01.02.2013 Views

5th International Conference on Lévy Processes: - Institut for ...

5th International Conference on Lévy Processes: - Institut for ...

5th International Conference on Lévy Processes: - Institut for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>5th</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Lévy</strong> <strong>Processes</strong>:<br />

Theory and Applicati<strong>on</strong>s<br />

Copenhagen<br />

August 13-17, 2007<br />

Updated with correcti<strong>on</strong>s 21-08-2007


The Fifth <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Lévy</strong> <strong>Processes</strong>: Theory and Applicati<strong>on</strong>s is hosted by the Department<br />

of Applied Mathematics and Statistics of the University of Copenhagen. It is jointly organized with and financially<br />

supported by the Stochastic Centre of Chalmers University Gothenburg, the Center of Mathematics and its Applicati<strong>on</strong>s<br />

at the University of Oslo, the Danish Natural Science Research Council, the European Mathematical Society,<br />

the Thiele Center at the University of Aarhus and the Graduate School <strong>for</strong> Applied Mathematics at the Universities<br />

of Copenhagen and Aarhus.<br />

The First and Sec<strong>on</strong>d <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>s were held in Aarhus (1999, 2002), the Third in Paris (2003), and the Fourth in<br />

Manchester (2005). As in the previous meetings, the 2007 meeting will schedule review papers and original research<br />

<strong>on</strong> all aspects of <strong>Lévy</strong> process theory and its applicati<strong>on</strong>s.<br />

It is the aim of the c<strong>on</strong>ference to bring together a wide range of researchers, practiti<strong>on</strong>ers, and graduate students<br />

whose work is related to Levy processes and infinitely divisible distributi<strong>on</strong>s in a wide sense. Topics of interest<br />

include:<br />

• Structural results <strong>for</strong> <strong>Lévy</strong> processes: distributi<strong>on</strong> and path properties<br />

• <strong>Lévy</strong> trees, superprocesses and branching theory<br />

• Fractal processes and fractal phenomena<br />

• Stable and infinitely divisible processes and distributi<strong>on</strong>s<br />

• Applicati<strong>on</strong>s in finance, physics, biosciences and telecommunicati<strong>on</strong>s<br />

• <strong>Lévy</strong> processes <strong>on</strong> abstract structures<br />

• Statistical, numerical and simulati<strong>on</strong> aspects of Levy processes<br />

• <strong>Lévy</strong> and stable random fields.<br />

Scientific Organizing Committee<br />

Gennady Samorodnitsky (Chair) (Cornell)<br />

Søren Asmussen (Aarhus)<br />

Jean Bertoin (Paris VI)<br />

Serge Cohen (Toulouse)<br />

R<strong>on</strong> D<strong>on</strong>ey (Manchester)<br />

Niels Jacob (Swansea)<br />

Claudia Klüppelberg (TU Munich)<br />

Makoto Maejima (Keio)<br />

Thomas Mikosch (Copenhagen)<br />

Bernt Øksendal (Oslo)<br />

Holger Rootzén (Chalmers)<br />

Local Organizing Committee<br />

Thomas Mikosch (Copenhagen)<br />

Michael Sørensen (Copenhagen)<br />

Niels Richard Hansen (Copenhagen)<br />

Anders Tolver Jensen (Copenhagen)<br />

Jeffrey Collamore (Copenhagen)


8.00-9.00 Registrati<strong>on</strong><br />

8.50 Opening<br />

Scientific Program<br />

M<strong>on</strong>day 13 Tuesday 14 Wednesday 15 Thursday 16 Friday 17<br />

9.00-9.30 Ole Barndorff-Nielsen Sid Resnick Holger Rootzén R<strong>on</strong> D<strong>on</strong>ey Jean-François Le Gall<br />

9.30-10.00 Michael B. Markus Ingemar Kaj Vicky Fasen François Roueff Zenghu Li<br />

10.00-10.30 Coffee Coffee Coffee Coffee Coffee<br />

10.30-11.00 Niels Richard Hansen Jeanette Wörner Bernt Øksendal Claudia Klüppelberg Narn-Rueih Shieh<br />

11.00-11.30 Jean Bertoin Loïc Chaum<strong>on</strong>t Thomas Sim<strong>on</strong> D<strong>on</strong>atas Surgailis Michaela Prokeˇsová<br />

11.30-12.00 Andreas Kyprianou Giulia di Nunno Zoran V<strong>on</strong>dracek Friedrich Hubalek Josep Lluís Solé<br />

12.00-14.00 Lunch Lunch Lunch Lunch<br />

14.00-14.30 Filip Lindskog Serge Cohen Lunch Makoto Maejima Jan Rosiński<br />

14.30-15.00 Victor Perez-Abreu Henrik Hult and/or Alexander Lindner Jean Jacod<br />

15.00-15.30 Coffee Coffee Excursi<strong>on</strong> Coffee Closing<br />

15.30-16.00 Jan Kallsen Jay Rosen Yimin Xiao<br />

16.00-16.30 Davar Khoshnevisan Niels Jacob Mark Meerschaert<br />

16.30-17.00 Rama C<strong>on</strong>t René Schilling<br />

17.00-19.00 Poster Sessi<strong>on</strong> with<br />

food and drinks<br />

19.00- <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> Dinner


C<strong>on</strong>tents<br />

Invited Speakers 5<br />

BARNDORFF-NIELSEN, OLE E.<br />

UPSILON TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

BERTOIN, JEAN<br />

REFLECTING A LANGEVIN PROCESS AT AN INELASTIC BOUNDARY . . . . . . . . . . . . . . . . . . . . . . . 8<br />

CHAUMONT, LO ÏC<br />

SOME EXPLICIT IDENTITIES ASSOCIATED WITH POSITIVE SELF-SIMILAR MARKOV PROCESSES . . . . . . . . 9<br />

COHEN, SERGE<br />

TAIL BEHAVIOR OF RANDOM PRODUCTS AND STOCHASTIC EXPONENTIALS . . . . . . . . . . . . . . . . . . 10<br />

CONT, RAMA<br />

HEDGING OPTIONS IN MODELS WITH JUMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

DI NUNNO, GIULIA<br />

LÉVY RANDOM FIELDS: STOCHASTIC DIFFERENTIATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

DONEY, RON<br />

THE REFLECTED PROCESS OF A LÉVY PROCESS OR RANDOM WALK . . . . . . . . . . . . . . . . . . . . . . 13<br />

FASEN, VICKY<br />

ASYMPTOTIC RESULTS FOR SAMPLE AUTOCOVARIANCE FUNCTIONS AND EXTREMES OF INTEGRATED GE-<br />

NERALIZED ORNSTEIN-UHLENBECK PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

HANSEN, NIELS RICHARD<br />

LEVY PROCESSES REFLECTED AT A GENERAL BARRIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

HULT, HENRIK<br />

LARGE DEVIATIONS FOR POINT PROCESSES BASED ON HEAVY-TAILED SEQUENCES . . . . . . . . . . . . . . 16<br />

JACOB, NIELS<br />

SUBORDINATION WITH RESPECT TO STATE SPACE DEPENDENT BERNSTEIN FUNCTIONS. . . . . . . . . . . . 17<br />

JACOD, JEAN<br />

DISCRETIZATION OF SEMIMARTINGALES AND NOISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

JENSEN, ANDERS TOLVER<br />

AN EM ALGORITHM FOR REGIME SWITCHING LÉVY PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

KAJ, INGEMAR<br />

SELF-SIMILAR RANDOM FIELDS AND RESCALED RANDOM BALLS MODELS . . . . . . . . . . . . . . . . . . . 20<br />

KALLSEN, JAN<br />

ON QUADRATIC HEDGING IN AFFINE STOCHASTIC VOLATILITY MODELS . . . . . . . . . . . . . . . . . . . . 21<br />

KHOSHNEVISAN, DAVAR<br />

LÉVY PROCESSES AND STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS . . . . . . . . . . . . . . . . . . . 22<br />

KLÜPPELBERG, CLAUDIA<br />

THE COGARCH MODEL: SOME RECENT RESULTS AND EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . 23<br />

KYPRIANOU, ANDREAS<br />

OLD AND NEW EXAMPLES OF SCALE FUNCTIONS FOR SPECTRALLY NEGATIVE LÉVY PROCESSES . . . . . . .<br />

LE GALL, JEAN-FRANÇOIS<br />

24<br />

RANDOM TREES AND PLANAR MAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

1


LINDNER, ALEXANDER<br />

CONTINUITY PROPERTIES AND INFINITE DIVISIBILITY OF STATIONARY DISTRIBUTIONS OF SOME GENER-<br />

ALISED ORNSTEIN-UHLENBECK PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

LINDSKOG, FILIP<br />

INFINITE DIVISIBILITY AND PROJECTIONS OF MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

MAEJIMA, MAKOTO<br />

TO WHICH CLASS DO KNOWN DISTRIBUTIONS OF REAL VALUED INFINITELY DIVISIBLE RANDOM VARIABLES<br />

BELONG? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

MARCUS, MICHAEL B.<br />

L p MODULI OF CONTINUITY OF LOCAL TIMES OF SYMMETRIC LÉVY PROCESSES<br />

MEERSCHAERT, MARK M.<br />

. . . . . . . . . . . . . . . 29<br />

TRIANGULAR ARRAY LIMITS FOR CONTINUOUS TIME RANDOM WALKS<br />

ØKSENDAL, BERNT<br />

. . . . . . . . . . . . . . . . . . . . 30<br />

A MALLIAVIN CALCULUS APPROACH TO STOCHASTIC CONTROL OF JUMP DIFFUSIONS<br />

PEREZ-ABREU, VICTOR<br />

. . . . . . . . . . . . 31<br />

REPRESENTATION OF INFINITELY DIVISIBLE DISTRIBUTIONS ON CONES . . . . . . . . . . . . . . . . . . . . 32<br />

PROKEˇ SOVÁ, MICHAELA<br />

LÉVY DRIVEN COX POINT PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

RESNICK, SIDNEY<br />

LÉVY PROCESSES AND NETWORK MODELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

ROOTZÉN, HOLGER<br />

EMPIRICAL PROCESS THEORY FOR EXTREME CLUSTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

ROSEN, JAY<br />

LARGE DEVIATIONS FOR RIESZ POTENTIALS OF ADDITIVE PROCESSESS . . . . . . . . . . . . . . . . . . . . 36<br />

ROSI ŃSKI, JAN<br />

SPECTRAL REPRESENTATIONS OF INFINITELY DIVISIBLE PROCESSES AND INJECTIVITY OF THE<br />

Υ-TRANSFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

ROUEFF, FRANÇOIS<br />

SOME SAMPLE PATH PROPERTIES OF LINEAR FRACTIONAL STABLE SHEET . . . . . . . . . . . . . . . . . . 38<br />

SCHILLING, RENÉ L.<br />

ON THE FELLER PROPERTY FOR A CLASS OF DIRICHLET PROCESSES . . . . . . . . . . . . . . . . . . . . . 39<br />

SIMON, THOMAS<br />

LOWER TAILS OF HOMOGENEOUS FUNCTIONALS OF STABLE PROCESSES . . . . . . . . . . . . . . . . . . . . 40<br />

SOLÉ CLIVILLÉS, JOSEP LLUÍS<br />

ON THE POLYNOMIALS ASSOCIATED WITH A LÉVY PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

SURGAILIS, DONATAS<br />

A QUADRATIC ARCH MODEL WITH LONG MEMORY AND LÉVY-STABLE BEHAVIOR OF SQUARES . . . . . . . .<br />

VONDRACEK, ZORAN<br />

42<br />

ON INFIMA OF LEVY PROCESSES AND APPLICATION IN RISK THEORY . . . . . . . . . . . . . . . . . . . . . 43<br />

WÖRNER, JEANNETTE H.C.<br />

POWER VARIATION FOR REFINEMENT RIEMANN-STIELTJES INTEGRALS WITH RESPECT TO STABLE PROCESSES 44<br />

XIAO, YIMIN<br />

MODULI OF CONTINUITY FOR INFINITELY DIVISIBLE PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

ZENGHU, LI<br />

BRANCHING PROCESSES AND STOCHASTIC EQUATIONS DRIVEN BY STABLE PROCESSES . . . . . . . . . . . . 46<br />

Posters 47<br />

AOYAMA, TAKAHIRO<br />

NESTED SEQUENCE OF SOME SUBCLASSES OF THE CLASS OF TYPE G SELFDECOMPOSABLE DISTRIBUTIONS<br />

ON R d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

BARAN, S ÁNDOR<br />

MEAN ESTIMATION OF A SHIFTED WIENER SHEET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />

