30.01.2013 Views

Training course on energy efficiency in SMEs - engine-sme.eu

Training course on energy efficiency in SMEs - engine-sme.eu

Training course on energy efficiency in SMEs - engine-sme.eu

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Tra<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>course</str<strong>on</strong>g> <strong>on</strong> <strong>energy</strong> <strong>efficiency</strong> <strong>in</strong> <strong>SMEs</strong><br />

This tra<strong>in</strong><strong>in</strong>g has been developed <strong>in</strong> the c<strong>on</strong>text of ENGINE. ENGINE is a European co-operati<strong>on</strong> project for the support<br />

of <strong>SMEs</strong> <strong>in</strong> implement<strong>in</strong>g appropriate <strong>energy</strong> management, <strong>energy</strong> services and polygenerati<strong>on</strong> <strong>energy</strong> systems. For<br />

further <strong>in</strong>formati<strong>on</strong> <strong>on</strong> the project or <strong>on</strong> products of the project see: www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

The project ENGINE is supported by the Intelligent Energy – Europe (IEE) programme of the European Uni<strong>on</strong><br />

promot<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong> and renewables. More details <strong>on</strong> the IEE programme can be found <strong>on</strong>:<br />

http://ec.<strong>eu</strong>ropa.<strong>eu</strong>/<strong>energy</strong>/<strong>in</strong>telligent/<strong>in</strong>dex_en.html<br />

The sole resp<strong>on</strong>sibility for the c<strong>on</strong>tent of this tra<strong>in</strong><strong>in</strong>g set lies with the authors. It does not represent the op<strong>in</strong>i<strong>on</strong> of the<br />

European Communities. The European Commissi<strong>on</strong> is not resp<strong>on</strong>sible for any use that may be made of the <strong>in</strong>formati<strong>on</strong><br />

c<strong>on</strong>ta<strong>in</strong>ed there<strong>in</strong>.<br />

funded by


General Requirements<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Overview Energy Data<br />

Typical c<strong>on</strong>sumpti<strong>on</strong> data for <strong>in</strong>dividual areas<br />

Value<br />

Power c<strong>on</strong>sumpti<strong>on</strong><br />

Max. electrical capacity<br />

Price<br />

Gas c<strong>on</strong>sumpti<strong>on</strong><br />

Boiler capacity<br />

Price<br />

Cost of electricity + gas<br />

Comm<strong>on</strong> units<br />

Power c<strong>on</strong>sumpti<strong>on</strong><br />

Power capacity<br />

Domestic<br />

3.000<br />

6<br />

20<br />

20.000<br />

20<br />

8<br />

1.500<br />

2.500<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

6.000<br />

SME<br />

1.500.000<br />

800<br />

10<br />

8.000.000<br />

3.000<br />

4,5<br />

500.000<br />

kWh<br />

W<br />

Large <strong>in</strong>dustry<br />

200.000.000<br />

35.000<br />

7<br />

250.000.000<br />

50.000<br />

3,0<br />

25.000.000<br />

1.500<br />

800<br />

Unit<br />

kWh/a<br />

kW<br />

€Cent/kWh<br />

kWh/a<br />

kW<br />

€Cent/kWh<br />

€<br />

MWh<br />

kW


Sav<strong>in</strong>g potential<br />

… of primary <strong>energy</strong> <strong>in</strong> the <strong>in</strong>dustry by 2020<br />

Electrical power<br />

22%<br />

Office equipment &<br />

air c<strong>on</strong>diti<strong>on</strong><strong>in</strong>g<br />

1%<br />

Space heat<strong>in</strong>g<br />

& hot water<br />

18%<br />

Source: German Wuppertal Institut<br />

Light<strong>in</strong>g<br />

1%<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Process heat<br />

58%


Characteristics<br />

Energy <strong>in</strong>tense <strong>in</strong>dustries and the proporti<strong>on</strong> of <strong>energy</strong> costs<br />

as a percentage of total costs<br />

M<strong>in</strong><strong>in</strong>g<br />

Metal producti<strong>on</strong> and process<strong>in</strong>g<br />

Glass, ceramics and process<strong>in</strong>g of st<strong>on</strong>es and earths<br />

Paper<br />

Chemical<br />

Food<br />

Produc<strong>in</strong>g <strong>in</strong>dustries average<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Source: Statistical Yearbook 2006, Federal Office of Statistics Austria, September<br />

8,7 %<br />

6,2 %<br />

5,6 %<br />

5,1 %<br />

2,9 %<br />

1,8 %<br />

1,6 %


Euro per kWh<br />

Energy price trends - Electricity<br />

Electricity price 2001-2007 (for <strong>in</strong>dustrial customers)<br />

0,12<br />

0,10<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

0,00<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

EU27 EU25 EU15 GE IT AT SW UK<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007


Euro per GJ<br />

Energy price trends -GAS<br />

Gas price development 2001-2007 (<strong>in</strong>dustrial customers)<br />

14,0<br />

12,0<br />

10,0<br />

8,0<br />

6,0<br />

4,0<br />

2,0<br />

0,0<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

EU27 EU25 EU15 GE IT AT SW UK<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007


C<strong>on</strong>tents of EN 16001<br />

…standard for <strong>energy</strong> management systems<br />

4.1<br />

4.2<br />

4.3.1<br />

4.3.2<br />

4.3.3<br />

4.4.1<br />

4.4.2<br />

4.4.3<br />

4.4.4<br />

4.4.5<br />

4.4.6<br />

4.5.1<br />

4.5.2<br />

4.5.3<br />

4.5.4<br />

4.5.5<br />

4.5.6<br />

General requirements<br />

Policy<br />

Identificati<strong>on</strong> and review of <strong>energy</strong> aspects<br />

Legal obligati<strong>on</strong>s<br />

Energy programme<br />

Resources, Roles and resp<strong>on</strong>sibilities<br />

Awareness rais<strong>in</strong>g<br />

Communicati<strong>on</strong><br />

EM System documentati<strong>on</strong><br />

C<strong>on</strong>trol of documents<br />

Operati<strong>on</strong>al c<strong>on</strong>trol<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Energy m<strong>on</strong>itor<strong>in</strong>g<br />

Evaluati<strong>on</strong> of compliance<br />

N<strong>on</strong>c<strong>on</strong>formity, corrective acti<strong>on</strong><br />

C<strong>on</strong>trol of records<br />

Internal audit<br />

Review


C<strong>on</strong>tents of EN 16001<br />

… standard for <strong>energy</strong> management systems (EMS)<br />

█ establish systems and processes to improve <strong>energy</strong> <strong>efficiency</strong><br />

█ reducti<strong>on</strong>s <strong>in</strong> cost and greenhouse gas emissi<strong>on</strong>s<br />

█ systematic management of <strong>energy</strong><br />

█ develop and implement policy & objectives<br />

█ take <strong>in</strong>to account legal requirements<br />

█ <strong>in</strong>formati<strong>on</strong> about significant <strong>energy</strong> aspects<br />

Act<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

█ apply to all types and sizes of organisati<strong>on</strong>s<br />

Plan<br />

Check<br />

█ EMS <strong>in</strong>dependently or <strong>in</strong>tegrated with other management systems<br />

Do<br />

The Dem<strong>in</strong>g cycle


Why not implement an EMS?<br />

Reas<strong>on</strong>s why managers do not launch the<br />

process are ma<strong>in</strong>ly:<br />

• No specific resp<strong>on</strong>sibility for <strong>energy</strong> topics<br />

• Yearly <strong>energy</strong> bills are c<strong>on</strong>sidered as fixed costs<br />

• C<strong>on</strong>fus<strong>in</strong>g <strong>energy</strong> bills (taxes, net costs, climate change levy,<br />

different bill<strong>in</strong>g periods)<br />

• Different <strong>energy</strong> carriers and different units are used and<br />

<strong>energy</strong> flows change dur<strong>in</strong>g their way through the organisati<strong>on</strong><br />

• The <strong>in</strong>dividual sub systems have been established over time<br />

and <strong>in</strong>fluence each other - the whole system has to be<br />

regarded and seems to be complicated<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• Energy c<strong>on</strong>sumpti<strong>on</strong> and power rat<strong>in</strong>g are closely l<strong>in</strong>ked but<br />

must be dist<strong>in</strong>guished dur<strong>in</strong>g the evaluati<strong>on</strong>


Energy Policy<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Start<strong>in</strong>g po<strong>in</strong>t<br />

The development of an <strong>energy</strong> policy is the start<strong>in</strong>g po<strong>in</strong>t<br />

for an effective <strong>energy</strong> management.<br />

Although some companies may already have taken acti<strong>on</strong><br />

to reduce their <strong>energy</strong> bill, few have recognised the need<br />

to formalise this <strong>in</strong> a structured way.<br />

This starts with an <strong>energy</strong> policy.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Formalised approach<br />

1. Discuss the strengths and weakness of the <strong>energy</strong><br />

system of the company,<br />

2. Realise the <strong>in</strong>terdependencies of <strong>in</strong>dividual<br />

departments,<br />

3. Discuss possible future developments<br />

4. Be aware of the str<strong>on</strong>g dependency <strong>on</strong> fossil fuels and<br />

external suppliers.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


1/10. Motivate the Energy team<br />

Experience shows that <strong>in</strong> the phase of develop<strong>in</strong>g the <strong>energy</strong> policy<br />

staff need a clear understand<strong>in</strong>g about the benefits and need of<br />

such a document.<br />

The development of an Energy Management system is a work<br />

<strong>in</strong>tensive process so staff must be motivated to actively take part <strong>in</strong><br />

the process.<br />

Only if staff are c<strong>on</strong>v<strong>in</strong>ced that this additi<strong>on</strong>al work also ends <strong>in</strong><br />

advantages they will they participate.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


2/10. Clarify the process<br />

At an early stage the Energy Manager must clarify why<br />

they need to develop a policy and what purpose it<br />

serves.<br />

This is an important factor for success.<br />

As the development of an <strong>energy</strong> policy will be a new<br />

topic for the <strong>energy</strong> team it is important to describe<br />

clearly which targets will be fulfilled by the document<br />

and what the team is expected to do.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


3/10. Focus <strong>on</strong> <strong>energy</strong> use<br />

.. .. with<strong>in</strong> the company<br />

In the first place it is important to visualise the company's<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> to establish a comm<strong>on</strong><br />

understand<strong>in</strong>g about key figures.<br />

As there will often be no <strong>in</strong>formati<strong>on</strong> about losses,<br />

weaknesses and strengths, the <strong>energy</strong> manager should<br />

focus <strong>on</strong> all areas where no data is available and no<br />

<strong>in</strong>formati<strong>on</strong> could be collected.<br />

It is a fact that <strong>in</strong> the first step often <strong>on</strong>ly data from<br />

<strong>in</strong>voices will give an overview about the <strong>energy</strong> system.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Focus<strong>in</strong>g <strong>on</strong> the black box "company" might lead to the<br />

understand<strong>in</strong>g that additi<strong>on</strong>al work is necessary to realise<br />

costs, c<strong>on</strong>sumpti<strong>on</strong>, losses and areas of improvement.


4/10. Invit<strong>in</strong>g staff to participate<br />

Staff are the most important resource to realise sav<strong>in</strong>g<br />

potentials. Therefore staff have to be <strong>in</strong>volved to<br />

c<strong>on</strong>tribute to the policy statements.<br />

As this can be very time <strong>in</strong>tensive it might be a good idea<br />

to c<strong>on</strong>tact staff via a short questi<strong>on</strong>naire before the policy<br />

is written.<br />

Staff could be asked <strong>in</strong> which areas losses occur and<br />

which strategies could be used to <strong>in</strong>crease <strong>energy</strong><br />

<strong>efficiency</strong>.<br />

The results then may be taken to formulate the policy.<br />

In additi<strong>on</strong> such a strategy motivates staff to participate<br />

more <strong>in</strong> <strong>energy</strong> topics.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


5/10. Collect<strong>in</strong>g the statements<br />

• The project group has now an overview of<br />

the company’s positi<strong>on</strong> regard<strong>in</strong>g <strong>energy</strong>.<br />

• The team members present the statements<br />

of staff from their areas.<br />

• The Energy Team now has enough<br />

<strong>in</strong>formati<strong>on</strong> and knowledge to transfer the<br />

statements <strong>in</strong>to a written draft policy.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


6/10. Energy Policy - c<strong>on</strong>tent<br />

• Commitment to deal with <strong>energy</strong> <strong>in</strong> a c<strong>on</strong>scious way<br />

• Core pr<strong>in</strong>ciples and strategic goals (e.g. reduce CO 2<br />

emissi<strong>on</strong>s, <strong>energy</strong> cost reducti<strong>on</strong>, commitment for<br />

staff tra<strong>in</strong><strong>in</strong>g, c<strong>on</strong>t<strong>in</strong>uous m<strong>on</strong>itor<strong>in</strong>g)<br />

• Short overview about roles and resp<strong>on</strong>sibilities<br />

• Commitment to c<strong>on</strong>t<strong>in</strong>uous improvement<br />

• Commitment to evaluate the <strong>energy</strong> system<br />

• Staff participati<strong>on</strong>, staff <strong>in</strong>formati<strong>on</strong> and staff tra<strong>in</strong><strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Example Energy Policy<br />

SCA HYGIENE PRODCTS<br />

The resp<strong>on</strong>sible use of <strong>energy</strong> is an essential part of the bus<strong>in</strong>ess<br />

activities of the company SCA Hygiene Products GmbH, Austria.<br />

All staff at the Ortmann site support the efficient use of <strong>energy</strong>.<br />

An <strong>energy</strong> management system helps us to focus <strong>on</strong> all <strong>energy</strong><br />

relevant areas with<strong>in</strong> the Ortmann site <strong>in</strong> a systematic and holistic<br />

way.<br />

With the use of <strong>in</strong>dicators we focus <strong>on</strong><br />

• a c<strong>on</strong>t<strong>in</strong>uous improvement of the <strong>energy</strong> <strong>efficiency</strong><br />

• a decrease of the specific <strong>energy</strong> need<br />

• zero <strong>energy</strong> losses.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

We use special criteria for the purchase of <strong>energy</strong> c<strong>on</strong>sum<strong>in</strong>g<br />

plants and mach<strong>in</strong>ery and take <strong>in</strong>to account the lowest possible<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>.


Example Energy Policy<br />

SCA HYGIENE PRODCTS<br />

To achieve c<strong>on</strong>t<strong>in</strong>uous improvement and to reach our goals we<br />

develop detailed targets, fix resources and def<strong>in</strong>e necessary<br />

acti<strong>on</strong>s.<br />

To evaluate the success of our voluntary goals we undertake<br />

audits <strong>on</strong> a c<strong>on</strong>t<strong>in</strong>uous basis.<br />

We <strong>in</strong>form and tra<strong>in</strong> our staff about topics <strong>in</strong> the area of <strong>energy</strong><br />

<strong>efficiency</strong> and set the basis for an awareness of use of <strong>energy</strong>.<br />

Self <strong>in</strong>itiatives of staff <strong>in</strong> this area are welcomed and will be<br />

supported by useable acti<strong>on</strong>s.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

In additi<strong>on</strong> we commit ourselves to an open communicati<strong>on</strong> about<br />

<strong>energy</strong> topics with <strong>in</strong>ternal and external <strong>in</strong>terested groups.<br />

Ortmann, 20. December 2001<br />

G. Just M. Anderss<strong>on</strong> R. Hütterer


7/10. Maturity & f<strong>in</strong>al preparati<strong>on</strong><br />

After the bra<strong>in</strong>storm<strong>in</strong>g the c<strong>on</strong>tents have to be<br />

discussed to reach a comm<strong>on</strong> understand<strong>in</strong>g.<br />

The statements should be summarised and<br />

dissem<strong>in</strong>ated for additi<strong>on</strong>al comments and<br />

suggesti<strong>on</strong>s.<br />

It is very helpful if the <strong>in</strong>dividual statements and<br />

c<strong>on</strong>sequences are expla<strong>in</strong>ed <strong>in</strong> more detail.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


8/10. F<strong>in</strong>al Energy Policy<br />

The project group then decides about the last<br />

adaptati<strong>on</strong>s and prepares the f<strong>in</strong>al policy.<br />

The top management will be asked to officially<br />

sign and support it.<br />

It is important to underl<strong>in</strong>e that the top<br />

management has to implement the <strong>energy</strong> policy<br />

<strong>in</strong>to the company and that this document<br />

presents guid<strong>in</strong>g pr<strong>in</strong>ciples.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


9/10. Dissem<strong>in</strong>ati<strong>on</strong> of policy<br />

At least <strong>on</strong>e of the follow<strong>in</strong>g strategies should be chosen:<br />

• Energy policy <strong>on</strong> notice boards<br />

• Energy policy <strong>in</strong> company magaz<strong>in</strong>e<br />

• Present<strong>in</strong>g the policy <strong>in</strong> face to face meet<strong>in</strong>gs<br />

• Articles <strong>in</strong> local newspapers and specialised<br />

magaz<strong>in</strong>es<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


10/10. Updat<strong>in</strong>g the policy<br />

The <strong>energy</strong> system, the factors <strong>in</strong>fluenc<strong>in</strong>g the <strong>energy</strong><br />

management system and the organisati<strong>on</strong> itself will not<br />

rema<strong>in</strong> the same but change c<strong>on</strong>t<strong>in</strong>uously.<br />

The <strong>energy</strong> policy itself will therefore not be valid forever<br />

but must be adapted from time to time.<br />

The <strong>energy</strong> manager must be aware that the policy must<br />

be revised <strong>in</strong> the follow<strong>in</strong>g situati<strong>on</strong>s:<br />

• Changes <strong>in</strong> the external pressures <strong>on</strong> the<br />

company e.g. <strong>in</strong>troducti<strong>on</strong> of new legislati<strong>on</strong> (e.g.<br />

emissi<strong>on</strong> trad<strong>in</strong>g), chang<strong>in</strong>g markets,<br />

• Corporate changes e.g. company merger,<br />

• Site changes e.g. <strong>in</strong>troducti<strong>on</strong> of a new product<br />

range or producti<strong>on</strong> process,<br />

• Changes <strong>in</strong> stakeholder pressures e.g. grow<strong>in</strong>g<br />

public c<strong>on</strong>cern about a particular issue.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


The Initial Review<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


The <strong>in</strong>itial review<br />

The goal of the <strong>in</strong>itial review is to realise the current <strong>energy</strong><br />

situati<strong>on</strong> of the organisati<strong>on</strong>. This <strong>in</strong>cludes<br />

• the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> <strong>in</strong> an organisati<strong>on</strong><br />

• the <strong>energy</strong> flows with<strong>in</strong> an organisati<strong>on</strong><br />

• leaks and losses<br />

• areas to evaluate <strong>in</strong> more detail<br />

• areas of improvement where acti<strong>on</strong> may be taken<br />

immediately.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Advantages of the Initial Review<br />

• To realise – ma<strong>in</strong>ly for the first time - the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

<strong>on</strong> a c<strong>on</strong>t<strong>in</strong>uous basis<br />

• To realise the costs for <strong>in</strong>dividual <strong>energy</strong> carriers and<br />

c<strong>on</strong>sumers<br />

• To establish the current basel<strong>in</strong>e<br />

• To realise unusual c<strong>on</strong>sumpti<strong>on</strong><br />

• To realise areas of improvement where acti<strong>on</strong>s can be taken<br />

immediately without <strong>in</strong>vestments<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• To understand the relati<strong>on</strong> between the sub-systems<br />

• To raise awareness for efficient <strong>energy</strong> use.


Step by step process<br />

The <strong>in</strong>itial review should be regarded as a step by step<br />

process.<br />

1. Appo<strong>in</strong>t<strong>in</strong>g an Energy Manager and an Energy Team (see 4.4.1)<br />

2. Def<strong>in</strong><strong>in</strong>g the goal and the area of scope<br />

3. Collect<strong>in</strong>g and measur<strong>in</strong>g data<br />

4. Data preparati<strong>on</strong><br />

5. Develop<strong>in</strong>g an <strong>in</strong>put-output analysis and <strong>in</strong>dicators<br />

6. Analysis and <strong>in</strong>terpretati<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Def<strong>in</strong>e the goal<br />

The goal of the review may be to<br />

• identify real <strong>energy</strong> use and costs for the<br />

<strong>in</strong>dividual areas and processes<br />

• identify losses <strong>in</strong> the <strong>in</strong>dividual sub-systems<br />

• establish <strong>in</strong>dicators for c<strong>on</strong>t<strong>in</strong>uous improvement<br />

or for comparis<strong>on</strong> with other companies<br />

• identify sources of waste heat and possibilities<br />

for re-use<br />

• review <strong>energy</strong> c<strong>on</strong>tracts<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• identify resp<strong>on</strong>sibilities of managers for <strong>energy</strong><br />

topics<br />

• evaluate results of previous activities


Def<strong>in</strong>e operat<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s<br />

The <strong>efficiency</strong> of mach<strong>in</strong>es depend str<strong>on</strong>gly <strong>on</strong> their<br />

operat<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s. Mach<strong>in</strong>es have a higher <strong>efficiency</strong><br />

when operat<strong>in</strong>g at full power than at half power. Dur<strong>in</strong>g the<br />

review phase the Energy Manager should be aware of the<br />

operat<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s as the data is hardly comparable <strong>in</strong><br />

the future if those c<strong>on</strong>diti<strong>on</strong>s change.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Def<strong>in</strong>e system boundaries<br />

The follow<strong>in</strong>g areas might be taken <strong>in</strong>to<br />

c<strong>on</strong>siderati<strong>on</strong>:<br />

• Producti<strong>on</strong> processes which are ma<strong>in</strong>ly<br />

resp<strong>on</strong>sible for the <strong>energy</strong> use<br />

• Areas to <strong>in</strong>fluence easily (variable or fixed<br />

<strong>energy</strong> costs)<br />

• Individual <strong>energy</strong> carriers (electricity, natural<br />

gas, oil, fuel etc)<br />

• Focus <strong>on</strong> <strong>energy</strong> carriers or producti<strong>on</strong><br />

processes and facility (light<strong>in</strong>g, heat<strong>in</strong>g,<br />

ventilati<strong>on</strong>, cool<strong>in</strong>g)<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• Detail of measurement<br />

Not all areas need to be evaluated and not all areas will be<br />

covered <strong>in</strong> detail but the team must make the selecti<strong>on</strong> <strong>in</strong> full<br />

awareness of the c<strong>on</strong>sequences.


Human factors<br />

Beside the technical goals, the <strong>energy</strong> manager should look at<br />

both the organisati<strong>on</strong> and at "human factors". Organisati<strong>on</strong>al<br />

aspects <strong>in</strong>fluence <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> due to low coord<strong>in</strong>ati<strong>on</strong><br />

between the <strong>in</strong>dividual departments or unstructured and<br />

irregular team work.<br />

• Motivati<strong>on</strong>,<br />

• Activities undertaken <strong>in</strong> the past,<br />

• Opportunities to tra<strong>in</strong> <strong>in</strong> <strong>energy</strong> c<strong>on</strong>servati<strong>on</strong>.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Collect<strong>in</strong>g and measur<strong>in</strong>g data<br />

It is recommended to start with measured data and proceed<br />

to calculate and meter<br />

a. Invoices<br />

b. Informati<strong>on</strong> from <strong>energy</strong> suppliers<br />

c. Measurements<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Data source: Invoices<br />

Invoices present the primary source of <strong>energy</strong> <strong>in</strong>formati<strong>on</strong>.<br />

Invoices are available for the past years and they <strong>in</strong>clude<br />

real data. Although this seems simple, care must be taken<br />

as <strong>in</strong>voices might not present data <strong>in</strong> a way that it is useful<br />

for immediate analysis. The follow<strong>in</strong>g must be taken <strong>in</strong>to<br />

account:<br />

• Data basis<br />

• Cost basis<br />

• Bill<strong>in</strong>g and evaluati<strong>on</strong> period<br />

• N<strong>on</strong>-c<strong>on</strong>sumpti<strong>on</strong> bill<strong>in</strong>g for account<br />

adjustment<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Data source: Reports from <strong>energy</strong><br />

suppliers<br />

Additi<strong>on</strong>al <strong>in</strong>formati<strong>on</strong> about the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

might be provided by the supplier up<strong>on</strong> request. This<br />

<strong>in</strong>cludes more details about the electricity c<strong>on</strong>sumpti<strong>on</strong><br />

with<strong>in</strong> certa<strong>in</strong> periods and detailed charts for the<br />

evaluati<strong>on</strong> of peaks.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Calculat<strong>in</strong>g data – opti<strong>on</strong>s<br />

• To identify the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> for light<strong>in</strong>g an estimated value<br />

can be achieved by count<strong>in</strong>g light bulbs and multiply them by<br />

operat<strong>in</strong>g hours and wattage<br />

• To identify the electricity c<strong>on</strong>sumpti<strong>on</strong> for electric motors,<br />

ventilati<strong>on</strong> and air c<strong>on</strong>diti<strong>on</strong> an estimati<strong>on</strong> can be achieved by<br />

multiply<strong>in</strong>g the power rat<strong>in</strong>g by operat<strong>in</strong>g hours<br />

• Heat c<strong>on</strong>sumpti<strong>on</strong> can normally be obta<strong>in</strong>ed from bills, as heat<strong>in</strong>g<br />

will use a separate <strong>energy</strong> carrier<br />

• Heat c<strong>on</strong>sumpti<strong>on</strong> could be identified when temperature and<br />

pressure is known. The calorific value can be determ<strong>in</strong>ed from<br />

calorific tables which can be found <strong>in</strong> technical handbooks<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• Where <strong>on</strong>ly <strong>on</strong>e <strong>energy</strong> carrier is used for both hot water<br />

producti<strong>on</strong> and heat<strong>in</strong>g a first estimati<strong>on</strong> can be undertaken by<br />

compar<strong>in</strong>g the summer and the w<strong>in</strong>ter c<strong>on</strong>sumpti<strong>on</strong>


Data source: Measurements<br />

Measurements are always time and cost <strong>in</strong>tensive and<br />

before start<strong>in</strong>g it should be clear that:<br />

• the benefit is higher than the total costs of the<br />

measurement<br />

• there is no knowledge about a certa<strong>in</strong> area<br />

and measur<strong>in</strong>g gives guidance.<br />

”You cannot c<strong>on</strong>trol what you cannot measure”<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Data source: Measurements<br />

The first place for measur<strong>in</strong>g the electricity c<strong>on</strong>sumpti<strong>on</strong><br />

is usually at the switchbox. The data can be used directly<br />

for calculati<strong>on</strong>s.<br />

Data for gas and district heat<strong>in</strong>g can be obta<strong>in</strong>ed from the<br />

meters at the supply term<strong>in</strong>als.<br />

Measur<strong>in</strong>g electricity and fuel at <strong>in</strong>dividual areas of the<br />

company could be undertaken by the staff themselves.<br />

Areas such as compressed air, waste heat or ventilati<strong>on</strong><br />

rate are more sophisticated and need an expert.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Measurement <strong>in</strong>tervals<br />

The <strong>energy</strong> team should fix the development <strong>in</strong>tervals of<br />

the charts such as<br />

• every 15 m<strong>in</strong>utes<br />

• daily<br />

• weekly<br />

• m<strong>on</strong>thly<br />

15 m<strong>in</strong>ute charts will be used when evaluat<strong>in</strong>g electricity<br />

peaks.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Daily and weekly charts will be used for important data<br />

such as the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> of processes


Meter requirements<br />

• Make sure that these sub-meters are <strong>in</strong>stalled<br />

properly as often unskilled staff <strong>in</strong>stalled them<br />

years ago<br />

• Make sure that the meters are calibrated as<br />

otherwise data is useless<br />

• Make sure that measurements are taken as<br />

close as possible to the c<strong>on</strong>sumer and that<br />

work<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s (e.g. full load) are<br />

described<br />

• Make somebody resp<strong>on</strong>sible for record<strong>in</strong>g the<br />

data and tra<strong>in</strong> them so that the data can be<br />

used successfully.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


General advice<br />

When prepar<strong>in</strong>g data the follow<strong>in</strong>g po<strong>in</strong>ts should be taken<br />

<strong>in</strong>to account:<br />

• Use <strong>on</strong>ly data essential for the analysis<br />

• Reduce data <strong>in</strong>to small units<br />

• Focus <strong>on</strong> comprehensive areas so that staff realise<br />

which activities have a positive <strong>in</strong>fluence <strong>on</strong><br />

c<strong>on</strong>sumpti<strong>on</strong><br />

• Clearly label all data and note the date of collecti<strong>on</strong><br />

and preparati<strong>on</strong> and the pers<strong>on</strong> resp<strong>on</strong>sible<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• Establish a basel<strong>in</strong>e aga<strong>in</strong>st which figures can be<br />

compared


EXAMPLE Data preparati<strong>on</strong><br />

The follow<strong>in</strong>g table presents an example of such a data<br />

preparati<strong>on</strong>. The c<strong>on</strong>versi<strong>on</strong> table was expla<strong>in</strong>ed <strong>in</strong> the<br />

previous sub module.<br />

2005 2006 2007<br />

Electricity 703 MWh 743 MWh 858 MWh<br />

Natural gas 768 842 m 3 834 985 m 3 883 612 m 3<br />

2005 2006 2007<br />

Electricity 703 MWh 743 MWh 858 MWh<br />

Natural gas 7.304 MWh 7.932 MWh 8.394 MWh<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Total 8.007 MWh 8.675 MWh 9.252 MWh


