

<br />

( 2<br />

)<br />

1(<br />

)<br />

i<br />

( )<br />

describes the response <strong>of</strong> a<br />

material to an applied field<br />

<br />

MPI for Intelligent Systems


Dielectric formulation <strong>of</strong> energy <strong>loss</strong><br />

S(<br />

E)<br />

Single<br />

scattering<br />

distribution<br />

<br />

2 I0 t<br />

b<br />

Im( 1/ (<br />

E))<br />

2<br />

ln1<br />

( )<br />

a m v<br />

qE<br />

0<br />

0<br />

Normalization <strong>and</strong><br />

sample thickness<br />

Energy <strong>loss</strong><br />

function<br />

2<br />

<br />

<br />

<br />

Angular scattering<br />

distribution<br />

m o – Electron rest mass<br />

a o – Bohr radius ≈ 0.0529 nm<br />

b – Collection angle<br />

q E ≈ DE/2E o<br />

The <strong>EELS</strong> spectrum contains the full information about the<br />

dielectric function, including optical properties <strong>of</strong> the material.<br />

5<br />

MPI for Intelligent Systems


The energy-<strong>loss</strong> function<br />

Im( <br />

1<br />

)<br />

<br />

<br />

<br />

2<br />

1<br />

2<br />

<br />

2<br />

2<br />

Maxima:<br />

2 small, 1 close to zero Plasmon (collective excitation)<br />

2 small, 1 close to 1 Im(-1/)= 2 Interb<strong>and</strong> transition<br />

(single-electron excitation)<br />

6<br />

MPI for Intelligent Systems


The energy-<strong>loss</strong> function<br />

Example: Al<br />

3<br />

2<br />

1<br />

0<br />

Eps1<br />

Eps2<br />

ELF<br />

-1<br />

-2<br />

5 7 9 11 13 15 17 19<br />

Energy (eV)<br />

7<br />

MPI for Intelligent Systems


4<br />

The energy-<strong>loss</strong> function<br />

Volume plasmon<br />

Example: Ag<br />

dsp interb<strong>and</strong> transitions<br />

(+ plasmon)<br />

Surface plasmon 3<br />

2<br />

1<br />

Eps1<br />

Eps2<br />

-Im(1/Eps)<br />

-Im(1/(Eps+1))<br />

0<br />

-1<br />

1 3 5 7 9<br />

Energy (eV)<br />

is closely connected with the electronic structure <strong>of</strong> a material<br />

MPI for Intelligent Systems


How to obtain the complex (E) <br />

Input:<br />

Refractive index<br />

=<br />

x<br />

S(<br />

E)<br />

<br />

2 I<br />

t<br />

a m <br />

0<br />

b<br />

Im( 1/ (<br />

E))<br />

ln1<br />

(<br />

qE<br />

0 2<br />

)<br />

2<br />

0<br />

v<br />

<br />

<br />

<br />

9<br />

Courtesy : M. Stöger-Pollach<br />

MPI for Intelligent Systems


Calculation <strong>of</strong> electron scattering from <br />

Specimen<br />

<br />

Momentum transfer q<br />

(scattering angle)<br />

Image plane<br />

g<br />

Energy <strong>loss</strong><br />

DE = ħ ∙ ω<br />

ω-q maps: Raising the specimen<br />

above eucentric position in image<br />

mode with spot illumination<br />

ω-q maps: Dispersion <strong>of</strong> excitations, e.g.<br />

plasmon modes <strong>and</strong> Cerenkov <strong>loss</strong>es<br />

10<br />

MPI for Intelligent Systems


Calculation <strong>of</strong> electron scattering from <br />

E. Kröger, Z. Physik 216, 115 (1968))<br />

Volume <strong>loss</strong> + Cerenkov<br />

Surface plasmons<br />

Guided-light modes<br />

11<br />

MPI for Intelligent Systems


Energy <strong>loss</strong> (eV)<br />

Calculation <strong>of</strong> electron scattering from <br />

Electron <strong>loss</strong> versus scattering angle in Ag<br />

(perpendicular transmission through thin film)<br />

Thickness<br />

Bulk<br />

0<br />

50 nm 100 nm<br />

10<br />

(Max=6·10 6 ) (Max=6·10 6 ) (Max=30)<br />

0 100<br />

µrad<br />

SP coupling<br />

0 100<br />

µrad<br />

No SP coupling<br />

0 100<br />

µrad<br />

12<br />

Relativistic calculation (after E. Kröger, Z. Physik 216, 115 (1968))<br />

MPI for Intelligent Systems


Outline<br />

I. Dielectric formulation<br />

II.<br />

III.<br />

IV.<br />

Low-<strong>loss</strong> mechanisms in bulk <strong>and</strong> finite media<br />

