25.01.2013 Views

Iodine Monoxide and the Relations to Sea Ice - Congrex

Iodine Monoxide and the Relations to Sea Ice - Congrex

Iodine Monoxide and the Relations to Sea Ice - Congrex

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Iodine</strong> monoxide<br />

<strong>and</strong> <strong>the</strong> relations <strong>to</strong> sea ice, biological<br />

activity <strong>and</strong> tropospheric composition<br />

SOLAS – ESA – EGU joint conference<br />

Frascati, Italy<br />

29 Nov – 2 Dec 2011<br />

Anja Schönhardt, A. Richter, M. Begoin, F. Wittrock, J. P. Burrows<br />

IUP Bremen


The importance of iodine compounds<br />

<strong>Iodine</strong> radicals in <strong>the</strong> atmosphere<br />

� Change of tropospheric composition / oxodizing capacity<br />

- destruction of ozone<br />

- partitioning of HO x <strong>and</strong> NO x<br />

� Formation of fine new particles � growth <strong>to</strong> CCN<br />

<strong>Iodine</strong><br />

Precursors<br />

(mainly<br />

biogenic?)<br />

I 2<br />

CH 3I<br />

CH 2I 2<br />

CH 2ICl<br />

hn<br />

O 2<br />

I . O3 IO<br />

different branches<br />

IO observed in coastal areas, marine boundary layer, Polar sites<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

2<br />

I xO y<br />

Halogens<br />

Fluorine<br />

Chlorine<br />

Bromine<br />

<strong>Iodine</strong><br />

Astatine<br />

McFiggans et al,<br />

ACP, 2004.<br />

with typical amounts 0-10 pptv (>20 pptv only sporadically)


Halogens in <strong>the</strong> Polar Regions<br />

Ozone depletion in <strong>the</strong> Arctic<br />

(Barrie et al, 1988)<br />

• anti-correlation of Bromine <strong>and</strong> Ozone<br />

• similar evolution of BrO <strong>and</strong> IO at Halley Station<br />

• strong temporal variability<br />

Br<br />

O 3<br />

� ozone depletion, mercury oxidation, particle formation<br />

� importance of halogens for Polar atmospheres<br />

IO/BrO observed in Antarctica<br />

(Saiz-Lopez et al, 2007)<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

3


<strong>Iodine</strong> monoxide in <strong>the</strong> MBL<br />

IO maxima during low tide & day time<br />

Fine particle bursts coninciding with IO maxima<br />

G. McFiggans, 2010.<br />

K. L. Furneaux, 2010.<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

4


Important questions <strong>and</strong> aspects<br />

Impact of gaseous iodine<br />

• Ozone destruction – what is <strong>the</strong> relevance?<br />

• Particle formation – what is <strong>the</strong> relative contribution?<br />

(cp. sulfate aerosol, sea salt aerosol, SOA etc)<br />

Main release pathways / connections of iodine <strong>to</strong> <strong>the</strong> biosphere<br />

From phy<strong>to</strong>plank<strong>to</strong>n / different groups / inorganic sources<br />

Required information<br />

• Column amounts / volume mixing ratios of iodine compounds<br />

(IO, I 2, OIO, precursors) …globally <strong>and</strong> long term<br />

• Altitude profiles of iodine compounds<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

5


Overview<br />

Introduction:<br />

The SCIAMACHY instrument <strong>and</strong> <strong>the</strong> IO retrieval by DOAS<br />

Observations:<br />

• IO above Antarctica<br />

+ comparisons <strong>to</strong> sea ice cover<br />

• IO above oceanic regions<br />

+ comparisons <strong>to</strong> Chlorophyll-a content<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

6


The satellite instrument<br />

SCIAMACHY: SCanning Imaging Absorption spectroMeter<br />

for Atmospheric CHar<strong>to</strong>graphY<br />

• UV-Vis-NIR spectrometer (214 – 2400 nm)<br />

• sun-synchronous orbit, 10:00 am equa<strong>to</strong>r crossing<br />

Geometry:<br />

960 km<br />

800 km<br />

30x60 km²<br />

ENVISAT:<br />

Fo<strong>to</strong>: ESA<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

7


IO retrieval by Differential Optical Absorption Spectroscopy<br />

I 0<br />

I<br />

� I0<br />

( �)<br />

�<br />

k<br />

ln�� � �i<br />

( s)<br />

� i '(<br />

�,<br />

s)<br />

ds � ak�<br />

� r(<br />

�)<br />

I(<br />

�)<br />

�� �� �<br />

� � S i<br />

k<br />

Retrieval settings<br />

• Spectral range: 416 – 430 nm<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

absorption term:<br />

• trace gases<br />

• Ring effect<br />

• Trace gases: IO, NO 2 (223K), O 3 (223K)<br />

• Ring effect, quadratic polynomial<br />

• Earthshine reference spectrum I 0<br />

polynomial:<br />

broad-b<strong>and</strong><br />

effects<br />

Result: Slant Column � i<br />

residual<br />

SC � � ( s)<br />

ds<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

S<br />

i<br />

fitting<br />

window<br />

8


Results: IO from SCIAMACHY<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

9


Global observations of IO slant columns<br />

IO present only in small amounts<br />

� Temporal averaging necessary<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