Develop<strong>in</strong>g <strong>in</strong>dicators<br />

Indicators could be developed to<br />

• compare the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> over time<br />

• evaluate the <strong>efficiency</strong> of processes<br />

• realise if improvement activities are successful<br />

• compare the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> with benchmarks<br />

There are absolute and relative <strong>in</strong>dicators.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


EXAMPLE Absolute and relative<br />

<strong>in</strong>dicators<br />

Absolute <strong>in</strong>dicator: The total <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

<strong>in</strong>creased from 120000 kWh to 130000 kWh. This figure<br />

does not show if the <strong>in</strong>crease <strong>in</strong> <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> is <strong>in</strong><br />

l<strong>in</strong>e with the <strong>in</strong>creased producti<strong>on</strong>.<br />

Relative <strong>in</strong>dicator: The relative <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

<strong>in</strong>creased from 7058 kWh/t to 7222 kWh/t. The Energy<br />

Manager must analyse the relative <strong>in</strong>crease <strong>in</strong> <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong>.<br />

2006 2007<br />

Electricity<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

120000 kWh 130000 kWh<br />

Producti<strong>on</strong> quantity 17 t<strong>on</strong>s 18 t<strong>on</strong>s<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


EXAMPLE – Energy <strong>in</strong>dicators<br />

Us<strong>in</strong>g these <strong>in</strong>dicators, it is possible to compare the <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> (<strong>in</strong>put) <strong>in</strong> relati<strong>on</strong> to the producti<strong>on</strong> volume (output)<br />

over time.<br />

2005 2006 2007<br />

Total producti<strong>on</strong> 500 550 600<br />

Total electricity<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

Specific electricity<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

Total natural gas<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

Specific natural gas<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

Total <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong><br />

Specific <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong><br />

703 MWh 743 MWh 858 MWh<br />

1.40 MWh/PU 1.35 MWh/PU 1.43 MWh/PU<br />

7304 MWh 7932 MWh 8.394 MWh<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

14.61 MWh/PU 14.42 MWh/PU 13.99 MWh/PU<br />

8007 MWh 8675 MWh 9252 MWh<br />

16.01 MWh/PU 15.77 MWh/PU 15.42 MWh/PU


Input-Output analysis<br />

Input Output<br />

Fuels<br />

Natural Gas<br />

Oil<br />

District<br />

heat<strong>in</strong>g<br />

Wood<br />

Emissi<strong>on</strong>s<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Electricity<br />

Waste Heat


Output - Emissi<strong>on</strong>s<br />

Carb<strong>on</strong> dioxide and other emissi<strong>on</strong>s should be documented<br />

as <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> which has a negative impact <strong>on</strong> the<br />

envir<strong>on</strong>ment. Those emissi<strong>on</strong>s are likely to impact <strong>on</strong><br />

nati<strong>on</strong>al policies c<strong>on</strong>cern<strong>in</strong>g greenhouse gases. Each kWh<br />

used c<strong>on</strong>tributes to global warm<strong>in</strong>g and all staff <strong>in</strong> the<br />

organisati<strong>on</strong> should be aware of this.<br />

Fuel kg C/kWh kg CO2/kWh<br />

Gas 0.052 0.19<br />

Oil 0.069 0.25<br />

Coal 0.081 0.30<br />

Electricity 0.127 0.46<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Flow chart<br />

With the data<br />

collected to this<br />

po<strong>in</strong>t, the <strong>energy</strong><br />

system should be<br />

visualised with an<br />

<strong>energy</strong> flow chart.<br />

This is a graphical<br />

representati<strong>on</strong> of<br />

all relevant <strong>energy</strong><br />

flows <strong>in</strong> the<br />

company.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Analysis and <strong>in</strong>terpretati<strong>on</strong><br />

Simple bar charts<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Analysis and <strong>in</strong>terpretati<strong>on</strong><br />

Current year aga<strong>in</strong>st last year (Example of Calculat<strong>in</strong>g specific<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> and specific gas c<strong>on</strong>sumpti<strong>on</strong>)<br />

Dry clean<strong>in</strong>g PQ<br />

Total Electricity<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

Spec. Electricity<br />

C<strong>on</strong>sumpti<strong>on</strong><br />

Total Gas<br />

C<strong>on</strong>sumpti<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Spec. C<strong>on</strong>sumpti<strong>on</strong><br />

of gas<br />

2006<br />

2 869 kg<br />

703 MWh<br />

245 kWh/kg<br />

7.034 MWh<br />

2.45 kWh/kg<br />

2007<br />

2 960 kg<br />

743 MWh<br />

251 kWh/kg<br />

7.932 MWh<br />

2.68 kWh/kg<br />

2008<br />

3 482 kg<br />

858 MWh<br />

246 kWh/kg<br />

8.388 MWh<br />

2.40 kWh/kg


Go<strong>in</strong>g <strong>in</strong>to depth<br />

This will be the case for complex producti<strong>on</strong> processes<br />

where the ma<strong>in</strong> <strong>energy</strong> flows are known but no knowledge<br />

is available about <strong>in</strong>terdependencies between areas. It is<br />

now time to decide which areas to analyse <strong>in</strong> detail and<br />

which <strong>energy</strong> flows to measure. This will ma<strong>in</strong>ly be the<br />

case for processes with the highest <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

and the highest <strong>energy</strong> costs.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Legal Obligati<strong>on</strong>s<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Legal obligati<strong>on</strong>s<br />

There should be a register of regulati<strong>on</strong>s <strong>in</strong> place<br />

or a descripti<strong>on</strong> of the procedure used<br />

to identify relevant legal obligati<strong>on</strong>s .<br />

A step by step procedure could help<br />

to comply with envir<strong>on</strong>mental legislati<strong>on</strong>:<br />

= Identificati<strong>on</strong> of<br />

• Plant and mach<strong>in</strong>ery<br />

• Products and services, which are covered by<br />

legislati<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Legal obligati<strong>on</strong>s<br />

STEPS<br />

1. Decide what acti<strong>on</strong>s are required <strong>in</strong> order to ensure<br />

compliance with legislati<strong>on</strong> and def<strong>in</strong>e roles and<br />

resp<strong>on</strong>sibilities for these<br />

2. Decide how to update the register of regulati<strong>on</strong>s<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Layout a register of regulati<strong>on</strong>s<br />

• Organisati<strong>on</strong>al unit, product, activity or aspect as identified<br />

with<strong>in</strong> the <strong>energy</strong> review to which the regulati<strong>on</strong> is relevant<br />

• Name of the law, directive, legal regulati<strong>on</strong> or adm<strong>in</strong>istrative<br />

regulati<strong>on</strong> <strong>in</strong>clud<strong>in</strong>g clear identificati<strong>on</strong> (e.g. name,,publicati<strong>on</strong><br />

date..)<br />

• Explanatory remarks<br />

• Descripti<strong>on</strong> of activities and tasks which have to be<br />

undertaken to comply with the regulati<strong>on</strong><br />

• Descripti<strong>on</strong> of any corrective acti<strong>on</strong>s which must be<br />

undertaken to meet the requirements of the regulati<strong>on</strong><br />

• Appropriate regulatory authority<br />

• The pers<strong>on</strong> resp<strong>on</strong>sible for ensur<strong>in</strong>g legal compliance<br />

• Date of progress review<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Energy Programme<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Energy programme<br />

These stages will be expla<strong>in</strong>ed <strong>in</strong> more detail:<br />

1. Gather<strong>in</strong>g proposals for an efficient <strong>energy</strong> use<br />

2. Structur<strong>in</strong>g proposals<br />

3. Assess<strong>in</strong>g the proposals<br />

4. Allocat<strong>in</strong>g roles and resp<strong>on</strong>sibilities<br />

5. Establish<strong>in</strong>g goals<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Establish the procedure<br />

With<strong>in</strong> the development of an <strong>energy</strong> programme it is, first of all,<br />

necessary to get an overview of possible areas of improvement.<br />

The <strong>energy</strong> team will collect all improvement possibilities and set<br />

up a system for a transparent and comprehensive procedure<br />

from the selecti<strong>on</strong> of acti<strong>on</strong>s to the implementati<strong>on</strong>. This ensures<br />

that the best soluti<strong>on</strong> will be selected and that employees<br />

support the improvement activities.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Identify priorities<br />

• legal compliance<br />

• <strong>in</strong>dustry standards<br />

• ease of implementati<strong>on</strong><br />

• cost benefit<br />

• basis for future acti<strong>on</strong><br />

• envir<strong>on</strong>mental improvement<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Gather<strong>in</strong>g proposals<br />

There are 2 useful techniques to collect ideas:<br />

• Bra<strong>in</strong>storm<strong>in</strong>g<br />

• Improvement proposals<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Bra<strong>in</strong>storm<strong>in</strong>g<br />

Bra<strong>in</strong>storm<strong>in</strong>g is a technique to sp<strong>on</strong>taneously collect<br />

ideas for the soluti<strong>on</strong> of a problem.<br />

A bra<strong>in</strong>storm<strong>in</strong>g starts with a warm up and a clear<br />

brief<strong>in</strong>g (targets, procedure, rules) by the Energy<br />

Manager. The process c<strong>on</strong>sists of two steps:<br />

1. Collecti<strong>on</strong> of ideas<br />

2. Asses<strong>sme</strong>nt of the ideas<br />

One advantage of this technique is that also new and<br />

creative ideas will be detected which could present a<br />

new approach to solve a problem.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Improvement proposals <strong>on</strong> site<br />

Staff must be given the possibility to post improvement proposals.<br />

All ideas will be collected with<strong>in</strong> the departments or directly<br />

beside the mach<strong>in</strong>ery. Meet<strong>in</strong>gs or a regular jour fix could be used<br />

to discuss the ideas and to expla<strong>in</strong> possible steps <strong>in</strong> more detail.<br />

The member of the <strong>energy</strong> team checks a possible realisati<strong>on</strong><br />

follow<strong>in</strong>g pre def<strong>in</strong>ed criteria and presents the idea to the <strong>energy</strong><br />

team. It is important to…<br />

• describe the weak po<strong>in</strong>t<br />

• describe the soluti<strong>on</strong><br />

• describe the possible realisati<strong>on</strong> of the<br />

improvement<br />

• underl<strong>in</strong>e very clearly who has menti<strong>on</strong>ed the idea<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

And do not forget to give feedback to the author of the idea<br />

about further steps.


Ways of asses<strong>sme</strong>nt<br />

Asses<strong>sme</strong>nts will build <strong>on</strong> data and facts as well as<br />

<strong>in</strong>dividual op<strong>in</strong>i<strong>on</strong>s and prejudgements. Nevertheless it is<br />

necessary to focus <strong>on</strong> the importance of a subsequent<br />

detailed analysis <strong>in</strong>clud<strong>in</strong>g a f<strong>in</strong>ancial evaluati<strong>on</strong> as<br />

described later <strong>on</strong>.<br />

Two ways of assess<strong>in</strong>g proposals and ideas are:<br />

Cost+benefit diagram.<br />

This simple diagram with its rough asses<strong>sme</strong>nts<br />

gives a subjective overview of the benefits and<br />

expenses of possible activities.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Standardised scor<strong>in</strong>g system.<br />

An objective selecti<strong>on</strong> of the best acti<strong>on</strong> will<br />

always require a standardised system. A scor<strong>in</strong>g<br />

system is a good and transparent possibility.


Cost Benefit Diagram<br />

Field A has the highest benefit and the<br />

lowest costs which means that these<br />

proposals are the most advantageous<br />

Field B has high benefits but also high<br />

costs and, <strong>in</strong> the case of free capital,<br />

presents<br />

the sec<strong>on</strong>d best opportunity<br />

Field C has low benefits and low costs.<br />

Proposals <strong>in</strong> this field could normally be<br />

implemented immediately<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Field D has low benefits but<br />

high cost and proposals <strong>in</strong> this<br />

field will normally not c<strong>on</strong>sidered<br />

immediately.


EXAMPLE<br />

Cost Benefit Diagram<br />

The <strong>energy</strong> team places 5 proposals <strong>on</strong><br />

the matrix:<br />

1. Reduce pressure of compressed air<br />

2. Ma<strong>in</strong>ta<strong>in</strong> the heat<strong>in</strong>g system <strong>on</strong> a<br />

regular basis<br />

3. Heat warm water with solar panels<br />

4. Storage of waste heat<br />

5. Identify criteria for the purchase of<br />

<strong>energy</strong> efficient equipment<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

The <strong>energy</strong> team will c<strong>on</strong>centrate <strong>on</strong><br />

acti<strong>on</strong> 1 and acti<strong>on</strong> 5 and goes <strong>in</strong>to a<br />

detailed survey.


Scor<strong>in</strong>g system<br />

Another efficient procedure to assess<br />

the acti<strong>on</strong>s is a scor<strong>in</strong>g system.<br />

1. The team def<strong>in</strong>es criteria by which<br />

acti<strong>on</strong>s may be assessed. They<br />

c<strong>on</strong>sider:<br />

• the current and the achieved status<br />

• the key factors such as for example<br />

� costs and amortisati<strong>on</strong><br />

� statutory duties<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

� feasibility<br />

� envir<strong>on</strong>mental impact<br />

� staff relevance etc.


Scor<strong>in</strong>g system<br />

2. The organisati<strong>on</strong> may decide that some<br />

criteria are more important than others.<br />

Weight<strong>in</strong>gs can be attached to each<br />

criteria to reflect this importance.<br />

The score aga<strong>in</strong>st each criteri<strong>on</strong> will then<br />

c<strong>on</strong>sist of both a rat<strong>in</strong>g and a weight<strong>in</strong>g.<br />

For example, if the organisati<strong>on</strong> decides<br />

that f<strong>in</strong>ancial implicati<strong>on</strong>s are more<br />

important than stakeholder c<strong>on</strong>cerns it<br />

may decide to multiply f<strong>in</strong>ancial rat<strong>in</strong>gs<br />

by 2 and stakeholder rat<strong>in</strong>gs by 1.<br />

The criteria are weighted.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Scor<strong>in</strong>g system<br />

3. Asses<strong>sme</strong>nt - Each <strong>in</strong>dividual<br />

proposal will be assessed follow<strong>in</strong>g its<br />

importance. (3 = very important; 0 = no<br />

importance)<br />

F<strong>in</strong>ally the po<strong>in</strong>ts are multiplied and<br />

summarised.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


F<strong>in</strong>ancial asses<strong>sme</strong>nt<br />

Acti<strong>on</strong>s which will be implemented and which are l<strong>in</strong>ked with<br />

<strong>in</strong>vestment costs must be evaluated by f<strong>in</strong>ancial criteria to<br />

guarantee an ec<strong>on</strong>omic benefit.<br />

In the simplest terms, the lower the <strong>in</strong>vestment (costs) and the<br />

higher the sav<strong>in</strong>gs (benefits) the more likely it is that a given<br />

acti<strong>on</strong> will be implemented. The simplest, most often used by<br />

smaller organisati<strong>on</strong>s but the most unreliable, is payback.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


F<strong>in</strong>ancial asses<strong>sme</strong>nt<br />

1. Static <strong>in</strong>vestment calculati<strong>on</strong> does not c<strong>on</strong>sider <strong>in</strong>terest<br />

rates. For short periods with c<strong>on</strong>t<strong>in</strong>uous m<strong>on</strong>ey flows this is<br />

ok, however for l<strong>on</strong>ger periods with irregular m<strong>on</strong>ey flows this<br />

f<strong>in</strong>ancial calculati<strong>on</strong> should not be used.<br />

2. Dynamic calculati<strong>on</strong>s c<strong>on</strong>sider <strong>in</strong>terest rates<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Payback<br />

Payback is def<strong>in</strong>ed as the <strong>in</strong>vestment made<br />

divided by the average annual net sav<strong>in</strong>gs.<br />

Although the calculati<strong>on</strong> is useful, it has a<br />

number of problems associated with its use.<br />

1. Payback does not allow for comparis<strong>on</strong> of projects with<br />

different lifetimes.<br />

2. It does not take account of the c<strong>on</strong>t<strong>in</strong>ued sav<strong>in</strong>gs<br />

follow<strong>in</strong>g the payback period.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

3. It ignores the value of m<strong>on</strong>ey over time - m<strong>on</strong>ey is<br />

sensitive to a number of <strong>in</strong>fluences such as <strong>in</strong>flati<strong>on</strong> and<br />

<strong>in</strong>terest rates. Applicati<strong>on</strong>s for project fund<strong>in</strong>g both<br />

<strong>in</strong>ternal and external to the company may need to take<br />

account of such <strong>in</strong>fluences.


Static methods<br />

The costs of an <strong>in</strong>vestment the benefits over the years will<br />

be c<strong>on</strong>sidered:<br />

Example: Investment of 10000;<br />

Sav<strong>in</strong>gs of<br />

First year: 4000<br />

Sec<strong>on</strong>d year: 2000<br />

Third year: 4000<br />

Fourth year: 5000<br />

Year<br />

1<br />

2<br />

3<br />

Sav<strong>in</strong>gs<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

4000<br />

2000<br />

4000<br />

Sav<strong>in</strong>gs<br />

accumulated<br />

4000<br />

6000<br />

10000


Dynamic pay back<br />

The costs of an <strong>in</strong>vestment the benefits over the years will be<br />

c<strong>on</strong>sidered:<br />

Example: Investment of 10000;<br />

Sav<strong>in</strong>gs of<br />

First year: 4000<br />

Sec<strong>on</strong>d year: 2000<br />

Third year: 4000<br />

Fourth year: 5000<br />

Interest rate of 10%:<br />

Year<br />

1<br />

2<br />

3<br />

4<br />

Sav<strong>in</strong>gs<br />

4000<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

2000<br />

4000<br />

5000<br />

Sav<strong>in</strong>gs<br />

3636<br />

1653<br />

3005<br />

3415<br />

Sav<strong>in</strong>gs<br />

accumulated<br />

3636<br />

5289<br />

8294<br />

11709


Implementati<strong>on</strong> of proposals<br />

In practice the follow<strong>in</strong>g f<strong>in</strong>ancial<br />

problems occur:<br />

• Companies do not allocate a separate budget for <strong>energy</strong><br />

topics and improvement activities.<br />

• Sav<strong>in</strong>gs will rarely be allocated to the departments from<br />

which they were derived.<br />

This results <strong>in</strong> the situati<strong>on</strong> that the <strong>energy</strong> manager<br />

always has to ask for every <strong>in</strong>dividual fund<strong>in</strong>g for<br />

improvement activities.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Implementati<strong>on</strong> of proposals<br />

To break out of this vicious circle the follow<strong>in</strong>g strategy could help:<br />

• The annual company budget must c<strong>on</strong>ta<strong>in</strong> a separate budget<br />

for <strong>energy</strong> topics.<br />

• The sav<strong>in</strong>gs achieved through <strong>energy</strong> <strong>efficiency</strong> activities<br />

should be allocated to the <strong>energy</strong> budget.<br />

When c<strong>on</strong>stitut<strong>in</strong>g an <strong>energy</strong> management system the <strong>energy</strong><br />

manager must actively ask for a separate budget to f<strong>in</strong>ance<br />

analysis and evaluati<strong>on</strong>s of the <strong>energy</strong> system. In additi<strong>on</strong> the<br />

budget is used for immediate <strong>in</strong>vestments and ad-hoc activities.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Identificati<strong>on</strong> of sav<strong>in</strong>gs<br />

Apporti<strong>on</strong><strong>in</strong>g identifiable sav<strong>in</strong>gs to the budget heads from which<br />

they were derived has the follow<strong>in</strong>g benefits:<br />

• for the <strong>energy</strong> management budget it will mean that the<br />

<strong>energy</strong> manager will be motivated to identify and quantify<br />

sav<strong>in</strong>gs;<br />

• for other budgets from which <strong>energy</strong><br />

management funds are derived, benefits will become<br />

c<strong>on</strong>spicuous and as a c<strong>on</strong>sequence lead to improved<br />

understand<strong>in</strong>g and support;<br />

• the importance of <strong>energy</strong> management and the need to<br />

c<strong>on</strong>serve should also be recognised <strong>on</strong> a company wide<br />

basis;<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• the <strong>in</strong>dependence and l<strong>on</strong>gevity of the <strong>energy</strong><br />

management functi<strong>on</strong> will also result.


Allocat<strong>in</strong>g roles and resp<strong>on</strong>sibilities<br />

The <strong>energy</strong> manager will not be able to<br />

work <strong>on</strong> all problems simultaneously but he<br />

will allocate roles and resp<strong>on</strong>sibilities to<br />

implement the agreed improvement<br />

proposals. Therefore he needs the<br />

competency and the support of the top<br />

management to delegate and def<strong>in</strong>e tasks.<br />

In practice the <strong>energy</strong> manager is assigned to the middle<br />

management, e.g. <strong>in</strong> a technical department, so that this<br />

support must be communicated explicitly to all other<br />

resp<strong>on</strong>sible staff. Without a formal assignment the <strong>energy</strong><br />

manager has no reputati<strong>on</strong> and formal power to delegate<br />

tasks.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


The Energy Programme<br />

If tasks are very complex it could be useful to split the whole project<br />

<strong>in</strong>to smaller units to get a better overview. These smaller units are<br />

easier to handle and <strong>in</strong>clude the follow<strong>in</strong>g po<strong>in</strong>ts:<br />

• Goal – descripti<strong>on</strong> of the results which<br />

should be achieved<br />

• Start – Date or week<br />

• End – Date or week<br />

• Necessary time <strong>in</strong> man-days<br />

• If necessary: budget for external<br />

c<strong>on</strong>sultant<br />

• Resp<strong>on</strong>sible employees<br />

• Descripti<strong>on</strong> of the tasks<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


EXAMPLE Energy Programme<br />

Energy programme<br />

Target<br />

Acti<strong>on</strong><br />

Resp<strong>on</strong>sible<br />

Budget<br />

Deadl<strong>in</strong>e<br />

Reduce <strong>energy</strong> use for light<strong>in</strong>g by 10 % by April 2005<br />

1. Assess light<strong>in</strong>g levels needed for all processes and tasks.<br />

2. Fit low <strong>energy</strong> lum<strong>in</strong>aries.<br />

3. Fit remote sensors to c<strong>on</strong>trol when lights come <strong>on</strong>.<br />

1. Heads of Department / Energy Manager<br />

2. Chief Eng<strong>in</strong>eer<br />

3. Chief Eng<strong>in</strong>eer<br />

1. –<br />

2. €600<br />

3. €400<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

1. September 2004<br />

2. December 2004<br />

3. March 2005


Resources, Roles and Resp<strong>on</strong>sibilities<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Resources, Roles and<br />

Resp<strong>on</strong>sibilities<br />

In many cases the resp<strong>on</strong>sible pers<strong>on</strong> for <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> is the driv<strong>in</strong>g force beh<strong>in</strong>d such <strong>in</strong>itiatives.<br />

He or she has to handle supply and cost problems and has to<br />

c<strong>on</strong>v<strong>in</strong>ce staff and top management to focus <strong>on</strong> <strong>energy</strong>.<br />

Only with a structured approach is it possible to improve the<br />

exist<strong>in</strong>g situati<strong>on</strong>, to motivate colleagues to deal with <strong>energy</strong><br />

<strong>efficiency</strong> and to receive a budget for necessary <strong>in</strong>vestment.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Energy Manager & Energy Team<br />

The top management must appo<strong>in</strong>t an Energy Manager<br />

and <strong>in</strong>clude this role <strong>in</strong> the exist<strong>in</strong>g organisati<strong>on</strong>al<br />

structure otherwise the <strong>energy</strong> situati<strong>on</strong> will not improve<br />

<strong>on</strong> a l<strong>on</strong>g term basis.<br />

An Energy Team works under the guidance of an Energy<br />

Manager who co-ord<strong>in</strong>ates and c<strong>on</strong>trols all activities.<br />

In large <strong>in</strong>dustries usually an <strong>energy</strong> department already<br />

exists for the collecti<strong>on</strong> of <strong>in</strong>formati<strong>on</strong> and the c<strong>on</strong>trol of<br />

<strong>energy</strong> flows.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

N<strong>on</strong> the less it is important to dedicate a resp<strong>on</strong>sible<br />

Energy Manager with specific resp<strong>on</strong>sibilities to coord<strong>in</strong>ate<br />

and c<strong>on</strong>trol the activities as otherwise all<br />

activities will be limited to soluti<strong>on</strong>s <strong>in</strong> those area.


Energy Manager & team – acti<strong>on</strong>s<br />

The acti<strong>on</strong>s carried out by Energy<br />

Manager <strong>in</strong>clude:<br />

• Development and implementati<strong>on</strong> of <strong>energy</strong> management<br />

strategies<br />

• Development and implementati<strong>on</strong> of an <strong>energy</strong><br />

<strong>in</strong>formati<strong>on</strong> system (<strong>energy</strong> bookkeep<strong>in</strong>g system)<br />

• Internal and external communicati<strong>on</strong><br />

• Development of the <strong>energy</strong> program, identify<strong>in</strong>g<br />

improvement proposals and implement<strong>in</strong>g acti<strong>on</strong>s to<br />

<strong>in</strong>crease <strong>energy</strong> <strong>efficiency</strong><br />

• Purchase of <strong>energy</strong> and implement<strong>in</strong>g guidel<strong>in</strong>es for the<br />

purchase of <strong>energy</strong> efficient equipment<br />

• Development of an <strong>energy</strong> report<br />

• Staff tra<strong>in</strong><strong>in</strong>g and awareness tra<strong>in</strong><strong>in</strong>g<br />

• C<strong>on</strong>tact po<strong>in</strong>t for staff<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


The Energy Team<br />

Members of the <strong>energy</strong> team should derive from<br />

the <strong>in</strong>dividual producti<strong>on</strong> areas <strong>in</strong>clud<strong>in</strong>g<br />

• envir<strong>on</strong>mental manager<br />

• quality manager<br />

• ma<strong>in</strong>tenance manager.<br />

The members must be given time for work<strong>in</strong>g <strong>in</strong> the <strong>energy</strong><br />

team.<br />

Top management must make it clear that <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> is of importance and that the members have<br />

time to fulfil their tasks <strong>in</strong> the team.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

The team members should be specialists <strong>in</strong> their work<strong>in</strong>g<br />

field and be competent to implement necessary activities<br />

<strong>in</strong> their areas.


Energy Management Structure<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Resources<br />

• timetable<br />

• budget<br />

• pers<strong>on</strong>nel / qualificati<strong>on</strong>s<br />

• material / equipment<br />

• external support - specific<br />

requirements<br />

• project specificati<strong>on</strong> /<br />

objectives and goals<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Awareness Rais<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Awareness rais<strong>in</strong>g<br />

In the area of <strong>in</strong>formati<strong>on</strong> and motivati<strong>on</strong> the ma<strong>in</strong> task<br />

for the Energy Manager is to prepare <strong>in</strong>formati<strong>on</strong> for the<br />

<strong>in</strong>dividual target groups and to communicate this<br />

<strong>in</strong>formati<strong>on</strong> <strong>in</strong> three directi<strong>on</strong>s:<br />

• Top management<br />

• Staff<br />

• Neighbours and <strong>in</strong>terested groups<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


C<strong>on</strong>v<strong>in</strong>ce Target Groups<br />

It is obvious that the <strong>in</strong>dividual target groups need<br />

different <strong>in</strong>formati<strong>on</strong> for their respective areas.<br />

One reas<strong>on</strong> for this is that each group uses different terms<br />

and ways to communicate. It might be necessary for top<br />

management to focus <strong>on</strong> key figures of the company <strong>in</strong> a<br />

very technical way.<br />

It will be more helpful for other staff to receive practical<br />

advice of how to act properly, and to receive graphically<br />

prepared <strong>in</strong>formati<strong>on</strong> about performance.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Top management<br />

Top management must support an Energy Management<br />

System (EMS).<br />

The ma<strong>in</strong> arguments of Top Management will focus <strong>on</strong> the<br />

cost sav<strong>in</strong>g potential of <strong>energy</strong> efficient activities such as:<br />

• Decreased <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> due to the<br />

implementati<strong>on</strong> of improvements<br />

• Decreased <strong>energy</strong> price due to the possibility to<br />

negotiate the <strong>energy</strong> price <strong>in</strong> liberalised markets<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Staff <strong>in</strong>volved<br />

Besides top management, staff must be <strong>in</strong>formed about<br />

the Energy Management as so<strong>on</strong> as possible to accept and<br />

support the system.<br />

Unfortunately this rarely happens <strong>in</strong> larger organisati<strong>on</strong>s<br />

and leads to a rejecti<strong>on</strong> of the system.<br />

In additi<strong>on</strong> the Energy Manager has to set up a c<strong>on</strong>t<strong>in</strong>uous<br />

<strong>in</strong>formati<strong>on</strong> and awareness rais<strong>in</strong>g system as early as<br />

possible.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

This system is the basis for future activities <strong>in</strong> the area of<br />

<strong>energy</strong> sav<strong>in</strong>gs and shows the results of acti<strong>on</strong>s.