2


BAYER, CHRISTIAN<br />

CUBATURE ON WIENER SPACE FOR INFINITE DIMENSIONAL PROBLEMS . . . . . . . . . . . . . . . . . . . . 51<br />

BENE ˇ S, VIKTOR<br />

APPLICATION OF FILTERING IN LÉVY BASED SPATIO-TEMPORAL POINT PROCESSES . . . . . . . . . . . . . . 52<br />

EDER, IRMINGARD<br />

THE QUINTUPLE LAW FOR SUMS OF DEPENDENT LÉVY PROCESSES . . . . . . . . . . . . . . . . . . . . . . 53<br />

ESMAEILI, HABIB<br />

PARAMETER ESTIMATION OF LÉVY COPULA<br />

FAZEKAS, ISTV<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

ÁN<br />

ALMOST SURE LIMIT THEOREMS FOR SEMI-SELFSIMILAR PROCESSES<br />

GRZYWNY, TOMASZ<br />

. . . . . . . . . . . . . . . . . . . . . 55<br />

ESTIMATES OF GREEN FUNCTION FOR SOME PERTURBATIONS OF FRACTIONAL LAPLACIAN<br />

HINZ, MICHAEL<br />

. . . . . . . . . 56<br />

APPROXIMATION OF JUMP PROCESSES ON FRACTALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

HUBALEK, FRIEDRICH<br />

ON TRACTABLE FINITE-ACTIVITY LÉVY LIBOR MARKET MODELS<br />

ILIENKO, ANDRII<br />

. . . . . . . . . . . . . . . . . . . . . . . 58<br />

STOCHASTICALLY LIPSCHITZIAN FUNCTIONS AND LIMIT THEOREMS FOR FUNCTIONALS OF SHOT NOISE PROCESSES 59<br />

ISHIKAWA, YASUSHI<br />

COMPOSITION OF POISSON VARIABLES WITH DISTRIBUTIONS<br />

IVANOVA, NATALIA<br />

. . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

MULTIVARIATE IBNR CLAIMS RESERVING MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

JACH, AGNIESZKA<br />

61<br />

ROBUST WAVELET-DOMAIN ESTIMATION OF THE FRACTIONAL DIFFERENCE PARAMETER IN HEAVY-TAILED<br />

TIME SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

JAKUBOWSKI, TOMASZ<br />

PERTURBATIONS OF FRACTIONAL LAPLACIAN BY GRADIENT OPERATORS . . . . . . . . . . . . . . . . . . . 63<br />

JÖNSSON, HENRIK<br />

EXOTIC OPTION PRICING ON SINGLE NAME CDS UNDER JUMP MODELS . . . . . . . . . . . . . . . . . . . . 64<br />

KADANKOVA, TETYANA<br />

TWO-SIDED EXIT PROBLEMS FOR A COMPOUND POISSON PROCESS WITH EXPONENTIAL NEGATIVE JUMPS<br />

AND ARBITRARY POSITIVE JUMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

KASSMANN, MORITZ<br />

APPROXIMATION OF SYMMETRIC JUMP PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

KELLER-RESSEL, MARTIN<br />

YIELD CURVE SHAPES IN AFFINE ONE-FACTOR MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

KHOKHLOV, YURY<br />

ASYMPTOTIC PROPERTIES OF RANDOM SUMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

KONLACK, VIRGINIE<br />

PRICING EQUITY SWAPS IN AN ECONOMY DRIVEN BY GEOMETRIC ITÔ-LÉVY PROCESSES . . . . . . . . . . .<br />

KWA<br />

69<br />

´ SNICKI, MATEUSZ<br />

UNIFORM BOUNDARY HARNACK INEQUALITY AND MARTIN REPRESENTATION FOR α-HARMONIC FUNCTIONS<br />

LEMPA, JUKKA<br />

70<br />

ON MINIMAL β-HARMONIC FUNCTIONS OF RANDOM WALKS . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

LIEBMANN, THOMAS<br />

MINIMAL Q-ENTROPY MARTINGALE MEASURES FOR EXPONENTIAL LÉVY PROCESSES . . . . . . . . . . . . . 72<br />

MANSTAVIČIUS, MARTYNAS<br />

HAUSDORFF-BESICOVITCH DIMENSION OF GRAPHS AND P-VARIATION OF SOME LÉVY PROCESSES . . . . . . 73<br />

MASOL, VIKTORIYA<br />

LÉVY BASE CORRELATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

MATSUI, MUNEYA<br />

74<br />

GENERALIZED FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

3


MI̷LO ´ S, PIOTR<br />

OCCUPATION TIME FLUCTUATIONS OF BRANCHING PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

MÜLLER, GERNOT<br />

GARCH MODELLING IN CONTINUOUS TIME FOR IRREGULARLY SPACED TIME SERIES DATA . . . . . . . . . . 77<br />

MWANIKI, IVIVI JOSEPH<br />

GENERALIZED HYPERBOLIC MODEL: EUROPEAN OPTION PRICING IN DEVELOPED AND EMERGING MARKETS 78<br />

PIIL, RUNE<br />

STOCHASTIC SIMULATION OF CORRELATION EFFECTS IN CLOUDS OF ULTRA COLD ATOMS EXPOSED TO AN<br />

ELECTROMAGNETIC FIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

PIPIRAS, VLADAS<br />

HEAVY TRAFFIC SCALINGS AND LIMIT MODELS IN A WIRELESS SYSTEM WITH LONG RANGE DEPENDENCE<br />

AND HEAVY TAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

RAKKOLAINEN, TEPPO<br />

OPTIMAL DIVIDENDS IN PRESENCE OF DOWNSIDE RISK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

SAKUMA, NORIYOSHI<br />

CHARACTERIZATIONS OF THE CLASS OF FREE SELF DECOMPOSABLE DISTRIBUTIONS AND ITS SUBCLASSES . 82<br />

SCALAS, ENRICO<br />

STATISTICAL PHYSICS APPROACH TO HIGH-FREQUENCY FINANCE . . . . . . . . . . . . . . . . . . . . . . . 83<br />

SCHAEL, MANFRED<br />

NON-DANGEROUS RISKY INVESTMENTS FOR INSURANCE COMPANIES . . . . . . . . . . . . . . . . . . . . . 84<br />

SEMERARO, PATRIZIA<br />

EXTENDING TIME-CHANGED LÉVY ASSET MODELS THROUGH MULTIVARIATE SUBORDINATORS . . . . . . . .<br />

SHIEH, NARN-RUEIH<br />

85<br />

MULTIFRACTALITY OF PRODUCTS OF GEOMETRIC ORNSTEIN-UHLENBECK TYPE PROCESSES . . . . . . . . .<br />

SHIMURA, TAKAAKI<br />

86<br />

QUESTIONABLE RESULTS ON CONVOLUTION EQUIVALENT DISTRIBUTIONS<br />

SIAKALLI, MICHAILINA<br />

. . . . . . . . . . . . . . . . . . 87<br />

STOCHASTIC STABILIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88<br />

STELZER, ROBERT<br />

MULTIVARIATE CONTINUOUS TIME LÉVY-DRIVEN GARCH PROCESSES . . . . . . . . . . . . . . . . . . . . .<br />

SZTONYK, PAWE̷L<br />

89<br />

REGULARITY OF HARMONIC FUNCTIONS FOR ANISOTROPIC FRACTIONAL LAPLACIAN . . . . . . . . . . . . 90<br />

TIKANMÄKI, HEIKKI<br />

SERIES APPROXIMATION OF THE DISTRIBUTION OF LÉVY PROCESS . . . . . . . . . . . . . . . . . . . . . .<br />

VERAART, ALMUT<br />

91<br />

FEASIBLE INFERENCE FOR REALISED VARIANCE IN THE PRESENCE OF JUMPS . . . . . . . . . . . . . . . . .<br />

VETTER, MATHIAS<br />

92<br />

ESTIMATION OF INTEGRATED VOLATILITY IN THE PRESENCE OF NOISE AND JUMPS<br />

VIGNAT, CHRISTOPHE<br />

. . . . . . . . . . . . . 93<br />

STUDENT RANDOM WALKS AND RELATED PROBLEMS<br />

WULFSOHN, AUBREY<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94<br />

ORNSTEIN-UHLENBECK PROCESSES IN PHYSICS AND ENGINEERING . . . . . . . . . . . . . . . . . . . . . . 95<br />

List of Participants 97<br />

4


Invited Speakers<br />

5


UPSILON TRANSFORMATIONS<br />

BARNDORFF-NIELSEN, OLE E. University of Aarhus, Denmark, oebn@imf.au.dk<br />

Infinite divisibility; <strong>Lévy</strong> measures; <strong>Lévy</strong> processes; stochastic integrals<br />

Stochastic integrals of deterministic functi<strong>on</strong>s are infinitely divisible and thus, in particular, associate the <strong>Lévy</strong><br />

measure of the <strong>Lévy</strong> process to the <strong>Lévy</strong> measure of the integral. For certain types of integrands the mapping thus<br />

established have interesting special properties and is referred to as an Upsil<strong>on</strong> trans<strong>for</strong>mati<strong>on</strong>. More broadly, this<br />

term is used <strong>for</strong> injective regularising mappings <strong>on</strong> the class of <strong>Lévy</strong> measures into itself. The talk will survey the<br />

properties of such trans<strong>for</strong>mati<strong>on</strong>s, relating to classical and free infinite divisibility.<br />

References<br />

[1] Barndorff-Nielsen, O.E. and Lindner, A. (2006): <strong>Lévy</strong> copulas and trans<strong>for</strong>ms of Upsil<strong>on</strong> type. Scand. J. Statist.<br />

34, 298-316.<br />

[2] Barndorff-Nielsen, O.E. and Maejima M. (2007): Dynamic Upsil<strong>on</strong> Trans<strong>for</strong>mati<strong>on</strong>s. (Submitted.)<br />

[3] Barndorff-Nielsen, O.E., Maejima, M. and Sato, K. (2004): Some classes of multivariate infinitely divisible<br />

distributi<strong>on</strong>s admitting stochastic integral representati<strong>on</strong>. Bernoulli 12, 1-33.<br />

[4] Barndorff-Nielsen, O.E. and Pérez-Abreu, V. (2007): Matrix subordinators and related Upsil<strong>on</strong> trans<strong>for</strong>mati<strong>on</strong>s.<br />

Theory of Probability and Its Applicati<strong>on</strong>s 52 (To appear).<br />

[5] Barndorff-Nielsen, O.E., Pedersen, J. and Sato, K. (2001): Multivariate subordinati<strong>on</strong>, selfdecomposability and<br />

stability. Adv. Appl. Prob. 33, 160-187.<br />

[6] Barndorff-Nielsen, O.E., Rosinski, J. and Thorbjørnsen, S. (2007): General Upsil<strong>on</strong> trans<strong>for</strong>mati<strong>on</strong>s. (Submitted.)<br />

[7] Barndorff-Nielsen, O.E. and Thorbjørnsen, S. (2004): A c<strong>on</strong>necti<strong>on</strong> between free and classical infinite divisibility.<br />

Inf. Dim. Anal. Quantum Prob. 7, 573-590.<br />

[8] Barndorff-Nielsen, O.E. and Thorbjørnsen, S. (2005): Classical and Free Infinite Divisibility and <strong>Lévy</strong> <strong>Processes</strong>.<br />

In U. Franz and M. Schürmann (Eds.): Quantum Independent Increment <strong>Processes</strong> II. Quantum <strong>Lévy</strong> processes,<br />

classical probabililty and applicati<strong>on</strong>s to physics. Heidelberg: Springer, 33-160.<br />

[9] Barndorff-Nielsen, O.E. and Thorbjørnsen, S. (2006): Regularising mappings of <strong>Lévy</strong> measures, Stoch. Proc.<br />