Instrumentation <strong>and</strong> methods<br />

Applications<br />

13<br />

MPI for Intelligent Systems


Valence electron energy <strong>loss</strong>es<br />

Bulk<br />

Interb<strong>and</strong> transition<br />

Volume plasmon<br />

Phonon scattering<br />

Finite media<br />

Surface plasmon<br />

Interface plasmon<br />

Transition radiation<br />

Cerenkov radiation<br />

Guided-light modes<br />

DE< 0.2 eV<br />

Bremsstrahlung<br />

Exciton<br />

14<br />

http://northbeggar.wordpress.com/2009/10/04/exciton/<br />

http://www.j-schoenen.de/abc-manual/a/Strahlung.html<br />

Battacharya et al. , J. Non-Cryst. Sol. (2012)<br />

http://www.kph.uni-mainz.de/243.php MPI for Intelligent Systems


Cerenkov <strong>loss</strong>es<br />

q C<br />

vt<br />

ct/ 1/2<br />

vt<br />

ct/ 1/2<br />

<br />

c<br />

<br />

<br />

c<br />

<br />

15<br />

MPI for Intelligent Systems


Cerenkov <strong>loss</strong><br />

Volume<br />

Interb<strong>and</strong> transition<br />

Cerenkov radiation<br />

(if b 2 >1)<br />

q<br />

Si , 100 keV<br />

P<br />

Volume<br />

plasmon<br />

DE<br />

Simulation (after Kröger 1968)<br />

MPI for Intelligent Systems


efractive index n<br />

Cerenkov <strong>loss</strong><br />

acceleration voltage (kV)<br />

A <strong>low</strong>er acceleration voltage al<strong>low</strong>s higher n materials<br />

to be probed without Cerenkov <strong>loss</strong>es.<br />

17<br />

MPI for Intelligent Systems


Outline<br />

I. Dielectric formulation<br />

II.<br />

III.<br />

IV.<br />

Low-<strong>loss</strong> mechanisms in bulk <strong>and</strong> finite media<br />