Provide necessary <strong>in</strong>formati<strong>on</strong><br />

The <strong>in</strong>formati<strong>on</strong> for staff of the company could cover a<br />

broad range such as:<br />

1. Informati<strong>on</strong> about the Energy Management System<br />

2. Data, <strong>in</strong>dicators and performance<br />

3. Informati<strong>on</strong> and advice for correct equipment use<br />

4. Possibilities to reduce losses<br />

5. C<strong>on</strong>tact po<strong>in</strong>ts for staff for improvement proposals<br />

6. Awareness rais<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Informati<strong>on</strong> about the EMS<br />

Informati<strong>on</strong> about the Energy Management System should<br />

focus <strong>on</strong> the system itself and give guidance <strong>on</strong> the<br />

<strong>in</strong>dividual topics.<br />

Besides an explanati<strong>on</strong> of how the EMS is built with<strong>in</strong> the<br />

organisati<strong>on</strong> there should be details given regard<strong>in</strong>g<br />

company related topics such as:<br />

• Name and teleph<strong>on</strong>e number of the Energy Manager,<br />

the <strong>energy</strong> team and their roles and authority<br />

• The company’s <strong>energy</strong> policy<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• The current <strong>energy</strong> goals <strong>in</strong> the programme, the<br />

necessary activities to be undertaken to achieve<br />

these goals, dead l<strong>in</strong>es and performance<br />

• The results of the audit


Data, <strong>in</strong>dicators and performance<br />

• Precise data should derive from measurements and<br />

the <strong>energy</strong> m<strong>on</strong>itor<strong>in</strong>g system<br />

• Elaborate with c<strong>on</strong>cerned staff which <strong>in</strong>formati<strong>on</strong> is<br />

helpful<br />

• Agree about unit (kWh, m 3 ) and reference units<br />

(producti<strong>on</strong> figures)<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Informati<strong>on</strong> and advice<br />

for correct equipment use<br />

• Tra<strong>in</strong> staff how to use mach<strong>in</strong>ery (own technician or<br />

plant manufacturer)<br />

• Give general advice how to deal with office equipment<br />

• Identify variables which will have an <strong>in</strong>fluence <strong>on</strong> the<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Possibilities to reduce losses<br />

General advice might be given for heat<strong>in</strong>g and light<strong>in</strong>g.<br />

Turn<strong>in</strong>g off the lights when leav<strong>in</strong>g the office or <strong>in</strong> unused<br />

rooms and clos<strong>in</strong>g w<strong>in</strong>dows and doors <strong>in</strong> heated areas<br />

are typical examples for reduc<strong>in</strong>g losses <strong>in</strong> office<br />

build<strong>in</strong>gs.<br />

Losses <strong>in</strong> producti<strong>on</strong> areas are more sophisticated. It<br />

depends <strong>on</strong> the mach<strong>in</strong>ery and the producti<strong>on</strong> process to<br />

analyse areas of losses.<br />

An example for this is compressed air and losses due to<br />

leakages.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Practice shows that staff often realise there are leakages<br />

<strong>in</strong> compressed air pipes but are not aware about the costs<br />

and the necessary steps to repair the leak.


C<strong>on</strong>tact po<strong>in</strong>ts for staff for<br />

improvement proposals<br />

Staff should be motivated to participate actively <strong>in</strong> the<br />

process of identify<strong>in</strong>g improvements.<br />

This may be a system to collect, evaluate and implement<br />

improvement proposals where staff receive benefits for<br />

developed proposals.<br />

Another possibility is a c<strong>on</strong>tact po<strong>in</strong>t where staff may<br />

discuss and develop improvement proposals.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Awareness rais<strong>in</strong>g<br />

Awareness is the fundamental basis before staff should<br />

receive <strong>in</strong>formati<strong>on</strong> about the pr<strong>in</strong>ciples of <strong>energy</strong><br />

c<strong>on</strong>servati<strong>on</strong> and before they can be expected to<br />

c<strong>on</strong>tribute to any activities at the workplace.<br />

Some staff may need additi<strong>on</strong>al technical knowledge <strong>in</strong><br />

order to perform specific tasks more efficiently.<br />

Awareness rais<strong>in</strong>g and tra<strong>in</strong><strong>in</strong>g programmes are,<br />

therefore, essential.<br />

Awareness rais<strong>in</strong>g may be achieved us<strong>in</strong>g a number of<br />

formal and <strong>in</strong>formal methods.<br />

Ultimately the goal of awareness rais<strong>in</strong>g is to motivate<br />

<strong>in</strong>dividuals by rais<strong>in</strong>g their awareness of <strong>energy</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

c<strong>on</strong>servati<strong>on</strong>, <strong>in</strong>form them of the c<strong>on</strong>sequences of their<br />

work <strong>in</strong> relati<strong>on</strong> to <strong>energy</strong> use by the company and tra<strong>in</strong><br />

them to take acti<strong>on</strong> to m<strong>in</strong>imise these impacts by<br />

acquir<strong>in</strong>g appropriate skills and knowledge.


Awareness tra<strong>in</strong><strong>in</strong>g<br />

• An <strong>energy</strong> newsletter<br />

• Posters and leaflets<br />

• Competiti<strong>on</strong>s and reward schemes<br />

• Suggesti<strong>on</strong> boxes<br />

• Informal discussi<strong>on</strong>s dur<strong>in</strong>g lunch and coffee breaks<br />

• Involvement of employee representatives <strong>in</strong> <strong>energy</strong><br />

management meet<strong>in</strong>gs<br />

• Presentati<strong>on</strong>s by external specialists <strong>on</strong> selected<br />

topics<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Staff participati<strong>on</strong> – Check<br />

1. What are the factors hav<strong>in</strong>g a positive<br />

<strong>in</strong>fluence <strong>on</strong> <strong>energy</strong> sav<strong>in</strong>g?<br />

2. What are the factors hav<strong>in</strong>g a negative<br />

<strong>in</strong>fluence <strong>on</strong> <strong>energy</strong> sav<strong>in</strong>gs?<br />

3. What are the possibilities of <strong>energy</strong> sav<strong>in</strong>g<br />

<strong>in</strong> a company?<br />

4. Which obstacles could affect<br />

implement<strong>in</strong>g <strong>energy</strong> efficient activities<br />

and equipment?<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

5. What advantages arise from <strong>energy</strong><br />

sav<strong>in</strong>g?


Communicati<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Communicati<strong>on</strong><br />

Data about the Energy Management System, quantities and costs<br />

must be prepared <strong>in</strong> a user friendly way or they will be ignored. Each<br />

target group requires dedicated <strong>in</strong>formati<strong>on</strong> and the way it will be<br />

presented has a str<strong>on</strong>g <strong>in</strong>fluence <strong>on</strong> whether the <strong>in</strong>formati<strong>on</strong> will be<br />

immediately forgotten or changes behaviour.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Target groups<br />

•Staff and external groups<br />

•Staff who c<strong>on</strong>trol <strong>energy</strong> c<strong>on</strong>sum<strong>in</strong>g plants and equipment<br />

•Top management<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Methods<br />

1. Indicators<br />

2. Informati<strong>on</strong> <strong>in</strong> text form<br />

3. Informati<strong>on</strong> <strong>in</strong> figures<br />

4. Graphs<br />

5. Symbols and pictures<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Indicators<br />

Indicators are a helpful <strong>in</strong>strument to follow the company’s<br />

<strong>energy</strong> performance.<br />

Absolute <strong>in</strong>dicators present the development of the total<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>. Relative <strong>in</strong>dicators are built with<br />

reference units and take <strong>in</strong>to account the development of<br />

the organisati<strong>on</strong>.<br />

It is comm<strong>on</strong> practice to use relative <strong>in</strong>dicators <strong>in</strong> order to<br />

be able to compare different systems and performance<br />

over time.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

back|detail 1


Informati<strong>on</strong> <strong>in</strong> text form<br />

In 2003 the total <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> of our organisati<strong>on</strong><br />

<strong>in</strong>clud<strong>in</strong>g subsidiaries reached 225.6 MWh which is an<br />

<strong>in</strong>crease by 1.6 %. The reas<strong>on</strong> for this is an <strong>in</strong>crease <strong>in</strong> gas<br />

c<strong>on</strong>sumpti<strong>on</strong> whilst the electricity use rema<strong>in</strong>ed at the<br />

2002 level. Parts of this <strong>in</strong>crease may be expla<strong>in</strong>ed by<br />

<strong>in</strong>creased producti<strong>on</strong> quantities of 0.4 %. In additi<strong>on</strong> the<br />

<strong>energy</strong> costs rose by 1.9 % due to a price <strong>in</strong>crease of<br />

electricity <strong>in</strong> the middle of the sec<strong>on</strong>d quarter. As <strong>energy</strong><br />

costs make up 4.9 % of the total costs the Management<br />

Board underl<strong>in</strong>ed the importance of efficient <strong>energy</strong> use<br />

and all staff are str<strong>on</strong>gly asked to launch improvement<br />

activities.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Informati<strong>on</strong> <strong>in</strong> tables<br />

The <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> of our company shows a<br />

steady <strong>in</strong>crease of electricity and natural gas while our<br />

oil c<strong>on</strong>sumpti<strong>on</strong> could be elim<strong>in</strong>ated.<br />

2001<br />

Electricity 43.46 MWh<br />

Natural<br />

Gas<br />

Oil extra<br />

light<br />

2002 2003<br />

45.44 MWh 47.22 MWh<br />

7688 m 3 7798 m 3 8656 m 3<br />

12 500 l 7600 l 0<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

This table <strong>on</strong> its own will not be very helpful for staff.


Informati<strong>on</strong> <strong>in</strong> graphs<br />

MWh<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

District heat<strong>in</strong>g 2009<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

M<strong>on</strong>th


Pictures and symbols<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


The communicati<strong>on</strong> network<br />

For each s<strong>in</strong>gle group special types of communicati<strong>on</strong> work has<br />

to be <strong>in</strong>itiated.<br />

Top management Staff<br />

Energy Report Workshops Intranet<br />

Envir<strong>on</strong>mental Report Celebrati<strong>on</strong>s Leaflets<br />

Teleph<strong>on</strong>e Speeches Energy Report<br />

Envir<strong>on</strong>mental<br />

Report<br />

Energy Manager<br />

Energy Team<br />

Letters<br />

Envir<strong>on</strong>menta Report<br />

Speeches<br />

Articles<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Neighbours<br />

others and <strong>in</strong>terested groups


Communicati<strong>on</strong> possibilities<br />

The choice of certa<strong>in</strong> media to launch and dissem<strong>in</strong>ate<br />

<strong>in</strong>formati<strong>on</strong> depends <strong>on</strong> the size of the company and the<br />

strategy <strong>in</strong> place. The decisi<strong>on</strong> must be taken by the<br />

resp<strong>on</strong>sible managers. The follow<strong>in</strong>g media are a selecti<strong>on</strong><br />

of possibilities for small and medium sized companies:<br />

1. Energy Reports<br />

2. External media<br />

3. Direct communicati<strong>on</strong><br />

4. Activities and competiti<strong>on</strong><br />

5. Events<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Structure of an Energy report<br />

Executive Summary<br />

Motivati<strong>on</strong> for develop<strong>in</strong>g an <strong>energy</strong> report<br />

Ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs and areas of improvement<br />

Introducti<strong>on</strong><br />

Overview <strong>on</strong> the company<br />

Energy price & development<br />

Supplier and net price <strong>energy</strong> carriers<br />

Descripti<strong>on</strong> of <strong>energy</strong> prices for the past 5 years and outlook for the com<strong>in</strong>g year<br />

Descripti<strong>on</strong> of the price structure<br />

Total C<strong>on</strong>sumpti<strong>on</strong><br />

Cost structure of the company (staff, <strong>energy</strong>, <strong>in</strong>vestments, capital)<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> for the last 5 years.<br />

Energy benchmarks (<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>/product; <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>/m 2 )<br />

Energy producti<strong>on</strong> and re-use of <strong>energy</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Energy C<strong>on</strong>sumpti<strong>on</strong> of Individual Areas<br />

Build<strong>in</strong>g<br />

Infrastructure<br />

Producti<strong>on</strong><br />

Areas of Improvement


Energy Management – System Documentati<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


EM System documentati<strong>on</strong><br />

The primary purpose of <strong>energy</strong> management documentati<strong>on</strong> is to provide a<br />

good descripti<strong>on</strong> of the <strong>energy</strong> management system. The <strong>energy</strong> management<br />

manual should act as a permanent reference to the implementati<strong>on</strong> and<br />

ma<strong>in</strong>tenance of the system.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Energy Management Manual<br />

• A descripti<strong>on</strong> of the management system, detail<strong>in</strong>g its scope and purpose<br />

and its relati<strong>on</strong>ship to the organisati<strong>on</strong>’s <strong>energy</strong> policy, objectives and targets<br />

• A copy of the <strong>energy</strong> policy<br />

• The organisati<strong>on</strong>’s objectives and targets<br />

• An organisati<strong>on</strong> chart, depict<strong>in</strong>g the organisati<strong>on</strong>al structure with respect to<br />

<strong>energy</strong> management. This should <strong>in</strong>clude a list of the names of current jobholders<br />

• Criteria for assess<strong>in</strong>g significant <strong>energy</strong> c<strong>on</strong>sumers<br />

• A list of significant <strong>energy</strong> c<strong>on</strong>sumers<br />

• A register of legislative, regulatory and other policy requirements<br />

• A list of procedures and work <strong>in</strong>structi<strong>on</strong>s with <strong>energy</strong> re-levance (the<br />

detailed documents themselves may be annexed)<br />

• A descripti<strong>on</strong> of the organisati<strong>on</strong>’s <strong>energy</strong> management programmes<br />

• A descripti<strong>on</strong> of the system for keep<strong>in</strong>g <strong>energy</strong> management records<br />

• Arrangements for regular audits, <strong>in</strong>clud<strong>in</strong>g reports or references to the<br />

locati<strong>on</strong> of reports<br />

• Arrangements for management reviews<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Document c<strong>on</strong>trol<br />

• Date stamped (<strong>in</strong>clud<strong>in</strong>g any dates of revisi<strong>on</strong>s).<br />

• Readily identifiable for example, by named procedures, clear<br />

reference numbers, specified ownership, etc.<br />

• Ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> an orderly and easily referenced manner, i.e. by<br />

provid<strong>in</strong>g numbered and lettered references to <strong>in</strong>dividual procedures,<br />

schedules etc. <strong>in</strong> a systematic way<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


C<strong>on</strong>trol of Documents<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


4.4.5 C<strong>on</strong>trol of documents<br />

1. Documents can be identified with the appropriate organisati<strong>on</strong>,<br />

divisi<strong>on</strong>, functi<strong>on</strong>, activity and/or c<strong>on</strong>tact pers<strong>on</strong><br />

2. Documents are periodically reviewed, revised and approved prior<br />

to issue<br />

3. Current versi<strong>on</strong>s are available at all appropriate locati<strong>on</strong>s<br />

4. Obsolete documents are promptly removed<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Operati<strong>on</strong>al C<strong>on</strong>trol<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Operati<strong>on</strong>al c<strong>on</strong>trol<br />

As a rule of thumb<br />

20% of equipment<br />

c<strong>on</strong>sumes 80% of the <strong>energy</strong> used.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Operati<strong>on</strong>al c<strong>on</strong>trol<br />

1. For the ma<strong>in</strong> equipment and operati<strong>on</strong>s<br />

written operati<strong>on</strong> procedures (<strong>in</strong>clud<strong>in</strong>g advice<br />

<strong>on</strong> how to deal with <strong>energy</strong> resp<strong>on</strong>sibly) need<br />

to be developed<br />

2. It is important to ensure that <strong>energy</strong> efficient<br />

equipment is procured.<br />

3. The future <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> of facilities,<br />

build<strong>in</strong>gs and halls need to be taken <strong>in</strong>to<br />

account dur<strong>in</strong>g the design phase<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Energy M<strong>on</strong>itor<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Energy m<strong>on</strong>itor<strong>in</strong>g<br />

Energy m<strong>on</strong>itor<strong>in</strong>g is to<br />

• record,<br />

• analyse and<br />

• report<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> and costs <strong>on</strong> a regular basis.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


... gives <strong>in</strong>formati<strong>on</strong><br />

Before <strong>energy</strong> costs can be analysed it must be clear which<br />

costs really occur with<strong>in</strong> the <strong>in</strong>dividual areas of a company. An<br />

<strong>energy</strong> m<strong>on</strong>itor<strong>in</strong>g system is the soluti<strong>on</strong> as it gives <strong>in</strong>formati<strong>on</strong><br />

<strong>on</strong><br />

• how much <strong>energy</strong> will be used,<br />

• where it will be used and,<br />

• what costs occur.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Reas<strong>on</strong>s for an <strong>energy</strong> m<strong>on</strong>itor<strong>in</strong>g<br />

system<br />

Important reas<strong>on</strong>s why a company should implement an<br />

<strong>energy</strong> book keep<strong>in</strong>g system are:<br />

• A m<strong>on</strong>itor<strong>in</strong>g system will help the company to record<br />

and allocate <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> and costs to the<br />

c<strong>on</strong>sumers<br />

• F<strong>in</strong>d out losses and bill<strong>in</strong>g errors<br />

• Prioritis<strong>in</strong>g areas for improvement<br />

• Evaluate the success of the <strong>energy</strong> program and<br />

communicate results<br />

• Budget more accurately<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Core areas<br />

When sett<strong>in</strong>g up an <strong>energy</strong> m<strong>on</strong>itor<strong>in</strong>g system the<br />

follow<strong>in</strong>g topics should be covered:<br />

• Data to be collected <strong>on</strong> a regular basis (weekly or<br />

m<strong>on</strong>thly)<br />

• C<strong>on</strong>vert data <strong>in</strong>to a s<strong>in</strong>gle unit to present it <strong>in</strong> a useful<br />

and clear way. (e.g. kg coal, Litres oil, m³ gas <strong>in</strong>to MWh)<br />

• Indicators to be updated regularly<br />

• Appo<strong>in</strong>t resp<strong>on</strong>sible pers<strong>on</strong> for collect<strong>in</strong>g the data and<br />

develop<strong>in</strong>g the <strong>energy</strong> m<strong>on</strong>itor<strong>in</strong>g system<br />

• Target groups for receiv<strong>in</strong>g <strong>energy</strong> <strong>in</strong>formati<strong>on</strong> identified<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• Use reliable data (<strong>in</strong>voices, measurements)<br />

• Clearly label all data (date, storage, author)


The <strong>energy</strong> m<strong>on</strong>itor<strong>in</strong>g structure<br />

Pos.<br />

Energy M<strong>on</strong>itor<strong>in</strong>g<br />

unit year prev. year diff. <strong>in</strong> %<br />

1 employees number 25 24 4.17<br />

2 heated area m² 260 260 0.00<br />

3 turnover 1,000/year 3,520 3,598 -2.17<br />

4 total <strong>energy</strong> costs 1,000/year 57.69 60.91 -5.30<br />

5 heat<strong>in</strong>g <strong>energy</strong> costs (combusti<strong>on</strong> fuels) 1,000/year 9.29 10.23 -9.25<br />

6 total <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> MWh/year 768 789 -2.63<br />

7 heat<strong>in</strong>g <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> (combusti<strong>on</strong> fuels) MWh/year 301 311 -3.09<br />

8 total <strong>energy</strong> costs perm €/m² 222 234 -5.30<br />

9 heat<strong>in</strong>g <strong>energy</strong> costs perm €/m² 35.72 39.36 -9.25<br />

10 heat<strong>in</strong>g <strong>energy</strong> combusti<strong>on</strong> per m MWh/year 1.159 1.196 -3.09<br />

11 share of <strong>energy</strong> costs <strong>in</strong> turnover % 1.64 1.69 -3.20<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

MWh/a<br />

120,00<br />

100,00<br />

80,00<br />

60,00<br />

40,00<br />

20,00<br />

0,00<br />

Comparis<strong>on</strong> of total annual <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

previous year current year<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

m<strong>on</strong>th<br />

Indicators<br />

Comparis<strong>on</strong> of total annual <strong>energy</strong> costs<br />

previous year current year<br />

Total c<strong>on</strong>sumpti<strong>on</strong> Total costs<br />

Electricity Oil Gas Coal Wood<br />

Euro per year<br />

7.000,00<br />

6.000,00<br />

5.000,00<br />

4.000,00<br />

3.000,00<br />

2.000,00<br />

1.000,00<br />

0,00<br />

January<br />

February<br />

March<br />

April<br />

May<br />

June<br />

July<br />

August<br />

September<br />

October<br />

November<br />

December<br />

District<br />

Heat<strong>in</strong>g


Results<br />

An <strong>energy</strong> m<strong>on</strong>itor<strong>in</strong>g asks for <strong>energy</strong> data for each<br />

<strong>in</strong>dividual <strong>energy</strong> carrier and provides an overview of:<br />

• Total <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

• Total <strong>energy</strong> costs<br />

• Average costs of all <strong>energy</strong> sources<br />

These figures will be compared with data from previous<br />

years and visualised with <strong>in</strong>dicators. The <strong>energy</strong> manager<br />

is then able to evaluate the performance of his or her<br />

<strong>energy</strong> system.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

The <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> should be allocated to<br />

departments/producti<strong>on</strong> processes.


Use costs for work <strong>on</strong>ly, example<br />

Electricity<br />

Electricity <strong>in</strong>voices are often c<strong>on</strong>fus<strong>in</strong>g and therefore not<br />

easy to understand. Companies with a high electricity<br />

c<strong>on</strong>sumpti<strong>on</strong> (rule of thumb > 100,000 kWh/year) may have<br />

m<strong>on</strong>thly <strong>in</strong>voices, smaller companies may have an annual<br />

<strong>in</strong>voice and m<strong>on</strong>thly payments <strong>in</strong> advance. Independent of<br />

the company’s size, all <strong>in</strong>voices basically will c<strong>on</strong>ta<strong>in</strong> the<br />

follow<strong>in</strong>g comp<strong>on</strong>ents:<br />

Costs for work (depend<strong>in</strong>g <strong>on</strong> kWh)<br />

+ Costs for load (depend<strong>in</strong>g <strong>on</strong> kW)<br />

+ Costs for the <strong>energy</strong> network (cannot be <strong>in</strong>fluenced)<br />

+ Costs for meter<strong>in</strong>g (depend<strong>in</strong>g <strong>on</strong> meter <strong>in</strong> use)<br />

+ Energy tax<br />

+ Additi<strong>on</strong>al taxes like ”eco – tax”<br />

+ Value added tax (VAT)_____________________<br />

= Total electricity costs<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Electricity<br />

Company<br />

Energy m<strong>on</strong>itor<strong>in</strong>g system – ELECTRICITY<br />

electr. supplier<br />

Energy manager voltage of supply kV : <strong>on</strong> the c<strong>on</strong>tract<br />

Year 2001 c<strong>on</strong>tractual capacity kW <strong>on</strong> the c<strong>on</strong>tract<br />

1<br />

Pos. m<strong>on</strong>th<br />

2<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

sheet:<br />

1<br />

<strong>energy</strong> supply costs comparis<strong>on</strong> with previous year<br />

HT<br />

kWh<br />

LT<br />

kWh<br />

Total<br />

kWh<br />

peak<br />

load<br />

kW<br />

3<br />

idle<br />

power total costs<br />

kVArh <strong>in</strong>cl. EP<br />

4<br />

€<br />

∅<br />

price<br />

€/kWh<br />

<strong>energy</strong><br />

previous year<br />

(HT+LT)<br />

kWh<br />

diff.<br />

%<br />

total costs<br />

previous year<br />

€<br />

diff.<br />

%<br />

∅ −<br />

price<br />

prev. y<br />

€/kWh<br />

1 January 27,630 9,642 37,272 133 0 4,205.29 0.1128 40.058 -6,95 4.582.30 -8.23 0.1144 -1.37<br />

2 February 29,796 10,230 40,026 129 0 4,427.64 0.1106 42,536 -5.90 4.720.10 -6.20 0.1110 -0.31<br />

3 March 27,726 9,474 37,200 128 0 4,202.00 0.1130 39,143 -4.96 4.562.30 -7.90 0.1166 -3.09<br />

Q1 1.Quarter 85,152 29,346 114,498 133 0 12,834.93 0.1121 121,737 -5.95 13.864.70 -7.43 0.1139 -1.57<br />

5<br />

6<br />

diff.<br />

%


Extra Light Oil<br />

Energy m<strong>on</strong>itor<strong>in</strong>g system – oil extra light<br />

Company supplier<br />

Energy manager special weight:<br />

Year 2001 <strong>in</strong>fer. cal. value Hu(kWh/l) 10.0<br />

Pos. m<strong>on</strong>th<br />

2<br />

tank<br />

fill<strong>in</strong>g<br />

dec.<br />

prev. y<br />

600 l<br />

3<br />

quantity<br />

l<br />

purchase c<strong>on</strong>sumpti<strong>on</strong> comparis<strong>on</strong> with previous year<br />

costs<br />

€<br />

4<br />

5<br />

∅ −<br />

price<br />

€/l<br />

6<br />

quantity<br />

l<br />

∅ −<br />

price<br />

€/l<br />

costs<br />

€<br />

heat c<strong>on</strong>-<br />

amoun sump<br />

t MWh ti<strong>on</strong> prev.<br />

year l<br />

Click <strong>on</strong> the numbers <strong>in</strong> the table to get more <strong>in</strong> depth <strong>in</strong>formati<strong>on</strong><br />

diff.<br />

%<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

costs<br />

prev.<br />

year<br />

€<br />

diff.<br />

%<br />

sheet:<br />

2<br />

∅ −<br />

price<br />

prev. y<br />

€/l<br />

1 January 6,870 7,500 2,500 0.3333 1,230 0.3333 410.00 12,30 1,300 -5,38 468.00 -12.39 0.3600 -7.41<br />

2 February 5.619 1,251 0.3333 417.00 12,51 1,365 -8.35 491.40 -15.14 0.3600 -7.41<br />

3 March 4,519 1,100 0.3333 366.67 11,00 1,230 -10.57 442.80 -17.19 0.3600 -7.41<br />

Q1 1 st Quarter 4,519 7,500 2,500 0.3333 3,581 0.3333 1,193.67 35.81 3,895 -8.06 1,402.20 -14.87 0.3600 -7.1<br />

7<br />

1<br />

diff.<br />

%


Natural gas<br />

In some countries, e.g. UK and USA natural gas is<br />

comm<strong>on</strong>ly measured <strong>in</strong> therms. In other European<br />

countries natural gas is measured <strong>in</strong> m³ and <strong>in</strong> kWh.<br />

If an organisati<strong>on</strong> buys gas directly from an utility<br />

company it will pay a price per therm, per m 3 or per kWh.<br />

The price may depend <strong>on</strong> the seas<strong>on</strong> and <strong>on</strong> the<br />

c<strong>on</strong>sumpti<strong>on</strong> quantities.<br />

However, <strong>in</strong> some countries the natural gas <strong>in</strong>dustry has<br />

been deregulated and many organisati<strong>on</strong>s buy gas from an<br />

<strong>in</strong>dependent supplier or from a gas broker. In this case<br />

there is a price for the natural gas itself and a price for the<br />

network. These charges may be billed separately but must<br />

be added to obta<strong>in</strong> the full costs.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Natural gas<br />

Energy m<strong>on</strong>itor<strong>in</strong>g system – NATURAL GAS<br />

Company supplier<br />

Year 2001 Energy manager<br />

1<br />

Pos. m<strong>on</strong>th<br />

2<br />

<strong>energy</strong> supply<br />

gas c<strong>on</strong>sumpti<strong>on</strong><br />

m³<br />

calorific calorific<br />

value val.<br />

Ho superior<br />

kWH/m³ kWh Ho<br />

c<strong>on</strong>sumpti<strong>on</strong> costs comparis<strong>on</strong> with previous year<br />