Appl. 116, 423-446<br />

[10] Jurek, Z.J. (1985): Relati<strong>on</strong>s between the s-selfdecomposable and selfdecomposable measures, Annals Prob. 13,<br />

592-608.<br />

[11] Sato, K. (1999): <strong>Lévy</strong> <strong>Processes</strong> and Infinitely Divisible Distributi<strong>on</strong>s. Cambridge University Press.<br />

[12] Sato, K. (2005): Unpublished notes.<br />

[13] Sato, K. (2006a): Two families of improper stochastic integrals with respect to <strong>Lévy</strong> processes. Alea (Latin<br />

American Journal of Probability and Mathematical Statistics), 1, 47-87.<br />

[14] Sato, K. (2006b): Additive processes and stochastic integrals. Illinois J. Math. 50, 825-851.<br />

[15] Sato, K. (2007): Trans<strong>for</strong>mati<strong>on</strong>s of infinitely divisible distributi<strong>on</strong>s via improper stochastic integrals, Preprint.<br />

7


REFLECTING A LANGEVIN PROCESS AT AN INELASTIC<br />

BOUNDARY<br />

BERTOIN, JEAN Université Paris 6, France, jbe@ccr.jussieu.fr<br />

We c<strong>on</strong>sider a Langevin process with white noise random <strong>for</strong>cing. We suppose that the energy of the particle<br />

is instantaneously absorbed when it hits some fixed obstacle. We point out that n<strong>on</strong>etheless, the particle can be<br />

instantaneously reflected, and present some properties of this reflecting soluti<strong>on</strong>. The study relies partly <strong>on</strong> an<br />

underlying stable <strong>Lévy</strong> process and more precisely, <strong>on</strong> Rogozin’s soluti<strong>on</strong> to the two-sided exit problem <strong>for</strong> the latter.<br />

8


SOME EXPLICIT IDENTITIES ASSOCIATED WITH POSITIVE<br />

SELF-SIMILAR MARKOV PROCESSES<br />

CHAUMONT, LOÏC University of Angers, France, loic.chaum<strong>on</strong>t@univ-angers.fr<br />

Kyprianou, A.E. University of Bath, UK<br />

Pardo, J.C. University of Bath, UK<br />

Positive self-similar Markov processes, Lamperti representati<strong>on</strong>, c<strong>on</strong>diti<strong>on</strong>ed stable <strong>Lévy</strong> processes, first exit time,<br />

first hitting time, exp<strong>on</strong>ential functi<strong>on</strong>al.<br />

We c<strong>on</strong>sider some special classes of <strong>Lévy</strong> processes whose <strong>Lévy</strong> measure is of the type π(dx) = e γx ν(e x − 1)dx,<br />

where ν is the density of the stable <strong>Lévy</strong> measure and γ is a positive parameter which depends <strong>on</strong> its characteristics.<br />

These processes were introduced in [1] as the underlying <strong>Lévy</strong> processes in the Lamperti representati<strong>on</strong> of c<strong>on</strong>diti<strong>on</strong>ed<br />

stable <strong>Lévy</strong> processes. We compute explicitly the law of these <strong>Lévy</strong> processes at their first exit time from a finite or<br />

semi-finite interval and the law of their exp<strong>on</strong>ential functi<strong>on</strong>al.<br />

References<br />

[1] M.E. Caballero and L. Chaum<strong>on</strong>t: C<strong>on</strong>diti<strong>on</strong>ed stable <strong>Lévy</strong> processes and Lamperti representati<strong>on</strong>. J.<br />

Appl. Prob., 43, 967–983, (2006).<br />

[2] L. Chaum<strong>on</strong>t, A. Kyprianou and J.C. Pardo: Wiener-Hopf factorizati<strong>on</strong> and some explicit identities associated<br />

with positive self-similar Markov processes. Work in progess.<br />

[3] J.W. Lamperti (1972): Semi-stable Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 22, 205-<br />

225.<br />

9


TAIL BEHAVIOR OF RANDOM PRODUCTS AND STOCHASTIC<br />

EXPONENTIALS<br />

COHEN, SERGE Université Paul Sabatier, France, Serge.Cohen@math.ups.tlse.fr<br />

Mikosch, Thomas University of Copenhagen, Denmark, mikosch@math.ku.dk<br />

Random product, stable process, stochastic differential equati<strong>on</strong>, tail behavior:<br />

In this paper we study the distributi<strong>on</strong>al tail behavior of the soluti<strong>on</strong> to a linear stochastic differential equati<strong>on</strong> driven<br />

by infinite variance α-stable Levy moti<strong>on</strong>. We show that the soluti<strong>on</strong> is regularly varying with index α. An important<br />

step in the proof is the study of a Poiss<strong>on</strong> number of products of independent random variables with regularly varying<br />

tail. The study of these products deserves its own interest because it involves interesting saddle-point approximati<strong>on</strong><br />

techniques.<br />

10


HEDGING OPTIONS IN MODELS WITH JUMPS<br />

CONT, RAMA Columbia University, New York, Rama.C<strong>on</strong>t@columbia.edu<br />

Tankov, Peter Université de Paris VII<br />

Voltchkova, Ekaterina Université de Toulouse<br />

<strong>Lévy</strong> process, Poiss<strong>on</strong> random measure, Kunita–Watanabe decompositi<strong>on</strong>, quadratic hedging, opti<strong>on</strong> pricing,<br />

integro-differential equati<strong>on</strong>s:<br />

We study the problem of hedging opti<strong>on</strong>s when the underlying asset is described by a process with jumps. We<br />

compare various hedging strategies using the underlying asset and a set of traded opti<strong>on</strong>s and examine the properties<br />

of the hedging error, both theoretically and through numerical experiments. We obtain a representati<strong>on</strong> <strong>for</strong> the<br />

hedging strategies that allows a direct comparis<strong>on</strong> with the diffusi<strong>on</strong> case and illustrates the relati<strong>on</strong> between hedge<br />

ratios and sensitivities. We illustrate in particular that using sensitivities to compute ∆-neutral and Γ-neutral hedge<br />

ratios can lead to a large hedging error, and illustrate how such strategies can be improved by using a risk-minimizing<br />

approach to hedging and by taking positi<strong>on</strong>s in opti<strong>on</strong>s. We give numerical examples illustrating the applicability of<br />

the approach to exp<strong>on</strong>ential <strong>Lévy</strong> models and stochastic volatility models with jumps.<br />

References<br />

[1] C<strong>on</strong>t, R., Tankov, P., Voltchkova, E. (2006) Hedging with opti<strong>on</strong>s in models with jumps, Stochastic analysis &<br />

applicati<strong>on</strong>s , (Abel symposia, Vol. 2) 197–217.<br />

[2] C<strong>on</strong>t, R., Tankov, P., Voltchkova, E. (2007) Hedging opti<strong>on</strong>s in presence of jumps, Working Paper.<br />

11


LÉVY RANDOM FIELDS: STOCHASTIC DIFFERENTIATION<br />

DI NUNNO, GIULIA University of Oslo, Norway, giulian@math.uio.no<br />

N<strong>on</strong>-anticipating integral; n<strong>on</strong>-anticipating derivative; Skorohod integral; Malliavin derivative:<br />

We present some elements of stochastic calculus with respect to stochastic measures with independent values <strong>on</strong><br />

a space-time product. In relati<strong>on</strong> with the problem of finding explicit integrands in the Ito integral representati<strong>on</strong> of<br />

square integrable random variables, we will c<strong>on</strong>sider stochastic differentiati<strong>on</strong> both in the n<strong>on</strong>-anticipating (Ito) and<br />

in the anticipating (Malliavin/Skorohod) framework. The relati<strong>on</strong>ship between the two will be exploited in order to<br />

obtain explicit <strong>for</strong>mulae <strong>for</strong> the integrand. We will present and discuss in detail the derivative operators involved<br />

and their adjoint operators.<br />

References<br />

[1] Di Nunno, G.(2002) Random Fields Evoluti<strong>on</strong>: n<strong>on</strong>-anticipating integrati<strong>on</strong> and differentiati<strong>on</strong>, Theory of Probability<br />

and Math. Statistics, 66, 82-94.<br />

[2] Di Nunno, G.(2004) On orthog<strong>on</strong>al polynomials and the Malliavin derivative <strong>for</strong> <strong>Lévy</strong> stochastic measures. To<br />

appear in Seminaires et C<strong>on</strong>gres. Preprint Series in Pure Mathematics, 10.<br />

[3] Di Nunno, G.(2006) Random Fields: n<strong>on</strong>-anticipating derivative and differentiati<strong>on</strong> <strong>for</strong>mulae. To appear in Infin.<br />

Dimens. Anal. Quantum Probab. Relat. Top.(2007 September). Preprint Series in Pure Mathematics, 1.<br />

12


THE REFLECTED PROCESS OF A LÉVY PROCESS OR RANDOM<br />

WALK<br />

DONEY, RON University of Manchester, England, rad@maths.man.ac.uk<br />

Maller, Ross Australian Nati<strong>on</strong>al University, Australia<br />

Savov, Mladen University of Manchester, England<br />

Reflected process, Curve crossing, power-law boundaries, Renewal theorems:<br />

The reflected process is defined by Rn = max0≤r≤n Sr−Sn, n ≥ 0 if S is a random walk, and by Rt = sup 0≤s≤t Xs−<br />

Xt, t ≥ 0 if X is a <strong>Lévy</strong> process. It has been used in several applicati<strong>on</strong>s areas, including queuing theory, genetics,<br />

and finance. Here we survey some investigati<strong>on</strong>s into it as a stochastic process in its own right, being particularly<br />

interested in its rate of growth. We <strong>for</strong>mulate our results in terms of passage times over horiz<strong>on</strong>tal or power- law<br />

boundaries, but implicitly they are results about the maximum of the process and the maximum of a normalised<br />

versi<strong>on</strong> of the process. We give NASCs <strong>for</strong> such passage times to be almost surely finite, and in some cases <strong>for</strong> the<br />

expectati<strong>on</strong> of the passage time to be finite. These results are proved <strong>for</strong> the discrete time case in [2], and extended<br />

to the c<strong>on</strong>tinuous time case in [4], using the stochastic bounds in [1]. In the case of horiz<strong>on</strong>tal boundaries there<br />

are more detailed results in [3], including renewal-type theorems, and in<strong>for</strong>mati<strong>on</strong> about the overshoot. Finally the<br />

small-time versi<strong>on</strong> is also treated in [4].<br />

References<br />

[1] D<strong>on</strong>ey, R. A. (2004) Stochastic bounds <strong>for</strong> <strong>Lévy</strong> processes, Ann. Probab., 32, 1545–1552.<br />

[2] D<strong>on</strong>ey, R. A. and Maller, R. A. (2007) Curve crossing <strong>for</strong> random walks reflected at their maximum, Ann. Probab.,<br />

35, 1351-1373.<br />

[3] D<strong>on</strong>ey, R. A., Maller, R. A., and Savov, M. (2007) Renewal theorems and stability <strong>for</strong> the reflected process.<br />

(Preprint.)<br />

[4] Savov, M. (2007) Curve crossing <strong>for</strong> the reflected <strong>Lévy</strong> process at zero and infinity. (Preprint.)<br />

13


ASYMPTOTIC RESULTS FOR SAMPLE AUTOCOVARIANCE<br />

FUNCTIONS AND EXTREMES OF INTEGRATED GENERALIZED<br />

ORNSTEIN-UHLENBECK PROCESSES<br />

FASEN, VICKY, Munich University of Technology, Germany, fasen@ma.tum.de<br />

C<strong>on</strong>tinuous time GARCH process; extreme value theory; generalized Ornstein-Uhlenbeck process; integrated<br />

generalized Ornstein-Uhlenbeck process; point process; regular variati<strong>on</strong>; sample autocovariance functi<strong>on</strong>; stochastic<br />

recurrence equati<strong>on</strong> :<br />

We c<strong>on</strong>sider a positive stati<strong>on</strong>ary generalized Ornstein-Uhlenbeck process<br />

Vt = e −ξt<br />

�� t<br />

e ξs− �<br />

dηs + V0 <strong>for</strong> t ≥ 0,<br />

0<br />

and the increments of the integrated generalized Ornstein-Uhlenbeck process Ik = � k �<br />