Instrumentation <strong>and</strong> methods<br />

Applications<br />

18<br />

MPI for Intelligent Systems


Instrumentation<br />

SESAM<br />

200 kV FEG, HV stability: 2∙10 -7 (rms)<br />

Electrostatic Ω-type monochromator<br />

Extremely stable support frame<br />

with hanging column<br />

2 HAADF detectors<br />

(STEM, EFSTEM)<br />

MANDOLINE energy filter<br />

Filter current stability: 2∙10 -8 (rms)<br />

Plan film camera<br />

with imaging plates,<br />

SSCCD, TV-CCD<br />

Koch et al., Microscopy <strong>and</strong> Microanalysis 12 (2006) 506<br />

19<br />

MPI for Intelligent Systems


Data acquisition<br />

Specimen<br />

STEM<br />

Energy-filtered<br />

imaging<br />

EFTEM<br />

20<br />

MPI for Intelligent Systems


EFTEM versus STEM<br />

EFTEM<br />

STEM<br />

Image sampling + –<br />

Spectral sampling – +<br />

Electron dose high <strong>low</strong><br />

…..STEM <strong>and</strong> EFTEM are complementary<br />

21<br />

MPI for Intelligent Systems


EFTEM versus STEM<br />

Surface plasmon detection with electrons<br />

STEM–<br />

<strong>EELS</strong><br />

J. Nelayah et al., Nature Physics 3 (2007) 348.<br />

ω = 0.9 eV<br />

ω = 1.5 eV<br />

ω = 2.0 eV<br />

EFTEM<br />

100 nm<br />

100 nm 100 nm 100 nm<br />

J. Nelayah et al., Proc.14th EMC (2008) 243.<br />

J. Nelayah et al., Optics Letters 34 (2009) 1003.<br />

STEM <strong>and</strong> EFTEM give qualitatively same results ….<br />

22<br />

MPI for Intelligent Systems


Electron monochromator<br />

Emitter Assembly<br />

Gun Lens<br />

High dispersion<br />

Piezo driven multi slit<br />

Straight beam path (MC <strong>of</strong>f)<br />

Dispersion-free (no rainbow<br />

illumination)<br />

MC<br />

Slit Selector<br />

Dispersive<br />

Plane (Slit)<br />

23<br />

MPI for Intelligent Systems


Energy resolution<br />

VG<br />

VG<br />

Tails <strong>of</strong> zero-<strong>loss</strong> peak are markedly reduced<br />

by use <strong>of</strong> monochromator<br />

24<br />

MPI for Intelligent Systems


Delocalization (nm)<br />

How local is the excitation<br />

Electron probe size (STEM):<br />

0.1 nm<br />

BUT: Coulomb excitation is long-range<br />

1–20 nm (depending on energy <strong>loss</strong>)<br />

nach Egerton<br />

Small energy transfer<br />

= small momentum transfer<br />

20<br />

15<br />

10<br />

(after Egerton)<br />

5<br />

Large uncertainty <strong>of</strong> excitation position<br />

0<br />

1 10 100 1000<br />

Energy <strong>loss</strong> (eV)<br />

25<br />

MPI for Intelligent Systems


Outline<br />

I. Dielectric formulation<br />

II.<br />

III.<br />

IV.<br />

Low-<strong>loss</strong> mechanisms in bulk <strong>and</strong> finite media<br />

Instrumentation <strong>and</strong> methods<br />

Applications<br />

26<br />

MPI for Intelligent Systems


DOS<br />

Interb<strong>and</strong> transitions<br />

Core <strong>loss</strong><br />

Interb<strong>and</strong> transitions<br />

E F<br />

E g<br />

E<br />

Joint density <strong>of</strong> states<br />

27<br />

MPI for Intelligent Systems


3.3eV<br />

Interb<strong>and</strong> transitions<br />

Minimizing Cerenkov effects<br />

Thick<br />

0 50 100 (μrad)<br />

Thin<br />

0 50 100 (μrad)<br />

(eV)<br />

0<br />

Cerenkov<br />

<strong>loss</strong>es<br />

3.3 eV<br />

Gap clearly<br />

resolved<br />

5<br />

10<br />

Thick<br />

Thin<br />

15<br />

Thin specimen reduce Cerenkov contributions<br />

28<br />

Gu et al, Phys. Rev. B 75 (2007) 195214<br />

MPI for Intelligent Systems


Counts (10 3 )<br />

Interb<strong>and</strong> transitions<br />

b<strong>and</strong>gap (eV)<br />

Apparent b<strong>and</strong>gap onset (eV)<br />

20<br />

15<br />

10<br />

Apparent b<strong>and</strong> gap onset in GaN<br />

Raw 1.7 t/λ<br />

4<br />

4<br />

1.5 t/λ<br />

Nominal value<br />

0.8 t/λ<br />

3<br />

3<br />

5<br />

0<br />

1<br />

2<br />

0.6 t/λ<br />

0.4 t/λ<br />

0.3 t/λ<br />

3 4<br />

Energy <strong>loss</strong> (eV)<br />

5<br />

2<br />

2<br />

1<br />

1<br />

0 0.5 1.0 1.5 2.0<br />

0 0,5 1 1,5 2<br />

Relative thickness (t/λ)<br />

thickness (t/λ)<br />

Influence <strong>of</strong> Cerenkov signal is negligible for thin specimens<br />