3 4<br />

calorific<br />

val.<br />

<strong>in</strong>ferior<br />

kWh Ho<br />

5<br />

total costs<br />

current year<br />

€<br />

∅ − price<br />

€/kWh<br />

6,495.40 Ho Hu<br />

<strong>energy</strong> prev.<br />

year Ho<br />

kWh l<br />

diff.<br />

%<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

total costs<br />

prev.<br />

year<br />

€<br />

7,023.60<br />

diff.<br />

%<br />

sheet:<br />

3<br />

∅ −<br />

price<br />

prev. y<br />

Ho €/l<br />

1 January 3,500 10.70 37,450 33,705 1,107.78 0.03 0.03 36,210 -3.42 1,147.05 -3.42 0.03 -6.62<br />

2 February 3,256 10.70 34,839 31,355 1,030.55 0.03 0.03 35,623 -2.20 1,128.45 -8.68 0.03 -6.62<br />

3 March 2,987 10.70 31,961 28,765 945.41 0.03 0.03 33,510 -4.62 1,061.52 -10.94 0.03 -6.62<br />

Q1 1 st Quarter 9,743 10.70 104,250 93,825 3,083.75 0.03 0.03 105,343 -1.04 3,337. 02 -7.59 0.03 -6.62<br />

6<br />

diff.<br />

%


Results 1: Energy c<strong>on</strong>sumpti<strong>on</strong><br />

Energy m<strong>on</strong>itor<strong>in</strong>g system – TOTAL ENERGY CONSUMPTION<br />

Company<br />

Year 2001 Author<br />

1 MWh = 1,000 kWh oil gas/DH solid fuels<br />

total<br />

combusti<strong>on</strong><br />

fuels<br />

electricity<br />

total<br />

2001<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

total<br />

2000<br />

sheet:<br />

7<br />

difference<br />

Pos. m<strong>on</strong>th MWh MWh MWh MWh MWh MWh MWh %<br />

1 January 12.50 37.45 0.00 49.75 37.27 87.02 89.27 -2.52<br />

2 February 12.51 34.84 0.00 47.35 40.03 87.38 91.81 -4.83<br />

3 March 11.00 31.96 0.00 42.96 37.20 80.16 84.95 -5.64<br />

Q1 1 st Quarter 35.81 104.25 0.00 140.06 114.50 254.56 266.03 -4.31


Results 2: Energy costs<br />

Energy m<strong>on</strong>itor<strong>in</strong>g system – TOTAL ENERGY COSTS<br />

Company<br />

Year 2001 Resp<strong>on</strong>sible<br />

1 MWh = 1,000 kWh oil gas/DH<br />

solid<br />

fuels<br />

total<br />

combusti<strong>on</strong><br />

fuels<br />

electricity<br />

total<br />

2001<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

total<br />

2000<br />

sheet:<br />

8<br />

difference<br />

Pos. m<strong>on</strong>th EURO EURO EURO EURO EURO EURO EURO %<br />

1 January 410.00 1,107.78 0.00 1,517.78 4,205.29 5,723.07 6,197.35 -7.65<br />

2 February 417.00 1,030.55 0.00 1,447.55 4,427.64 5,875.19 6,339.95 -7.33<br />

3 March 366.67 945.41 0.00 1,312.08 4,202.00 5,514.08 6,066.62 -9.11<br />

Q1 1 st Quarter 1,193.67 3,083.75 0.00 4,277.41 12,834.93 17,112.34 18,066.92 -8.02


Results 3: Average <strong>energy</strong> costs<br />

Energy m<strong>on</strong>itor<strong>in</strong>g system – AVERAGE COSTS OF ENERGY<br />

Company<br />

Year 2001 Resp<strong>on</strong>sible<br />

1 MWh = 1,000 kWh oil gas/DH<br />

solid<br />

fuels<br />

total<br />

combusti<strong>on</strong><br />

fuels<br />

electricity<br />

total<br />

2001<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

total<br />

2000<br />

sheet:<br />

9<br />

difference<br />

Pos. m<strong>on</strong>th €/MWh €/MWh €/MWh €/MWh €/MWh €/MWh €/MWh %<br />

1 January 33.333 29.580 - 30.508 112,827 65.766 69.424 -5.27<br />

2 February 33.333 29.580 - 30.572 110,619 67.241 69.056 -2.63<br />

3 March 33.333 29.580 - 30.541 112,957 68.788 71.411 -3.67<br />

Q1 1 st Quarter 33.333 29.580 - 30.540 112,097 67.224 69.932 -3.87


Results 4: Energy <strong>in</strong>dicators<br />

Energy m<strong>on</strong>itor<strong>in</strong>g system – DATA OF ENTERPRISE – ANNUAL ANALYSIS<br />

Company Energy Manager<br />

Year 2001<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

sheet:<br />

10<br />

Pos. m<strong>on</strong>th unit year previous year difference <strong>in</strong> %<br />

1 employees % 25 24 4.17<br />

2 heated area m² 260 260 0.00<br />

3 company turnover EURO/year 3520,000 3598,000 -2.17<br />

4 total <strong>energy</strong> costs EURO/year 57,690 60,910 -5.30<br />

5 heat<strong>in</strong>g <strong>energy</strong> costs (combusti<strong>on</strong> fuels) EURO/year 9,290 10,230 -9.25<br />

6 total <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> MWh/year 768 789 -2.63<br />

7 heat<strong>in</strong>g <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> (comb. fuels) MWh/year 301 311 -3.09<br />

8 total <strong>energy</strong> costs per m² EURO/year 222 234 -5.30<br />

9 heat<strong>in</strong>g <strong>energy</strong> costs per m² EURO/year 35.72 39.36 -9.25<br />

0 heat<strong>in</strong>g <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> per m² MWh/m² 1,159 1,196 -3.09<br />

11 share of <strong>energy</strong> costs <strong>in</strong> turnover % 1.64 1.69 -3.10


Evaluati<strong>on</strong> of Compliance<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Evaluati<strong>on</strong> of compliance<br />

Evaluati<strong>on</strong> of compliance is needed to make sure that up to date<br />

<strong>in</strong>formati<strong>on</strong> about legal requirements is available to the organisati<strong>on</strong>.<br />

Broadly, there are two types of procedures:<br />

• Management procedure – deals with issues <strong>in</strong>clud<strong>in</strong>g the updat<strong>in</strong>g<br />

of documentati<strong>on</strong> and the identificati<strong>on</strong> of new laws, regulati<strong>on</strong>s, and<br />

requirements<br />

• C<strong>on</strong>trol procedures – deal with the way <strong>in</strong> which certa<strong>in</strong> tasks are<br />

carried out to comply with legal requirements – e.g. the operati<strong>on</strong> of<br />

the boiler house or the storage of heat oil<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Register of compliance<br />

Relevant activities, products, services<br />

1<br />

2<br />

Relevant Legislati<strong>on</strong>, regulati<strong>on</strong>s, policies<br />

§<br />

§<br />

Compliance requirements<br />

Regulatory Authority<br />

Internal resp<strong>on</strong>sibilities<br />

Current positi<strong>on</strong><br />

Acti<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Appropriate procedures and documentati<strong>on</strong><br />

Topic


N<strong>on</strong>c<strong>on</strong>formity<br />

Corrective and Preventive Acti<strong>on</strong>s<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


N<strong>on</strong>c<strong>on</strong>formity, corrective and<br />

preventive acti<strong>on</strong><br />

The organisati<strong>on</strong> must have procedures <strong>in</strong> place to identify the<br />

potential for n<strong>on</strong>c<strong>on</strong>formity and to resp<strong>on</strong>d to it appropriately.<br />

Typically n<strong>on</strong>c<strong>on</strong>formity will occur <strong>in</strong> several areas:<br />

• Energy c<strong>on</strong>sumpti<strong>on</strong> and <strong>energy</strong> costs for predef<strong>in</strong>ed areas<br />

and producti<strong>on</strong> processes<br />

• Operati<strong>on</strong> and management practices (operati<strong>on</strong> plans for<br />

mach<strong>in</strong>es, procurement practices)<br />

• Ma<strong>in</strong>tenance and servic<strong>in</strong>g procedures<br />

• Inspecti<strong>on</strong>s<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


N<strong>on</strong>c<strong>on</strong>formity, corrective and<br />

preventive acti<strong>on</strong><br />

When there are problems or failures <strong>in</strong> plant or equipment, caused by<br />

human error or deficiencies with<strong>in</strong> the management system, these<br />

need to be <strong>in</strong>vestigated to establish what happened. The <strong>in</strong>vestigati<strong>on</strong><br />

procedure will:<br />

• Determ<strong>in</strong>e the cause<br />

• Draw up a plan of acti<strong>on</strong><br />

• Initiate preventive acti<strong>on</strong>s, to a level corresp<strong>on</strong>d<strong>in</strong>g to the<br />

risks encountered<br />

• Apply c<strong>on</strong>trols to ensure that any preventive acti<strong>on</strong>s taken are<br />

effective and reoccurrence is avoided<br />

• record any changes <strong>in</strong> procedures<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


C<strong>on</strong>trol of Records<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


C<strong>on</strong>trol of records<br />

The purpose of record c<strong>on</strong>trol is to make sure that necessary<br />

documents are available to staff so that EMS goals and targets can be<br />

achieved<br />

The follow<strong>in</strong>g documents should be <strong>in</strong>cluded <strong>in</strong> this system:<br />

• Organisati<strong>on</strong>al charts<br />

• Process <strong>in</strong>formati<strong>on</strong><br />

• Internal standards and procedures<br />

• Emergency plans<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Records needed<br />

• <str<strong>on</strong>g>Tra<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> records<br />

• Process <strong>in</strong>formati<strong>on</strong><br />

• Inspecti<strong>on</strong>, ma<strong>in</strong>tenance, calibrati<strong>on</strong> records<br />

• Pert<strong>in</strong>ent c<strong>on</strong>tractor and supplier <strong>in</strong>formati<strong>on</strong><br />

• Incident reports<br />

• Informati<strong>on</strong> <strong>on</strong> emergency preparedness and resp<strong>on</strong>se<br />

• Audit results<br />

• Compla<strong>in</strong>t records<br />

• Management reviews<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Records needed<br />

• <str<strong>on</strong>g>Tra<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> records<br />

• Process <strong>in</strong>formati<strong>on</strong><br />

• Inspecti<strong>on</strong>, ma<strong>in</strong>tenance, calibrati<strong>on</strong> records<br />

• Pert<strong>in</strong>ent c<strong>on</strong>tractor and supplier <strong>in</strong>formati<strong>on</strong><br />

• Incident reports<br />

• Informati<strong>on</strong> <strong>on</strong> emergency preparedness and resp<strong>on</strong>se<br />

• Audit results<br />

• Compla<strong>in</strong>t records<br />

• Management reviews<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Document c<strong>on</strong>trol<br />

• Revisi<strong>on</strong> Dates - the date of each document revisi<strong>on</strong><br />

• Nature of Revisi<strong>on</strong>s - a brief descripti<strong>on</strong> of the nature of the revisi<strong>on</strong><br />

• Names of Document Review Participants - list the name of each<br />

<strong>in</strong>dividual who participated <strong>in</strong> the document review/revisi<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Record C<strong>on</strong>trol<br />

• General Resp<strong>on</strong>sibilities<br />

• Types of Records<br />

• Identificati<strong>on</strong> of Records<br />

• Ma<strong>in</strong>tenance of Records<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


General requirements for all records<br />

Records must be ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> a manner that ensures that they are:<br />

• Readily retrievable<br />

• Reviewed and updated as necessary (documents)<br />

• Protected from alterati<strong>on</strong>s or damage (records)<br />

• Available when and where needed<br />

• Removed or archived, as appropriate, when obsolete<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Ma<strong>in</strong>tenance of records<br />

Hard copy records<br />

• Hand-written entries shall be screened for legibility by document<br />

owners and/or reviewers dur<strong>in</strong>g normal record process<strong>in</strong>g.<br />

• The Energy Manager shall review all areas where hard copy records<br />

are stored.<br />

Electr<strong>on</strong>ic records<br />

• Each c<strong>on</strong>trolled document is ma<strong>in</strong>ta<strong>in</strong>ed electr<strong>on</strong>ically <strong>on</strong> the<br />

designated electr<strong>on</strong>ic storage system<br />

• Electr<strong>on</strong>ic records that are under the c<strong>on</strong>trol of pers<strong>on</strong>s that do not<br />

have read/write permissi<strong>on</strong>s to the Intranet are ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> a<br />

designated electr<strong>on</strong>ic storage locati<strong>on</strong><br />

Document Change History<br />

Revisi<strong>on</strong> Date<br />

14/10/2007<br />

19/10/2008<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Nature of Revisi<strong>on</strong><br />

Update c<strong>on</strong>tent<br />

Update c<strong>on</strong>tent<br />

Energy Manager<br />

Energy Manager<br />

Document Review Participants


Internal Audit<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Internal Audit<br />

The audit compares all planned activities and procedures<br />

with the current situati<strong>on</strong> and states deviati<strong>on</strong>s.<br />

The reas<strong>on</strong>s for gaps between the plan and the actual<br />

situati<strong>on</strong> will be stated and the <strong>energy</strong> team has to decide<br />

• how to elim<strong>in</strong>ate those gaps<br />

• how to improve the system<br />

• which future activities and future developments<br />

must take place.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Areas to cover with<strong>in</strong> an audit<br />

The follow<strong>in</strong>g topics should be covered:<br />

1. Energy Policy<br />

2. Energy Data<br />

3. Organisati<strong>on</strong><br />

4. Energy Team<br />

5. Improv<strong>in</strong>g proposals<br />

6. Energy programme<br />

7. Informati<strong>on</strong><br />

8. Legal obligati<strong>on</strong>s<br />

9. Awareness rais<strong>in</strong>g<br />

10. Energy <strong>in</strong>tensive areas<br />

11. Purchase<br />

12. Ma<strong>in</strong>tenance<br />

13. Audit<br />

14. <str<strong>on</strong>g>Tra<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

15. Management Review<br />

16. EM System<br />

documentati<strong>on</strong>


1. Energy policy<br />

• There is an <strong>energy</strong> policy <strong>in</strong> place<br />

• The <strong>energy</strong> policy will be dissem<strong>in</strong>ated (e.g. notice<br />

boards, magaz<strong>in</strong>es, face to face meet<strong>in</strong>gs)<br />

• Staff are aware of the <strong>energy</strong> policy and its core<br />

statements<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


2. Energy data<br />

• Data is classified <strong>in</strong>to measured data and calculated data<br />

• Data is collected <strong>on</strong> a c<strong>on</strong>t<strong>in</strong>uous basis<br />

• There is a pers<strong>on</strong> resp<strong>on</strong>sible for collect<strong>in</strong>g, measur<strong>in</strong>g and<br />

record<strong>in</strong>g data<br />

• There is a pers<strong>on</strong> resp<strong>on</strong>sible for transform<strong>in</strong>g data <strong>in</strong>to<br />

<strong>in</strong>dicators and figures<br />

• Indicators are <strong>in</strong> place so that they can be used for <strong>in</strong>ternal<br />

purposes (staff realise which activities cause an <strong>in</strong>crease or a<br />

decrease <strong>in</strong> <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>)<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• Indicators are <strong>in</strong> place so that they can be used for external<br />

purposes (comparis<strong>on</strong> with benchmarks, other factories, PR)


3. Organisati<strong>on</strong><br />

• There is an <strong>energy</strong> manager <strong>in</strong> place and staff are aware of<br />

him/her<br />

• There is an <strong>energy</strong> team <strong>in</strong> place<br />

• The <strong>energy</strong> manager has def<strong>in</strong>ed roles and resp<strong>on</strong>sibilities<br />

• The <strong>energy</strong> team has clear roles and resp<strong>on</strong>sibilities<br />

• There are clear resp<strong>on</strong>sibilities for <strong>energy</strong> use, <strong>energy</strong> <strong>in</strong>tensive<br />

processes and plants <strong>in</strong> the <strong>in</strong>dividual departments<br />

• There is a pers<strong>on</strong> resp<strong>on</strong>sible for the purchase of <strong>energy</strong><br />

efficient equipment<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• There is a pers<strong>on</strong> resp<strong>on</strong>sible for <strong>energy</strong> purchase<br />

• There are clear resp<strong>on</strong>sibilities for ma<strong>in</strong>tenance and service


4. Energy team<br />

• In larger organisati<strong>on</strong>s (> 100 employees) there is an<br />

<strong>energy</strong> team <strong>in</strong> place to support the <strong>energy</strong> manager<br />

• The <strong>energy</strong> team meets <strong>on</strong> a regular basis<br />

• There is an agenda for the meet<strong>in</strong>g<br />

• The team members come from producti<strong>on</strong> areas,<br />

departments us<strong>in</strong>g <strong>energy</strong> <strong>in</strong> an <strong>in</strong>tensive way and<br />

<strong>in</strong>clude the envir<strong>on</strong>mental manager, the quality<br />

manager and the ma<strong>in</strong>tenance manager<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


5. Improv<strong>in</strong>g proposals<br />

• There is a system for improvement proposals <strong>in</strong> place<br />

cover<strong>in</strong>g <strong>energy</strong> topics<br />

• The <strong>energy</strong> team collects improvement proposals<br />

from their respective areas and discuss them <strong>in</strong> the<br />

regular meet<strong>in</strong>gs<br />

• There are criteria <strong>in</strong> place to evaluate the proposals<br />

• There is an award scheme <strong>in</strong> place to motivate staff<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


6. Energy programme<br />

• The improvement activities will be summarised <strong>in</strong> an<br />

<strong>energy</strong> programme <strong>on</strong> a yearly basis<br />

• The <strong>energy</strong> programme c<strong>on</strong>ta<strong>in</strong>s <strong>in</strong>formati<strong>on</strong> about<br />

the activity, the resp<strong>on</strong>sibilities, the time frame, the<br />

budget, the pay back and necessary milest<strong>on</strong>es<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


7. Informati<strong>on</strong><br />

• Energy <strong>in</strong>formati<strong>on</strong> and data will be communicated to<br />

predef<strong>in</strong>ed groups<br />

• There is a system <strong>in</strong> place (e.g. <strong>in</strong>tranet) offer<strong>in</strong>g necessary and<br />

updated <strong>in</strong>formati<strong>on</strong><br />

• There is real time data available for <strong>energy</strong> <strong>in</strong>tensive areas<br />

• There are hard copy sheets with necessary <strong>in</strong>formati<strong>on</strong> available<br />

<strong>on</strong> departmental level for staff without access to a computer<br />

• Informati<strong>on</strong> about <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> will be provided so that<br />

staff realise <strong>in</strong> which way their activities <strong>in</strong>fluence the <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• An <strong>energy</strong> report will be produced <strong>on</strong> a regular basis


8. Legal obligati<strong>on</strong>s<br />

• There is a pers<strong>on</strong> resp<strong>on</strong>sible for the register of<br />

regulati<strong>on</strong>s<br />

• Legal obligati<strong>on</strong>s, laws, standards relevant to the<br />

organisati<strong>on</strong>’s activities, services and products are<br />

identified and updated <strong>on</strong> a yearly basis<br />

• Staff with<strong>in</strong> departments and producti<strong>on</strong> processes are<br />

aware of legal obligati<strong>on</strong>s and do have precise<br />

<strong>in</strong>structi<strong>on</strong>s for legal compliance<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


9. Awareness rais<strong>in</strong>g<br />

• There is at least <strong>on</strong>e awareness rais<strong>in</strong>g activity<br />

undertaken each year<br />

• Staff are aware of the need to be <strong>energy</strong> efficient<br />

• Staff have participated <strong>in</strong> an awareness rais<strong>in</strong>g<br />

activity<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


10. Energy <strong>in</strong>tensive areas<br />

• Energy <strong>in</strong>tensive areas are identified and documented<br />

• The ma<strong>in</strong> <strong>energy</strong> <strong>in</strong>puts and waste heat emissi<strong>on</strong>s are<br />

known for those areas<br />

• The ma<strong>in</strong> <strong>energy</strong> <strong>in</strong>puts and waste heat emissi<strong>on</strong>s are<br />

documented<br />

• There is an equipment list <strong>in</strong>clud<strong>in</strong>g <strong>energy</strong> relevant<br />

<strong>in</strong>formati<strong>on</strong> such as c<strong>on</strong>nect<strong>in</strong>g power, year of<br />

purchase, operat<strong>in</strong>g hours, total <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

per year and total <strong>energy</strong> costs per year.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


11. Energy purchase<br />

• There is a pers<strong>on</strong> resp<strong>on</strong>sible for the purchase of<br />

<strong>energy</strong><br />

• There is a procedure <strong>in</strong> place deal<strong>in</strong>g with the<br />

purchase of <strong>energy</strong> c<strong>on</strong>sum<strong>in</strong>g equipment<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


12. Ma<strong>in</strong>tenance<br />

• Energy <strong>in</strong>tensive mach<strong>in</strong>ery, equipment and plants<br />

are serviced and ma<strong>in</strong>ta<strong>in</strong>ed <strong>on</strong> a regular basis<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


13. Energy audit<br />

• An audit is undertaken with<strong>in</strong> a predef<strong>in</strong>ed period (e.g. yearly)<br />

• The areas to be audited are def<strong>in</strong>ed<br />

• The audit team is tra<strong>in</strong>ed<br />

• The audit report has been produced for the previous period<br />

• Post audit activities <strong>in</strong>clud<strong>in</strong>g improvement activities were<br />

undertaken<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


14. <str<strong>on</strong>g>Tra<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g><br />

• There is a tra<strong>in</strong><strong>in</strong>g programme <strong>in</strong> place<br />

• Staff are regularly tra<strong>in</strong>ed <strong>on</strong> <strong>energy</strong> topics<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


15. Management Review<br />

• Top management have been regularly <strong>in</strong>formed about<br />

the <strong>energy</strong> management system<br />

• The audit report was presented to top management<br />

• The planned activities were presented to top<br />

management<br />

• Top management have signed the previous audit<br />

report and support its activities<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


16. EM System documentati<strong>on</strong><br />

• There is a manual or there are documents available<br />

describ<strong>in</strong>g all areas of the Energy Management<br />

system <strong>in</strong> place<br />

• The manual c<strong>on</strong>ta<strong>in</strong>s up to date documents about<br />

work procedures, processes, management<br />

procedures<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


The audit team<br />

The basic idea of the audit is to evaluate the <strong>in</strong>dividual<br />

areas of an EMS by an <strong>in</strong>dependent expert or by a team of<br />

experts.<br />

In many cases the members of the <strong>energy</strong> team will act as<br />

auditors although there are certa<strong>in</strong> prec<strong>on</strong>diti<strong>on</strong>s to<br />

c<strong>on</strong>sider.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


The audit team<br />

• The members of the audit team should have appropriate<br />

knowledge about the area to be audited <strong>in</strong>clud<strong>in</strong>g the<br />

technical systems, the activities undertaken <strong>in</strong> the area<br />

and the comp<strong>on</strong>ents of an EMS <strong>in</strong> place. They should<br />

know the members of the <strong>energy</strong> team <strong>in</strong> the area and the<br />

staff work<strong>in</strong>g with <strong>energy</strong> c<strong>on</strong>sum<strong>in</strong>g equipment.<br />

• The members of the audit team must be sufficiently<br />

<strong>in</strong>dependent from the activities to be audited. It is<br />

obvious that the <strong>in</strong>dividual team members must not<br />

evaluate areas they are work<strong>in</strong>g <strong>in</strong>.<br />

• The audit team should be tra<strong>in</strong>ed so that there is<br />

c<strong>on</strong>sistency <strong>in</strong> the audit process.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Audit frequency<br />

There are 3 topics l<strong>in</strong>ked with audit times:<br />

1. How often to undertake an audit?<br />

2. How l<strong>on</strong>g does the audit take?<br />

3. What period will be covered by the audit?<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


EXAMPLE Audit Overview<br />

Office Producti<strong>on</strong> I Producti<strong>on</strong> II<br />

Policy 15/6/04 15/6/04 15/6/04<br />

E-Data 15/6/04 15/6/04 15/6/04<br />

E-Organisati<strong>on</strong> 16/6/04 16/6/04 16/6/04<br />

E-Informati<strong>on</strong> 17/6/04 17/6/04 17/6/04<br />

E-Programme 17/6/04 17/6/04 17/6/04<br />

Auditor Williams Williams Hutt<br />

The dates <strong>in</strong> the cells state when the audit takes place. In<br />

additi<strong>on</strong>, the names of the auditors are given, <strong>in</strong>clud<strong>in</strong>g the<br />

<strong>in</strong>dividual sub-areas of the audit checklist.<br />

Larger organisati<strong>on</strong>s will f<strong>in</strong>d it useful to audit all areas<br />

over an extended period. In additi<strong>on</strong> many organisati<strong>on</strong>s<br />

are already familiar with audit procedures. In that case it is<br />

str<strong>on</strong>gly recommended to <strong>in</strong>tegrate the <strong>energy</strong> audit <strong>in</strong>to<br />

the exist<strong>in</strong>g audit procedures.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Evaluati<strong>on</strong> of the audit f<strong>in</strong>d<strong>in</strong>gs<br />

The audit results must be evaluated <strong>in</strong> a<br />

comm<strong>on</strong> way. Criteria for evaluat<strong>in</strong>g the<br />

<strong>in</strong>dividual areas must be clear before the audit<br />

takes place.<br />

Criteria should be known by the staff of the<br />

respective departments and must be objective<br />

to everybody.<br />

The standards will be set by the company itself<br />

and the top management has to set the<br />

basel<strong>in</strong>e.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Audit procedure<br />

1. The Audit team must be tra<strong>in</strong>ed<br />

2. The audit activities must be planned<br />

3. The audit must take place<br />

4. There are post audit activities <strong>in</strong>clud<strong>in</strong>g the report<br />

and corrective acti<strong>on</strong>s<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Review by Top Management<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Review by top management<br />

Top management will normally focus <strong>on</strong> the follow<strong>in</strong>g areas<br />

which are partly covered by the <strong>energy</strong> report:<br />

• Energy policy<br />

• Results of the <strong>energy</strong> review (<strong>in</strong>clud<strong>in</strong>g register of significant<br />

areas of c<strong>on</strong>sumpti<strong>on</strong> and register of regulati<strong>on</strong>s)<br />

• Energy programme and the extent to which <strong>energy</strong> objectives and<br />

targets have been met;<br />

• Corrective and preventive acti<strong>on</strong>s;<br />

• Energy management system documentati<strong>on</strong><br />

• Audit report<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Review by top management<br />

Top management will specify:<br />

• Cases of n<strong>on</strong>-compliance with the provisi<strong>on</strong>s of the<br />

regulati<strong>on</strong><br />

• Technical defects <strong>in</strong> the first <strong>energy</strong> review, or audit<br />

method or envir<strong>on</strong>mental management system and<br />

any other relevant process<br />

• Po<strong>in</strong>ts of disagreement with the <strong>energy</strong> report and<br />

suggested amendments and additi<strong>on</strong>s<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Compressed Air<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Compressed air<br />

It is very important to systematically analyse a<br />

compressed air plant.<br />

With the follow<strong>in</strong>g <strong>in</strong>formati<strong>on</strong> you will be able to<br />

evaluate the <strong>efficiency</strong> of a compressed air plant <strong>in</strong><br />

a step by step process.<br />

In additi<strong>on</strong>, examples will be given <strong>on</strong><br />

• how to calculate leakages,<br />

• the effective power for producti<strong>on</strong>,<br />

• how to track the <strong>efficiency</strong>,<br />

• why the use of waste heat from the plant<br />

should be c<strong>on</strong>sidered.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Check<strong>in</strong>g the <strong>efficiency</strong><br />

S<strong>in</strong>ce poor ma<strong>in</strong>tenance and <strong>in</strong>correct specificati<strong>on</strong><br />

of plant leads to high <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> and<br />

operat<strong>in</strong>g costs, <strong>efficiency</strong> should be analysed. The<br />

advantages of such a detailed analysis are:<br />

• Knowledge about the maximum c<strong>on</strong>sumpti<strong>on</strong> of<br />

compressed air. This allows you to check that your<br />

system is of the correct capacity. Most systems are<br />

oversized due to a lack of understand<strong>in</strong>g about the<br />

maximum c<strong>on</strong>sumpti<strong>on</strong> requirement.<br />

• To realise if it would be profitable to share the<br />

producti<strong>on</strong> of compressed air between a small<br />

compressor and a larger <strong>on</strong>e. Each system runs<br />

efficiently and this saves m<strong>on</strong>ey.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Check<strong>in</strong>g the <strong>efficiency</strong><br />

• To realise at what time the maximum<br />

c<strong>on</strong>sumpti<strong>on</strong>, and therefore the maximum<br />

<strong>energy</strong> demand, occurs.<br />

You should try to avoid peaks for compressed<br />

air demand co<strong>in</strong>cid<strong>in</strong>g with periods of high<br />

electricity demand.<br />

• By mak<strong>in</strong>g measurements dur<strong>in</strong>g periods of no<br />

use, low-c<strong>on</strong>sumpti<strong>on</strong> periods or dur<strong>in</strong>g the<br />

night, leaks <strong>in</strong> the system can be detected.<br />

• You can m<strong>on</strong>itor the <strong>efficiency</strong> of your system<br />

c<strong>on</strong>t<strong>in</strong>uously and can react if someth<strong>in</strong>g appears<br />

to go wr<strong>on</strong>g.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Analysis & calculati<strong>on</strong> - 12 steps<br />

The follow<strong>in</strong>g provides a step-by-step process <strong>on</strong><br />

how to analyse a plant and how to calculate losses:<br />

1. Measure the c<strong>on</strong>sumpti<strong>on</strong> of compressed air<br />

2. Measure the c<strong>on</strong>sumpti<strong>on</strong> of electrical <strong>energy</strong><br />

3. Check the specific <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

4. Compare the specific <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

5. Calculate losses from leaks<br />

6. Calculate the effective power of producti<strong>on</strong><br />

7. Calculate the pressure <strong>in</strong> the distributi<strong>on</strong> system<br />

8. Loss of pressure through system parts<br />

9. Loss of pressure through branch c<strong>on</strong>necti<strong>on</strong>s<br />

10. Decrease of <strong>efficiency</strong> through humidity<br />

11. Choice of off-load pressure<br />

12. Choos<strong>in</strong>g the off-load/<strong>on</strong>-load differential<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 1: Measure the c<strong>on</strong>sumpti<strong>on</strong><br />

of compressed air<br />

Optimis<strong>in</strong>g exist<strong>in</strong>g plants is a<br />

very time c<strong>on</strong>sum<strong>in</strong>g activity.<br />

You should beg<strong>in</strong> by measur<strong>in</strong>g<br />

the actual c<strong>on</strong>sumpti<strong>on</strong> of<br />

compressed air over a week.<br />

If your system has no means of measur<strong>in</strong>g compressed air producti<strong>on</strong>,<br />

<strong>in</strong>stall a flow meter and a pressure transducer <strong>in</strong> the compressed air<br />

ma<strong>in</strong>s and take read<strong>in</strong>gs over a representative period of time.<br />

The flow meter and the pressure transducer should be <strong>in</strong>stalled by<br />

experts. The graph below is an example of such an analysis.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

With this <strong>in</strong>formati<strong>on</strong> you can easily arrive at the weekly c<strong>on</strong>sumpti<strong>on</strong>.


