25.01.2013 Views

CO - Summer School Alpbach 2012

CO - Summer School Alpbach 2012

CO - Summer School Alpbach 2012

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Summer</strong>school, <strong>Alpbach</strong>, Austria, 2010<br />

Greenhouse gas observations<br />

from space: Current Status and<br />

Future Needs *)<br />

*) <strong>CO</strong> 2 & CH 4<br />

Michael Buchwitz, Maximilian Reuter<br />

reuterm@loz.de<br />

Institute of Environmental Physics (IUP), University of Bremen, Germany


Outline<br />

• Why greenhouse gas observations from space ?<br />

• Measurement techniques<br />

• Existing and planned satellites<br />

= Current status and future needs<br />

2


Fundamentals<br />

3


The Greenhouse Treibhauseffekt Effect<br />

-18°C


The Greenhouse Treibhauseffekt Effect<br />

+15°C


30%<br />

Trenberth et al., 2009<br />

23%<br />

7%<br />

47%<br />

Treibhauseffekt<br />

100%<br />

23%<br />

70%


The natural Treibhauseffekt: Greenhouse TreibhausgaseEffect<br />

Treibhausgas<br />

Wasserdampf (H2O)<br />

Kohlendioxid (<strong>CO</strong>2)<br />

Ozon (O3)<br />

Lachgas (N2O)<br />

Methan (CH4)<br />

Beitrag am natürlichen<br />

Treibhauseffekt<br />

62%<br />

22%<br />

7%<br />

4%<br />

2.5%<br />

Atmosphärischer Anteil<br />

(Säulenmittel)<br />

4000ppm<br />

380ppm<br />

0.3ppm<br />

0.3ppm<br />

1.7ppm


The anthropogenic Treibhauseffekt: Greenhouse Treibhausgase Effect<br />

Treibhausgas<br />

Wasserdampf (H2O)<br />

Kohlendioxid (<strong>CO</strong>2)<br />

Ozon (O3)<br />

Lachgas (N2O)<br />

Methan (CH4)<br />

Beitrag am anthropogenen<br />

Treibhauseffekt<br />

nur indirekt<br />

55%<br />

10% (indirekt)<br />

5%<br />

18%<br />

Atmosphärischer Anteil<br />

(Säulenmittel)<br />

4000ppm<br />

380ppm<br />

0.3ppm<br />

0.3ppm<br />

1.7ppm


www.globalwarmingart.com<br />

Treibhauseffekt


0.6µm, 0.8µm, 1.6µm<br />

Solare Einstrahlung<br />

Treibhauseffekt<br />

Thermische Ausstrahlung<br />

10.8µm<br />

6.2µm


1896 Svante Arrhenius:<br />

Verdopplung <strong>CO</strong> 2<br />

→ 2.1°C<br />

2007 IPCC:<br />

Verdopplung <strong>CO</strong> 2<br />

→ 2.0-4.5°C<br />

C<br />

∆T~∆F~ ln<br />

C0<br />

Treibhauseffekt: Anthropogen<br />

„Der Anstieg des <strong>CO</strong> 2 wird zukünftigen Menschen erlauben,<br />

unter einem wärmeren Himmel zu leben“<br />

Svante Arrhenius, (de.wikipedia.org)<br />

www.globalwarmingart.com


Radiative forcing<br />

(~0.8 o C)<br />

<strong>CO</strong> 2 and CH 4 main contributers to global warming !<br />

IPCC 2007<br />

12


-10000 Year<br />

Past & present observations<br />

2005<br />

Some consequences:<br />

~ +0.8 K<br />

~ +20 cm<br />

IPCC 2007<br />

13


Why greenhouse gas observations<br />

from space?<br />

14


Our Future ?<br />

Global observations of atmospheric <strong>CO</strong> 2 and CH 4 combined with (inverse) modeling<br />