Vt− dLt, k ∈ N, where<br />

k−1<br />

(ξt, ηt, Lt)t≥0 is a three-dimensi<strong>on</strong>al <strong>Lévy</strong> process independent of the starting random variable V0, and η is a subordinator.<br />

As a c<strong>on</strong>tinuous time versi<strong>on</strong> of ARCH(1) and GARCH(1, 1) processes, we derive the asymptotic behavior<br />

of extremes and the sample autocovariance functi<strong>on</strong> of V and I similar as in the papers of Davis and Mikosch [1]<br />

and Mikosch and Stărică [3] <strong>for</strong> the discrete-time analog<strong>on</strong>. Regular variati<strong>on</strong> and point process c<strong>on</strong>vergence play<br />

a crucial role in establishing the statistics of V and I. The theory can be applied to the COGARCH(1, 1) and the<br />

Nels<strong>on</strong> diffusi<strong>on</strong> model.<br />

References<br />

[1] Davis, R., Mikosch, T. (1998) The sample autocorrelati<strong>on</strong>s of heavy-tailed processes with applicati<strong>on</strong>s to ARCH,<br />

Ann. Statist. 26, 2049–2080.<br />

[2] Fasen, V. (2007) Asymptotic results <strong>for</strong> sample autocovariance functi<strong>on</strong>s and extremes of integrated generalized<br />

Ornstein-Uhlenbeck processes, Preprint.<br />

[3] Mikosch, T., Stărică (2000) Limit theory <strong>for</strong> the sample autocorrelati<strong>on</strong>s and extremes of a GARCH(1,1) process,<br />

Ann. Statist. 28, 1427–1451<br />

14


LEVY PROCESSES REFLECTED AT A GENERAL BARRIER<br />

HANSEN, NIELS RICHARD University of Copenhagen, Denmark, richard@math.ku.dk<br />

Levy processes, reflecti<strong>on</strong>s, n<strong>on</strong>-linear barriers:<br />

The reflecti<strong>on</strong> of a <strong>Lévy</strong> process at a general barrier can be c<strong>on</strong>structed, as in [1], in a manner similar to that<br />

of the reflecti<strong>on</strong> at 0. We present results <strong>on</strong> the tail behaviour of the global maximum <strong>for</strong> a <strong>Lévy</strong> process reflected<br />

in a barrier given by a deterministic functi<strong>on</strong>. Under the assumpti<strong>on</strong> of a finite Laplace exp<strong>on</strong>ent ψ(θ) <strong>for</strong> some<br />

θ > 0 and the existence of a soluti<strong>on</strong> θ ∗ > 0 to ψ(θ) = 0 we derive c<strong>on</strong>diti<strong>on</strong>s in terms of the barrier <strong>for</strong> almost<br />

sure finiteness of the maximum. In case it is finite almost surely, we show that the tail of its distributi<strong>on</strong> decays like<br />

K exp(−θ ∗ x). The c<strong>on</strong>stant K can be completely characterized, and we present several possible representati<strong>on</strong>s. We<br />

also present some special cases where the c<strong>on</strong>stant can be computed explicitly, most prominantly is Brownian moti<strong>on</strong><br />

with a linear or a piecewise linear barrier. The results represent the c<strong>on</strong>tinuous time generalizati<strong>on</strong> of the results<br />

obtained in [2]. In [2] the c<strong>on</strong>structi<strong>on</strong> was motivated by algorithms from structural molecular biology. In c<strong>on</strong>tinuous<br />

time we can c<strong>on</strong>sider queue and storage models where the reflecti<strong>on</strong> can be interpreted as giving a time-dependent<br />

maximal capacity. In risk theory the reflected process can be interpreted as the risk process where the barrier gives<br />

a time-dependent strategy <strong>for</strong> (c<strong>on</strong>tinuous) dividend payout. If time permits, we will touch up<strong>on</strong> an in-homogeneous<br />

Poiss<strong>on</strong> approximati<strong>on</strong> of the times of exceedance of a high threshold. The result is shown <strong>for</strong> a special class of nice<br />

barriers where the maximum is infinite almost surely.<br />

References<br />

[1] Kella, Offer; Boxma, Onno and Mandjes, Michel. (2006) A <strong>Lévy</strong> process reflected at a Poiss<strong>on</strong> age process. J.<br />

Appl. Prob. 43, 221-230.<br />

[2] Hansen, N. R. (2006) The maximum of a random walk reflected at a general barrier The Annals of Applied<br />

Probability, 16, No. 1, 15-29.<br />

15


LARGE DEVIATIONS FOR POINT PROCESSES BASED ON<br />

HEAVY-TAILED SEQUENCES<br />

HULT, HENRIK Brown University, USA, henrik hult@brown.edu<br />

Samorodnitsky, Gennady Cornell University, USA<br />

Point processes; Heavy tails; Regular variati<strong>on</strong>; Large deviati<strong>on</strong>s:<br />

A stati<strong>on</strong>ary sequence of random variables with regularly varying tails is c<strong>on</strong>sidered. For this sequence it is<br />

possible that large values arrive in clusters. That is, there may be many large values in a relatively short period of<br />

time. The aim is to give a detailed descripti<strong>on</strong> of the occurrence of large values, not <strong>on</strong>ly the size of clusters but also<br />

the structure within a single cluster. To do this a point process based <strong>on</strong> appropriately scaled points of the stati<strong>on</strong>ary<br />

sequence is c<strong>on</strong>structed. A limiting measure, <strong>on</strong> the space of point measures, describes the joint limiting behavior<br />

of all the large values of the sequence. From this limiting result <strong>on</strong>e can proceed to obtain the functi<strong>on</strong>al large<br />

deviati<strong>on</strong>s <strong>for</strong> the partial sum process, ruin probabilities, etc. Examples include, linear processes, random coefficient<br />

ARMA processes, and soluti<strong>on</strong>s to stochastic recurrence equati<strong>on</strong>s, and stochastic integrals.<br />

References<br />

[1] Davis, R.A. and Hsing, T. (1995) Point process and partial sum c<strong>on</strong>vergence <strong>for</strong> weakly dependent random<br />

variables with infinite variance Ann. Probab. 23 (1995), 879–917.<br />

[2] Hult, H. and Lindskog, F. (2007) Extremal behavior of stochastic integrals driven by regularly varying <strong>Lévy</strong><br />

processes Ann. Probab. 35, 309–339.<br />

[3] Hult, H., Lindskog, F., Mikosch, T. and Samorodnitsky, G. (2005) Functi<strong>on</strong>al large devitati<strong>on</strong>s <strong>for</strong> multivariate<br />

regularly varying random walks Ann. Appl. Probab. (15), 2651–2680.<br />

[4] Hult, H., Samorodnitsky, G. (2007) Tail probabilities <strong>for</strong> infinite series of regularly varying random vectors<br />

Preprint.<br />

16


SUBORDINATION WITH RESPECT TO STATE SPACE<br />

DEPENDENT BERNSTEIN FUNCTIONS.<br />

JACOB, NIELS University of Wales, UK, N.Jacob@swansea.ac.uk<br />

Evans, Kristian P.<br />

We show that in many cases a Feller semigroup is obtained when subordinating a giving Feller semigroup with the<br />

help of state space dependent Bernstein functi<strong>on</strong>s. This includes the case of fracti<strong>on</strong>al powers of variable order. More<br />

generally it fits to the idea to make parameters in characteristic exp<strong>on</strong>ents of Levy processes state space dependent,<br />

compare with Barndorff- Nielsen and Levendorski [1].<br />

References<br />

[1] Barndorff- Nielsen, Levendorski, Quantitative Finance 1 (2001), 318 - 331.<br />

17


DISCRETIZATION OF SEMIMARTINGALES AND NOISE<br />

JACOD, JEAN Université Paris VI, France, jj@ccr.jussieu.fr<br />

The motivati<strong>on</strong> is as follows: we c<strong>on</strong>sider a semimartingale X <strong>on</strong> a fixed time interval [0, T], which is observed at<br />

regularly spaced discrete times iT/n. Moreover each observati<strong>on</strong> is subject to an error - the noise - and c<strong>on</strong>diti<strong>on</strong>ally<br />

<strong>on</strong> the path of X the error at time t is centered around the value Xt, and further the errors at different times<br />

are independent; however their c<strong>on</strong>diti<strong>on</strong>al laws may depend <strong>on</strong> t, and also be random. This accommodates i.i.d.<br />

additive errors, and also some sort of rounding errors.<br />

Then if we want to estimate quantities related to X (volatility, jumps,...) we have first to de-noise the process.<br />

This gives rise to a new type of limit theorems <strong>for</strong> discretized processes, where <strong>on</strong>e c<strong>on</strong>sider increments over all<br />

(overlapping) blocks of kn successive discretizati<strong>on</strong> times, with kn → ∞. The aim of this talk is to exhibit some of<br />

these central limit type theorems, with or without jumps <strong>for</strong> the underlying process X.<br />

18


AN EM ALGORITHM FOR REGIME SWITCHING LÉVY<br />

PROCESSES<br />

JENSEN, ANDERS TOLVER University of Copenhagen, Denmark, tolver@life.ku.dk<br />

Regime switching <strong>Lévy</strong> processes; hidden Markov process; inhomogeneous Markov chain; EM algorithm:<br />

Markov processes evolving in switching envir<strong>on</strong>ments given by the state of an unobservable c<strong>on</strong>tinuous time finite<br />

Markov chain may be regarded as the c<strong>on</strong>tinuous time analog to discrete time hidden Markov models. In this paper<br />

we discuss the perspectives <strong>for</strong> likelihood inference in regime switching Markov models. We dem<strong>on</strong>strate that the<br />

c<strong>on</strong>diti<strong>on</strong>al distributi<strong>on</strong> of the latent chain given the observable process is that of an inhomogeneous Markov chain.<br />

It is explained how this structural result allows <strong>for</strong> implementati<strong>on</strong> of a versi<strong>on</strong> of the EM algorithm <strong>for</strong> evaluating<br />

the maximum likelihood estimator. Simulati<strong>on</strong> studies illustrate the per<strong>for</strong>mance of the estimati<strong>on</strong> procedure <strong>for</strong><br />

different classes of regime switching <strong>Lévy</strong> processes.<br />

19


SELF-SIMILAR RANDOM FIELDS AND RESCALED RANDOM<br />

BALLS MODELS<br />

KAJ, INGEMAR Uppsala University, Sweden, ikaj@math.uu.se<br />

Biermé, Hermine Université Paris Descartes, France<br />

Estrade, Anne Université Paris Descartes, France<br />

Self-similarity; Generalized random field; Fracti<strong>on</strong>al field; Fracti<strong>on</strong>al Brownian moti<strong>on</strong>:<br />

In this work we c<strong>on</strong>struct essentially all Gaussian, stati<strong>on</strong>ary and isotropic, self-similar random fields <strong>on</strong> R d in a<br />

unified manner as scaling limits of a Poiss<strong>on</strong> germ-grain type model. This is a random balls model that arises<br />

by aggregati<strong>on</strong> of spherical grains attached to uni<strong>for</strong>mly scattered germs given by a Poiss<strong>on</strong> point process in ddimensi<strong>on</strong>al<br />

space. The grains have random radius, independent and identically distributed, with a distributi<strong>on</strong><br />

which is assumed to have a power law behavior either in zero or at infinity. The resulting c<strong>on</strong>figurati<strong>on</strong> of mass,<br />

obtained by counting the number of balls that cover any given point in space, suitably centered and normalized<br />

exhibits limit distributi<strong>on</strong>s under scaling. For the case of the random balls radius distributi<strong>on</strong> being heavy-tailed at<br />

infinity, the corresp<strong>on</strong>ding scaling operati<strong>on</strong> amounts to zooming out over larger areas of space while re-normalizing<br />

the mass. In the opposite case, when the radius of balls is given by an intensity with prescribed power-law behavior<br />

close to zero, the scaling which is applied entails zooming in successively smaller regi<strong>on</strong>s of space. Infinitesimally<br />

small microballs will emerge and eventually shape the resulting limit fields.<br />