Step 2: Measure the<br />

c<strong>on</strong>sumpti<strong>on</strong> of electrical <strong>energy</strong><br />

Determ<strong>in</strong>e the c<strong>on</strong>sumpti<strong>on</strong> of electricity for the same period.<br />

Electrical <strong>energy</strong> <strong>in</strong>puts to all parts of the compressi<strong>on</strong> process<br />

should be <strong>in</strong>cluded <strong>in</strong> the calculati<strong>on</strong> (for example: dryer, cool<strong>in</strong>g<br />

fan and oil pumps).<br />

If there is no <strong>in</strong>dividual meter for the compressor system you<br />

should <strong>in</strong>stall <strong>on</strong>e, or you can make a s<strong>in</strong>gle measurement for a<br />

certa<strong>in</strong> period by us<strong>in</strong>g a data logger.<br />

Us<strong>in</strong>g the data acquired, the specific <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> can<br />

now be calculated.<br />

These <strong>in</strong>dicators will be<br />

needed for c<strong>on</strong>t<strong>in</strong>uous<br />

m<strong>on</strong>itor<strong>in</strong>g.<br />

Electrical Energy C<strong>on</strong>sumpti<strong>on</strong>: kWh<br />

Compressor: 4,200<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Dryer:<br />

no dryer fitted<br />

Pump: 300<br />

Fan: 300<br />

Total kWh: 4,800


Step 3: Check the specific <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong><br />

In the third step it is easy to calculate the specific <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> for a particular plant.<br />

The c<strong>on</strong>sumpti<strong>on</strong> of compressed air is the result of the<br />

measurements over a week.<br />

The follow<strong>in</strong>g <strong>in</strong>dicators must be calculated:<br />

C<strong>on</strong>sumpti<strong>on</strong>: kWh<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Compressed air [m³/week] 1 13,440<br />

Electrical <strong>energy</strong> [kWh/week] 2 4,200<br />

Specific <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> [kWh/m³] 2/1 0.31<br />

Specific <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> [kW/m³/m<strong>in</strong>] 18.6


Step 4: Compare the specific<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

Compare the specific <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> of your plant with<br />

the manufacturer’s technical specificati<strong>on</strong>s for your plant.<br />

If no data is available than compare your figures to those given<br />

<strong>in</strong> the table below.<br />

Type of compressor:<br />

Specific <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> for<br />

compress<strong>in</strong>g air from 0 to<br />

10 bar [kW/m3/m<strong>in</strong>]<br />

Pist<strong>on</strong> compressor 1 step 10.31<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Screw compressor 1 step 10.06<br />

Pist<strong>on</strong> compressor 2 steps 8.36<br />

Oil free Pist<strong>on</strong> compressor 2 steps 10.51


Step 4: Compare the specific<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

It is important that <strong>on</strong>ly the actual <strong>energy</strong><br />

c<strong>on</strong>sumed by the compressor is c<strong>on</strong>sidered.<br />

Energy losses from the motor and <strong>in</strong>puts to<br />

other parts of the process should not be<br />

<strong>in</strong>cluded.<br />

Losses from electrical motors will often result<br />

<strong>in</strong> the specific c<strong>on</strong>sumpti<strong>on</strong> be<strong>in</strong>g <strong>in</strong>creased<br />

by 12% - 16%.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 5: Calculat<strong>in</strong>g losses from<br />

leaks<br />

Leaks <strong>in</strong> compressed air systems are <strong>on</strong>e of the greatest<br />

problems and result <strong>in</strong> enormous costs if there is no<br />

systematic c<strong>on</strong>trol.<br />

A small plant with <strong>on</strong>ly a few c<strong>on</strong>necti<strong>on</strong>s <strong>in</strong>to the<br />

system should aim for a leakage rate of less than 5% of<br />

demand, but a large manufactur<strong>in</strong>g site cannot expect to<br />

have a leakage rate better than 15-20% of total demand.<br />

If you have no means of measur<strong>in</strong>g compressed air, the<br />

follow<strong>in</strong>g method can be used for analys<strong>in</strong>g losses<br />

through leaks.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

This method is recommended when you know the<br />

volume of your storage c<strong>on</strong>ta<strong>in</strong>ers and the volume of the<br />

distributi<strong>on</strong> system.


Step 5: Calculat<strong>in</strong>g losses from<br />

leaks<br />

1. The first step is to ensure all applicati<strong>on</strong>s us<strong>in</strong>g<br />

compressed air are turned off.<br />

2. Next, fill the air storage c<strong>on</strong>ta<strong>in</strong>er to its maximum<br />

capacity and measure the time it takes to reach m<strong>in</strong>imum<br />

pressure, this is when the mach<strong>in</strong>e switches itself <strong>on</strong><br />

aga<strong>in</strong>.<br />

The difference between the pressure levels should not be<br />

too small (>2 bar).<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

The pressure required <strong>in</strong> normal operati<strong>on</strong> of the plant<br />

should lie between these maximum and m<strong>in</strong>imum levels.


Step 5: Calculat<strong>in</strong>g losses from<br />

leaks<br />

There will always be some leaks <strong>in</strong> the system. S<strong>in</strong>ce the<br />

cost of produc<strong>in</strong>g compressed air is so high, every effort<br />

should be made to keep leaks to a m<strong>in</strong>imum.<br />

To quantify the losses caused by leakage <strong>in</strong> the distributi<strong>on</strong><br />

system use the follow<strong>in</strong>g calculati<strong>on</strong>:<br />

QL =<br />

Vn x 3,600<br />

t<br />

x [pe2 - pe1]<br />

QL [m 3 /h]: leakage between maximum and m<strong>in</strong>imum pressure<br />

VD [m3]: volume of the storage c<strong>on</strong>ta<strong>in</strong>er and of the system<br />

t [sec]: time for the pressure to drop from the higher to the lower level<br />

P e2 [bar]:<br />

P e1 [bar]:<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

pressure of the storage c<strong>on</strong>ta<strong>in</strong>er at the higher level, start of<br />

measurement<br />

pressure of the storage c<strong>on</strong>ta<strong>in</strong>er at lower level, end of<br />

measurement


EXAMPLE – Calculat<strong>in</strong>g losses<br />

from leaks<br />

unit value remark<br />

VD [m 3 ] 10 volume of the storage c<strong>on</strong>ta<strong>in</strong>er and of the system<br />

t [sec] 600 time for the pressure to drop from higher to lower level<br />

pe2 [bar] 11 pressure of the storage c<strong>on</strong>ta<strong>in</strong>er at the higher level<br />

(start of measurement)<br />

pe1 [bar] 9 pressure of the storage c<strong>on</strong>ta<strong>in</strong>er at the lower level<br />

(end of measurement)<br />

QL [m 3 /h] 120 leakage between maximum and m<strong>in</strong>imum pressure<br />

Q [m 3 /h] 1200 average demand of compressed air<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

= [%] 10 > 5 % for small plant<br />

> 15-20 % for larger plant


EXAMPLE – Calculat<strong>in</strong>g losses<br />

from leaks<br />

QL =<br />

Loss =<br />

V x 3,600 10 x 3,600<br />

x [p e2 - pe1] =<br />

t<br />

600<br />

Q L<br />

Q<br />

=<br />

120<br />

1,200<br />

= 10 %<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

x [ 11 - 9] = 120


EXAMPLE – Calculat<strong>in</strong>g losses<br />

from leaks<br />

For our example 10% losses from leakage are below the<br />

tolerance range of


Step 6: Calculat<strong>in</strong>g the<br />

effective power<br />

To calculate the <strong>efficiency</strong> of the compressor, use the<br />

c<strong>on</strong>ta<strong>in</strong>er fill<strong>in</strong>g method as follows. Shut off the outlet from<br />

the storage c<strong>on</strong>ta<strong>in</strong>er and measure the time the compressor<br />

takes to reach the maximum pressure.<br />

As with the calculati<strong>on</strong> to determ<strong>in</strong>e leakage, the pressure<br />

difference should not be too small and the average pressure<br />

should corresp<strong>on</strong>d to the actual pressure required.<br />

To calculate the effective power of producti<strong>on</strong> use the<br />

follow<strong>in</strong>g equati<strong>on</strong>:<br />

QL =<br />

V x 3,600<br />

t<br />

x [pe2 - pe1]<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Q [m 3 /h]: difference between maximum and m<strong>in</strong>imum pressure<br />

V [m3]: volume of the storage c<strong>on</strong>ta<strong>in</strong>er<br />

t [sec]:<br />

time for fill<strong>in</strong>g up the storage c<strong>on</strong>ta<strong>in</strong>er to a<br />

predeterm<strong>in</strong>ed level<br />

Pe2 [bar]: pressure of the storage c<strong>on</strong>ta<strong>in</strong>er at maximum pressure<br />

Pe1 [bar]: pressure of the storage c<strong>on</strong>ta<strong>in</strong>er at m<strong>in</strong>imum pressure


EXAMPLE – Calculat<strong>in</strong>g the<br />

effective power<br />

unit value remark<br />

V [m 3 ] 6 volume of the storage c<strong>on</strong>ta<strong>in</strong>er<br />

t [sec] 36 time for fill<strong>in</strong>g up the storage c<strong>on</strong>ta<strong>in</strong>er to a<br />

predeterm<strong>in</strong>ed level<br />

pe2 [bar] 11 pressure of the storage c<strong>on</strong>ta<strong>in</strong>er at maximum pressure<br />

pe1 [bar] 9 pressure of the storage c<strong>on</strong>ta<strong>in</strong>er at m<strong>in</strong>imum pressure<br />

pa [bar] 1 Pressure <strong>in</strong> the sucti<strong>on</strong> pipe<br />

Q1 [m 3 /h] 1200 average producti<strong>on</strong> of compressed air<br />

Q2 [m 3 /h] 1300 average producti<strong>on</strong> of compressed air (technical<br />

specificati<strong>on</strong> of the manufacturer)<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

= [%] 92.3 > 95 % for small plant<br />

> 90-95 % for larger plant


Step 7: Calculate pressure <strong>in</strong><br />

distributi<strong>on</strong> system<br />

If there is no demand for compressed air the pressure<br />

should be c<strong>on</strong>stant throughout the system.<br />

However, as compressed air flows through the<br />

distributi<strong>on</strong> system a loss of pressure will occur, this is<br />

caused by the speed of flow.<br />

To m<strong>in</strong>imise the loss of pressure caused by the<br />

distributi<strong>on</strong> system, ensure that pipe-work is of the<br />

correct dimensi<strong>on</strong>.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

1|2


Step 7: Calculate pressure <strong>in</strong><br />

distributi<strong>on</strong> system<br />

High pressure loss <strong>in</strong> the system might be caused by:<br />

• L<strong>in</strong>e diameters be<strong>in</strong>g too small<br />

• Resistance due to different size of fitt<strong>in</strong>gs and<br />

other system parts such as flexible hoses or<br />

c<strong>on</strong>necti<strong>on</strong>s be<strong>in</strong>g too high<br />

• Inner surface of pipe material be<strong>in</strong>g too rough<br />

• Distances <strong>in</strong> the distributi<strong>on</strong> system be<strong>in</strong>g too<br />

l<strong>on</strong>g. This often happens<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

The loss of pressure <strong>in</strong> the system should not be higher<br />

than 0.1 bar for <strong>in</strong>dustrial systems up to 200 meters <strong>in</strong><br />

length. If higher losses are measured get the diameter<br />

of the pipes checked by a competent pers<strong>on</strong>.<br />

1|2


Step 8: Loss of pressure through<br />

system parts<br />

Filters, air-dryers, cool<strong>in</strong>g systems and ma<strong>in</strong>tenance<br />

tools cause air flow resistance. Pressure losses<br />

should be no higher than the follow<strong>in</strong>g:<br />

filter 0.1 bar<br />

air-dryer/cooler 0.2 bar<br />

ma<strong>in</strong>tenance tools 0.1 bar<br />

In practice, overall losses should not exceed 0.5 bar.<br />

When calculat<strong>in</strong>g maximum pressure this loss must<br />

be c<strong>on</strong>sidered.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 9: Loss of pressure<br />

through branch c<strong>on</strong>necti<strong>on</strong>s<br />

C<strong>on</strong>nectors that jo<strong>in</strong> pipes can cause<br />

high losses.<br />

Frequently the case when the<br />

distributi<strong>on</strong> network has been changed<br />

after its orig<strong>in</strong>al <strong>in</strong>stallati<strong>on</strong>.<br />

An expert is needed to assess this.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 10: Decrease of <strong>efficiency</strong><br />

through humidity<br />

If the system does not c<strong>on</strong>ta<strong>in</strong> a dryer, pressure<br />

losses could <strong>in</strong>crease as a result of rust.<br />

Dur<strong>in</strong>g the servic<strong>in</strong>g of old plant this fact has to be<br />

c<strong>on</strong>sidered carefully.<br />

To prevent excess humidity you should put water<br />

separators and air dryers upstream of your<br />

process.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 11: Choice of off-load<br />

pressure<br />

The higher the off-load pressure the more <strong>energy</strong> is<br />

required for compress<strong>in</strong>g.<br />

To compress air by 1 additi<strong>on</strong>al bar, <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> will <strong>in</strong>crease by up to 4-7 %,<br />

depend<strong>in</strong>g <strong>on</strong> the compressor type.<br />

Therefore, you should not compress air to a higher<br />

pressure than is needed.<br />

You should check whether the pressure level of<br />

your plant corresp<strong>on</strong>ds with that required for your<br />

process.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 12: Choos<strong>in</strong>g the off-load/<br />

<strong>on</strong>-load differential<br />

The difference between <strong>on</strong>-load and off-load<br />

pressure should be as small as possible.<br />

To avoid overheat<strong>in</strong>g the electrical motor as low<br />

an off-load pressure as possible should be<br />

ma<strong>in</strong>ta<strong>in</strong>ed as should the frequency with which<br />

the compressor comes <strong>on</strong>.<br />

Ideally a large capacity storage c<strong>on</strong>ta<strong>in</strong>er should<br />

be used, which should make a small switch<strong>in</strong>g<br />

differential possible.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

In practice ec<strong>on</strong>omic c<strong>on</strong>siderati<strong>on</strong>s are likely to<br />

force a compromise.


Record keep<strong>in</strong>g<br />

- track the <strong>efficiency</strong><br />

If you have analysed your compressed air plant<br />

and have optimised the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

needed to produce compressed air, it is easy to<br />

ma<strong>in</strong>ta<strong>in</strong> permanent c<strong>on</strong>trol.<br />

To do so:<br />

• Document the m<strong>on</strong>thly c<strong>on</strong>sumpti<strong>on</strong> of<br />

compressed air and electricity<br />

• Make m<strong>on</strong>thly comparis<strong>on</strong>s between specific<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> data calculated for your<br />

system<br />

• If any change is noticed f<strong>in</strong>d the cause<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


EXAMPLE – track the <strong>efficiency</strong><br />

.<br />

date<br />

level from first<br />

check<br />

level follow<strong>in</strong>g<br />

optimisati<strong>on</strong><br />

M<strong>on</strong>thly<br />

c<strong>on</strong>sumpti<strong>on</strong> of<br />

electricity for<br />

produc<strong>in</strong>g<br />

compressed air<br />

Compressed<br />

air produced<br />

m<strong>on</strong>thly<br />

[m 3 ]<br />

Specific<br />

<strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong><br />

[kW/m 3 /m<strong>in</strong>]<br />

- - 18.75<br />

- - 11.50<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Remarks<br />

Optimisati<strong>on</strong><br />

necessary<br />

Manufacturers<br />

specificati<strong>on</strong><br />

11.5kW/m 3 /m<strong>in</strong><br />

April 03 8,280 kWh 43,200 m 3 11.50 All right<br />

May 03 8,653 kWh 44,640 m 3 11.63 All right<br />

June 03 9,211 kWh 41,100 m 3 13.45 Dirty <strong>in</strong>take filter<br />

July 03 4,600 kWh 23,000 m 3 12.00 2 weeks holiday<br />

August 03 11,371 kWh 55,467 m 3 12.30<br />

Cool<strong>in</strong>g system<br />

leakage<br />

September 03 8,741 kWh 40,344 m 3 13.00 Valve changed<br />

October 03 8,340 kWh 43,780 m 3 11.43 All right


Useof wasteheat<br />

Irrespective of the compressor type used, 90% of<br />

electrical <strong>energy</strong> c<strong>on</strong>sumed is lost as waste heat.<br />

The temperature at which waste heat is available is<br />

important. 70% to 80% of electrical power <strong>in</strong>put is<br />

available for use as waste heat.<br />

The temperature level of waste heat available for use<br />

as process heat or warm water, is about 50°C from<br />

pist<strong>on</strong> compressors and about 60°C from oil <strong>in</strong>jected<br />

screw compressors.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


EXAMPLE – wast heat: track the<br />

<strong>efficiency</strong><br />

.<br />

remark unit value<br />

Your annual electrical c<strong>on</strong>sumpti<strong>on</strong> for<br />

produc<strong>in</strong>g compressed air<br />

70% of this electrical amount<br />

(maximum use of waste heat)<br />

Specific costs of heat (0.03 €/m 3<br />

natural gas; c<strong>on</strong>versi<strong>on</strong> <strong>efficiency</strong> 90%)<br />

Maximum sav<strong>in</strong>g potential through the<br />

use of waste heat<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

[kWh] 715,000<br />

[kWh] 500,000<br />

[EURO/kWh] 0.07<br />

[EURO] 8,000


SUMMARY<br />

• Compressed air is both very expensive and<br />

<strong>energy</strong> <strong>in</strong>tensive.<br />

• To produce 1 kW of power us<strong>in</strong>g compressed air<br />

10 kW of electricity is required.<br />

• 50% of the total cost to produce compressed air is<br />

<strong>energy</strong> costs.<br />

• 70% to 80% of the electrical power <strong>in</strong>put is lost as<br />

waste heat, the recovery and use of which should<br />

be c<strong>on</strong>sidered <strong>in</strong> the plann<strong>in</strong>g phase of the plant.<br />

• Small leaks and <strong>in</strong>correct specificati<strong>on</strong> result <strong>in</strong><br />

substantial costs.<br />

• The people resp<strong>on</strong>sible for compressed air supply<br />

and users of compressed air are not always aware<br />

of the high losses and the high cost of<br />

compressed air producti<strong>on</strong>.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Electric Motors<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Electric motors<br />

Comp<strong>on</strong>ents & applicati<strong>on</strong>s<br />

This module focuses <strong>on</strong> electric motors, comp<strong>on</strong>ents<br />

and applicati<strong>on</strong>s driven by them such as pumps, fans<br />

and compressors<br />

You will get an overview <strong>on</strong> identify<strong>in</strong>g the <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> and the costs relat<strong>in</strong>g to electric motors.<br />

This will help you to identify possible improvements<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Life-time facts<br />

• Almost half of all electricity generated <strong>in</strong> the world is<br />

used by electric motors<br />

• This is equal to two thirds of all <strong>in</strong>dustrial electricity<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

• Typically a motor can c<strong>on</strong>sume electricity equal to its<br />

purchase cost <strong>in</strong> just 40 days of c<strong>on</strong>t<strong>in</strong>uous runn<strong>in</strong>g<br />

• There are several ways and methods to make sav<strong>in</strong>gs<br />

– from switch<strong>in</strong>g off to modern electr<strong>on</strong>ic c<strong>on</strong>trols<br />

Life-time cost<br />

motor 1 x 5000.- = 5000.e-company<br />

20 x 5000.- = 100000.-<br />

105000.-<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


E-Motors - ma<strong>in</strong> comp<strong>on</strong>ents<br />

Electric motors c<strong>on</strong>vert electricity to rotati<strong>on</strong>al <strong>energy</strong>.<br />

The mach<strong>in</strong>e to which the motor is c<strong>on</strong>nected does the<br />

value-produc<strong>in</strong>g work of process<strong>in</strong>g and mov<strong>in</strong>g<br />

materials. The c<strong>on</strong>cept of the ‘motor system’ is<br />

therefore central to understand<strong>in</strong>g how to improve<br />

<strong>energy</strong> <strong>efficiency</strong>.<br />

The comp<strong>on</strong>ents of motor systems are closely<br />

<strong>in</strong>terdependent, but classificati<strong>on</strong>s are not rigid.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Ma<strong>in</strong> comp<strong>on</strong>ents<br />

The follow<strong>in</strong>g comp<strong>on</strong>ents bel<strong>on</strong>g to a motor system:<br />

1. power supply<br />

2. the motor-drive package<br />

3. the process system<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Generic applicati<strong>on</strong>s <strong>in</strong>clude pumps, fans and<br />

compressors. The other major categories are materials<br />

handl<strong>in</strong>g and process<strong>in</strong>g systems.


Losses <strong>in</strong> a motor system<br />

Only part of the losses can<br />

be attributed to the motor<br />

itself. The parts before<br />

and after the motor cause<br />

the major losses as can<br />

be seen <strong>in</strong> the figure below.<br />

In a typical system <strong>on</strong>ly<br />

50% of the Input power is<br />

actually useable.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Losses <strong>in</strong> a motor system<br />

The ma<strong>in</strong> problem with electric motors <strong>in</strong><br />

practice is that, over time,<br />

• systems may end up handl<strong>in</strong>g very different<br />

volumes of materials,<br />

• and may even perform quite different tasks<br />

from those orig<strong>in</strong>ally <strong>in</strong>tended.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Losses <strong>in</strong> a motor system<br />

Motors may be driv<strong>in</strong>g loads much higher, lower, or more<br />

variable than those for which they were first specified. In<br />

practice, therefore, factories d<strong>on</strong>’t c<strong>on</strong>figure producti<strong>on</strong><br />

mach<strong>in</strong>ery really systematically.<br />

The first step <strong>in</strong> performance optimisati<strong>on</strong> should be<br />

characterisati<strong>on</strong> of the process load to determ<strong>in</strong>e its<br />

magnitude, durati<strong>on</strong> and variability by hour and seas<strong>on</strong>.<br />

Surpris<strong>in</strong>gly this step al<strong>on</strong>e leads to significant <strong>energy</strong><br />

sav<strong>in</strong>gs, by <strong>in</strong>dicat<strong>in</strong>g, for example, quick fixes for<br />

malfuncti<strong>on</strong><strong>in</strong>g c<strong>on</strong>trol equipment, or by reveal<strong>in</strong>g the<br />

possibility to shut down a system for extended periods.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Motor applicati<strong>on</strong>s<br />

The follow<strong>in</strong>g applicati<strong>on</strong>s of motors can be found <strong>in</strong><br />

many companies:<br />

1. Pump<br />

2. Compressor<br />

3. C<strong>on</strong>veyor<br />

4. Press<br />

5. Lathe<br />

6. Fan<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Seven ways of sav<strong>in</strong>g <strong>energy</strong><br />

In a given motor system, the largest proporti<strong>on</strong> of<br />

potential <strong>energy</strong> sav<strong>in</strong>g derives from changes <strong>in</strong><br />

the process system, that is, <strong>in</strong> the design and<br />

operati<strong>on</strong> of equipment downstream of the motor<br />

package. Upgrad<strong>in</strong>g the <strong>efficiency</strong> of <strong>in</strong>dividual<br />

comp<strong>on</strong>ents yields more modest sav<strong>in</strong>gs.<br />

1. Switch it off<br />

2. Slow it down<br />

3. Reduc<strong>in</strong>g motor load<br />

4. Proper Motor Repairs and<br />

ma<strong>in</strong>tenance<br />

5. Use motor c<strong>on</strong>trol systems<br />

6. Select motor with best <strong>efficiency</strong><br />

7. Motor siz<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


1. Switch it off<br />

The simplest method of reduc<strong>in</strong>g <strong>energy</strong> used is to switch<br />

off the motor when it is not needed. There are several<br />

ways of c<strong>on</strong>troll<strong>in</strong>g ”switch<strong>in</strong>g off”:<br />

1.1 Manual switch<strong>in</strong>g off<br />

1.2 Interlock<strong>in</strong>g<br />

1.3 Time switch<br />

1.4 Load sens<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


1. Switch it off<br />

Frequent switch<strong>in</strong>g problems. Switch<strong>in</strong>g<br />

motors <strong>on</strong> and off more often is a simple<br />

way to save <strong>on</strong> <strong>energy</strong>.<br />

But, frequent starts <strong>in</strong>crease wear <strong>on</strong><br />

belts and bear<strong>in</strong>gs and the extra heat<br />

generated with high start<strong>in</strong>g currents can<br />

shorten the life of the motor <strong>in</strong>sulati<strong>on</strong>.<br />

Discuss the issue of frequent starts with<br />

the motor manufacturer, and take <strong>in</strong>to<br />

account any extra ma<strong>in</strong>tenance or repair<br />

costs.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Permitted starts/hour<br />

1. Switch it off<br />

The figure shows the permitted number of starts for typical<br />

<strong>in</strong>dustrial motors.<br />

1000<br />

100<br />

10<br />

1<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Rated output power (kW)<br />

4 pole motors<br />

0 1 10 100 1000<br />

75 % full load; load <strong>in</strong>ertia = 3 x motor <strong>in</strong>ertia<br />

75 % full load; load <strong>in</strong>ertia = 10 x motor <strong>in</strong>ertia<br />

90 % full load; load <strong>in</strong>ertia = 10 x motor <strong>in</strong>ertia


1. Switch it off<br />

Electr<strong>on</strong>ic ”Soft starters”<br />

Electr<strong>on</strong>ic ”Soft starters” can reduce wear dur<strong>in</strong>g start-up<br />

and can allow the motor to be switched <strong>on</strong> 2-4 times more<br />

often. You should therefore c<strong>on</strong>sider these if frequent<br />

start<strong>in</strong>g occurs.<br />

Soft start<strong>in</strong>g is a method of reduc<strong>in</strong>g the high start<strong>in</strong>g<br />

current that occurs when a motor is first switched <strong>on</strong> by<br />

apply<strong>in</strong>g a reduced adjustable voltage. The voltage is then<br />

<strong>in</strong>creased over a period of time to a value which allows the<br />

motor to accelerate smoothly to full speed.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

A soft start c<strong>on</strong>troller is a programmable electr<strong>on</strong>ic device<br />

which allows this period, the accelerati<strong>on</strong> time, to be<br />

selected by the user and is dependent <strong>on</strong> the applicati<strong>on</strong><br />

and the desired start<strong>in</strong>g characteristics.