needed to deliver important missing information on GHG sources & sinks !<br />

Cost effective solution: Satellites ! 15


Quelle: Physics Today<br />

<strong>CO</strong> 2 sources and sinks<br />

http://www.carboscope.eu/img/carbon_cycle_fig2.png<br />

16


Missing sink:<br />

-1 GtC/yr<br />

Tropics:<br />

- 2 GtC/yr<br />

(net 0 instead of<br />

source)?<br />

NH land:<br />

+1 GtC/yr<br />

(weaker sink)?<br />

Where is the <strong>CO</strong> 2 disappearing ?<br />

Stephens et al., Science , 2007<br />

17


Mauna Loa<br />

Charles Keeling,<br />

1958<br />

<strong>CO</strong> 2 surface observations<br />

Oil crisis, 1973<br />

El Nino, 1997<br />

Status: Nov 2009<br />

18


<strong>CO</strong> 2 fluxes from surface observations<br />

Surface <strong>CO</strong> 2 network<br />

http://www.cmdl.noaa.gov/ccgg/globalview/<br />

TransCom 3 regions<br />

TransCom 3 regional<br />

<strong>CO</strong> 2 flux inversions<br />

Gurney et al., Nature, 2002<br />

Very accurate but<br />

sparse<br />

Information<br />

content sources &<br />

sinks (fluxes):<br />

Large regions<br />

only (continents,<br />

ocean basins)<br />

Large<br />

uncertainties<br />

(often +/- 100%)<br />

19


Global by source category<br />

Methane sources<br />

Regionally, the uncertainties are even much larger !<br />

Wetlands<br />

Rice<br />

Ruminants<br />

Coal mining 20


Methane: Recent surface observations<br />

Unexpected and<br />

poorly understood<br />

increase<br />

?<br />

21


What about anthopogenic <strong>CO</strong> 2 emissions ?<br />

How accurate are reported power plant emissions ?<br />

22


What about anthopogenic <strong>CO</strong> 2 emissions ?<br />

How accurate are reported power plant emissions ?<br />

Conclusion:<br />

• Need for multiple redundant<br />

independent & transparent<br />

emission estimation procedures<br />

23


Need for monitoring anthropogenic <strong>CO</strong> 2 emissions<br />

Large local sources: emissions highly uncertain – satellites can improve this<br />

24


Need for monitoring anthropogenic CH 4 emissions<br />

(…)<br />

25


Important open questions<br />

… w.r.t. the sources and sinks of <strong>CO</strong> 2 and methane are for example:<br />

Who / what emits how much ?<br />

(Sources)<br />

Are the reported emissions correct ?<br />

How much <strong>CO</strong> 2 will be taken up by<br />

forests and the oceans ? (Sinks)<br />

How will the sinks behave in the<br />

future when the climate is different ?<br />

Will sinks turn into sources ?<br />

How much methane will be released<br />

by melting permafrost areas ?<br />

26


Merit of satellite observations of <strong>CO</strong> 2 (similar for CH 4)<br />