10


Global observations of IO slant columns<br />

• IO above Antarctica<br />

• IO in East Pacific upwelling region<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

11


180°<br />

IO over Antarctica – multi year composites<br />

Ross<br />

<strong>Ice</strong> Shelf<br />

Ross <strong>Sea</strong><br />

(Max. sea ice extent)<br />

90°W<br />

Antarctic Circle<br />

Filchner-Ronne<br />

Halley <strong>Ice</strong> Shelf<br />

Neumayer 0°<br />

Amery<br />

<strong>Ice</strong> Shelf<br />

90°E<br />

Weddell <strong>Sea</strong><br />

AMF for:<br />

90% reflecting ground<br />

1 km box profile<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

12


IO above Antarctica<br />

Sep/Oct<br />

Dec/Jan<br />

Oct Oct/Nov Nov Nov/Dec Dec<br />

Jan Jan/Feb Feb Feb/Mar Mar<br />

6 year composites<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

13


BrO above Antarctica<br />

Oct Nov Dec Jan Feb Mar<br />

• Appearance of IO <strong>and</strong> BrO both in Antarctic spring<br />

• Different spatial-temporal evolutions<br />

• IO above sea ice in spring time later than BrO<br />

=> different release pathways<br />

BrO data: Mathias Begoin <strong>and</strong> Andreas Richter<br />

6 year composites<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

14


IO in Antarctica: relation <strong>to</strong> sea ice concentrations<br />

<strong>Sea</strong> ice influence<br />

• <strong>Sea</strong> ice reduces in late<br />

spring time<br />

• Phy<strong>to</strong>plank<strong>to</strong>n habitat<br />

beneath/within <strong>the</strong> sea ice<br />

• Contact <strong>to</strong> atmosphere<br />

facilitated when ice cover<br />

breaks open / melts<br />

<strong>Ice</strong> data:<br />

AMSR-E sensor<br />

L. Kaleschke, G. Spreen,<br />

Klima Campus, Hamburg.<br />

Oct Nov<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

15


IO in Antarctica: relation <strong>to</strong> sea ice concentrations<br />

Science 282, 2238 (1998), K. M. Golden, et al. :<br />

The Percolation Phase Transition in <strong>Sea</strong> <strong>Ice</strong><br />

“For temperatures warmer than Tc [about -5°C],<br />

brine carrying heat <strong>and</strong> nutrients can move<br />

through <strong>the</strong> ice, whereas for colder temperatures<br />

<strong>the</strong> ice is impermeable.”<br />

• Biogenic release of iodine species is probable<br />

• <strong>Sea</strong> ice more porous in later spring time: contact<br />

between species below sea ice <strong>and</strong> air above<br />

• Strong biological productivity in cold Antarctic waters<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

16


Connection of iodine <strong>to</strong> <strong>the</strong> biosphere (chlorophyll-a)<br />

• Long-term observations of<br />

IO <strong>and</strong> Chlorophyll-a<br />

• IO from SCIAMACHY<br />

• Chl-a from <strong>Sea</strong>WiFS<br />

• Care needed for IO absolute<br />

amounts over ocean regions<br />

• Enhanced IO at some<br />

biologically active regions<br />

• No clear correlation<br />

<strong>Sea</strong>WiFS data from NASA:<br />

http://oceancolor.gsfc.nasa.gov/cgi/l3<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

17


Comparison: IO columns <strong>and</strong> chlorophyll-a content<br />

Observations:<br />

• Enhanced IO columns above <strong>the</strong><br />

Eastern Pacific<br />

• Spatial coincidence with enhanced<br />

Chlorophyll-a<br />

• No strong spatial correlation<br />

apparent at some o<strong>the</strong>r locations<br />

Thoughts:<br />

• Surfacing of <strong>the</strong> cold Humboldt<br />

current from <strong>the</strong> Antarctic<br />

• Connection of <strong>the</strong> specific<br />

biospheres?<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

18


Comparison: IO columns <strong>and</strong> chlorophyll-a content<br />

Observations:<br />

• Slightly enhanced IO at some coasts<br />

• IO amounts partly correlated with<br />

Chl-a concentrations<br />

• No clear relationship:<br />

some regions with no relation<br />

between Chl-a <strong>and</strong> IO<br />

• no IO above <strong>the</strong> inl<strong>and</strong> lakes<br />

Implications:<br />

� no spectral interference<br />

� possibly better relation of IO with<br />

specific phy<strong>to</strong>plank<strong>to</strong>n groups<br />

(dia<strong>to</strong>ms?)<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