B<strong>and</strong> gap reliable at thickness t/l < 0.5<br />

29<br />

Gu et al., Phys. Rev. B 75 (2007) 195214<br />

MPI for Intelligent Systems


Interb<strong>and</strong> transitions<br />

Critical points<br />

3.3 eV<br />

4.3 eV<br />

GaN<br />

Al 45 Ga 55 N<br />

3.3 eV<br />

6.9 eV<br />

8.0 eV<br />

9.1 eV<br />

11.1 eV<br />

Acquisition time: 1 min<br />

0 2 4 6 8 10 1 2 14<br />

Energy <strong>loss</strong> (eV)<br />

Detection <strong>of</strong> b<strong>and</strong> gap <strong>and</strong> critical points<br />

30<br />

Gu et al, Phys. Rev. B 75 (2007) 195214<br />

Gu et al, J. Phys. Conf. Ser. 126 (2008) 012005<br />

MPI for Intelligent Systems


Interb<strong>and</strong> transitions<br />

Removal <strong>of</strong> zero-<strong>loss</strong> peak<br />

Rafferty et al., Phys. Rev. B 58 (1998) 10326–10337<br />

31<br />

M. Stöger-Pollach, Micron 39 (2008) 1092<br />

MPI for Intelligent Systems


Interb<strong>and</strong> transitions<br />

2D mapping <strong>of</strong> b<strong>and</strong> gaps<br />

EFTEM series<br />

Energy-<strong>loss</strong> range<br />

Energy slit width<br />

Monochromator slit<br />

0 – 20 eV<br />

0.2 eV<br />

0.2 eV<br />

x<br />

y<br />

E 1<br />

E 2<br />

E i<br />

E<br />

32<br />

MPI for Intelligent Systems


Interb<strong>and</strong> transitions<br />

2D mapping <strong>of</strong> b<strong>and</strong> gaps<br />

Al 45 Ga 55 N<br />

GaN<br />

Image size 64 x 64 pixel<br />

Pixel size 6 nm x 6 nm<br />

Determination <strong>of</strong> the b<strong>and</strong> gap values<br />

from the 3D EFTEM images stack.<br />

33<br />

MPI for Intelligent Systems


Interb<strong>and</strong> transitions<br />

Dark-field techniques<br />

Star-shaped filter-entrance aperture<br />

aperture<br />

q<br />

q<br />

Suppression <strong>of</strong> collection <strong>of</strong> Cerenkov<br />

<strong>loss</strong>es while permitting high-angle<br />

indirect b<strong>and</strong> gap transitions.<br />

DE<br />

34<br />

MPI for Intelligent Systems


Interb<strong>and</strong> transitions<br />

Dark-field techniques<br />

Shift <strong>of</strong> angle-limiting<br />

aperture away from<br />

the optical axis<br />

35<br />

MPI for Intelligent Systems


Interb<strong>and</strong> transitions<br />

counts x 10^4<br />

Dark-field techniques<br />

200<br />

GaN<br />

180<br />

160<br />

BF<br />

12 mrad<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-0 5 10 15 20 25 30 35<br />