Rayner & O‘Brien, GRL, 2001<br />

Global <strong>CO</strong> 2 flux uncertainty<br />

~ 6 GtC/yr<br />

Reduced to ~ 3 GtC/yr<br />

using surface stations<br />

Satellites can improve this if<br />

sensitive to PBL and if<br />

uncertainty < 2 ppm (0.5%)<br />

for monthly 8 o x10 o columnaveraged<br />

<strong>CO</strong> 2 („X<strong>CO</strong> 2 “)<br />

27


Measurement techniques<br />

28


Viewing Geometries<br />

Satellite Observation Geometries<br />

Nadir Limb Occultation<br />

SCIAMACHY,<br />

AIRS, IASI, TES,<br />

GOSAT, O<strong>CO</strong>-2,<br />

CarbonSat,<br />

A-S<strong>CO</strong>PE,<br />

MERLIN,<br />

ASCENDS, …<br />

Most relevant for GHG<br />

source / sink<br />

application<br />

SCIAMACHY,<br />

MIPAS, …<br />

SCIAMACHY,<br />

ACE-FTS, …<br />

29


SCIAMACHY,<br />

GOSAT, O<strong>CO</strong>,<br />

CarbonSat, …<br />

Measurement Techniques<br />

Measurement Techniques<br />

Passive<br />

TOVS, IMG,<br />

AIRS, IASI,<br />

TES, MIPAS, …<br />

Active<br />

Solar Thermal Laser<br />

Most relevant for GHG<br />

source / sink application<br />

A-S<strong>CO</strong>PE,<br />

MERLIN,<br />

ASCENDS, …<br />

Most relevant for GHG<br />

source / sink application 30


Reflected solar (NIR/SWIR) vs thermal (TIR)<br />

Thermal emission NIR absorption<br />

Sensitive to<br />

mid/upper<br />

troposphere<br />

Active<br />

Passive<br />

Sensitive to<br />

near-surface<br />

GHG<br />

concentrations<br />

31


Estimated uncertainty reduction of (weekly) <strong>CO</strong> 2 surface fluxes<br />

Surface network<br />

AIRS<br />

GOSAT O<strong>CO</strong><br />

High<br />

error<br />

reduction<br />

= Low<br />

error<br />

Low<br />

error<br />

reduction<br />

32<br />

Breon and Ciais, C. R. Geoscience, 2010


Measurement principle „Solar backscatter“<br />

R o<br />

R = R o33


R o<br />

Measurement principle (cont.)<br />

c = gas concentration [molecules/cm 3 ]<br />

l = length of light path [cm]<br />

x = gas absorption cross-section [cm 2 /molecule]<br />

R = R o exp(-clx)<br />

34


Measurement principle (cont.)<br />

35


Issue: Light path - clouds & aerosols<br />

Bril et al., Applied Optics, 2007<br />

SCIAMACHY PMD1<br />

36


Overview ESA CCI Project „GHG-cci“<br />

SCIAMACHY/ENVISAT<br />

CH 4<br />

Global satellite observations<br />

Global information on near-surface <strong>CO</strong> 2 & CH 4<br />

?<br />

<strong>CO</strong> 2<br />

Global observations<br />

<strong>CO</strong> 2<br />

?<br />

TANSO/GOSAT<br />

CH 4<br />

Reference<br />

observations<br />

Upper layer<br />

<strong>CO</strong> 2 & CH 4<br />

AIRS,<br />

IASI,<br />

TES,<br />

MIPAS,<br />

SCIA/occ,<br />

ACE-FTS,<br />

…<br />

Validation<br />

Improved information on<br />

GHG sources & sinks<br />

Calibration (L 0-1)<br />

Calibrated radiances<br />

Retrieval<br />

(L 1-2)<br />

Atmospheric GHG<br />

distributions<br />

Inverse<br />

modelling,<br />

CCDAS<br />

37


Current Satellite Missions<br />

38


SCIAMACHY Scanning Imaging<br />

Absorption Spectrometer for<br />

Atmospheric CHartographY<br />

SCIAMACHY on ENVISAT<br />

39


Tropospheric data products from SCIAMACHY/nadir<br />

... and<br />

more.<br />

40


SCIAMACHY nadir spectrum<br />

Buchwitz, 2000; Schneising et al., 2008, 2009<br />

41


<strong>CO</strong> 2 vertical columns<br />

42


Column-averaged mole fraction: X<strong>CO</strong> 2 (ppm)<br />

+/- 10% +/- 1.5%<br />

Buchwitz et al., ACP, 2005<br />

X<strong>CO</strong> 2 (ppm) = <strong>CO</strong> 2 -column / AIR-column * 10 6<br />