The rescaled limit c<strong>on</strong>figurati<strong>on</strong>s are c<strong>on</strong>veniently described in a random fields setting which allows us to c<strong>on</strong>struct<br />

in this manner stati<strong>on</strong>ary Gaussian self-similar random fields of index H, <strong>for</strong> arbitrary n<strong>on</strong>-integer H > −d/2. We<br />

obtain also n<strong>on</strong>-Gaussian random fields with interesting properties, in particular a model of the type ”fracti<strong>on</strong>al<br />

Poiss<strong>on</strong> moti<strong>on</strong>”.<br />

The focus of the presentati<strong>on</strong> will be <strong>on</strong> the microballs case, <strong>for</strong> which we also discuss the extensi<strong>on</strong> to n<strong>on</strong>symmetric<br />

grains and corresp<strong>on</strong>ding n<strong>on</strong>-isotropic fields.<br />

References<br />

[1] Biermé, H., Estrade, A., Kaj, I. (2007) Self-similar random fields and rescaled random balls models, Preprint,<br />

June 2007.<br />

[2] Kaj, I., Leskelä, L., Norros, I., Schmidt, V. (2007) Scaling limits <strong>for</strong> random fields with l<strong>on</strong>g-range dependence,<br />

Ann. Probab. 35:2, 528–550.<br />

[3] Kaj, I., Taqqu, M.S. (2007). C<strong>on</strong>vergence to fracti<strong>on</strong>al Brownian moti<strong>on</strong> and to the Telecom process: the integral<br />

representati<strong>on</strong> approach, Brazilian Probability School, 10th anniversary volume, Eds. M.E. Vares, V. Sidoravicius,<br />

Birkhauser 2007 (to appear).<br />

20


ON QUADRATIC HEDGING IN AFFINE STOCHASTIC<br />

VOLATILITY MODELS<br />

KALLSEN, JAN TU München, Germany, kallsen@ma.tum.de<br />

Mean-variance hedging; affine processes:<br />

A key problem in financial mathematics is how to hedge a c<strong>on</strong>tingent claim by dynamic trading in the underlying.<br />

Since models based <strong>on</strong> jump processes are incomplete, perfect replicati<strong>on</strong> is typically impossible. As a natural<br />

alternative <strong>on</strong>e may seek to minimize the expected squared hedging error. In this talk we discuss how to compute<br />

the optimal hedge and the corresp<strong>on</strong>ding hedging error semi-explicitly in a variety of affine asset price models with<br />

stochastic volatility and jumps.<br />

21


LÉVY PROCESSES AND STOCHASTIC PARTIAL DIFFERENTIAL<br />

EQUATIONS<br />

KHOSHNEVISAN, DAVAR University of Utah, USA, davar@math.utah.edu<br />

Fo<strong>on</strong>dun, Mohammud University of Utah, USA<br />

Nualart, Eulalia University of Paris 13, France<br />

Stochastic partial differential equati<strong>on</strong>s; isomorphism theorems; potential theory:<br />

We present two problems in the theory of stochastic partial differential equati<strong>on</strong>s.<br />

1. C<strong>on</strong>sider the stochastic heat equati<strong>on</strong>, ∂tu(t , x) = (∆xu)(t , x) + ˙ W(t , x), where ˙ W denotes space-time white<br />

noise <strong>on</strong> R+ × R d , t ∈ R+, and x ∈ R d . It is well known that this stochastic PDE has a functi<strong>on</strong>-valued soluti<strong>on</strong> if<br />

and <strong>on</strong>ly if d = 1. A generally-accepted explanati<strong>on</strong> of this phenomen<strong>on</strong> is that, when d ≥ 2, the smoothing effect of<br />

the Laplacian is overwhelmed by the roughening result of white noise [2,3,6].<br />

We present a different explanati<strong>on</strong> of this phenomen<strong>on</strong> which makes it clear that the stochastic heat equati<strong>on</strong> <strong>on</strong><br />

R+ × R d has a functi<strong>on</strong>-valued soluti<strong>on</strong> if and <strong>on</strong>ly if Brownian moti<strong>on</strong> in R d has local times. Our results describe<br />

a new family of isomorphism theorems [1,4] <strong>for</strong> local times of <strong>Lévy</strong>, and more general Markov, processes. They also<br />

make rigorous the natural asserti<strong>on</strong> that the stochastic heat equati<strong>on</strong> has a functi<strong>on</strong>-valued soluti<strong>on</strong> in all dimensi<strong>on</strong>s<br />

d ∈ (0 , 2).<br />

2. C<strong>on</strong>sider the following system of stochastic wave equati<strong>on</strong>s, �uj(t , x) = ˙ Lj(t , x), subject to uj(0 , x) = ∂tuj(0 , x) =<br />

0 <strong>for</strong> t ≥ 0 and x ∈ R. Here, j = 1, . . .,d, ˙ L := ( ˙ L1 , . . . , ˙ Ld) denotes a family of d [possibly dependent] space-time<br />

<strong>Lévy</strong> noises, and � denotes the wave operator. In the case that ˙ L is symmetric and sufficiently stable-like, we derive<br />

a necessary and sufficient c<strong>on</strong>diti<strong>on</strong> <strong>for</strong> the soluti<strong>on</strong> to hit zero. We also compute the Hausdorff dimensi<strong>on</strong> of the<br />

set of points (t , x) where the soluti<strong>on</strong> is zero, when zeros exist. Our method hinges <strong>on</strong> a comparis<strong>on</strong> theorem which<br />

relates the soluti<strong>on</strong> to the menti<strong>on</strong>ed SPDE to a family of multiparameter <strong>Lévy</strong> processes [5].<br />

References<br />

[1] Brydges, David, Fröhlich, Jürg, and Spencer, Thomas (1982). The random walk representati<strong>on</strong> of classical spin<br />

systems and correlati<strong>on</strong> inequalities. Comm. Math. Phys. 83, no. 1, 123–150.<br />

[2] Dalang, Robert C. (1999). Extending the martingale measure stochastic integral with applicati<strong>on</strong>s to spatially<br />

homogeneous s.p.d.e.’s. Electr<strong>on</strong>. J. Probab. 4, no. 6, 29 pp. (electr<strong>on</strong>ic).<br />

[3] Dalang, Robert C., Frangos, N. E. (1998). The stochastic wave equati<strong>on</strong> in two spatial dimensi<strong>on</strong>s. Ann. Probab.<br />

26, no. 1, 187–212.<br />

[4] Dynkin, E. B. (1984). Gaussian and n<strong>on</strong>-Gaussian random fields associated with Markov processes. J. Funct.<br />

Anal. 55, no. 3, 344–376.<br />

[5] Khoshnevisan, Davar, Shieh, Narn–Ruieh, and Xiao, Yimin (2007). Hausdorff dimensi<strong>on</strong> of the c<strong>on</strong>tours of<br />

symmetric additive <strong>Lévy</strong> processes. To appear in Probability Theory and Related Fields.<br />

[6] Peszat, Szym<strong>on</strong>; Zabczyk, Jerzy (2006). Stochastic heat and wave equati<strong>on</strong>s driven by an impulsive noise. In:<br />

Stochastic Partial Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s—VII, pp. 229–242, Lect. Notes Pure Appl. Math. 245,<br />

Chapman & Hall/CRC, Boca Rat<strong>on</strong>, FL.<br />

22


THE COGARCH MODEL: SOME RECENT RESULTS AND<br />

EXTENSIONS<br />

KLÜPPELBERG, CLAUDIA Munich University of Technology, Germany, cklu@ma.tum.de<br />

C<strong>on</strong>tinuous time GARCH; stochastic volatility:<br />

The c<strong>on</strong>tinuous-time GARCH [COGARCH(1,1)] model, driven by a single <strong>Lévy</strong> noise process, exhibits the same<br />

sec<strong>on</strong>d order properties as the discrete-time GARCH(1,1) model. Moreover, the COGARCH(1,1) model has heavy<br />

tails and clusters in the extremes. We present such properties of the COGARCH(1,1) model, which also prove to be<br />

useful <strong>for</strong> statistical fitting of the model. Certain extensi<strong>on</strong>s of the model have been suggested and investigated and<br />

we discuss some examples.<br />

References<br />

[1] Fasen, V. (2007) Asymptotic results <strong>for</strong> sample autocovariance functi<strong>on</strong>s and extremes of integrated generalized<br />

Ornstein-Uhlenbeck processes. Preprint. TU München. Submitted.<br />

[2] Klüppelberg, C., Lindner, A., Maller, R. (2004) A c<strong>on</strong>tinuous time GARCH process driven by a Lvy process:<br />

stati<strong>on</strong>arity and sec<strong>on</strong>d order behaviour. J. Appl. Prob. 41(3), 601-622.<br />

[3] Maller, R.A., Müller, G. and Szimayer, A. (2007) GARCH modelling in c<strong>on</strong>tinuous time <strong>for</strong> irregularly spaced<br />

time series data. Preprint. ANU Canberra and TU München. Under revisi<strong>on</strong>.<br />

[4] Stelzer, R. J. (2007) Multivariate C<strong>on</strong>tinuous Time Stochastic Volatility Models Driven by a <strong>Lévy</strong> Process. Dissertati<strong>on</strong>,<br />

TU München, submitted.<br />

23


OLD AND NEW EXAMPLES OF SCALE FUNCTIONS FOR<br />

SPECTRALLY NEGATIVE LÉVY PROCESSES<br />

KYPRIANOU, ANDREAS University of Bath, U.K., a.kyprianou@bath.ac.uk<br />

Hubalek, Freidrich Technical University Vienna, Austria<br />

Spectrally negative <strong>Lévy</strong> processes; Wiener-Hopf factorizati<strong>on</strong>; scale functi<strong>on</strong>s:<br />

We give a review of the state of the art with regard to the theory of scale functi<strong>on</strong>s <strong>for</strong> spectrally negative <strong>Lévy</strong><br />

processes. From this introduce a new multi-parameter family of scale functi<strong>on</strong>s giving attenti<strong>on</strong> to special cases as<br />

well as cross-referencing their analytical behaviour against known general c<strong>on</strong>siderati<strong>on</strong>s.<br />

24


RANDOM TREES AND PLANAR MAPS<br />

LE GALL, JEAN-FRANÇOIS Ecole normale supérieure de Paris, France, legall@dma.ens.fr<br />

Random tree; planar map; random metric space; Gromov-Hausdorff distance:<br />

We discuss the c<strong>on</strong>vergence in distributi<strong>on</strong> of rescaled random planar maps viewed as random metric spaces. More<br />

precisely, we c<strong>on</strong>sider a random planar map M(n), which is uni<strong>for</strong>mly distributed over the set of all planar maps with<br />

n faces in a certain class. We equip the set of vertices of M(n) with the graph distance rescaled by the factor n −1/4 .<br />

We then discuss the c<strong>on</strong>vergence in distributi<strong>on</strong> of the resulting random metric spaces as n tends to infinity in the<br />

sense of the Gromov-Hausdorff distance between compact metric spaces. This problem was stated by Oded Schramm<br />

in his plenary address paper at the 2006 ICM, in the special case of triangulati<strong>on</strong>s. In the case of bipartite planar<br />

maps, we first establish a compactness result showing that a limit exists al<strong>on</strong>g a suitable subsequence. Furthermore<br />

this limit can be written as a quotient space of the C<strong>on</strong>tinuum Random Tree (CRT) <strong>for</strong> an equivalence relati<strong>on</strong><br />

which has a simple definiti<strong>on</strong> in terms of Brownian labels atttached to the vertices of the CRT. Finally we show that<br />

any possible limiting metric space is almost surely homeomorphic to the 2-sphere. As a key tool, we use bijecti<strong>on</strong>s<br />

between planar maps and various classes of labeled trees.<br />

References<br />

[1] Le Gall, J.F. (2006) The topological structure of scaling limit of large planar maps, Inventi<strong>on</strong>es Math., in press.<br />

[2] Le Gall, J.F., Paulin, F. (2006) Scaling limits of planar maps are homeorphic to the 2-sphere, submitted.<br />

25


CONTINUITY PROPERTIES AND INFINITE DIVISIBILITY OF<br />

STATIONARY DISTRIBUTIONS OF SOME GENERALISED<br />

ORNSTEIN-UHLENBECK PROCESSES<br />

LINDNER, ALEXANDER University of Marburg, Germany, lindner@mathematik.uni-marburg.de<br />