eV<br />

0 5 10 15 20 25 30 35<br />

Energy <strong>loss</strong> (eV)<br />

Spectra demonstrate validity <strong>of</strong> the DF<br />

collection. Main spectroscopic features<br />

remain intact even if a large transverse<br />

momentum transfer is involved.<br />

36<br />

Gu et al., Ultramicroscopy 109 (2009) 1164<br />

MPI for Intelligent Systems


Interb<strong>and</strong> transitions<br />

Dark-field techniques<br />

Advantages:<br />

Suppression <strong>of</strong> Cerenkov <strong>loss</strong>es<br />

GaN<br />

DF<br />

BF<br />

Detection <strong>of</strong> indirect b<strong>and</strong> gaps<br />

1 5 10 15<br />

Energy <strong>loss</strong> (eV)<br />

Improved spatial resolution: < 5 nm<br />

Disadvantage:<br />

Low signal intensity Noise<br />

Silicon<br />

1 2 3 4 5 6<br />

Energy <strong>loss</strong> (eV)<br />

37<br />

Gu et al, Phys. Rev. B 75 (2007) 195214<br />

Gu et al., Ultramicroscopy 109 (2009) 1164<br />

MPI for Intelligent Systems


Volume plasmon<br />

Charge oscillations<br />

Free-electron density<br />

- + - + - + - +<br />

E P<br />

<br />

<br />

<br />

2<br />

ne<br />

m<br />

0<br />

0<br />

e – electron charge<br />

o – vacuum<br />

permittivity<br />

38<br />

MPI for Intelligent Systems


Volume plasmon<br />

Plasmon peak mapping<br />

Si 3 N 4<br />

SiC<br />

BN, C<br />

SiBCN precursor ceramic<br />

Zeiss 912 Omega<br />

Best precision achieved recently on Zeiss SESAM: 3–5 meV<br />

39<br />

W. Sigle et al., Ultramicroscopy 96 (2003) 565<br />

MPI for Intelligent Systems


Volume plasmon<br />

1. Plasmon energy is characteristic for a particular phase<br />

in a material.<br />

2. In alloys plasmon energy shifts with alloy composition<br />

3. Presence <strong>of</strong> hydrogen can change plasmon energy<br />

4. Plasmon energy can vary with elastic strain (change <strong>of</strong><br />

unit cell volume)<br />

40<br />

MPI for Intelligent Systems


Volume plasmon<br />

Plasmon peak map<br />

Plasmon energy variation across<br />

Al 45 Ga 55 N/GaN interface<br />

Variation much more gradual than Al<br />

concentration (blue) or b<strong>and</strong>-gap variation<br />

But: Good correspondence to strain<br />

variation<br />

Strain map<br />

Plasmon energy scales with strain!<br />

41<br />

L. Gu et al., J. Appl. Phys. 107 (2010) 013501<br />

MPI for Intelligent Systems


Interface plasmon<br />

Interface<br />

Surfaces<br />

B<br />

b<br />

A<br />

Energy <strong>loss</strong> depends on impact parameter<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 2<br />

(A. Howie)<br />

42<br />

MPI for Intelligent Systems


CCD counts<br />

Interface plasmon<br />

CCD counts<br />

4000<br />

3500<br />

Al<br />

Sp3.pict<br />

1000<br />

Sp2.pict<br />

3000<br />

800<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Al 2 O 3<br />

Al<br />

600<br />

400<br />

200<br />

0<br />

-5 0 5 10 15 20 25 30<br />

Energy Loss (eV)<br />

0<br />

-0 5 10 15<br />

Energy Loss (eV)<br />

Surface plasmon<br />

+ interface plasmon<br />

43<br />

MPI for Intelligent Systems


Interface plasmon (solid/solid)<br />

hole<br />

Al<br />

EFTEM series across<br />

interface plasmon peak<br />

Al 2 O 3<br />

E<br />

Surface<br />

P<br />

<br />

E<br />

Bulk<br />

P<br />

/ 2<br />

Interface Bulk<br />

E P<br />

E / 1 <br />

P<br />

44<br />

MPI for Intelligent Systems


Interface plasmon (solid/liquid)<br />

EFTEM images recorded at 590 C<br />

Liquid Al<br />

Solid Si<br />

Interface plasmon<br />

45 Palanisamy et al., Phys. Rev. B 85 (2012) 195305<br />

MPI for Intelligent Systems


Interface plasmon<br />

A<br />

B<br />

A<br />

Properties <strong>of</strong> B cannot be easily meaured if B-layer is thin.<br />

Volume plasmon regime: > 5 nm<br />

B<strong>and</strong>-gap regime: > 20 nm<br />

For thinner layer comparison with theory is necessary<br />

See, e.g. Moreau et al., Phys. Rev. B 56 (1997) 6774<br />

46<br />

MPI for Intelligent Systems


Surface plasmon<br />

Electrons located near the specimen<br />

surface can be collectively excited.<br />

E<br />

Surface plasmon<br />

Surface<br />

P<br />

<br />

E<br />

Bulk<br />

P<br />

/<br />

2<br />

Barnes et al., Nature 424 (2003) 824<br />

47<br />

MPI for Intelligent Systems


Surface plasmon<br />

<strong>low</strong>-energy mode<br />

Thin film<br />

high-energy mode<br />

48<br />

MPI for Intelligent Systems


Surface plasmon (Ag nanorod)<br />

Resonances with different mode number can be excited<br />

49 O. Nicoletti et. al., Optics Express 19 (2011) 15371.<br />

MPI for Intelligent Systems


Surface plasmon (Au nanorod)<br />

Au nanorod<br />

Visibility <strong>of</strong> longitudinal modes up to l = 5 <strong>and</strong> a transverse mode<br />