2. Reduc<strong>in</strong>g motor load<br />

There is little po<strong>in</strong>t <strong>in</strong> improv<strong>in</strong>g the motor and its c<strong>on</strong>trols<br />

if the driven equipment is <strong>in</strong>efficient. Industrial motors are<br />

designed to operate at fixed speeds under a wide range of<br />

loads.<br />

Standard motors tend to reach <strong>efficiency</strong> at 80-100% of full<br />

load.<br />

Motor <strong>efficiency</strong> drops quickly when motors operate below<br />

40% of full rated load.<br />

As a rule of thumb it can be said that at least <strong>on</strong>e third of<br />

all <strong>in</strong>tegral horsepower motors are oversized for their<br />

loads.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


3. Ma<strong>in</strong>tenance<br />

Motors must be ma<strong>in</strong>ta<strong>in</strong>ed <strong>on</strong> a regular basis to avoid<br />

<strong>efficiency</strong> losses and unnecessary cost <strong>in</strong>tensive repairs.<br />

However, many motors, especially large or special types<br />

are repaired several times dur<strong>in</strong>g their life. Proper care<br />

must therefore be given to the repair and ma<strong>in</strong>tenance<br />

process.<br />

All repairs must be to the orig<strong>in</strong>al manufacturers<br />

specificati<strong>on</strong>s. Try to ensure your motor repairer provides<br />

you with certificati<strong>on</strong> for the repair and that the work is<br />

guaranteed.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Give careful thought to the ec<strong>on</strong>omics of repair versus<br />

cost of replac<strong>in</strong>g with a new good quality higher <strong>efficiency</strong><br />

motor.


4. Use motor c<strong>on</strong>trol systems<br />

Variable Speed Drives (VSD).<br />

Basically these c<strong>on</strong>trol the speed at<br />

which an a.c. <strong>in</strong>ducti<strong>on</strong> motor runs.<br />

In additi<strong>on</strong> to the possible large<br />

sav<strong>in</strong>gs achieved by slow<strong>in</strong>g the<br />

motor there are other advantages of<br />

us<strong>in</strong>g VSD:<br />

• Programmable soft start<strong>in</strong>g, soft stopp<strong>in</strong>g and dynamic break<strong>in</strong>g.<br />

• Wide range of speed, torque and power.<br />

• Improved process c<strong>on</strong>trol.<br />

• C<strong>on</strong>trollable by a Programmable Logic C<strong>on</strong>troller (PLC) – very<br />

often found <strong>in</strong> <strong>in</strong>dustrial c<strong>on</strong>trol situati<strong>on</strong>s.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Us<strong>in</strong>g VSD is an important issue that you should exam<strong>in</strong>e for your<br />

organisati<strong>on</strong> – the benefits are not just <strong>in</strong> <strong>energy</strong> sav<strong>in</strong>gs.


5. Motor with best <strong>efficiency</strong><br />

A. High Efficiency Motors (HEM) or EFF1 motors are about 2 – 3<br />

per cent more efficient than standard types. This sounds small<br />

but over the life of the motor this will mean a significant<br />

reducti<strong>on</strong> <strong>in</strong> <strong>energy</strong> use - especially as motors generally<br />

c<strong>on</strong>sume <strong>energy</strong> <strong>in</strong> the first 5-6 weeks which is equal to their<br />

purchase cost. The purchase price of HEM is <strong>on</strong>ly a little higher<br />

to that of standard motors.<br />

Cost sav<strong>in</strong>gs Motor size<br />

%<br />

KW<br />

14


6. Rec<strong>on</strong>nect to STAR<br />

‘STAR’ c<strong>on</strong>necti<strong>on</strong> reduces the voltage across the<br />

motor w<strong>in</strong>d<strong>in</strong>gs to 58 per cent of the delta<br />

c<strong>on</strong>necti<strong>on</strong>.<br />

In Star c<strong>on</strong>necti<strong>on</strong> the motor then <strong>on</strong>ly gives <strong>on</strong>ethird<br />

torque. Do<strong>in</strong>g this can make useful <strong>energy</strong><br />

sav<strong>in</strong>gs. Competent <strong>in</strong>dustrial electrical eng<strong>in</strong>eers<br />

can easily perform this task.<br />

Warn<strong>in</strong>g: <strong>on</strong>ly re-c<strong>on</strong>nect <strong>in</strong> star if the motor is<br />

loaded at 40-45 per cent of its rated power.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


7. Motor siz<strong>in</strong>g<br />

Motors may be driven much higher, lower or<br />

more variable than for which they were first<br />

specified – and this causes losses. It may not<br />

always be ec<strong>on</strong>omically feasible to simply<br />

buy a replacement motor for the sole reas<strong>on</strong><br />

of higher motor <strong>efficiency</strong>, however, when<br />

they need repair<strong>in</strong>g it is str<strong>on</strong>gly<br />

recommended not to repair these motors but<br />

to buy high <strong>efficiency</strong> <strong>on</strong>es.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

In practice most<br />

motors are <strong>on</strong>ly<br />

65% loaded<br />

However, the first step <strong>in</strong> performance optimisati<strong>on</strong> is the characterisati<strong>on</strong> of the<br />

process load to determ<strong>in</strong>e its magnitude, durati<strong>on</strong> and variability by hour and<br />

seas<strong>on</strong>. In the next step the motor size will be adjusted to the requirements.<br />

Modern motors are generally designed for maximum <strong>efficiency</strong> at 75 per cent full<br />

load. Between 50-100 per cent load there is <strong>on</strong>ly a small variati<strong>on</strong> <strong>in</strong> motor<br />

<strong>efficiency</strong>.


7. Motor siz<strong>in</strong>g<br />

It has been eng<strong>in</strong>eer<strong>in</strong>g practice not to specify the absolute<br />

m<strong>in</strong>imum power requirements for a system, and various<br />

c<strong>on</strong>t<strong>in</strong>gencies are allowed for. This can result <strong>in</strong> over siz<strong>in</strong>g of<br />

motors. The diagram graphically dem<strong>on</strong>strates this issue of<br />

‘c<strong>on</strong>t<strong>in</strong>gency’.<br />

7.5 kW<br />

8.5 kW<br />

9.1kW<br />

Basic duty requirement<br />

11kW<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Increase to nearest<br />

available rat<strong>in</strong>g<br />

10% c<strong>on</strong>t<strong>in</strong>gency by project eng<strong>in</strong>eer<br />

10% c<strong>on</strong>t<strong>in</strong>gency by equipment designer


E-c<strong>on</strong>sumpti<strong>on</strong> by electric motors<br />

The <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> of electric motors can be identified by<br />

measur<strong>in</strong>g or by calculat<strong>in</strong>g the c<strong>on</strong>sumpti<strong>on</strong> with given data.<br />

The goal is:<br />

• to identify all electric motors <strong>in</strong> operati<strong>on</strong><br />

• to realise the yearly <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> caused by electric<br />

motors<br />

• to realise if electric motors are used properly<br />

• to evaluate <strong>efficiency</strong><br />

• to decrease <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Calculat<strong>in</strong>g the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

When undertak<strong>in</strong>g a rough calculati<strong>on</strong> of the<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> of an electric motor the<br />

follow<strong>in</strong>g <strong>in</strong>formati<strong>on</strong> is needed:<br />

• KW<br />

• Annual runn<strong>in</strong>g hours<br />

• Energy price per kWh<br />

The power (kW) of a motor can normally be<br />

found <strong>on</strong> the motor nameplate itself.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Calculat<strong>in</strong>g the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

The annual hours of runn<strong>in</strong>g could be found <strong>on</strong> a<br />

display show<strong>in</strong>g the operat<strong>in</strong>g hours of the mach<strong>in</strong>e (if<br />

applicable) or it has to be estimated.<br />

As an example, if a ventilati<strong>on</strong> system operates every<br />

day dur<strong>in</strong>g office times it has a yearly run time of<br />

approximately 2240 hours.<br />

(8 hours a day and 280 work<strong>in</strong>g days)<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Calculat<strong>in</strong>g the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

The result is a summary of the motors used and their<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>.<br />

Motor reference: Water pump 1<br />

kW: 15<br />

Amps: 70<br />

Manufacturer and motor type: A.N.O Type 3345<br />

Annual hours of runn<strong>in</strong>g: 7700<br />

Yearly Electricity c<strong>on</strong>sumpti<strong>on</strong> kWh: 115500<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Calculat<strong>in</strong>g the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

The result is a summary of the motors used and their <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>.<br />

Your Motor reference shows for<br />

example where it is situated, what<br />

functi<strong>on</strong> it performs, …<br />

The kW rat<strong>in</strong>g of the<br />

motor and will be found <strong>on</strong><br />

the motor name plate.<br />

The Amps figure gives the maximum current<br />

that the motor should take, and will be found<br />

<strong>on</strong> the motor name plate (at this stage you do<br />

not need this figure as it is the kW rat<strong>in</strong>g that<br />

we will be us<strong>in</strong>g –so d<strong>on</strong>’t worry if you cannot<br />

get the current rat<strong>in</strong>g figure).<br />

Motor reference: Water pump 1<br />

kW: 15<br />

Amps: 70<br />

Manufacturer and motor type: A.N.O Type 3345<br />

Annual hours of runn<strong>in</strong>g: 7700<br />

Yearly Electricity c<strong>on</strong>sumpti<strong>on</strong> kWh: 115500<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

The manufacturer and the type of the<br />

motor will be <strong>on</strong> the motor name plate, or<br />

stamped <strong>on</strong> the body.<br />

To get the annual<br />

hours of runn<strong>in</strong>g you<br />

may need to ask other<br />

people <strong>in</strong> your<br />

organisati<strong>on</strong> (for<br />

example eng<strong>in</strong>eer<strong>in</strong>g<br />

or producti<strong>on</strong>).


Calculat<strong>in</strong>g the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

By gather<strong>in</strong>g this <strong>in</strong>formati<strong>on</strong> you have a very good<br />

start for record<strong>in</strong>g all your site’s data <strong>on</strong> electric<br />

motors.<br />

Other <strong>in</strong>formati<strong>on</strong> that you may want to c<strong>on</strong>sider<br />

record<strong>in</strong>g for the motors may be:<br />

• Date of purchase & cost.<br />

• Yearly <strong>in</strong>specti<strong>on</strong>s to be undertaken - yes or no<br />

• Repair / rew<strong>in</strong>d records.<br />

• Ma<strong>in</strong>tenance records (lubricati<strong>on</strong>, filter, belt<br />

replacement).<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

By do<strong>in</strong>g this you will end up with a comprehensive<br />

document for all electric motors <strong>in</strong> the company (plant<br />

list), which gives an excellent overview.


Calculat<strong>in</strong>g annual costs<br />

It may be useful to calculate the annual costs of runn<strong>in</strong>g the<br />

motor. Us<strong>in</strong>g the formula and <strong>in</strong>formati<strong>on</strong> below it is<br />

possible to calculate the annual cost of runn<strong>in</strong>g the motor.<br />

Motor size (> motor nameplate):<br />

Motor <strong>efficiency</strong> (> manual):<br />

Full annual run time (> estimati<strong>on</strong>):<br />

Average cost of electricity (> bill):<br />

Motor operat<strong>in</strong>g at full load:<br />

Annual Cost =<br />

hours per year x kW x % full load x EURO / kWh<br />

Motor <strong>efficiency</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


EXAMPLE<br />

Calculat<strong>in</strong>g annual costs<br />

Motor size (> motor nameplate): 20 kW<br />

Motor <strong>efficiency</strong> (> manual): 91.7%<br />

Full annual run time (> estimati<strong>on</strong>): 8544 hours<br />

Average cost of electricity (> bill): 0.07 Euro per kWh<br />

Motor operat<strong>in</strong>g at full load: 100 %<br />

Annual Cost =<br />

Annual Cost =<br />

hours per year x kW x % full load x EURO / kWh<br />

Motor <strong>efficiency</strong><br />

8,544 x 20 x 100 x 0.07<br />

91.7<br />

= 13,044 EURO<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Compar<strong>in</strong>g <strong>in</strong>vestment and<br />

runn<strong>in</strong>g costs<br />

To visualise the importance of high <strong>efficiency</strong> motors the<br />

<strong>energy</strong> manager should be able to show the costs for<br />

electricity compared to <strong>in</strong>vestment costs.<br />

The follow<strong>in</strong>g figures and formulas are needed for this<br />

calculati<strong>on</strong>.<br />

Purchase cost:<br />

Motor size:<br />

Motor <strong>efficiency</strong>:<br />

Annual run time:<br />

Average cost of electricity:<br />

Motor operat<strong>in</strong>g at full load:<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Annual run costs:<br />

motor cost<br />

Run time = annual run cost


Example: Compar<strong>in</strong>g <strong>in</strong>vestment<br />

and runn<strong>in</strong>g costs<br />

Purchase cost: 1,650 EURO<br />

Motor size: 20 kW<br />

Motor <strong>efficiency</strong>: 91.7 %<br />

Annual run time: 8,000 hours<br />

Average cost of electricity: 0.07 EURO per kWh<br />

Motor operat<strong>in</strong>g at full load: 100 %<br />

Annual run costs: 13,044<br />

motor cost<br />

Run time = annual run cost<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

1,650<br />

Run time = = 0.12 years = approximately 46 days<br />

13,044


Compar<strong>in</strong>g HEF and normal motors<br />

1. Power required for HEF and normal motor<br />

2. Difference between the power required<br />

3. Comparis<strong>on</strong>: Increased costs due to higher electricity<br />

c<strong>on</strong>sumpti<strong>on</strong> for standard motor<br />

Motor size: 90 kW<br />

Annual run time: 8,000 hours<br />

Energy costs: 0.07 EURO per kWh<br />

Efficiency Purchase cost (1) Power required<br />

HIF motor: 0.952 2.536 EURO<br />

Normal motor: 0.930 2.029 EURO<br />

(2) Difference:<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

(3) Comparis<strong>on</strong>: kW x h x EURO = EURO after 1 year


EXAMPLE Compar<strong>in</strong>g HEF<br />

and normal motors<br />

Motor size: 90 kW<br />

Annual run time: 8,000 hours<br />

Energy costs: 0.07 EURO per kWh<br />

Efficiency Purchase cost (1) Power required<br />

HIF motor: 0.952 2.536 EURO 90 kW x 0.952 = 94.54 kW<br />

Normal motor: 0.930 2.029 EURO 90 kW x 0.930 = 96.77 kW<br />

(2) Difference: 2.23 kW<br />

(3) Comparis<strong>on</strong>: 2.23 kW x 8000h x 0.07 Euro = 1248 Euro after 1 year<br />

Result: The <strong>in</strong>creased costs due to higher electricity<br />

c<strong>on</strong>sumpti<strong>on</strong> for standard motor is 1248 Euro after 1 year.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Heat<strong>in</strong>g Systems<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Heat<strong>in</strong>g systems<br />

This module focuses <strong>on</strong> heat<strong>in</strong>g systems for small and<br />

medium sized companies. The follow<strong>in</strong>g will be covered:<br />

• The ma<strong>in</strong> comp<strong>on</strong>ents of heat<strong>in</strong>g systems, their<br />

strengths and weaknesses<br />

• Activities to decrease heat c<strong>on</strong>sumpti<strong>on</strong> by<br />

simple acti<strong>on</strong>s and to m<strong>in</strong>imise heat losses<br />

• How to collect and analyse c<strong>on</strong>sumpti<strong>on</strong><br />

quantities and costs associated with heat<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• Develop core <strong>in</strong>dicators and to compare them<br />

with benchmarks


Facts<br />

Costs and c<strong>on</strong>sumpti<strong>on</strong> depend <strong>on</strong> the<br />

• heat<strong>in</strong>g system – the higher the standard of the<br />

heat<strong>in</strong>g system and the higher the level of<br />

ma<strong>in</strong>tenance the lower the heat<strong>in</strong>g costs<br />

• build<strong>in</strong>g structure – better <strong>in</strong>sulated build<strong>in</strong>gs<br />

have lower costs<br />

• outdoor climate – the colder it is the more<br />

heat<strong>in</strong>g is required<br />

• fuel price<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Losses <strong>in</strong> a heat<strong>in</strong>g system<br />

As a rule of thumb it can be said that 25 % of the <strong>in</strong>put<br />

<strong>energy</strong> for heat<strong>in</strong>g results <strong>in</strong> losses.<br />

losses<br />

<strong>in</strong> %<br />

Input<br />

10 kW<br />

exhaust gas<br />

losses<br />

10<br />

radiat<strong>on</strong><br />

losses<br />

1<br />

stand by<br />

losses<br />

distributi<strong>on</strong><br />

losses<br />

9 5<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

1 kW 0,1<br />

kW<br />

0,9 kW 0,4 kW<br />

Applicati<strong>on</strong><br />

Output<br />

7,5 kW


Elements of a heat<strong>in</strong>g system<br />

Optimisati<strong>on</strong> may start <strong>in</strong> different areas so it is first of all<br />

necessary to have a closer look at the <strong>in</strong>dividual<br />

comp<strong>on</strong>ents of a heat<strong>in</strong>g system.<br />

The essential elements of a heat<strong>in</strong>g system are:<br />

• Heat source or boiler<br />

• Distributi<strong>on</strong> system<br />

• Heat emitters<br />

• C<strong>on</strong>trol system<br />

• Fuels<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Heat source and boiler<br />

• Oil boiler<br />

• Gas boiler<br />

• Oil/Gas boiler<br />

• C<strong>on</strong>dens<strong>in</strong>g boiler<br />

• Solid fuel boilers<br />

• Electric heated boilers<br />

• Heat pumps<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• CHP - comb<strong>in</strong>ed heat and power systems<br />

• District heat


Heat distributi<strong>on</strong> systems<br />

Heat distributi<strong>on</strong> systems transport heat from the source to the<br />

heat emitter. Usually water or steam will be transported. The<br />

comp<strong>on</strong>ents of a heat distributi<strong>on</strong> system are:<br />

• Tube system<br />

• Circulat<strong>in</strong>g pumps<br />

• Lock up and c<strong>on</strong>trol devices<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Tube systems<br />

Heat <strong>in</strong> the form of hot water or steam will be distributed from<br />

the heat source to the heat emitter. In an exist<strong>in</strong>g system it is<br />

difficult to change the tube system. The size of a tube system<br />

may orig<strong>in</strong>ally be designed by a specialist for a predef<strong>in</strong>ed<br />

purpose. However, problems occur<br />

•when the heat<strong>in</strong>g system may not be used for the purpose it<br />

was orig<strong>in</strong>ally <strong>in</strong>tended, e.g. because room occupancy changed,<br />

•when the system was badly designed to keep <strong>in</strong>vestment cost<br />

low or<br />

•when the system is not regularly ma<strong>in</strong>ta<strong>in</strong>ed.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Circulati<strong>on</strong> pumps<br />

Circulati<strong>on</strong> pumps are electrically driven and are required <strong>in</strong><br />

every hot water system to pump the water. The <strong>on</strong>ly possibility<br />

to <strong>in</strong>crease the <strong>efficiency</strong> of circulati<strong>on</strong> pumps is to ensure that<br />

dur<strong>in</strong>g repair or ma<strong>in</strong>tenance work a variable speed driven pump<br />

is <strong>in</strong>stalled. These pumps may be easily adjusted to hydraulic<br />

requirements and save up to 14 % <strong>in</strong> comparis<strong>on</strong> to ord<strong>in</strong>ary<br />

pumps.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


C<strong>on</strong>trols<br />

C<strong>on</strong>trols allow you to regulate the temperature <strong>in</strong> <strong>in</strong>dividual<br />

rooms and may help to ga<strong>in</strong> c<strong>on</strong>siderable sav<strong>in</strong>gs by correct<br />

use.<br />

Heat<strong>in</strong>g valves are used for switch<strong>in</strong>g <strong>on</strong> and off the heat<strong>in</strong>g<br />

emitters. It is <strong>on</strong>ly possible to regulate the quantity of water<br />

flow<strong>in</strong>g <strong>in</strong>to the emitters.<br />

Thermostatic valves are used to fix <strong>in</strong>dividual room<br />

temperatures. The desired room temperature will be set<br />

manually. When the room temperature changes, the valve opens<br />

or closes automatically and more or less hot water flows <strong>in</strong>to the<br />

emitter.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Heat emitters<br />

Heat emitters such as<br />

• radiators<br />

• c<strong>on</strong>vectors<br />

• hot air heat<strong>in</strong>g<br />

• panel heat<strong>in</strong>g<br />

emit the heat <strong>in</strong>to the room. The size and place of emitters are<br />

essential for a comfortable room climate. Basically it can be said<br />

that heat emitters should be placed below w<strong>in</strong>dows. The<br />

<strong>in</strong>com<strong>in</strong>g cold air will be heated immediately and draughts can<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

be avoided. If heat emitters are placed <strong>on</strong> the <strong>in</strong>ner walls the<br />

<strong>in</strong>com<strong>in</strong>g cold air glides al<strong>on</strong>g the floor to the heat<strong>in</strong>g emitter<br />

and causes draughts.


Fuels<br />

Today fossil fuels such as oil, natural gas, coal and coke will be<br />

ma<strong>in</strong>ly used for heat<strong>in</strong>g purposes. Wood will be used as a<br />

renewable <strong>energy</strong> source for heat<strong>in</strong>g. Electricity for heat<strong>in</strong>g is, <strong>in</strong><br />

general, not recommended due to ec<strong>on</strong>omic reas<strong>on</strong>s. The <strong>on</strong>ly<br />

excepti<strong>on</strong> is electricity used for heat pumps and decentralised<br />

hot water preparati<strong>on</strong>.<br />

The ma<strong>in</strong> problems with fuels occur due to the facts that<br />

•<strong>on</strong>ce the heat<strong>in</strong>g system is <strong>in</strong>stalled fuels may rarely be<br />

changed<br />

•fossil fuels are envir<strong>on</strong>mentally damag<strong>in</strong>g due to their<br />

emissi<strong>on</strong>s<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

•fossil fuels have to be imported and the dependency <strong>on</strong> foreign<br />

markets and prices have large risks


Evaluat<strong>in</strong>g heat costs<br />

When talk<strong>in</strong>g about costs for the<br />

heat<strong>in</strong>g system the<br />

• <strong>in</strong>vestment costs,<br />

• runn<strong>in</strong>g costs and<br />

• fuel costs<br />

have to be c<strong>on</strong>sidered.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Calculat<strong>in</strong>g runn<strong>in</strong>g costs for<br />

heat<strong>in</strong>g<br />

The aim of analys<strong>in</strong>g quantities and costs for<br />

<strong>energy</strong> is to <strong>in</strong>crease the <strong>efficiency</strong> and to<br />

decrease costs.<br />

This may occur through<br />

• the reducti<strong>on</strong> of current <strong>energy</strong> quantities<br />

• the purchase of cheaper fuels<br />

• the <strong>in</strong>crease <strong>in</strong> <strong>efficiency</strong> of the heat<strong>in</strong>g<br />

system<br />

• the improvement of the build<strong>in</strong>g <strong>in</strong>sulati<strong>on</strong><br />

• the change <strong>in</strong> comfort<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Calculat<strong>in</strong>g runn<strong>in</strong>g costs for<br />

heat<strong>in</strong>g<br />

The first step is to calculate - or even better to measure - the current<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> <strong>in</strong> kWh/m² (heated m²). This data gives a first<br />

overview of the actual situati<strong>on</strong> as it may be compared with<br />

• previous years to visualise development<br />

• benchmarks.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 1: Identify heated area<br />

Identify the heated area of your<br />

organisati<strong>on</strong>. The figure can normally be<br />

taken easily from floor plans. Avoid<br />

<strong>in</strong>clud<strong>in</strong>g areas which are not heated such<br />

as corridors, storage areas or cellars. Do<br />

not forget to add a note which areas you<br />

did not c<strong>on</strong>sider – it might help if you come<br />

back to the calculati<strong>on</strong> <strong>in</strong> the future.<br />

Heated area m²<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 2: Identify c<strong>on</strong>sumpti<strong>on</strong> and<br />

costs<br />

Identify the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> and the<br />

<strong>energy</strong> costs of heat<strong>in</strong>g for a given period,<br />

e.g. a year. This can normally be taken<br />

from the <strong>energy</strong> <strong>in</strong>voices. Where you use<br />

<strong>on</strong>e <strong>energy</strong> source for several purposes<br />

then this figure has to be measured or<br />

calculated. You might identify the heat<strong>in</strong>g<br />

costs <strong>on</strong> an <strong>in</strong>voice for a summer and a<br />

w<strong>in</strong>ter m<strong>on</strong>th. As no heat<strong>in</strong>g will be<br />

required dur<strong>in</strong>g the summer m<strong>on</strong>ths the<br />

difference <strong>on</strong> the <strong>in</strong>voice may show the<br />

heat<strong>in</strong>g demand.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Energy c<strong>on</strong>sumpti<strong>on</strong> kWh<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> Euro


Step 3: Develop an <strong>in</strong>dicator<br />

All you have to do now is to divide the figure for<br />

c<strong>on</strong>sumpti<strong>on</strong> by the figure for the area and you obta<strong>in</strong> the<br />

<strong>in</strong>dicator. Please do not forget to mark what period the<br />

<strong>in</strong>dicator covers.<br />

Specific <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> kWh/m²<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 4: Compare with bench marks<br />

Compare the specific <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> of your build<strong>in</strong>g with the<br />

bench marks given. The classificati<strong>on</strong> is for central Europe and<br />

means that an <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> above 200 kWh/m 2 per year for<br />

heat<strong>in</strong>g purposes is completely <strong>in</strong>efficient.<br />

If your <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> for heat<strong>in</strong>g is higher than 70 kWh/m 2<br />

you should immediately start to identify losses.<br />

Rat<strong>in</strong>g<br />

heat c<strong>on</strong>sumpti<strong>on</strong><br />

kWh/m²/year<br />

Comment<br />

A 0 – 30 Best <strong>efficiency</strong><br />

B 31 – 50 High <strong>energy</strong> <strong>efficiency</strong><br />

C 51 – 70 Spar<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

D 71 – 120 Average<br />

E 121 – 160 Unsatisfactory<br />

F 161 – 200 Wasteful<br />

G 201 - Completely <strong>in</strong>efficient


Reduc<strong>in</strong>g <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

Reduc<strong>in</strong>g the amount of <strong>energy</strong> used for heat<strong>in</strong>g may be<br />

achieved by<br />

A. Awareness rais<strong>in</strong>g and publish<strong>in</strong>g the true costs of<br />

heat<strong>in</strong>g<br />

B. Decreas<strong>in</strong>g heat c<strong>on</strong>sumpti<strong>on</strong> with simple activities<br />

C. M<strong>in</strong>imis<strong>in</strong>g heat losses<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


A. Awareness rais<strong>in</strong>g and<br />

<strong>in</strong>formati<strong>on</strong><br />

Start<strong>in</strong>g an <strong>energy</strong> <strong>efficiency</strong> activity by tell<strong>in</strong>g staff that<br />

heat<strong>in</strong>g will probably be turned down will raise an<br />

<strong>in</strong>credible rejecti<strong>on</strong> aga<strong>in</strong>st every k<strong>in</strong>d of activity. Heat<strong>in</strong>g<br />

represents the core area of comfort at the workplace.<br />

The Energy Manager must be aware that <strong>in</strong> the first step<br />

awareness about the necessity to balance acceptable work<br />

place temperatures aga<strong>in</strong>st the desire for <strong>energy</strong><br />

c<strong>on</strong>servati<strong>on</strong> must be created.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


B. Energy optimisati<strong>on</strong> with simple<br />

activities<br />

Simple activities for sav<strong>in</strong>g <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> are<br />

� Identify and adjust room temperatures<br />

� Reduce room temperature at specified times<br />

� Keep air change low<br />

� Decrease heat losses through w<strong>in</strong>dows<br />

� Switch off heat<strong>in</strong>g emitters <strong>in</strong> rooms not regularly used<br />

� Reduce boiler temperatures<br />

� Switch off circulati<strong>on</strong> pumps when not <strong>in</strong> use<br />

� Adjust preflux temperatures correctly<br />

� Ensure good heat radiati<strong>on</strong><br />

� Adjust thermostat valves<br />

� Install temperature sensors properly<br />

� Check frost detecti<strong>on</strong> devices<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Identify and adjust room<br />

temperatures<br />

In this step z<strong>on</strong>es for different heat<strong>in</strong>g demands will be established.<br />

A walk through the <strong>in</strong>dividual areas of a build<strong>in</strong>g dur<strong>in</strong>g w<strong>in</strong>ter<br />

m<strong>on</strong>ths helps to understand the <strong>in</strong>dividual requirements and the<br />

current situati<strong>on</strong>.<br />

Part of the build<strong>in</strong>g °C<br />

Shower Areas 24<br />

Garage 10<br />

Corridors 15<br />

Kitchen 16<br />

Library 18<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Office 20<br />

Restaurant, Canteen 20<br />

Toilet 16<br />

Public wait<strong>in</strong>g rooms 16


Reduce room temperature at<br />

specified times<br />

Dur<strong>in</strong>g nights and weekends temperatures should be<br />

decreased to avoid the heat<strong>in</strong>g of areas with no<br />

occupancy. As a rule of thumb it can be said that a<br />

reducti<strong>on</strong> of 2°C dur<strong>in</strong>g nights gives a decrease <strong>in</strong> <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> of 2–3%.<br />

Be aware not to decrease the temperature too much. It is<br />

very <strong>energy</strong> <strong>in</strong>tensive to heat rooms up completely and<br />

any sav<strong>in</strong>gs will be cancelled by the costs.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Keep air change low<br />