Sato, Ken-iti Nagoya, Japan<br />

Absolutely c<strong>on</strong>tinuous; c<strong>on</strong>tinuous singular; Poiss<strong>on</strong> process; generalised Ornstein-Uhlenbeck process:<br />

In this talk we study properties of the law µ of the integral � ∞<br />

0 c−Nt− dYt, where c > 1 and {(Nt, Yt), t ≥ 0} is a<br />

bivariate <strong>Lévy</strong> process such that {Nt} and {Yt} are Poiss<strong>on</strong> processes with parameters a and b, respectively. These<br />

integrals arise naturally as stati<strong>on</strong>ary distributi<strong>on</strong>s of certain generalised Ornstein-Uhlenbeck processes. The law µ<br />

is either c<strong>on</strong>tinuous-singular or absolutely c<strong>on</strong>tinuous, and sufficient c<strong>on</strong>diti<strong>on</strong>s <strong>for</strong> each case are given. Under the<br />

c<strong>on</strong>diti<strong>on</strong> of independence of {Nt} and {Yt}, it is shown that µ is c<strong>on</strong>tinuous-singular if b/a is sufficiently small <strong>for</strong><br />

fixed c, or if c is sufficiently large <strong>for</strong> fixed a and b, or if c is an integer bigger than 1. On the other hand, <strong>for</strong> Lebesgue<br />

almost every c, µ is absolutely c<strong>on</strong>tinuous if b/a is sufficiently large. The law µ is infinitely divisible if {Nt} and {Yt}<br />

are independent, but not in general. We obtain a complete characterisati<strong>on</strong> of infinite divisibility <strong>for</strong> µ. The talk is<br />

based <strong>on</strong> [5]. Related results from [1] – [4] are menti<strong>on</strong>ed.<br />

References<br />

[1] Bertoin, J., Lindner, A., Maller, R. (2006) On c<strong>on</strong>tinuity properties of the law of integrals of <strong>Lévy</strong> processes,<br />

Séminaire de Probabilités. Accepted <strong>for</strong> publicati<strong>on</strong>.<br />

[2] Ericks<strong>on</strong>, K.B., Maller, R.A. (2004) Generalised Ornstein-Uhlenbeck processes and the c<strong>on</strong>vergence of <strong>Lévy</strong> integrals,<br />

in: M. Émery, M. Ledoux, M. Yor (Eds.): Séminaire de Probabilités XXXVIII, Lecture Notes in Mathematics<br />

1857, pp. 70–94. Springer.<br />

[3] K<strong>on</strong>do, H., Maejima, M., Sato, K. (2006) Some properties of exp<strong>on</strong>ential integrals of <strong>Lévy</strong> processes and examples,<br />

Elect. Comm. in Probab. 11, 291–303.<br />

[4] Lindner, A., Maller, R. (2005) <strong>Lévy</strong> integrals and the stati<strong>on</strong>arity of generalised Ornstein-Uhlenbeck processes,<br />

Stoch. Proc. Appl. 115, 1701–1722.<br />

[5] Lindner, A., Sato, K. (2007) C<strong>on</strong>tinuity properties and infinite divisibility of stati<strong>on</strong>ary distributi<strong>on</strong>s of some<br />

generalised Ornstein-Uhlenbeck processes. Submitted.<br />

26


INFINITE DIVISIBILITY AND PROJECTIONS OF MEASURES<br />

LINDSKOG, FILIP KTH Stockholm, Sweden, lindskog@kth.se<br />

Infinite divisibility; projecti<strong>on</strong>s; uniqueness:<br />

A probability measure <strong>on</strong> R d with infinitely divisible projecti<strong>on</strong>s is not necessarily infinitely divisible. Moreover, the<br />

<strong>Lévy</strong> measure of an infinitely divisible probability measure <strong>on</strong> R d is not necessarily determined by the <strong>Lévy</strong> measures<br />

of its projecti<strong>on</strong>s. Given these negative facts it is natural to look <strong>for</strong> corresp<strong>on</strong>ding positive results. The problems<br />

that appear are closely related to the questi<strong>on</strong> when a signed measure which may have infinite mass near the origin<br />

is determined by its projecti<strong>on</strong>s.<br />

The talk will be partly based <strong>on</strong> material from joint work with Jan Boman and joint work with Henrik Hult.<br />

27


TO WHICH CLASS DO KNOWN DISTRIBUTIONS OF REAL<br />

VALUED INFINITELY DIVISIBLE RANDOM VARIABLES<br />

BELONG?<br />

MAEJIMA, MAKOTO Keio University, Japan, maejima@math.keio.ac.jp<br />

Infinitely divisible distributi<strong>on</strong>; class B; selfdecomposable distributi<strong>on</strong>; class T :<br />

Recently, subdivisi<strong>on</strong> of the class I(R d ) of infinitely divisible distributi<strong>on</strong>s <strong>on</strong> R d has been developed. Especially,<br />

many subclasses of I(R d ) can be characterised in terms of the radial comp<strong>on</strong>ent νξ(dr), r > 0, ξ ∈ {x ∈ R d : ||x|| = 1},<br />

of the polar decompositi<strong>on</strong> of the <strong>Lévy</strong> measure. Distributi<strong>on</strong>s in the classes discussed in this talk have densities<br />

lξ(r) of νξ such that νξ(dr) = lξ(r)dr, r > 0. Depending <strong>on</strong> properties of lξ(r), six classes are proposed.<br />

(1) Jurek class U(R d ), where lξ(r) is n<strong>on</strong>increasing.<br />

(2) Goldie-Steutel-B<strong>on</strong>dess<strong>on</strong> class B(R d ), where lξ(r) is completely m<strong>on</strong>ot<strong>on</strong>e.<br />

(3) The class of selfdecomposable distributi<strong>on</strong>s L(R d ), where lξ(r) = r −1 kξ(r), where kξ(r) is n<strong>on</strong>increasing.<br />

(4) Thorin class T(R d ), where lξ(r) = r −1 kξ(r), where kξ(r) is completely m<strong>on</strong>ot<strong>on</strong>e.<br />

(5) The class of type G distributi<strong>on</strong>s G(R d ), where lξ(r) = gξ(r 2 ) with a completely m<strong>on</strong>ot<strong>on</strong>e functi<strong>on</strong> gξ.<br />

(6) The class M(R d ), where lξ(r) = r −1 gξ(r 2 ) with a completely m<strong>on</strong>ot<strong>on</strong>e functi<strong>on</strong> gξ.<br />

Also, a mapping from I(R d ) (or Ilog(R d ), the class of infinitely divisible functi<strong>on</strong>s with finite log-moments) to each<br />

class can be defined, and iterating this mapping, a sequence of decreasing subclasses of each class is c<strong>on</strong>structed.<br />

In this talk, a lot of known distributi<strong>on</strong>s of real valued infinitely divisible random variables are examined <strong>for</strong><br />

determining the class to which they bel<strong>on</strong>g. Am<strong>on</strong>g many other examples, there are gamma distributi<strong>on</strong>, the distributi<strong>on</strong><br />

of logarithm of gamma random variable, tempered stable distributi<strong>on</strong>, the distributi<strong>on</strong> of limit of generalized<br />

Ornstein-Uhlenbeck process, the distributi<strong>on</strong> of product of standard normal random variables, the distributi<strong>on</strong> of<br />

random excursi<strong>on</strong> of some Bessel processes.<br />

There remain a lot of infinitely divisible distributi<strong>on</strong>s to be specified.<br />

References<br />

[1] B<strong>on</strong>dess<strong>on</strong>, L. (1992) Generalized Gamma C<strong>on</strong>voluti<strong>on</strong>s and Related Classes of Distributi<strong>on</strong>s and Densities,<br />

Lecture Notes in Statistics, No. 76, Springer.<br />

[2] Sato, K. (1999) <strong>Lévy</strong> <strong>Processes</strong> and Infinitely Divisible Distributi<strong>on</strong>s, Cambridge University Pres.<br />

[3] Steutel, F.W., Van Harn, K. (2004) Infinitely Divisibility of Probability Distributi<strong>on</strong>s <strong>on</strong> the Real Line, Dekker.<br />

28


L p MODULI OF CONTINUITY OF LOCAL TIMES OF<br />

SYMMETRIC LÉVY PROCESSES<br />

MARCUS, MICHAEL B. CUNY, USA, mbmarcus@opt<strong>on</strong>line.net<br />

Rosen, Jay CUNY, USA<br />

<strong>Lévy</strong> processes; local times; Gaussian processes :<br />

Let X = {X(t), t ∈ R+} be a real valued symmetric <strong>Lévy</strong> process with c<strong>on</strong>tinuous local times {L x t , (t, x) ∈ R+ × R}<br />

and characteristic functi<strong>on</strong> Ee iλX(t) = e −tψ(λ) . Let<br />

σ 2 4<br />

0 (x − y) =<br />

π<br />

�∞<br />

0<br />

2 λ(x−y)<br />

sin 2<br />

ψ(λ)<br />

If σ2 0 (h) is c<strong>on</strong>cave, and satisfies some additi<strong>on</strong>al very weak regularity c<strong>on</strong>diti<strong>on</strong>s, then <strong>for</strong> any p ≥ 1, and all t ∈ R+<br />

lim<br />

h↓0<br />

� b<br />

a<br />

�<br />

�<br />

�<br />

�<br />

− Lx �p<br />

�<br />

t �<br />

σ0(h) � dx = 2 p/2 E|η| p<br />

L x+h<br />

t<br />

dλ.<br />

� b<br />

|L<br />

a<br />

x t |p/2 dx<br />

<strong>for</strong> all a, b in the extended real line almost surely, and also in Lm , m ≥ 1. (Here η is a normal random variable with<br />

mean zero and variance <strong>on</strong>e.)<br />

This result is obtained via the Eisenbaum Isomorphism Theorem, (see [1]), and depends <strong>on</strong> the related result <strong>for</strong><br />

Gaussian processes with stati<strong>on</strong>ary increments, {G(x), x ∈ R1 }, <strong>for</strong> which E(G(x) − G(y)) 2 = σ2 0 (x − y);<br />

<strong>for</strong> all a, b ∈ R 1 , almost surely.<br />

lim<br />

h→0<br />

� b<br />

�<br />

�p<br />

�<br />

�<br />

G(x + h) − G(x) �<br />

�<br />

� σ0(h) � dx = E|η| p (b − a)<br />

a<br />

References<br />

[1] Marcus, M.B., Rosen, J. (2006) Markov <strong>Processes</strong>, Gaussian <strong>Processes</strong> and Local Times, Cambridge Univ. Press.<br />

29


TRIANGULAR ARRAY LIMITS FOR CONTINUOUS TIME<br />

RANDOM WALKS<br />

MEERSCHAERT, MARK M. Michigan State University, USA, mcubed@stt.msu.edu<br />

Scheffler, Hans-Peter University of Siegen, Germany<br />

Random walk; Anomalous diffusi<strong>on</strong>; Random waiting time; Fracti<strong>on</strong>al calculus:<br />