AIR-column = O 2 -column / 0.2095<br />

Schneising et al., ACP, 2008<br />

43


SCIAMACHY Carbon Dioxide & Methane<br />

Buchwitz et al., ACP, 2007; Schneising et al., ACP, 2008, 2009<br />

ENVISAT<br />

44


SCIAMACHY methane & methane emissions<br />

Bergamaschi et al., JGR, 2009<br />

… the SCIAMACHY data put strong<br />

constraints on the smaller-scale spatial<br />

distribution of emissions, while remote<br />

surface measurements mainly constrain the<br />

emissions of larger regions.<br />

Bloom et al., Science, 2010<br />

SCIAMACHY CH 4 , groundwater depth, skin T<br />

Two main application areas:<br />

• Improved emission inventories (for different categories, e.g., wetlands, rice, …)<br />

• Improved process understanding (e.g., land biosphere & related emissions)<br />

Better climate prediction, …<br />

45


Challenging !<br />

Inverse modelling:<br />

Observation – Model<br />

differences interpreted as<br />

model surface flux errors.<br />

Model transport errors !?<br />

Biases satellite data !?<br />

Key requirement:<br />

Avoid systematic biases !<br />

Required relative accuracy *) :<br />

User Requirements<br />

SCIAMACHY<br />

+/- 7 ppm<br />

• X<strong>CO</strong> 2 : < 0.3% (1 ppm) (e.g., Chevallier et al., JGR, 2007)<br />

• XCH 4 : < 0.6% (10 ppb) (e.g., Meirink et al., ACP, 2006)<br />

*) for spatio-temporal averages, e.g., monthly, few deg x few deg<br />

G<strong>CO</strong>S (accuracy RMS): <strong>CO</strong> 2 column: < 1%, CH 4 column: < 2%<br />

CarbonTracke<br />

r<br />

46


High resolution nadir spectra & derivatives<br />

Info on <strong>CO</strong> 2<br />

column<br />

(issue: clouds<br />

& aerosols)<br />

Info on clouds<br />

& aerosols<br />

Info on clouds<br />

& aerosols<br />

47


TANSO-FTS Spectra<br />

GOSAT<br />

23 Jan 2009<br />

X<strong>CO</strong> 2<br />

TANSO-CAI Images<br />

XCH 4<br />

TANSO-FTS Scan Pattern<br />

Kuze et al., 2009<br />

JAXA & NIES GOSAT<br />

48<br />

web sites


Future Satellite Missions<br />

49


Orbiting Carbon Observatory (O<strong>CO</strong>)<br />

O 2 A-band <strong>CO</strong> 2 1.61μm <strong>CO</strong> 2 2.06 μm<br />

Clouds/Aerosols,<br />

Surface Pressure<br />

Glint Spot<br />

Ground Track<br />

Local Nadir<br />

Column <strong>CO</strong> 2<br />

Clouds/Aerosols,<br />

H 2 O,<br />

Temperature<br />

Space-based X <strong>CO</strong>2 measurements<br />

with precisions of 1–2 ppm (0.3–<br />

0.5%) on regional scales will:<br />

• Resolve pole to pole X <strong>CO</strong>2<br />

gradients on regional scales<br />

• Resolve the X <strong>CO</strong>2 seasonal cycle<br />

in the Northern Hemisphere<br />

• Improve constraints on <strong>CO</strong> 2 fluxes<br />

(sources and sinks) compared to<br />

the current knowledge<br />

– Reduce regional scale flux<br />

uncertainties from >2000 gC m -2<br />

yr -1 to < 200 gC m -2 yr -1<br />

– Reduce continental scale flux<br />

uncertainties below 30 gC m -2 yr -<br />

1<br />

Launch in Feb 2009 failed<br />

Reflight Feb 2013 („O<strong>CO</strong>-2“, carbon copy of O<strong>CO</strong>) 50


Laser: A-S<strong>CO</strong>PE, ASCENDS, MERLIN, …<br />

A-S<strong>CO</strong>PE<br />

• <strong>CO</strong> 2:<br />

• A-S<strong>CO</strong>PE: Proposed to ESA for EE7; not selected because of technical issues<br />

• ASCENDS: Several concepts under study in the US. Launch 2020 ?<br />

• CH 4:<br />

• German-French mission („MERLIN“): In Phase 0. Launch 2014 ? 3 year mission.<br />