50 I. Alber et. al., ACS Nano (2011) online<br />

MPI for Intelligent Systems


Surface plasmon (Au nanorod)<br />

Two rods with 8 nm gap<br />

Transverse<br />

mode not<br />

excited<br />

in gap<br />

Bonding <strong>and</strong> antibonding modes<br />

51<br />

I. Alber et. al., ACS Nano (2011) online<br />

MPI for Intelligent Systems


Surface plasmon (Ag triangle)<br />

Comparison EFTEM vs. FDTD<br />

Incoherent<br />

integration <strong>of</strong><br />

response<br />

field during one cycle<br />

This mimics the electron momentum transfer which<br />

is mostly perpendicular to the electron beam<br />

52<br />

L. Gu et al., Phys. Rev. B 83 (2011) 195433<br />

MPI for Intelligent Systems


Surface plasmon (Ag triangle)<br />

Plasmon dispersion<br />

53<br />

L. Gu et al., Phys. Rev. B 83 (2011) 195433<br />

MPI for Intelligent Systems


Surface plasmon (Ag triangle)<br />

SPP propagation <strong>and</strong> <strong>loss</strong>es<br />

3. Radiative <strong>loss</strong>es<br />

1. Reflection<br />

„Fabry-Pérot“<br />

2. Transmission „Whispering gallery<br />

mode“<br />

Propagating<br />

polariton<br />

Mode energies depend on geometry (size, shape, thickness) <strong>and</strong> wavelength<br />

54<br />

L. Gu et al., Phys. Rev. B 83 (2011) 195433<br />

MPI for Intelligent Systems


Surface plasmon (Ag triangle)<br />

Are the excitations coherent even though<br />

the excitation is much more local than the resonance<br />

Au nanoplatelets<br />

Our model <strong>of</strong> interference <strong>of</strong> transmitted <strong>and</strong> reflected SPs strongly supports this view<br />

55<br />

MPI for Intelligent Systems


Surface plasmon (holes in Ag film)<br />

In confined systems surface plasmon resonances exist<br />

These lead to local field enhancement which are visible by <strong>EELS</strong>/EFTEM<br />

2.8 2.2 2.4 1.4 1.0 1.2 0.8 1.8 2.6 2.0 1.6 eV<br />

0.6 eV<br />

Electromagnetic fields <strong>of</strong> holes interact („couple“)<br />

56 W.Sigle et al., Optics Letters 34 (2009) 2150, Ultramicroscopy 119 (2010) 1094<br />

MPI for Intelligent Systems


Energy (eV)<br />

Surface plasmon (slit in Ag film)<br />

Double Slits<br />

EFTEM<br />

Simulations<br />

min<br />

max<br />

57 B. Ögüt et. al. ACS Nano 5 (2011) 6701.<br />

MPI for Intelligent Systems


Surface plasmon (slit in Ag film)<br />

Hybridization Scheme<br />

Nanoslits in a Ag film<br />

Effects <strong>of</strong> electromagnetic<br />

coupling on a slit system<br />

An example <strong>of</strong> Babinet<br />

complementarity<br />

58 B. Ögüt et. al. ACS Nano 5 (2011) 6701.<br />

MPI for Intelligent Systems


Summary<br />

Valence-<strong>loss</strong> electron spectroscopy<br />

• Contains information about<br />

Electronic structure (optical properties (), b<strong>and</strong> gaps)<br />

Electron density (phase separation)<br />

Elastic strain<br />

Electromagnetic fields („Plasmonics“)<br />

• Often has high signal intensity<br />

59<br />

MPI for Intelligent Systems


Acknowledgements<br />

The European Union for financial support under<br />

the Framework 6 program under a contract for an<br />

Integrated Infrastructure Initiative.<br />

Reference 026019 (ESTEEM).<br />

ESTEEM homepage: http://esteem.ua.ac.be/<br />

60<br />

MPI for Intelligent Systems


Website: www.is.mpg.de/StEM<br />

61<br />

MPI for Intelligent Systems

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!