A c<strong>on</strong>tinuous time random walk (CTRW) is a random walk subordinated to a renewal process, used in physics to<br />

model anomalous diffusi<strong>on</strong>. Transiti<strong>on</strong> densities of CTRW scaling limits solve fracti<strong>on</strong>al diffusi<strong>on</strong> equati<strong>on</strong>s. Here<br />

we develop more general limit theorems, based <strong>on</strong> triangular arrays, <strong>for</strong> sequences of CTRW processes. The array<br />

elements c<strong>on</strong>sist of random vectors that incorporate both the random walk jump variable and the waiting time<br />

preceding that jump. The CTRW limit process c<strong>on</strong>sists of a vector-valued <strong>Lévy</strong> process whose time parameter<br />

is replaced by the hitting time process of a real-valued n<strong>on</strong>decreasing <strong>Lévy</strong> process (subordinator). We provide<br />

a <strong>for</strong>mula <strong>for</strong> the distributi<strong>on</strong> of the CTRW limit process and show that their densities solve abstract space-time<br />

diffusi<strong>on</strong> equati<strong>on</strong>s. Applicati<strong>on</strong>s to finance are discussed, and a density <strong>for</strong>mula <strong>for</strong> the hitting time of any strictly<br />

increasing subordinator is developed.<br />

References<br />

[1] Becker-Kern, P., Meerschaert, M.M., Scheffler, H.P. (2004) Limit theorem <strong>for</strong> c<strong>on</strong>tinuous time random walks with<br />

two time scales. J. Applied Probab. 41, 455–466.<br />

[2] Becker-Kern, P., Meerschaert, M.M., Scheffler, H.P. (2004) Limit theorems <strong>for</strong> coupled c<strong>on</strong>tinuous time random<br />

walks. Ann. Probab. 32, 730–756.<br />

[3] Meerschaert, M.M., Scheffler, H.P. (2007) Triangular array limits <strong>for</strong> c<strong>on</strong>tinuous time random walks. Preprint<br />

available at http://www.stt.msu.edu/ mcubed/triCTRW.pdf<br />

30


A MALLIAVIN CALCULUS APPROACH TO STOCHASTIC<br />

CONTROL OF JUMP DIFFUSIONS<br />

ØKSENDAL, BERNT Center of Mathematics <strong>for</strong> Applicati<strong>on</strong>s (CMA), University of Oslo, Norway,<br />

oksendal@math.uio.no<br />

Xunyu Zhou Chinese University of H<strong>on</strong>g K<strong>on</strong>g, China<br />

Keywords: Stochastic c<strong>on</strong>trol; maximum principle; Malliavin calculus; jump diffusi<strong>on</strong>s; partial in<strong>for</strong>mati<strong>on</strong><br />

We use Malliavin calculus to prove a general maximum principle <strong>for</strong> partial in<strong>for</strong>mati<strong>on</strong> optimal c<strong>on</strong>trol of jump<br />

diffusi<strong>on</strong>s.<br />

References<br />

[1] Øksendal, B., Zhou, X. (2007) A Malliavin calculus approach to a general maximum principle <strong>for</strong> stochastic<br />

c<strong>on</strong>trol, Manuscript, June 2007.<br />

31


REPRESENTATION OF INFINITELY DIVISIBLE DISTRIBUTIONS<br />

ON CONES<br />

PEREZ-ABREU, VICTOR, CIMAT, Guanajuato, Mexico, pabreu@cimat.mx<br />

Rosinski, Jan University of Tennessee, USA<br />

C<strong>on</strong>e valued <strong>Lévy</strong> process; Regular <strong>Lévy</strong>-Khintchine representati<strong>on</strong><br />

<strong>Lévy</strong> processes taking values in c<strong>on</strong>es of Euclidean or more general vector spaces are determined by infinitely<br />

divisible distributi<strong>on</strong>s c<strong>on</strong>centrated <strong>on</strong> c<strong>on</strong>es. Skorohod (1991) showed that an infinitely divisible distributi<strong>on</strong> µ <strong>on</strong><br />

R d is c<strong>on</strong>centrated <strong>on</strong> a normal closed c<strong>on</strong>e K if and <strong>on</strong>ly its Fourier or Laplace trans<strong>for</strong>m admit the so called regular<br />

<strong>Lévy</strong>-Khintchine representati<strong>on</strong> <strong>on</strong> c<strong>on</strong>e. We ask whether similar fact holds in infinite dimensi<strong>on</strong>al spaces. We show<br />

that the answer is negative in general. Furthermore, we characterize normal c<strong>on</strong>es K in Fréchet spaces such that<br />

every infinitely divisible probability measure µ c<strong>on</strong>centrated <strong>on</strong> K has the regular <strong>Lévy</strong>-Khintchine representati<strong>on</strong> <strong>on</strong><br />

c<strong>on</strong>e. Geometrically, the latter property is equivalent to that K does not c<strong>on</strong>tain a copy of the c<strong>on</strong>e c + of c<strong>on</strong>vergent<br />

n<strong>on</strong>negative real sequences. Our result also answers an open questi<strong>on</strong> of Dettweiler (1976). In this talk a general<br />

idea of the proof and some examples will be provided.<br />

References<br />

[1] Dettweiler, E. (1976), Infinitely divisible measures <strong>on</strong> the c<strong>on</strong>e of an ordered locally c<strong>on</strong>vex vector space, Ann.<br />

Sci. Univ. Clerm<strong>on</strong>t 14, 61, 11-17.<br />

[2] Skorohod, A. V. (1991), Random <strong>Processes</strong> with Independent Increments, Kluwer Academic Publisher, Dordrecht,<br />

Netherlands (Russian original 1986).<br />

32


LÉVY DRIVEN COX POINT PROCESSES<br />

PROKEˇSOVÁ, MICHAELA University of Aarhus, Denmark, prokesov@imf.au.dk<br />

Hellmund, g. University of Aarhus, Denmark<br />

Jensen, E.B.V. University of Aarhus, Denmark<br />

Cox point process; <strong>Lévy</strong> basis; Inhomogeneous spatial point process:<br />

Cox point processes c<strong>on</strong>stitute <strong>on</strong>e of the most important and versatile class of point process models <strong>for</strong> spatial<br />

clustered point patterns. In the presented work we c<strong>on</strong>sider Cox processes driven by <strong>Lévy</strong> bases – e.g. Cox processes<br />

with a random intensity functi<strong>on</strong> that can be expressed in terms of an integral of a weight functi<strong>on</strong> with respect<br />

to a <strong>Lévy</strong> basis. Such definiti<strong>on</strong> includes several classes of previously studied Cox point processes as well as new<br />

models. We derive descriptive characteristics of the suggested models and investigate further the ability of <strong>Lévy</strong><br />

driven Cox processes to model point patterns with different geometric properties and/or exhibiting different types of<br />

inhomogeneities.<br />

References<br />

[1] Hellmund, G., Prokeˇsová, M., Jensen, E.B.V. (2007) <strong>Lévy</strong> driven Cox point processes, In preparati<strong>on</strong>.<br />

[2] Møller, J. (2003) Shot noise Cox processes, Adv. Appl. Prob. 35, 614–640.<br />

[3] Møller, J., Syversveen, A. R., Waagepetersen, R. P.: Log Gaussian Cox processes, Scand. J. Statist. 25, 451–482.<br />

[4] Wolpert, R.L., Ickstadt, K. (1998) Poiss<strong>on</strong>/gamma random field models <strong>for</strong> spatial statistics, Biometrika 85,<br />

251–267.<br />

33


LÉVY PROCESSES AND NETWORK MODELING<br />

RESNICK, SIDNEY Cornell University, Ithaca, NY USA, sir1@cornell.com<br />

Heavy tails; data networks; l<strong>on</strong>g range dependence; stable processes:<br />

Data networks can be analyzed at large time scales (Mikosch et al., 2002; Resnick, 2006) or small time scales (D’Auria<br />

and Resnick, 2006, 2007) with time scaling either approaching ∞ or 0. One can try to characterize multi-user input<br />

traffic or single user inputs (Mikosch and Resnick, 2006). Tails of payload per sessi<strong>on</strong> can be heavy with Pareto<br />

parameter α ∈ (1, 2) as in Mikosch et al., 2002 or D’Auria and Resnick, 2006, 2007 or even so heavy that the mean<br />

is infinite as in Mikosch and Resnick, 2006 and Resnick and Rootzen, 2000. One sees the impact of stable and <strong>Lévy</strong><br />

processes in various ways in all these circumstances depending <strong>on</strong> interacti<strong>on</strong> of heavy tails and input rates.<br />

References<br />

[1] D’Auria, B., Resnick, S.I. (2006) Data network models of burstiness. Adv. in Appl. Probab., 38(2):373–404.<br />

[2] D’Auria, B., Resnick, S.I. (2007) The influence of dependence <strong>on</strong> data network models. Technical report, Cornell<br />

University, 2006b Report #1449, Available at legacy.orie.cornell.edu/ sid.<br />

[3] Mikosch, T., Resnick, S.I. (2006) Activity rates with very heavy tails. Stochastic Process. Appl., 116, 131–155.<br />

[4] Mikosch, T., Resnick, S.I., Rootzén, H. and Stegeman, A.W. (2002) Is network traffic approximated by stable<br />

<strong>Lévy</strong> moti<strong>on</strong> or fracti<strong>on</strong>al Brownian moti<strong>on</strong>? Ann. Appl. Probab., 12 (1), 23–68.<br />

[5] Resnick, S.I. (2006) Heavy Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in Operati<strong>on</strong>s<br />

Research and Financial Engineering. Springer-Verlag, New York, ISBN: 0-387-24272-4.<br />

[6] Resnick, S.I.,Rootzén, H. (2000) Self-similar communicati<strong>on</strong> models and very heavy tails. Ann. Appl. Probab.,<br />

10, 753–778.<br />

34


EMPIRICAL PROCESS THEORY FOR EXTREME CLUSTERS<br />

ROOTZÉN, HOLGER Chalmers, Sweden, rootzen@math.chalmers.se<br />

Drees, Holger University of Hamburg, Germany<br />

Clusters, empirical processes, asymptotic statistics, stati<strong>on</strong>ary processes, mixing, tightness, extreme value statistics.:<br />

Large values of stati<strong>on</strong>ary sequences often occur in clusters – in particular this is typically the case <strong>for</strong> heavytailed<br />

processes. This talk is about an attempt to c<strong>on</strong>struct an empirical limit theory <strong>for</strong> the size and structure of<br />

these clusters. Such a theory poses intriguing and sometimes hard problems: What are suitable cluster definiti<strong>on</strong>s;<br />

which spaces should <strong>on</strong>e work with; which variants of empirical process theory should be used; and which kind of<br />

dependence restricti<strong>on</strong> are appropriate? We present preliminary (but by no means the definite) answer to these<br />

problems. Our results are aimed at a general approach to central limit theory <strong>for</strong> a range of statistical procedures<br />

based <strong>on</strong> clusters of extreme values.<br />

35


LARGE DEVIATIONS FOR RIESZ POTENTIALS OF ADDITIVE<br />

PROCESSESS<br />

ROSEN, JAY College of Staten Island, USA, jrosen3@earthlink.net<br />

Bass, Richard<br />

Chen, Xia<br />

We study functi<strong>on</strong>als of the <strong>for</strong>m<br />

ζt =<br />

� t<br />

0<br />

· · ·<br />

� t<br />

0<br />

|X1(s1) + · · · + Xp(sp)| −σ ds1 · · · dsp<br />

where X1(t), · · · , Xp(t) are i.i.d. d-dimensi<strong>on</strong>al symmetric stable processes of index 0 < α ≤ 2. We prove results<br />

about the large deviati<strong>on</strong>s and laws of the iterated logarithm <strong>for</strong> ζt.<br />

36


SPECTRAL REPRESENTATIONS OF INFINITELY DIVISIBLE<br />

PROCESSES AND INJECTIVITY OF THE Υ-TRANSFORMATION<br />

ROSIŃSKI, JAN University of Tennessee, USA, rosinski@math.utk.edu<br />

Infinitely divisible process; stochastic integral representati<strong>on</strong>s; Υ − trans<strong>for</strong>mati<strong>on</strong>:<br />

Given a <strong>Lévy</strong> measure η <strong>on</strong> R, c<strong>on</strong>sider the class IDη(Rd ) of infinitely divisible distributi<strong>on</strong>s <strong>on</strong> Rd with no Gaussian<br />

parts and having <strong>Lévy</strong> measures of the <strong>for</strong>m<br />

�<br />

ν(A) = ρ(x −1 A)η(dx) (1)<br />

R<br />

<strong>for</strong> some measure ρ <strong>on</strong> R d . The class IDη(R d ) can be characterized in terms the range of an extended Υηtrans<strong>for</strong>mati<strong>on</strong>.<br />

Indeed, (1) can be written as Υη(ρ) = ν which is a straight<strong>for</strong>ward extensi<strong>on</strong> of the Υ-trans<strong>for</strong>m<br />

[1] to the case of <strong>Lévy</strong> measures η defined <strong>on</strong> the whole real line. Using [1] <strong>on</strong>e can also characterize the inclusi<strong>on</strong><br />

relati<strong>on</strong> am<strong>on</strong>g classes IDη(R d ) in terms of the defining <strong>Lévy</strong> measures η.<br />