51


GHG satellite missions with PBL sensitivity<br />

52


Carbon Monitoring Satellite – Proposed for EE8<br />

CarbonSat<br />

Global <strong>CO</strong> 2 and CH 4 from space<br />

NOAA<br />

CarbonTracker<br />

53


CarbonSat Daily Orbital Coverage<br />

• X<strong>CO</strong> 2 & XCH 4<br />

• 500 km swath<br />

• 2 km x 2 km pixel<br />

• 250 meas. per 0.3 s<br />

6 million cloud free<br />

observations / day !<br />

Bovensmann et al., 2010<br />

Clear Sky Fraction<br />

GOSA<br />

T<br />

O<strong>CO</strong><br />

CarbonSat<br />

Miller et al., 2007<br />

54


CarbonSat enables new important application areas:<br />

<strong>CO</strong> 2 and CH 4 emission „hot spot“ detection and monitoring (power plants, …)<br />

55


CarbonSat: <strong>CO</strong> 2 emission hot spot targets<br />

Coal-fired power plants<br />

Belchatov, Poland<br />

(~35 Mt<strong>CO</strong> 2 /year)<br />

Jänschwalde, Germany<br />

(~27 Mt<strong>CO</strong> 2 /year)<br />

Kendal, South Africa<br />

(~27 Mt<strong>CO</strong> 2 /year)<br />

Volcanoes<br />

Spinetti et al., 2008<br />

Aircraft obs. AVIRIS<br />

Pu`u`O`o @ Kilauea56


Oda and Maksyutov<br />

High-resolution <strong>CO</strong> 2 emission maps<br />

Mt<strong>CO</strong> 2/year<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

57


CarbonSat: Bovensmann et al., 2010<br />

58


CarbonSat: Simulation of power plant <strong>CO</strong> 2 plume<br />

Emission: 13 Mt<strong>CO</strong>2/year<br />

(„moderate“; many power plants<br />

emit 20-35 Mt<strong>CO</strong> 2 /year)<br />

Bovensmann et al., AMT, 2010<br />

Max.:<br />

+13%<br />

Max.:<br />

+3%<br />

Emission uncertainty single overpass<br />

(+/- 2 ppm X<strong>CO</strong> 2 error, u = 1 m/s):<br />

+/- 0.8 Mt<strong>CO</strong> 2 /year (1-sigma)<br />

Approx. proportional to wind speed u &<br />

statistical measurement error<br />

59


CarbonSat: Methane @ high latitudes<br />

? ?<br />

CarbonSat sun-glint mode allows observation of methane in<br />

vulnerable high latitude regions including Arctic sea and shelf<br />

areas. Very difficult with SCIAMACHY & GOSAT. Not possible with O<strong>CO</strong>.<br />

60


CarbonSat: CH 4 emission hot spot targets<br />

Oil and gas fields<br />

Seeps<br />

Leifer et al., 2006<br />

Pipelines incl. compressor stations<br />

Landfills / Waste<br />

Mud volcanoes<br />

Mazzini et al., 2007<br />

61


Comparison of PBL sensitive GHG satellite missions<br />

Application area<br />

& other criteria<br />

Regional <strong>CO</strong> 2<br />

fluxes<br />

Regional CH 4<br />

fluxes<br />

<strong>CO</strong> 2 „hot spots“<br />

(eg power plants)<br />

CH 4 „hot spots“<br />

(eg oil fields)<br />

Technical<br />

maturity<br />

Daytime<br />

Day & night<br />

SCIAMACHY GOSAT O<strong>CO</strong> Sentinel 5<br />

Precursor<br />

CH 4 Laser<br />

(MERLIN)<br />

CarbonSat<br />

62


CarbonSat Web Site<br />

http://www.iup.uni-bremen.de/carbonsat/ 63


Good luck with your projects !<br />

Animations showing 7 years of SCIAMACHY <strong>CO</strong> 2 and CH 4<br />

64

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!