19


Summary<br />

IO retrieval from SCIAMACHY<br />

• Multi year data set of IO columns (up <strong>to</strong> 2003 - 2010)<br />

• Conversion of IO slant columns <strong>to</strong> vertical columns<br />

IO above <strong>Sea</strong> <strong>Ice</strong> / Polar Regions<br />

• Strong detailed spatial <strong>and</strong> temporal variation<br />

• Striking differences in comparison <strong>to</strong> BrO<br />

• Enhanced IO above sea ice in late spring time<br />

• Link between IO enhancement <strong>and</strong> reduced ice concentration (still within <strong>the</strong> sea<br />

ice area, relation <strong>to</strong> phy<strong>to</strong>plank<strong>to</strong>n habitat, importance of ice temperature?)<br />

IO <strong>and</strong> Chlorophyll-a / Oceanic Regions<br />

• Some regions with correlation between IO <strong>and</strong> Chl-a, o<strong>the</strong>r regions with no relation<br />

• Importance of specific types of phy<strong>to</strong>plank<strong>to</strong>n is possible<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

20


Outlook<br />

Next steps<br />

• Detailed correlation studies with <strong>the</strong> data presented<br />

(esp. IO – ice concentration)<br />

• Correlation studies with biospheric parameters<br />

(e.g. biogenic VOCs, Chl-a, dia<strong>to</strong>ms)<br />

� Determine conditions related <strong>to</strong> <strong>the</strong> presence of IO<br />

� Improve <strong>the</strong> underst<strong>and</strong>ing of <strong>the</strong> importance of atmospheric iodine<br />

• Potential for IO retrieval from fur<strong>the</strong>r instruments (GOME, GOME-2)<br />

Related posters:<br />

no.01 Itziar Alonso-Cañas (#57 Cook)<br />

no.05 Astrid Bracher (#28 Magellan)<br />

no.60 Rainer Volkamer (#22 Magellan)<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

21


Acknowledgements<br />

• ESA, Changing Earth Science Network SciNet – funding of TIBAGS<br />

• Diego Fernández & Rober<strong>to</strong> Sabia<br />

• University Bremen<br />

• <strong>Sea</strong>WiFS data (NASA, National Aeronautics <strong>and</strong> Space Administration, USA)<br />

(available at <strong>the</strong> Ocean-Color webpage http://oceancolor.gsfc.nasa.gov)<br />

• AMSR-E sea ice data (L. Kaleschke & G. Spreen)<br />

(available at <strong>the</strong> Integrated Climate Data Center, Klima Campus, Uni Hamburg)<br />

Thank you for listening!<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

22


The End<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

23


The End<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

24


transfer<br />

<strong>to</strong> l<strong>and</strong>/ice<br />

precipitation<br />

deposition<br />

?<br />

Why should we care about iodine compounds?<br />

aerosol particles<br />

inorganic<br />

Recycling/<br />

Re-emission<br />

?<br />

ice algae<br />

McFiggans et al,<br />

ACP, 2004.<br />

phy<strong>to</strong>plank<strong>to</strong>n/algae<br />

?<br />

iodine oxides<br />

I xO y<br />

different<br />

pathways<br />

I 2<br />

CH 3I CH 2I 2<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

25<br />

?<br />

IO<br />

I<br />

O 2 ozone depletion<br />

O 3<br />

hn<br />

CH2ICl CH3I HX, XO<br />

soils<br />

rice paddies<br />

salt lakes<br />

vulcanoes<br />

biomass<br />

burning<br />

Small drawings from:<br />

www.vskrems.lerchenfeld.ac.at


<strong>Iodine</strong> monoxide in <strong>the</strong> MBL<br />

(L. Carpenter et al, 2001)<br />

• anti-correlation of IO <strong>and</strong> tidal height<br />

• presence of macro algae (oxidation<br />

processes during low tide)<br />

• correlation of IO with solar irradiance<br />

(pho<strong>to</strong>chemistry)<br />

� importance of halogens for <strong>the</strong><br />

marine boundary layer<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

26


180°<br />

(Max. sea ice extent)<br />

3. <strong>Iodine</strong> monoxide above Antarctica<br />

90°W<br />

Antarctic Circle<br />

Halley<br />

Neumayer<br />

90°E<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

27<br />

0°<br />

• ~10 14 molec/cm²dSCD of IO<br />

• several ppb IO in snow pack?<br />

(Friess et al 2001, 2009)<br />

(Saiz-Lopez et al, 2007)<br />

organic iodocarbons in sea water<br />

CH 2I 2, CH 2IBr, CH 2ICl<br />

(Carpenter et al, 2007)