Doors between rooms and areas with different temperature<br />

levels should be closed to keep heat <strong>in</strong> and reduce<br />

draughts. In additi<strong>on</strong>, extractor fans should be turned off<br />

overnight and used <strong>on</strong>ly when necessary.<br />

As a rule of thumb it can be said that to heat 1000 m³/hour<br />

from 12°C to 20°C requires about 11 kW power which<br />

means an <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> of approximately 16000<br />

kWh or Euro 800 <strong>in</strong> <strong>on</strong>e heat<strong>in</strong>g period.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Decrease heat losses through<br />

w<strong>in</strong>dows<br />

Ensure that all w<strong>in</strong>dows and curta<strong>in</strong>s are closed dur<strong>in</strong>g the<br />

night; curta<strong>in</strong>s must not cover heat<strong>in</strong>g emitters.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Switch off heat<strong>in</strong>g emitters <strong>in</strong><br />

rooms not regularly used<br />

Radiators and c<strong>on</strong>vectors should <strong>on</strong>ly be turned <strong>on</strong> if the room<br />

is occupied. Therefore heat<strong>in</strong>g emitters should be turned <strong>on</strong><br />

shortly before the room is to be used.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Reduce boiler temperatures<br />

Hot water <strong>in</strong> boilers should not reach a temperature at which the<br />

water may not be used. Therefore the boiler supplier should be<br />

c<strong>on</strong>tacted to f<strong>in</strong>d out what temperature is the lowest possible for<br />

the boiler without caus<strong>in</strong>g damage. The water temperature of a<br />

hot water boiler should reach 60°C. As a rule of thumb it can be<br />

said that reduc<strong>in</strong>g the storage temperature from 65°C to 60°C<br />

cuts the heat losses by 9%.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Switch off circulati<strong>on</strong> pumps<br />

when not <strong>in</strong> use<br />

Circulati<strong>on</strong> pumps of heat<strong>in</strong>g systems normally run<br />

automatically, but may also be operated manually. If the heat<strong>in</strong>g<br />

system is turned down the pumps should not operate but be<br />

switched off to save electricity and prevent a rapid cool<strong>in</strong>g of the<br />

heat<strong>in</strong>g system.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Adjust preflux temperatures<br />

correctly<br />

In boiler c<strong>on</strong>trols there is a feature called preflux sett<strong>in</strong>g of temperatures.<br />

Check with the boiler <strong>in</strong>staller that the preflux c<strong>on</strong>trol is correctly set.<br />

C<strong>on</strong>sider turn<strong>in</strong>g down the preflux temperature by 1°C at a time until you<br />

reach the po<strong>in</strong>t where staff compla<strong>in</strong> about be<strong>in</strong>g cold.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Ensure good heat radiati<strong>on</strong><br />

Ensure that heat emitters are not covered by furniture or<br />

curta<strong>in</strong>s as they avoid heat radiati<strong>on</strong> <strong>in</strong>to the room. Make sure<br />

also that heat<strong>in</strong>g emitters are cleaned regularly as dust and dirt<br />

decrease radiati<strong>on</strong>.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Adjust thermostat valves<br />

Make sure that all thermostat valves are adjusted to the<br />

appropriate temperature <strong>in</strong> the rooms, check that they are not<br />

damaged and keep a record of the optimal c<strong>on</strong>trol sett<strong>in</strong>gs to<br />

give guidance to staff.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Install temperature sensors<br />

properly<br />

Make sure that temperature sensors are properly <strong>in</strong>stalled.<br />

Experience shows that sensors are often positi<strong>on</strong>ed <strong>in</strong> places<br />

too cold or too warm lead<strong>in</strong>g to too much or too little heat<strong>in</strong>g.<br />

Indoor sensors should not be placed near a w<strong>in</strong>dow, near<br />

heat<strong>in</strong>g emitters or <strong>in</strong> a draught. Outdoor sensors must be<br />

<strong>in</strong>stalled <strong>on</strong> a north wall and not exposed to direct sunlight. In<br />

many cases the positi<strong>on</strong> of sensors requires a compromise.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Check frost detecti<strong>on</strong> devices<br />

Check frost detecti<strong>on</strong> devices regularly. When thermostats are<br />

not adjusted to a temperature between 4 – 6°C heat will be<br />

wasted or frost damage could occur.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


C. Energy sav<strong>in</strong>gs by m<strong>in</strong>imis<strong>in</strong>g<br />

losses<br />

Activities for m<strong>in</strong>imis<strong>in</strong>g losses may focus <strong>on</strong><br />

�Hydraulic regulati<strong>on</strong> of the heat<strong>in</strong>g system<br />

�Losses caused by emitted heat <strong>in</strong> exhaust gases<br />

�Losses caused by boilers<br />

�Distributi<strong>on</strong> losses<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Hydraulic regulati<strong>on</strong> of the heat<strong>in</strong>g<br />

system<br />

Hydraulic regulated heat<strong>in</strong>g systems have a 30 % higher<br />

<strong>efficiency</strong> compared to those with comm<strong>on</strong> technology. A<br />

specialist measures the pressure differences <strong>in</strong> the heat<strong>in</strong>g<br />

system and <strong>in</strong>stalls special c<strong>on</strong>trollers to <strong>in</strong>fluence the amount<br />

of water runn<strong>in</strong>g through the system.<br />

With hydraulic regulati<strong>on</strong> the<br />

•temperature <strong>in</strong> rooms may be adjusted to the appropriate<br />

temperature. This saves up to 5 % of the costs for each 1°C.<br />

•water quantity pumped through the system will be optimised<br />

and less electricity will be needed for runn<strong>in</strong>g the pump.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Losses caused by emitted heat <strong>in</strong><br />

exhaust gases<br />

Burners emit hot gases which should not be above<br />

180°C for oil heat<strong>in</strong>g systems and<br />

140°C for gas heat<strong>in</strong>g systems.<br />

The <strong>on</strong>ly possibility to reduce hot air emissi<strong>on</strong>s for exist<strong>in</strong>g<br />

<strong>in</strong>stallati<strong>on</strong>s is to clean and service the heat<strong>in</strong>g system regularly.<br />

To avoid too much excess air quantities dur<strong>in</strong>g operati<strong>on</strong> the<br />

burner should be adjusted regularly by an expert<br />

In additi<strong>on</strong>, losses may be caused by <strong>in</strong>sufficient burn<strong>in</strong>g of<br />

carb<strong>on</strong>-m<strong>on</strong>oxide. These gases may be measured dur<strong>in</strong>g an<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

emissi<strong>on</strong> measurement and as a rule of thumb it can be said that<br />

losses can be up to 7% by each per cent n<strong>on</strong> burned Carb<strong>on</strong><br />

M<strong>on</strong>oxide (CO). The plant may be easily adjusted by an expert.


Losses caused by emitted heat <strong>in</strong><br />

exhaust gases<br />

Other possibilities should be c<strong>on</strong>sidered <strong>in</strong> the plann<strong>in</strong>g phase<br />

as a later <strong>in</strong>stallati<strong>on</strong> might need high <strong>in</strong>vestments. These<br />

possibilities <strong>in</strong>clude:<br />

•re-use exhaust gas by heat recovery system<br />

•<strong>in</strong>stall variable operat<strong>in</strong>g burners (such as 2-phase-burner)<br />

•specify the capacity of the plant correctly to avoid over siz<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Losses caused by boilers<br />

Losses <strong>in</strong> boilers are caused by two reas<strong>on</strong>s.<br />

The first reas<strong>on</strong> is poor boiler <strong>in</strong>sulati<strong>on</strong> which leads to losses of<br />

heat <strong>in</strong>to the boiler room. New boilers now have an <strong>in</strong>sulati<strong>on</strong><br />

thickness of up to 20 cm and old boilers should be <strong>in</strong>sulated at<br />

least with 10 cm <strong>in</strong>sulati<strong>on</strong>.<br />

The sec<strong>on</strong>d reas<strong>on</strong> are losses due to stand-by operati<strong>on</strong>. Stand<br />

by losses usually occur because hot water has to be stored for<br />

immediate use and for the heat<strong>in</strong>g supply. Losses depend <strong>on</strong> the<br />

fuel, boiler, burner and usage of heat. What they all have <strong>in</strong><br />

comm<strong>on</strong> are additi<strong>on</strong>al regulati<strong>on</strong> problems which could<br />

technically be decreased with hydraulic regulati<strong>on</strong>.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Distributi<strong>on</strong> losses<br />

Dur<strong>in</strong>g operati<strong>on</strong> of the heat<strong>in</strong>g system distributi<strong>on</strong> losses may<br />

be avoided by <strong>in</strong>sulat<strong>in</strong>g pipes and tubes, and by decreas<strong>in</strong>g the<br />

temperatures <strong>in</strong> times of no use.<br />

As a rule of thumb it can be said that <strong>in</strong>sulat<strong>in</strong>g pipes has a pay<br />

back period of less than 5 years.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Surface temperatures and comfort<br />

wall 18°C<br />

Example 1 Example 2<br />

ceil<strong>in</strong>g 18°C<br />

air 22°C<br />

20 °C<br />

felt<br />

tempe-rature<br />

floor 18 °C<br />

wall 18°C<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

wall 22°C<br />

ceil<strong>in</strong>g 22°C<br />

air 18°C<br />

20 °C<br />

felt<br />

tempe-rature<br />

floor 22 °C<br />

wall 22°C


Humidity and its <strong>in</strong>fluence <strong>on</strong><br />

comfort<br />

The comfortable range of<br />

humidity is between 40 % and<br />

60 % with a room air<br />

temperature of 18°C to 23°C.<br />

For measur<strong>in</strong>g humidity a<br />

hygrometer is used. When the<br />

air is too dry you should use<br />

an a humidifier. By chang<strong>in</strong>g<br />

the humidity the subjective<br />

feel<strong>in</strong>g of a comfortable room<br />

temperature could be<br />

<strong>in</strong>fluenced.<br />

humidity<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20 uncomfortable<br />

10<br />

dry<br />

12 14 16 18 20 22 24 26 28<br />

room temperature<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

uncomfortable<br />

wet<br />

comfortable<br />

acceptable


Reduce costs by chang<strong>in</strong>g fuels<br />

and the system<br />

It may not be possible to improve the <strong>energy</strong> <strong>efficiency</strong> by<br />

<strong>in</strong>stall<strong>in</strong>g <strong>energy</strong> efficient equipment as <strong>in</strong>vestments would be<br />

needed. However, you should give careful c<strong>on</strong>siderati<strong>on</strong> when<br />

•the <strong>energy</strong> system has to be renewed<br />

•improvement programs are available by public organisati<strong>on</strong>s or<br />

<strong>energy</strong> suppliers<br />

•build<strong>in</strong>g alterati<strong>on</strong>s are necessary<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Reduce costs by chang<strong>in</strong>g fuels<br />

and the system<br />

When compar<strong>in</strong>g fuels it is necessary to create a comm<strong>on</strong><br />

basis. This basis should be the <strong>energy</strong> available for the<br />

user <strong>in</strong> kWh. It is necessary to take <strong>in</strong>to c<strong>on</strong>siderati<strong>on</strong><br />

• the calorific value of each fuel and<br />

• the <strong>efficiency</strong> of the boiler<br />

to compare the useful <strong>energy</strong> which may be used by the<br />

company.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Example C<strong>on</strong>vert<strong>in</strong>g <strong>in</strong>to <strong>on</strong>e unit<br />

1 litre extra light oil costs 0.5 Euro/litre <strong>in</strong>cl. VAT. To<br />

identify the price for 1 kWh useful <strong>energy</strong> you have to<br />

divide the costs per litre with the calorific value and the<br />

<strong>efficiency</strong> of the heat<strong>in</strong>g system <strong>in</strong> use.<br />

Energy source Oil extra light<br />

Price (€/unit) Euro 0.5/l<br />

Calorific value (kWh/unit) 10.0<br />

Efficiency (%) 90<br />

Heat costs of useful heat (€/k Wh) 0.055 Euro/k Wh<br />

By us<strong>in</strong>g a c<strong>on</strong>dens<strong>in</strong>g boiler with natural gas the<br />

<strong>efficiency</strong> <strong>in</strong>creases by 10 %.<br />

Prices of <strong>energy</strong> sources can sometimes be found <strong>on</strong> the<br />

homepages of <strong>energy</strong> suppliers or can be asked for<br />

directly.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Light<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Light<strong>in</strong>g<br />

This module explores <strong>in</strong>door light<strong>in</strong>g systems,<br />

light<strong>in</strong>g sources and describes their<br />

advantages and disadvantages. Guidance will<br />

be given <strong>on</strong><br />

•artificial light<strong>in</strong>g requirements<br />

•a step by step approach for analys<strong>in</strong>g factors<br />

<strong>in</strong>fluenc<strong>in</strong>g light<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s and illum<strong>in</strong>ati<strong>on</strong><br />

comfort.<br />

•implement <strong>energy</strong> sav<strong>in</strong>g activities<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Light<strong>in</strong>g facts<br />

Light<strong>in</strong>g can be a big <strong>energy</strong> c<strong>on</strong>sumer <strong>in</strong> offices and<br />

producti<strong>on</strong> areas and experience shows that <strong>energy</strong><br />

sav<strong>in</strong>gs may be achieved - often with simple activities. The<br />

ma<strong>in</strong> reas<strong>on</strong>s for wast<strong>in</strong>g <strong>energy</strong> is that<br />

•staff are not aware about light<strong>in</strong>g costs and correct light<br />

usage<br />

•systems have been orig<strong>in</strong>ally <strong>in</strong>stalled correctly but<br />

requirements have changed and the system was not<br />

updated<br />

•identify<strong>in</strong>g costs for light<strong>in</strong>g and light<strong>in</strong>g requirements is<br />

time <strong>in</strong>tensive and will therefore be ignored by staff<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Illum<strong>in</strong>at<strong>in</strong>g areas<br />

In general the follow<strong>in</strong>g illum<strong>in</strong>ati<strong>on</strong> will be <strong>in</strong> use:<br />

a. Light<strong>in</strong>g system for s<strong>in</strong>gle rooms<br />

b. Light<strong>in</strong>g system for several areas with different<br />

light<strong>in</strong>g requirements<br />

c. Direct and <strong>in</strong>direct light<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


a. S<strong>in</strong>gle rooms<br />

The light<strong>in</strong>g system designed for a s<strong>in</strong>gle room<br />

enables the c<strong>on</strong>trol of s<strong>in</strong>gle lamps or a group of<br />

lamps <strong>in</strong> the room. These systems are normally<br />

<strong>in</strong>stalled <strong>in</strong> offices and comb<strong>in</strong>e general light<strong>in</strong>g and<br />

task light<strong>in</strong>g.<br />

<strong>on</strong>e room<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

light<br />

c<strong>on</strong>trol


. Large areas<br />

Light<strong>in</strong>g systems designed for a larger area or for a group<br />

of rooms can normally be found <strong>in</strong> c<strong>on</strong>ference centres,<br />

restaurants, offices or producti<strong>on</strong> areas.<br />

Normally the whole area is illum<strong>in</strong>ated even though <strong>on</strong>ly a<br />

small area is occupied. Typically, problems occur due to<br />

the <strong>in</strong>flexibility of the present light<strong>in</strong>g system c<strong>on</strong>trol.<br />

group of rooms<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

light<br />

c<strong>on</strong>trol


c. Direct and <strong>in</strong>direct light<strong>in</strong>g<br />

Direct light<strong>in</strong>g will normally be<br />

used <strong>in</strong> office build<strong>in</strong>gs and has<br />

the advantage that lamps emit 90<br />

– 100% of their output directly <strong>on</strong><br />

the work<strong>in</strong>g area. Direct light<strong>in</strong>g<br />

occurs <strong>in</strong> both general and task<br />

light<strong>in</strong>g.<br />

Indirect light<strong>in</strong>g emits <strong>on</strong>ly 0 –<br />

10% of its outputs directly <strong>on</strong> the<br />

work<strong>in</strong>g area.<br />

direct<br />

<strong>in</strong>direct<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Light<strong>in</strong>g sources and<br />

characteristics<br />

A light<strong>in</strong>g system may use different light<strong>in</strong>g sources<br />

although <strong>in</strong>candescent and fluorescent lamps are best<br />

known. Each light<strong>in</strong>g source has its advantages and<br />

disadvantages and the use of a lamp depends <strong>on</strong> the<br />

light<strong>in</strong>g requirements.<br />

a. Traditi<strong>on</strong>al bulbs<br />

b. Fluorescent lamp standard<br />

c. Compact fluorescent lamps<br />

d. New generati<strong>on</strong> fluorescent lamps<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Light yield lm/W<br />

Life time hour<br />

Purchase cost<br />

Life time cost<br />

Ballast<br />

Advantage<br />

Disadvantage<br />

Traditi<strong>on</strong>al<br />

bulbs<br />

12-16<br />

1000<br />

Very low<br />

Very high<br />

No Ballast required<br />

Very low purchase cost<br />

No ballast required<br />

Excellent colour render<strong>in</strong>g<br />

Very high life time cost<br />

Low light yield<br />

Short life<br />

Fluorescent<br />

lamp standard<br />

40-68<br />

8000-12000<br />

Low<br />

Very high<br />

C<strong>on</strong>venti<strong>on</strong>al ballast<br />

Low purchase cost<br />

Very low life time cost<br />

L<strong>on</strong>g life time<br />

Good quality light to the rooms<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Slowly run up to full light<br />

Excessive switch<strong>in</strong>g shortens life<br />

Ballast required<br />

Stroboscopic effect<br />

Compact<br />

fluorescent lamps<br />

44-88<br />

8000-12000<br />

High<br />

Low<br />

Integrated electr<strong>on</strong>ic ballast<br />

Low life time cost<br />

Energy-sav<strong>in</strong>g<br />

High light yield and life time<br />

Interchangeable with traditi<strong>on</strong>al bulbs<br />

High frequency switch<br />

High purchase cost<br />

Cannot be used with dimmers<br />

New<br />

generati<strong>on</strong> fluorescent lamps<br />

66-104<br />

12000<br />

High<br />

Low<br />

Electr<strong>on</strong>ic ballast<br />

Very high life time<br />

Very high light yield<br />

Incorporate electr<strong>on</strong>ic ballast<br />

No stroboscopic effect<br />

Low life time cost<br />

Ballast required<br />

High purchase cost


Ballasts<br />

Ballasts are required to c<strong>on</strong>trol the electrical properties of<br />

fluorescent lamps. Ballasts are important as they <strong>in</strong>fluence<br />

the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> of the lamp and guarantee proper<br />

operati<strong>on</strong>. There are 2 types of ballasts:<br />

a.C<strong>on</strong>venti<strong>on</strong>al ballasts<br />

b. Electr<strong>on</strong>ic ballasts<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Requirements for illum<strong>in</strong>ati<strong>on</strong><br />

Illum<strong>in</strong>ati<strong>on</strong> requirements depend <strong>on</strong> necessary light<strong>in</strong>g<br />

levels for different types of <strong>in</strong>dustries, rooms and<br />

activities. When evaluat<strong>in</strong>g the illum<strong>in</strong>ati<strong>on</strong> requirements it<br />

is important to c<strong>on</strong>sider the follow<strong>in</strong>g factors:<br />

a.Illum<strong>in</strong>ati<strong>on</strong> power measured <strong>in</strong> lum<strong>in</strong>ous flux<br />

b.Evenness of the light<strong>in</strong>g<br />

c.Colour render<strong>in</strong>g<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Average lum<strong>in</strong>ous flux density<br />

Degree of work<br />

accuracy<br />

The lowest<br />

permissible average<br />

lum<strong>in</strong>ous flux density<br />

Eav (lx)<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Examples<br />

Limited visual needs 50 Staircase, corridors, hall<br />

– with little usage<br />

Limited visual needs 100 Staircase, corridors, hall<br />

– with heavy usage<br />

Work of average<br />

accuracy<br />

300 Occasi<strong>on</strong>al office work<br />

Accurate work 500 Intense office work,<br />

Computer laboratory,<br />

Precise mach<strong>in</strong><strong>in</strong>g<br />

Very accurate work 750 Very precise mach<strong>in</strong><strong>in</strong>g


Evenness of light<strong>in</strong>g<br />

Type of work<br />

Evenness of light<strong>in</strong>g:<br />

Em<strong>in</strong> / Eav<br />

C<strong>on</strong>t<strong>in</strong>uous work ≥ 0,65<br />

Occasi<strong>on</strong>al work and<br />

communicati<strong>on</strong> z<strong>on</strong>e<br />

≥ 0.40<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Colour render<strong>in</strong>g<br />

Colour render<strong>in</strong>g describes the comfort of a lamp and has a<br />

significant impact <strong>on</strong> the comfort of a workplace.<br />

•The vertical illum<strong>in</strong>ati<strong>on</strong> power is resp<strong>on</strong>sible for the colour<br />

render<strong>in</strong>g.<br />

•The horiz<strong>on</strong>tal illum<strong>in</strong>ati<strong>on</strong> power is resp<strong>on</strong>sible for the light<strong>in</strong>g<br />

<strong>in</strong>tensity.<br />

As a rule of thumb it can be said that the vertical illum<strong>in</strong>ati<strong>on</strong><br />

power should reach at least 1/3 of the horiz<strong>on</strong>tal illum<strong>in</strong>ati<strong>on</strong><br />

power. Both data can be directly measured with a light meter.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Lamps with very good colour render<strong>in</strong>g will normally be used <strong>in</strong><br />

areas which should provide a good level of comfort or where<br />

very precise work is undertaken.


Evaluat<strong>in</strong>g costs for light<strong>in</strong>g<br />

It is normally not possible to identify the costs for light<strong>in</strong>g<br />

from the <strong>energy</strong> <strong>in</strong>voice, or to undertake separate<br />

measurements. Therefore it is necessary to identify<br />

electricity costs by calculati<strong>on</strong>s. The follow<strong>in</strong>g step by<br />

step process gives guidance. Start to evaluate your<br />

system by analys<strong>in</strong>g an <strong>in</strong>dividual room and then c<strong>on</strong>t<strong>in</strong>ue<br />

with the rest of the organisati<strong>on</strong>.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 1 – Identify lamps and bulbs<br />

It is first of all necessary to go through the room and to<br />

identify all lamps <strong>in</strong> use. Count the number of lamps and<br />

multiply each lamp by its power rat<strong>in</strong>g. For fluorescent<br />

lamps do not forget to add ballasts. Where ballasts are not<br />

known it is a rule of thumb to take it to be 12% of the<br />

power rat<strong>in</strong>g of each lamp.<br />

This calculati<strong>on</strong> gives a total power rat<strong>in</strong>g for the light<strong>in</strong>g<br />

system. Take care to always calculate with the same unit<br />

kW (1000W = 1 kW).<br />

E.g. 71 C<strong>on</strong>venti<strong>on</strong>al lamps at 150W = 10650 W / 1000 =<br />

10.65 kW<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 2 – Identify annual operat<strong>in</strong>g<br />

hours<br />

The annual number of hours the system is <strong>in</strong> use may be<br />

calculated by tak<strong>in</strong>g the office hours per day and<br />

multiply<strong>in</strong>g it with the work<strong>in</strong>g days per year. An example<br />

would be a shop open 8 hours per day and 50 weeks <strong>in</strong> the<br />

year which is 2000 h.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Step 3 – Annual operat<strong>in</strong>g costs<br />

of the light<strong>in</strong>g system<br />

Multiply<strong>in</strong>g the annual operat<strong>in</strong>g hours with the total<br />

power rat<strong>in</strong>g leads to the annual electricity c<strong>on</strong>sumpti<strong>on</strong>.<br />

Tak<strong>in</strong>g the electricity price from the <strong>in</strong>voice it is now easy<br />

to calculate the current costs for light<strong>in</strong>g.<br />

Example:<br />

2000 x 10.65 = 21300 kWh<br />

Electricity price = 0.10 Euro / kWh<br />

Total cost = 2130 Euro/year<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Mak<strong>in</strong>g <strong>energy</strong> sav<strong>in</strong>gs<br />

1. First, focus <strong>on</strong> activities which do not require<br />

<strong>in</strong>vestments.<br />

2. Sec<strong>on</strong>d, focus <strong>on</strong> activities that <strong>in</strong>crease the <strong>efficiency</strong> of<br />

the current system.<br />

3. Third, focus <strong>on</strong> activities c<strong>on</strong>nected with changes to the<br />

system itself or build<strong>in</strong>g alterati<strong>on</strong> work.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Mak<strong>in</strong>g <strong>energy</strong> sav<strong>in</strong>gs<br />

Energy costs for light<strong>in</strong>g depend <strong>on</strong> power requirements<br />

of the system and the operat<strong>in</strong>g time. The ma<strong>in</strong> focus must<br />

therefore be to reduce both power requirements and<br />

operat<strong>in</strong>g times. The follow<strong>in</strong>g acti<strong>on</strong>s and techniques can<br />

help:<br />

• Use of daylight<br />

• Switch lights off<br />

• Ma<strong>in</strong>tenance and clean<strong>in</strong>g<br />

• Interiors and colours<br />

• Reduc<strong>in</strong>g light<strong>in</strong>g level<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• Select comp<strong>on</strong>ents with best <strong>efficiency</strong><br />

• Use c<strong>on</strong>trol systems


Use of daylight<br />

Staff sometimes forget that artificial light is <strong>on</strong>ly necessary<br />

when there is too little natural daylight. Therefore<br />

awareness must be raised to switch lights off when<br />

daylight is sufficient.<br />

In additi<strong>on</strong> the use of daylight may be maximised by<br />

c<strong>on</strong>sider<strong>in</strong>g the <strong>in</strong>terior design of the office by mov<strong>in</strong>g<br />

desks next to w<strong>in</strong>dows and open<strong>in</strong>g bl<strong>in</strong>ds.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Switch it off<br />

Manual switch<strong>in</strong>g off. Switch off lamps if they are not<br />

needed. Install more switches so that light<strong>in</strong>g can be<br />

z<strong>on</strong>ed. Opportunities to switch off lights by staff are<br />

dur<strong>in</strong>g breaks, lunchtimes and when f<strong>in</strong>ish<strong>in</strong>g work. This<br />

method is the cheapest because no <strong>in</strong>vestment is needed<br />

but requires staff awareness.<br />

Time switch. For rooms where illum<strong>in</strong>ati<strong>on</strong> is needed for a<br />

short period <strong>on</strong>ly, time c<strong>on</strong>trollers are helpful to reduce<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>. Automatic light<strong>in</strong>g c<strong>on</strong>trol allows<br />

lights to be turned off automatically at predeterm<strong>in</strong>ed<br />

<strong>in</strong>tervals.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Reduce light<strong>in</strong>g level<br />

Daylight c<strong>on</strong>trol allows the gradual switch<strong>in</strong>g off of lights.<br />

A good opportunity is to c<strong>on</strong>t<strong>in</strong>uously adapt light<strong>in</strong>g<br />

requirements accord<strong>in</strong>g to the needs of staff. It is not<br />

necessary that lights operate 24 hours a day although this<br />

is needed sometimes to be customer friendly, e.g. clothes<br />

shops, hotels etc.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Ma<strong>in</strong>tenance and clean<strong>in</strong>g<br />

Although this might sound obvious ensure that lights,<br />

reflectors and cover<strong>in</strong>gs are cleaned regularly.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Interiors and colours<br />

When decorat<strong>in</strong>g and choos<strong>in</strong>g floor cover<strong>in</strong>gs try to use<br />

light colours as they are better at reflect<strong>in</strong>g light. This is also<br />

true for furniture and curta<strong>in</strong>s.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Select comp<strong>on</strong>ents with best<br />

<strong>efficiency</strong><br />

Chang<strong>in</strong>g all lamps to <strong>energy</strong> efficient light fitt<strong>in</strong>gs and<br />

bulbs will be unlikely to happen all at <strong>on</strong>ce. It is a better<br />

idea to change to efficient fitt<strong>in</strong>gs dur<strong>in</strong>g repair and<br />

ma<strong>in</strong>tenance work and to c<strong>on</strong>t<strong>in</strong>uously update the system.<br />

This is also true for replac<strong>in</strong>g the older thick fluorescent<br />

lamps with new th<strong>in</strong>ner fluorescent lamps as they have a<br />

higher <strong>in</strong>tensity of light and save up to 5 % <strong>energy</strong>.<br />

In cases where fluorescent lamps flicker the <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> rises by up to 30%, and the ballast has to be<br />

checked.<br />

Select<strong>in</strong>g <strong>energy</strong> efficient comp<strong>on</strong>ents also means to<br />

clean w<strong>in</strong>dows regularly, to pa<strong>in</strong>t walls bright and to clean<br />

the surfaces of lamps.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Use c<strong>on</strong>trol systems<br />

C<strong>on</strong>trol systems are an effective <strong>in</strong>strument to reduce<br />