90°W<br />

Hudson<br />

Bay<br />

(Max. sea ice extent)<br />

3. <strong>Iodine</strong> monoxide above Antarctica<br />

Alert<br />

180°<br />

Arctic<br />

Ocean<br />

Ny-Ålesund<br />

0°<br />

Bremen<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

Arctic Circle<br />

90°E<br />

(Barrie et al, 1988)<br />

Br<br />

O 3<br />

• BrO up <strong>to</strong> 20 ppt<br />

• IO below <strong>the</strong> detection limit<br />

(Hönninger et al, 2004)<br />

• IO ~3 ppt on two occasions<br />

(Oetjen, 2009, Mahajan pers. comm.)<br />

Update!<br />

• IO dSCD ~10 13 molec/cm²< 1ppt<br />

(Wittrock et al, 2000; Oetjen 2009)<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

28


Vertical columns of iodine monoxide<br />

Retrieval method: Differential Optical Absorption Spectroscopy<br />

Result from DOAS retrieval: slant column amounts SC<br />

Meaningful quantity<br />

for investigations: vertical columns VC<br />

Geometry Air Mass Fac<strong>to</strong>r AMF<br />

• calculated via radiative transfer model SCIATRAN<br />

• correction fac<strong>to</strong>r <strong>to</strong> account for <strong>the</strong> relative path<br />

length through <strong>the</strong> absorber layer<br />

SC(<br />

�,<br />

SZA,<br />

�,...)<br />

AMF ( �, SZA,<br />

�,...)<br />

�<br />

VC<br />

SC(<br />

�,<br />

SZA,<br />

�,...)<br />

VC �<br />

AMF ( �,<br />

SZA,<br />

�,...)<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

29<br />

�<br />

SC � � ( l)<br />

dl<br />

VC<br />

i<br />

i<br />

L<br />

�<br />

z�0<br />

L �L(<br />

�, SZA,<br />

�,...)<br />

i<br />

TOA<br />

� � ( z)<br />

dz<br />

i


Vertical columns of IO – AMF studies<br />

Influencing parameters (examples):<br />

• Ground reflectance<br />

• Solar Zenith Angle<br />

• Absorber altitude profile<br />

• Aerosol scenario<br />

Results from sensitivity studies<br />

� Sensitivity for IO detection much better above<br />

bright surfaces<br />

� Dependency on altitude profile small for bright<br />

surfaces, larger for dark surfaces<br />

� Influence from aerosol amount smaller above<br />

bright surfaces<br />

� More detailed AMF studies including aerosoles<br />

<strong>and</strong> measured IO altitude profiles necessary<br />

90 % reflecting surface<br />

5 % reflecting surface<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

30


Vertical columns of IO – AMF studies<br />

Sensitivity <strong>to</strong> ground layers:<br />

• Reduced sensitivity for darker sufaces<br />

• Enhanced visibility of IO above bright<br />

surfaces<br />

• For precise quantitative studies, <strong>the</strong><br />

ground reflectance needs <strong>to</strong> be taken<br />

in<strong>to</strong> account<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

31


Improving <strong>the</strong> basic satellite data set<br />

NRT data set Consolidated data set<br />

Consolidated data set<br />

• Consistent amounts with inital product<br />

• Improved quality (less noise) due <strong>to</strong> improved background consideration<br />

• Extended, consistent time series now processed <strong>and</strong> ready <strong>to</strong> use (2003-2010 ongoing)<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

32


The very End<br />

(Lizotte, 2001)<br />

Primary productivity in <strong>the</strong> Antarctic sea ice surface communities by<br />

month as modeled by Arrigo et al. (1998b). Symbols: multi-year ice<br />

(triangles); first-year ice (squares); <strong>and</strong> <strong>to</strong>tal sea ice (circles).<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

33


The very End<br />

(Lizotte, 2001)<br />

Primary productivity in <strong>the</strong> Antarctic sea ice zone (SIZ) by month as<br />

modeled by Arrigo et al. (1998b,c). Symbols: SIZ <strong>to</strong>tal (triangles);<br />

MIZ water (diamonds); shelf water (squares); <strong>and</strong> sea ice (circles).<br />

Anja.Schoenhardt@iup.physik.uni-bremen.de<br />

SOLAS-ESA-EGU conference<br />

Frascati, 29 Nov – 2 Dec 2011<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!