<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> but have the ma<strong>in</strong> disadvantage that<br />

they need high <strong>in</strong>vestment and are <strong>on</strong>ly ec<strong>on</strong>omic <strong>in</strong><br />

build<strong>in</strong>gs with high <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>. C<strong>on</strong>trol systems<br />

should therefore be c<strong>on</strong>sidered <strong>in</strong> the plann<strong>in</strong>g phase of a<br />

build<strong>in</strong>g.<br />

The follow<strong>in</strong>g c<strong>on</strong>trol systems are comm<strong>on</strong>ly used:<br />

• Moti<strong>on</strong> c<strong>on</strong>trol<br />

• Daylight c<strong>on</strong>trol<br />

• Time clock<br />

• Remote c<strong>on</strong>trol<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Ventilati<strong>on</strong> Systems<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Ventilati<strong>on</strong> systems<br />

This module will explore different ventilati<strong>on</strong><br />

systems and show ways of identify<strong>in</strong>g <strong>energy</strong><br />

sav<strong>in</strong>gs associated with ventilati<strong>on</strong>.<br />

This <strong>in</strong>cludes<br />

• typical comp<strong>on</strong>ents of a ventilati<strong>on</strong> system<br />

• different ventilati<strong>on</strong> systems<br />

• how to calculate the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> for<br />

ventilati<strong>on</strong> and which <strong>in</strong>dicators to use<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

• ways of identify<strong>in</strong>g <strong>energy</strong> sav<strong>in</strong>gs<br />

associated with ventilati<strong>on</strong>


Background <strong>in</strong>formati<strong>on</strong><br />

Industrial ventilati<strong>on</strong> generally <strong>in</strong>volves the use of supply<br />

and exhaust ventilati<strong>on</strong> to c<strong>on</strong>trol<br />

• emissi<strong>on</strong>s,<br />

• exposures and<br />

• chemical hazards <strong>in</strong> the workplace.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Background <strong>in</strong>formati<strong>on</strong><br />

Traditi<strong>on</strong>ally, n<strong>on</strong>-<strong>in</strong>dustrial ventilati<strong>on</strong> systems comm<strong>on</strong>ly<br />

known as heat<strong>in</strong>g, ventilat<strong>in</strong>g and air-c<strong>on</strong>diti<strong>on</strong><strong>in</strong>g (HVAC)<br />

systems were built to c<strong>on</strong>trol<br />

• temperature<br />

• humidity<br />

• odours<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Types of ventilati<strong>on</strong><br />

In general there are 2 types of ventilati<strong>on</strong>:<br />

• Natural ventilati<strong>on</strong>.<br />

• Mechanical ventilati<strong>on</strong>.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Background <strong>in</strong>formati<strong>on</strong><br />

There are different systems and methods for ventilati<strong>on</strong><br />

depend<strong>in</strong>g <strong>on</strong> the requirements. How the temperature<br />

and the air rate are regulated, depend <strong>on</strong> the ventilati<strong>on</strong><br />

system.<br />

Natural Method Mechanical Method<br />

Diluti<strong>on</strong><br />

Local exhaust<br />

Replacement<br />

HVAC<br />

Recirculati<strong>on</strong><br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Mixed ventilati<strong>on</strong> Displacement<br />

ventilati<strong>on</strong>


Natural ventilati<strong>on</strong><br />

In the past natural ventilati<strong>on</strong> dom<strong>in</strong>ated.<br />

Advantages <strong>in</strong>clude<br />

• simple comp<strong>on</strong>ents<br />

• low <strong>in</strong>vestment costs<br />

• negligible operat<strong>in</strong>g costs.<br />

Disadvantages <strong>in</strong>clude<br />

• poor c<strong>on</strong>trol of ventilati<strong>on</strong><br />

• temperature variati<strong>on</strong>s<br />

• not as effective dur<strong>in</strong>g warm,<br />

humid summer m<strong>on</strong>ths<br />

• difficult to retrofit <strong>in</strong> build<strong>in</strong>gs<br />

• poor heat ec<strong>on</strong>omy.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Natural ventilati<strong>on</strong><br />

There are many office build<strong>in</strong>gs throughout Europe that rely <strong>on</strong><br />

natural ventilati<strong>on</strong> to meet all their cool<strong>in</strong>g needs.<br />

In North America, there is a trend towards natural ventilati<strong>on</strong> and<br />

many new build<strong>in</strong>gs have operable w<strong>in</strong>dows.<br />

Elim<strong>in</strong>ati<strong>on</strong> or avoidance of mechanical air c<strong>on</strong>diti<strong>on</strong><strong>in</strong>g is<br />

difficult <strong>in</strong> hot humid climates but is possible <strong>in</strong> most other<br />

climates.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Mechanical ventilati<strong>on</strong><br />

Mechanical ventilati<strong>on</strong> systems are capable of provid<strong>in</strong>g a c<strong>on</strong>trolled<br />

rate of air change and resp<strong>on</strong>d to the vary<strong>in</strong>g needs of occupants<br />

and pollutant loads. In general <strong>in</strong>com<strong>in</strong>g supply air is filtered and<br />

some systems have provisi<strong>on</strong> for heat recovery from the exhaust air<br />

stream.<br />

The potential advantages of mechanical ventilati<strong>on</strong>, especially for<br />

smaller build<strong>in</strong>gs, can often be outweighed by <strong>in</strong>stallati<strong>on</strong> and<br />

operati<strong>on</strong>al cost, ma<strong>in</strong>tenance needs and <strong>in</strong>adequate return from<br />

heat recovery. Mechanical ventilati<strong>on</strong> is often essential <strong>in</strong> large office<br />

build<strong>in</strong>gs where fresh air must penetrate to the centre of the build<strong>in</strong>g<br />

and high heat ga<strong>in</strong>s can cause over heat<strong>in</strong>g.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Several c<strong>on</strong>figurati<strong>on</strong>s of mechanical ventilati<strong>on</strong> are possible:<br />

• Supply ventilati<strong>on</strong><br />

• Extract (or exhaust) ventilati<strong>on</strong><br />

• Balanced (supply extract) systems


Ventilati<strong>on</strong> rates<br />

The quantity of ventilati<strong>on</strong> needed depends <strong>on</strong> the amount and<br />

nature of c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> present <strong>in</strong> a space.<br />

To determ<strong>in</strong>e the overall ventilati<strong>on</strong> needed, it is useful to<br />

identify the dom<strong>in</strong>ant pollutant. This is the pollutant that requires<br />

the greatest amount of ventilati<strong>on</strong> for removal.<br />

To assess the emissi<strong>on</strong> from the processes <strong>on</strong>e can ask people<br />

work<strong>in</strong>g near the processes if they <strong>sme</strong>ll, feel or <strong>in</strong> any other way<br />

have a problem with the emissi<strong>on</strong>s. The methods to measure the<br />

emissi<strong>on</strong> vary from comp<strong>on</strong>ent to comp<strong>on</strong>ent and is often a job<br />

for specialists to <strong>in</strong>vestigate.<br />

Air flow for humans<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Air flow to ventilate emissi<strong>on</strong><br />

from c<strong>on</strong>structi<strong>on</strong> materials<br />

25.2 m 3 /h per pers<strong>on</strong><br />

2.5 m 3 /h per m 2 floor area


Facts<br />

• Approximately 30% of the <strong>energy</strong> delivered to<br />

build<strong>in</strong>gs is dissipated <strong>in</strong> depart<strong>in</strong>g<br />

ventilati<strong>on</strong> and exfiltrati<strong>on</strong> air streams.<br />

• In build<strong>in</strong>gs c<strong>on</strong>structed to very high<br />

standards of thermal <strong>in</strong>sulati<strong>on</strong> the<br />

proporti<strong>on</strong> of airborne <strong>energy</strong> loss can be<br />

much higher.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Facts<br />

The amount of <strong>energy</strong> c<strong>on</strong>sumed depends <strong>on</strong> the<br />

• flow rate of ventilati<strong>on</strong><br />

• amount of c<strong>on</strong>diti<strong>on</strong><strong>in</strong>g air to achieve thermal comfort<br />

(heat<strong>in</strong>g and cool<strong>in</strong>g)<br />

• operati<strong>on</strong> of mechanical ventilati<strong>on</strong> systems<br />

• required humidity.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Comp<strong>on</strong>ents<br />

A ventilati<strong>on</strong> system c<strong>on</strong>sists of different comp<strong>on</strong>ents.<br />

All comp<strong>on</strong>ents are important when discuss<strong>in</strong>g <strong>energy</strong><br />

<strong>efficiency</strong>.<br />

Many of the comp<strong>on</strong>ents are selected dur<strong>in</strong>g the design<br />

phase, but dur<strong>in</strong>g the operati<strong>on</strong> phase ma<strong>in</strong>tenance and<br />

movement of comp<strong>on</strong>ents often occur.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Comp<strong>on</strong>ents<br />

A ventilati<strong>on</strong> system c<strong>on</strong>sists of the follow<strong>in</strong>g comp<strong>on</strong>ents:<br />

• Fans<br />

• Air-clean<strong>in</strong>g and filtrati<strong>on</strong> systems<br />

• Heat<strong>in</strong>g, cool<strong>in</strong>g and humidificati<strong>on</strong> systems<br />

• Heat recovery systems<br />

• Recirculati<strong>on</strong> of <strong>in</strong>door air<br />

• C<strong>on</strong>trol system<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Fans<br />

Fans are used <strong>in</strong> ventilat<strong>in</strong>g units to transport the air from various air<br />

<strong>in</strong>takes through the duct system to the room which is to be ventilated.<br />

Every fan must overcome the resistance created by hav<strong>in</strong>g to force the air<br />

through ducts, bends and other ventilati<strong>on</strong> equipment.<br />

The resistance causes a fall <strong>in</strong> pressure, and the size of this fall is a<br />

decisive factor when choos<strong>in</strong>g the dimensi<strong>on</strong>s of each <strong>in</strong>dividual fan.<br />

Fans can be divided <strong>in</strong>to a number of ma<strong>in</strong> groups determ<strong>in</strong>ed by the<br />

impeller’s shape and its operat<strong>in</strong>g pr<strong>in</strong>ciple:<br />

• Radial fans<br />

• Axial fans<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Efficiency of fans<br />

Fan c<strong>on</strong>necti<strong>on</strong>s to the <strong>in</strong>let and outlet<br />

must be designed <strong>in</strong> a specific way to<br />

avoid losses.<br />

As a rule of thumb it can be said that the<br />

• duct diameter <strong>on</strong> the <strong>in</strong>let side must have the same<br />

size as the <strong>in</strong>let<br />

• duct diameter <strong>on</strong> the pressure side (outlet) must be 3<br />

times larger than <strong>on</strong> the <strong>in</strong>let.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Efficiency of fans<br />

Radial fans must be at least 5 times larger <strong>on</strong> the sucti<strong>on</strong><br />

side (<strong>in</strong>let), and the same size as the duct diameter <strong>on</strong> the<br />

pressure side (outlet).<br />

If the c<strong>on</strong>necti<strong>on</strong>s are different to this there could be a<br />

greater pressure reducti<strong>on</strong>.<br />

This extra pressure drop is called the system effect or<br />

system dissipati<strong>on</strong>, and can cause the fan to produce a<br />

smaller volume of air.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Specific Fan Power<br />

There are now str<strong>in</strong>gent requirements to ensure that power<br />

c<strong>on</strong>sumpti<strong>on</strong> <strong>in</strong> a build<strong>in</strong>g is as efficient as possible so as<br />

to m<strong>in</strong>imise <strong>energy</strong> costs. Specific Fan Power (SFP) has<br />

been <strong>in</strong>troduced as a measurement of a ventilati<strong>on</strong><br />

system’s <strong>energy</strong> <strong>efficiency</strong>.<br />

The Specific Fan Power for an entire build<strong>in</strong>g can be<br />

def<strong>in</strong>ed as the total <strong>energy</strong> <strong>efficiency</strong> of all the fans <strong>in</strong> the<br />

ventilati<strong>on</strong> system divided by the total air flow through the<br />

build<strong>in</strong>g. The lower the value, the more efficient the<br />

system is at transferr<strong>in</strong>g the air.<br />

E.g <strong>in</strong> Norway the recommendati<strong>on</strong>s for public sector<br />

purchas<strong>in</strong>g are that the maximum SFP should be 2.0 when<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g and repair<strong>in</strong>g ventilat<strong>in</strong>g units, and 1.5 for new<br />

<strong>in</strong>stallati<strong>on</strong>s.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Specific Fan Power<br />

To calculate the SFP the follow<strong>in</strong>g <strong>in</strong>formati<strong>on</strong> is required:<br />

• Power of all fans <strong>in</strong> the system (kW)<br />

• Volume flow of air <strong>in</strong> the system (m3/s)<br />

SFP = P/V (kW/(m 3 /s))<br />

To obta<strong>in</strong> the power of all fans it is necessary to read the<br />

kW-rat<strong>in</strong>g which can be found <strong>on</strong> the <strong>in</strong>formati<strong>on</strong> plate <strong>on</strong><br />

the electric motors (which drive the fans <strong>in</strong> your system).<br />

To obta<strong>in</strong> the volume flow you can f<strong>in</strong>d the rated volume<br />

flow <strong>on</strong> each fan <strong>in</strong> the documentati<strong>on</strong> for the ventilati<strong>on</strong><br />

system. Elsewhere an expert can measure the volume flow<br />

with appropriate <strong>in</strong>strument.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Air-clean<strong>in</strong>g and filtrati<strong>on</strong> systems<br />

There are two reas<strong>on</strong>s for us<strong>in</strong>g filters<br />

<strong>in</strong> an air-handl<strong>in</strong>g unit:<br />

1. To prevent impurities <strong>in</strong> the outside air from enter<strong>in</strong>g<br />

the build<strong>in</strong>g.<br />

2. To protect the unit’s comp<strong>on</strong>ents from c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Heat<strong>in</strong>g batteries<br />

Where the outside air is colder than the required<br />

temperature for the supply air it is necessary to warm the<br />

air before it enters the build<strong>in</strong>g.<br />

The air can be warmed <strong>in</strong> a heat<strong>in</strong>g battery, by us<strong>in</strong>g either<br />

an electric heat<strong>in</strong>g battery or a hot water battery.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Electric heat<strong>in</strong>g batteries<br />

An electric-heat<strong>in</strong>g battery c<strong>on</strong>sists of a number of enclosed<br />

metal filaments or wire spirals. They create an electrical<br />

resistance which c<strong>on</strong>verts the <strong>energy</strong> to heat.<br />

The advantages of the electric battery are:<br />

• It has a small pressure drop.<br />

• It is easy to calculate the power to the battery.<br />

• It is <strong>in</strong>expensive to <strong>in</strong>stall.<br />

The ma<strong>in</strong> disadvantage is:<br />

• The metal filaments have c<strong>on</strong>siderable heat <strong>in</strong>ertia so the<br />

electric battery has to be fitted with overheat<strong>in</strong>g protecti<strong>on</strong>.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Water heat<strong>in</strong>g batteries<br />

Crossflow water-heat<strong>in</strong>g batteries are the most comm<strong>on</strong><br />

type of water-heat<strong>in</strong>g batteries <strong>in</strong> ventilati<strong>on</strong> units.<br />

The water flows at right angles and <strong>in</strong> the opposite<br />

directi<strong>on</strong> to the air stream. The water flows upwards<br />

through the battery. This allows any air bubbles to collect<br />

at the highest po<strong>in</strong>t where they can be easily drawn off via<br />

a ventilat<strong>in</strong>g pipe.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Heat recovery systems<br />

In a ventilati<strong>on</strong> unit it is often ec<strong>on</strong>omical to attempt to<br />

recover the heat which is c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> the exhaust air<br />

and use it to warm the supply air. There are several<br />

methods for achiev<strong>in</strong>g this type of heat recovery:<br />

• Plate heat recovery.<br />

• Rotary heat recovery.<br />

• Battery heat recovery.<br />

• Chamber heat exchanger.<br />

• Heat pipe.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Recirculati<strong>on</strong> of <strong>in</strong>door air<br />

Recirculati<strong>on</strong> is normally used when the ventilati<strong>on</strong><br />

system functi<strong>on</strong>s as heat<strong>in</strong>g <strong>in</strong> a build<strong>in</strong>g or a part of a<br />

build<strong>in</strong>g. It is difficult to obta<strong>in</strong> good <strong>in</strong>door air quality<br />

us<strong>in</strong>g recirculati<strong>on</strong>.<br />

Recirculati<strong>on</strong> should <strong>in</strong>corporate<br />

• air cleaners<br />

• a by-pass or auxiliary exhaust system<br />

• regular ma<strong>in</strong>tenance and <strong>in</strong>specti<strong>on</strong><br />

• devices to m<strong>on</strong>itor system performance<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

The system should remove as much of the c<strong>on</strong>tam<strong>in</strong>ant as<br />

can ec<strong>on</strong>omically be separated from exhaust air.


C<strong>on</strong>trol systems<br />

Ideally, build<strong>in</strong>gs should have m<strong>in</strong>imal HVAC (Heat<strong>in</strong>g<br />

Ventilati<strong>on</strong> Air C<strong>on</strong>diti<strong>on</strong><strong>in</strong>g) systems.<br />

However, most modern urban build<strong>in</strong>gs, with their locati<strong>on</strong><br />

and build<strong>in</strong>g c<strong>on</strong>stra<strong>in</strong>ts, require more extensive electrical<br />

and mechanical systems with automatic c<strong>on</strong>trol.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


C<strong>on</strong>trol systems<br />

• The best c<strong>on</strong>trol strategy allows occupants to directly<br />

manipulate simple and understandable build<strong>in</strong>g<br />

features, such as w<strong>in</strong>dows or shades.<br />

• C<strong>on</strong>trols should provide immediate feedback <strong>on</strong> their<br />

effects.<br />

• C<strong>on</strong>trols should not require occupant attenti<strong>on</strong> for<br />

safe, healthy <strong>in</strong>door c<strong>on</strong>diti<strong>on</strong>s, low <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong> and operat<strong>in</strong>g costs.<br />

• Automatic build<strong>in</strong>g c<strong>on</strong>trols must ensure the build<strong>in</strong>g<br />

operates efficiently regardless of occupant behaviour.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Evaluat<strong>in</strong>g the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

Energy c<strong>on</strong>sumpti<strong>on</strong> for ventilati<strong>on</strong> c<strong>on</strong>sists of:<br />

• heat<strong>in</strong>g the air<br />

• tranportati<strong>on</strong> of the air<br />

Often the amount of <strong>energy</strong> for heat<strong>in</strong>g and transportati<strong>on</strong> are at the same<br />

level.<br />

Energy for heat<strong>in</strong>g depends <strong>on</strong>:<br />

•Air volume<br />

•Temperature of outdoor and <strong>in</strong>door air<br />

•Heat recovery<br />

•Work<strong>in</strong>g hours<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Energy for tranportati<strong>on</strong> depends <strong>on</strong>:<br />

•Air volume<br />

•Input power to fans<br />

•Work<strong>in</strong>g hours


Evaluat<strong>in</strong>g the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

How to f<strong>in</strong>d data for the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

Air volume [m3/h] or [m3/s].<br />

Temperature of outdoor and <strong>in</strong>door air<br />

[C]:<br />

Heat recovery: ?<br />

Work<strong>in</strong>g hours [h]:<br />

Input power to fans [kW]:<br />

Capacity written <strong>on</strong> the aggregate or <strong>in</strong> the<br />

manual<br />

Outdoor: Yearly average temperature Indoor:<br />

Set value <strong>on</strong> <strong>in</strong>let air<br />

If there is any, what is the <strong>efficiency</strong>?<br />

Calculati<strong>on</strong>s between 0,5 – 0.9<br />

How many hours will the system be operati<strong>on</strong>al<br />

each day?<br />

Plate <strong>on</strong> the fan<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Evaluat<strong>in</strong>g the <strong>energy</strong><br />

c<strong>on</strong>sumpti<strong>on</strong><br />

A. Heat<strong>in</strong>g:<br />

You f<strong>in</strong>d the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> with the follow<strong>in</strong>g formula:<br />

E [kWh] = (c x ρ) x [m3/s] x [ C] x (1 – ŋ) x [h]<br />

(c x ρ) = 1,21 kJ/m3xC<br />

B. Air transport:<br />

You f<strong>in</strong>d the <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong> with the follow<strong>in</strong>g formula:<br />

E [kWh] = [kW] x [h]<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Example „<strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>“<br />

A. Basic data - Heat<strong>in</strong>g:<br />

Air volume: 2.4 m3/s<br />

Temperature outdoor yearly average: + 8 C<br />

Temperature <strong>in</strong>door set <strong>in</strong>let: + 20 C<br />

Heat recovery <strong>efficiency</strong>: 0.7<br />

Work<strong>in</strong>g hours: 60 hours/week x 52 weeks<br />

= 3120 h<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Energy c<strong>on</strong>sumpti<strong>on</strong> for heat<strong>in</strong>g:<br />

1.21 [kJ/m3xC] x 2.4 [m3/s] x (20 – 8) [ C] x (1 – 0.7) x 3120 [h]<br />

E = 32618 kWh


Example - <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

B. Basic data - Air Transport:<br />

Power <strong>in</strong>put fan motors: 8 kW<br />

Work<strong>in</strong>g hours: 60 hours/week x 52 weeks = 3120 h<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> for air transport:<br />

E = 8 [kW] x 3120 [h]<br />

E = 24960 kWh<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Example - <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

Energy c<strong>on</strong>sumpti<strong>on</strong> for heat<strong>in</strong>g: 32618 kWh<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> for air transport: 24960 kWh<br />

Total <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>: 57578 kWh<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Mak<strong>in</strong>g <strong>energy</strong> sav<strong>in</strong>gs<br />

The <strong>energy</strong> used <strong>in</strong> ventilati<strong>on</strong> is a product of power<br />

(kW) and time <strong>in</strong> hours (h). The ma<strong>in</strong> issues are to<br />

reduce either the amount of the power or the<br />

operat<strong>in</strong>g hours the power is <strong>on</strong>.<br />

In reduc<strong>in</strong>g both power and operat<strong>in</strong>g hours care is<br />

needed not to change the <strong>in</strong>door air quality that<br />

would be unacceptable to staff.<br />

Energy sav<strong>in</strong>gs can be made:<br />

1. Switch it off<br />

2. Slow it down<br />

3. Select comp<strong>on</strong>ents with best <strong>efficiency</strong><br />

4. Use a c<strong>on</strong>trol system<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Energy sav<strong>in</strong>gs – 1. Switch it off<br />

The simplest method of reduc<strong>in</strong>g <strong>energy</strong> is to switch it off when it<br />

is not needed.<br />

There are several ways of c<strong>on</strong>troll<strong>in</strong>g “switch<strong>in</strong>g off”.<br />

1.1 Manual switch<strong>in</strong>g off<br />

1.2 Time switch<br />

1.3 Demand c<strong>on</strong>trolled ventilati<strong>on</strong><br />

1.4 C<strong>on</strong>trol system<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Example Ventilati<strong>on</strong> rates<br />

Office build<strong>in</strong>g 2000 m 2<br />

Heat<strong>in</strong>g capacity for ventilati<strong>on</strong> 45 kW<br />

Ventilati<strong>on</strong> On 24 hours a day, 7 days a<br />

week (168 hours weekly)<br />

Heat recovery 0 %<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> 420000 kWh (100%)<br />

Switch off 12 hours 5 days (M<strong>on</strong>-Fri)<br />

18 hours 1 day (Sat)<br />

24 hours 1 day a week (Sun)<br />

From 168 to 66 hours weekly<br />

Switch off for 102 hours<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

Energy c<strong>on</strong>sumpti<strong>on</strong> 165000 kWh (40%)<br />

Energy sav<strong>in</strong>gs 255000 kWh (60%)


Energy sav<strong>in</strong>gs – 2. Slow it down<br />

Instead of switch<strong>in</strong>g the system off, the ventilati<strong>on</strong><br />

system can reduce the ventilati<strong>on</strong> rate without a<br />

noticeable change to the <strong>in</strong>door climate.<br />

Sav<strong>in</strong>gs can easily be achieved by reduc<strong>in</strong>g the air<br />

flow rate.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Example Ventilati<strong>on</strong> rates<br />

Office build<strong>in</strong>g 2000 m 2<br />

Ventilati<strong>on</strong> On 24 hours a day,<br />

7 days a week (168 hours weekly)<br />

Heat recovery 0 %<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> 420000 kWh (100%)<br />

Slow it down On 24 hours a day,<br />

7 days a week (168 hours weekly)<br />

Reduced air rate From 10000 m 3 /h to 7000 m 3 /h<br />

Energy c<strong>on</strong>sumpti<strong>on</strong> 295000 kWh (40%)<br />

Energy sav<strong>in</strong>gs 125000 kWh (60%)<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Energy sav<strong>in</strong>gs – 3. Select<br />

comp<strong>on</strong>ents with best <strong>efficiency</strong><br />

All of the follow<strong>in</strong>g comp<strong>on</strong>ents are important when<br />

discuss<strong>in</strong>g <strong>energy</strong> <strong>efficiency</strong>:<br />

3.1 Fans<br />

3.2 Air clean<strong>in</strong>g and filtrati<strong>on</strong><br />

3.3 Heat recovery and equipment<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Energy sav<strong>in</strong>gs – 4. Use of c<strong>on</strong>trol<br />

systems<br />

The potential <strong>energy</strong> sav<strong>in</strong>g ga<strong>in</strong>ed from c<strong>on</strong>trollers can be<br />

up to 60% of ventilati<strong>on</strong> <strong>energy</strong> costs, depend<strong>in</strong>g <strong>on</strong><br />

• Build<strong>in</strong>g type and use<br />

• Local climate<br />

Direct digital c<strong>on</strong>trol (DDC)<br />

Occupancy sensors<br />

Daylight c<strong>on</strong>trols<br />

Fan motor c<strong>on</strong>trollers<br />

Time clocks<br />

allows precise, flexible management of electrical and mechanical parts<br />

of a ventilati<strong>on</strong> system. Digital c<strong>on</strong>trols can easily resp<strong>on</strong>d to build<strong>in</strong>g<br />

changes and occupancy throughout the life of the build<strong>in</strong>g.<br />

ensure that the air flow rate will be reduced or switched off if people<br />

are not at their work place<br />

provide occupants with the ability to adjust space light<strong>in</strong>g to their own<br />

needs. Reduced light<strong>in</strong>g power translates <strong>in</strong>to lower cool<strong>in</strong>g loads,<br />

smaller HVAC equipment and reduced <strong>energy</strong> c<strong>on</strong>sumpti<strong>on</strong>.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong><br />

ensure that the motor speed is correctly matched to the load<br />

requirements of the ventilati<strong>on</strong> system.<br />

Are very simple and low cost c<strong>on</strong>trollers which often can be quickly<br />

<strong>in</strong>stalled


Cool<strong>in</strong>g<br />

Particularly <strong>in</strong> large commercial office build<strong>in</strong>gs, high heat<br />

loads are developed through light<strong>in</strong>g, comput<strong>in</strong>g and other<br />

electrical sources. Further heat ga<strong>in</strong>s are derived from<br />

occupants, solar radiati<strong>on</strong> and high outdoor temperatures.<br />

These factors make cool<strong>in</strong>g of the <strong>in</strong>door air essential.<br />

The choice is either to <strong>in</strong>troduce mechanical cool<strong>in</strong>g or to<br />

<strong>in</strong>troduce ventilati<strong>on</strong> cool<strong>in</strong>g. In either case heat ga<strong>in</strong>s should<br />

be m<strong>in</strong>imised by good build<strong>in</strong>g design and reduced power<br />

c<strong>on</strong>sumpti<strong>on</strong>.<br />

Mechanical cool<strong>in</strong>g is <strong>energy</strong> <strong>in</strong>tensive and c<strong>on</strong>tributes to<br />

peak power loads. When mechanical cool<strong>in</strong>g is needed,<br />

ventilati<strong>on</strong> must be m<strong>in</strong>imised to prevent the unnecessary loss<br />

of c<strong>on</strong>diti<strong>on</strong>ed air.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>


Summary<br />

Industrial ventilati<strong>on</strong> generally <strong>in</strong>volves the use of supply and<br />

exhaust ventilati<strong>on</strong> to c<strong>on</strong>trol<br />

• emissi<strong>on</strong>s,<br />

• exposure and<br />

• chemical hazards <strong>in</strong> the workplace<br />

Energy is used for two ma<strong>in</strong> purpose. To heat the supply air and<br />

to transport the air <strong>in</strong> and out of the build<strong>in</strong>g. There are many<br />

parts of the ventilati<strong>on</strong> system where losses occur.<br />

The first step <strong>in</strong> performance optimisati<strong>on</strong> should be the analysis<br />

of the process to determ<strong>in</strong>e the heat load and power to fans <strong>in</strong> its<br />

magnitude, durati<strong>on</strong> and variability by hours and seas<strong>on</strong>.<br />

Surpris<strong>in</strong>gly this step al<strong>on</strong>e leads to significant <strong>energy</strong> sav<strong>in</strong>gs.<br />

www.eng<strong>in</strong>e-<strong>sme</strong>.<strong>eu</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!