A stochastic process X = {X(t) : t ∈ T } is said to be in the class IDη if its finite dimensi<strong>on</strong>al distributi<strong>on</strong>s (f.d.d.)<br />

bel<strong>on</strong>g to IDη(R d ), d ≥ 1. For example, stable processes are in the class IDη1 with η1(dx) = x −α−1 1x>0 dx; symmetric<br />

stable processes are in the class IDη2 with η2(dx) = |x| −α−1 dx; tempered stable processes are in the class IDη3 with<br />

η3(dx) = x −α−1 e −x 1x>0 dx. Taking η4(dx) = x −1 100 dx identifies processes with f.d.d. in the Thorin<br />

class of generalized gamma c<strong>on</strong>voluti<strong>on</strong>s; etc.<br />

Given a process X = {X(t)}t∈T from a from class IDη we investigate existence and uniqueness of its spectral<br />

representati<strong>on</strong> in the <strong>for</strong>m<br />

�<br />

Xt =<br />

S<br />

f(t, s)M(ds) a.s., (2)<br />

where M is an independently scattered random measure <strong>on</strong> a Borel space S equipped with a σ-finite measure m<br />

such that L(M(A)) has the generating triplet (0, m(A)η, m(A)a) <strong>for</strong> some a ∈ R, and f is a deterministic kernel.<br />

We show that when Υη is injective, then it is possible to obtain ’can<strong>on</strong>ical’ spectral representati<strong>on</strong>s (to be defined<br />

at the talk) that are unique up to a measure preserving isomorphism between spaces (S, m). As a c<strong>on</strong>sequence, we<br />

give spectral representati<strong>on</strong>s of stati<strong>on</strong>ary processes from classes IDη in terms of measure preserving flows acting<br />

<strong>on</strong> (S, m). This extends our previous results <strong>for</strong> stable processes [2], [3] to many new classes. Applicati<strong>on</strong>s include<br />

classes IDηk specified above, where k ≥ 3.<br />

References<br />

[1] Barndorff-Nielsen, O., Rosiński, J., Thorbjørnsen, S. (2007) General Upsil<strong>on</strong>-trans<strong>for</strong>mati<strong>on</strong>s, Preprint.<br />

[2] Rosiński, J. (1995) On the structure of stati<strong>on</strong>ary stable processes, Ann. Probab., 23, 1163–1187.<br />

[3] Rosiński, J. (2001) Decompositi<strong>on</strong> of stati<strong>on</strong>ary α-stable random fields, Ann. Probab., 28, 1797–1813.<br />

37


SOME SAMPLE PATH PROPERTIES OF LINEAR FRACTIONAL<br />

STABLE SHEET<br />

ROUEFF, FRANÇOIS ENST, CNRS LTCI, France, roueff@tsi.enst.fr<br />

Ayache, Antoine Université Lille 1, France<br />

Xiao, Yimin Michigan State University, USA<br />

Wavelet analysis; stable processes; Linear Fracti<strong>on</strong>al Stable Sheet; modulus of c<strong>on</strong>tinuity; Hausdorff dimensi<strong>on</strong>.<br />

We c<strong>on</strong>sider Linear Fracti<strong>on</strong>al Stable Sheet with values in R d . Let 0 < α < 2 and H = (H1, . . . , HN) ∈ (0, 1) N<br />

be given. We define an α-stable field X0 = {X0(t), t ∈ R N } with values in R by<br />

�<br />

X0(t) =<br />

R N<br />

κ<br />

N� �<br />

(tℓ − sℓ)<br />

ℓ=1<br />

1 Hℓ− α<br />

+<br />

− (−sℓ)<br />

1 Hℓ− α<br />

+<br />

�<br />

Zα(ds),<br />

where Zα is a strictly α-stable random measure <strong>on</strong> RN with Lebesgue measure as its c<strong>on</strong>trol measure and β(s)<br />

as its skewness intensity, κ > 0 is a normalizing c<strong>on</strong>stant, and t+ = max{t, 0}. The random field X0 is called a<br />

linear fracti<strong>on</strong>al α-stable sheet defined <strong>on</strong> RN (or (N, 1)-LFSS <strong>for</strong> brevity) in R with index H. We will also c<strong>on</strong>sider<br />

(N, d)-LFSS, with d > 1, that is a linear fracti<strong>on</strong>al α-stable sheet defined <strong>on</strong> RN and taking its values in Rd . The<br />

(N, d)-LFSS that we c<strong>on</strong>sider is the stable field X = {X(t), t ∈ RN + } defined by<br />

X(t) = � X1(t), . . . , Xd(t) � , ∀t ∈ R N + ,<br />

where X1, . . .,Xd are d independent copies of X0.<br />

We will present some of the results <strong>on</strong> sample path properties of Linear Fracti<strong>on</strong>al Stable Sheet detailed in [1,2],<br />

namely: estimates of the modulus of c<strong>on</strong>tinuity, and c<strong>on</strong>diti<strong>on</strong>s <strong>for</strong> the existence and joint c<strong>on</strong>tinuity of the local time.<br />

Some of these results generalize the <strong>on</strong>es obtained by K. Takashima in [4] in the case N = 1 but using a completely<br />

different method. First we introduce a random wavelet series representati<strong>on</strong> of real-valued Linear Fracti<strong>on</strong>al Stable<br />

Sheet. Using this representati<strong>on</strong>, in the case where the paths are c<strong>on</strong>tinuous, a uni<strong>for</strong>m and quasi-optimal estimate<br />

of the modulus of c<strong>on</strong>tinuity of the sample path is obtained as well as an upper bound of its behavior at infinity and<br />

around the coordinate axes. Hausdorff dimensi<strong>on</strong>s of the range and graph of multi-dimensi<strong>on</strong>al Linear Fracti<strong>on</strong>al<br />

Stable Sheet are also derived showing that, in c<strong>on</strong>trast with the Gaussian case (see [3]), the modulus of c<strong>on</strong>tinuity<br />

does not provide an optimal bound <strong>for</strong> these dimensi<strong>on</strong>s.<br />

References<br />

[1] Ayache, A., Roueff, F., Xiao, Y. (2007) Local and asymptotic properties of linear fracti<strong>on</strong>al stable sheets, C. R.<br />

Acad. Sci. Paris, Ser. I. 344(6):389–394.<br />

[2] Ayache, A., Roueff, F., Xiao, Y. (2007) Joint c<strong>on</strong>tinuity of the local times of linear fracti<strong>on</strong>al stable sheets, C. R.<br />

Acad. Sci. Paris, Ser. I. 344(10):635–640.<br />

[3] Ayache, A., Xiao, Y. (2005) Asymptotic properties and hausdorff dimensi<strong>on</strong>s of fracti<strong>on</strong>al brownian sheets, J.<br />

Fourier Anal. Appl. 11:407–439.<br />

[4] Takashima, K. (1989) Sample path properties of ergodic self-similar processes, Osaka J. Math. 26(1):159–189.<br />

38


ON THE FELLER PROPERTY FOR A CLASS OF DIRICHLET<br />

PROCESSES<br />

SCHILLING, RENÉ L. Universität Marburg, Germany, schilling@mathematik.uni-marburg.de<br />

Uemura, Toshihiro Kobe, Japan<br />

Feller property; Dirichlet <strong>for</strong>m; pseudo-differenial operator; <strong>Lévy</strong>-type operator:<br />

We establish sufficient criteria <strong>for</strong> a class of processes given via Dirichlet <strong>for</strong>ms to have the Feller property. This<br />

means, in particular, that the usual excepti<strong>on</strong>al set occurring with such Dirichlet processes is empty. As a by-product<br />

of our approach we obtain an ‘integrati<strong>on</strong> by parts’ <strong>for</strong>mula <strong>for</strong> the generator of the Dirichlet <strong>for</strong>m and it turns out<br />

that this operator is a pseudo-differential operator generating a Levy-type process. This is joint work with T. Uemura<br />

(Kobe, Japan).<br />

39


LOWER TAILS OF HOMOGENEOUS FUNCTIONALS OF STABLE<br />

PROCESSES<br />

SIMON, THOMAS Evry University, France, tsim<strong>on</strong>@univ-evry.fr<br />

Fluctuating additive functi<strong>on</strong>al; Lower tail probability; Self-similar process; Stable process:<br />

Let Z be a strictly α-stable real <strong>Lévy</strong> process (α > 1) and X be a fluctuating β-homogeneous additive functi<strong>on</strong>al<br />

of Z. We investigate the (polynomial) tail-asymptotics of the law of the first passage-time of X above 1, and give a<br />

general upper bound. When Z has no negative jumps, we prove that this bound is optimal. When Z has negative<br />

jumps we prove that this bound is, somewhat surprisingly, not optimal, and state a general c<strong>on</strong>jecture <strong>on</strong> the value<br />

of the exp<strong>on</strong>ent.<br />

40


ON THE POLYNOMIALS ASSOCIATED WITH A LÉVY PROCESS<br />

SOLÉ CLIVILLÉS, JOSEP LLUÍS Universitat Autònoma de Barcel<strong>on</strong>a, Catalunya, jllsole@mat.uab.cat<br />

Utzet, Frederic. Universitat Autònoma de Barcel<strong>on</strong>a, Catalunya.<br />

<strong>Lévy</strong> processes; Teugels martingales; cumulants; time-space harm<strong>on</strong>ic polynomials.<br />

On <strong>on</strong>e hand, given a stochastic process X = {Xt, t ∈ R+} with finite moments of c<strong>on</strong>venient order, a time–<br />

space harm<strong>on</strong>ic polynomial relative to X is a polynomial Q(x, t) such that the process Mt = Q(Xt, t) is a martingale<br />

with respect to the filtrati<strong>on</strong> associated to X. We will give a closed <strong>for</strong>m and a recurrence relati<strong>on</strong> <strong>for</strong> a family of<br />

time–space harm<strong>on</strong>ic polynomials relative to a <strong>Lévy</strong> process, The polynomials that we propose here are related with<br />

the polynomials that give the moments of a random variable in functi<strong>on</strong> of the cumulants. We will present some<br />

examples.<br />

On the other hand, we can c<strong>on</strong>struct a sequence of orthog<strong>on</strong>al polynomials pσ n (x) with respect to the measure<br />

σ2δ0(dx) + x2 ν(dx), where σ2 is the variance of the Gaussian part of X and ν its <strong>Lévy</strong> measure. Nualart and<br />

Schoutens proved that these polynomials, denoted as the Teugels polynomials, are the building blocks of a kind<br />

of chaotic representati<strong>on</strong> <strong>for</strong> square functi<strong>on</strong>als of the <strong>Lévy</strong> process. The objective of this secti<strong>on</strong> is to study the<br />

properties of this family of polynomials. Also, using the Gauss-Jacobi mechanical quadrature theorem, we give a<br />

sequence of simple <strong>Lévy</strong> processes that c<strong>on</strong>verge in the Skorohod topology to X, such that all variati<strong>on</strong>s and iterated<br />

integrals of the sequence c<strong>on</strong>verge to the variati<strong>on</strong>s and iterated integrals of X.<br />

References<br />

[1] Goswami, A. and Sengupta, A. (1995) Time–space polynomial martingales generated by a discrete time martingale,<br />

J. Theoret. Probab., 8, 417–432.<br />

[2] Nualart, D. and Schoutens, W. (2000) Chaotic and predictable representati<strong>on</strong> <strong>for</strong> <strong>Lévy</strong> processes. Stochastic<br />

Process. Appl., 90, 109–122.<br />

[3] Schoutens, W. and Teugels, J. L. (1998) <strong>Lévy</strong> processes, polynomials and martingales, Comm. Statist. Stochastic<br />

Models, 14 (1 & 2), 335–349.<br />

[4] Sengupta, A. (2000) Time-space harm<strong>on</strong>ic polynomials <strong>for</strong> c<strong>on</strong>tinuous-time processes and an extensi<strong>on</strong>. J. Theoret.<br />

Probab., 13, 951–976.<br />

[5] Solé, J.L. and Utzet, F. Time–space harm<strong>on</strong>ic polynomials. Accepted in Bernouilli.<br />

[6] Solé, J.L. and Utzet, F. On the orthog<strong>on</strong>al polynomials associated with a <strong>Lévy</strong> process. Accepted in Annals of<br />

Probability.<br />

[7] Szegö, G. (1939). Orthog<strong>on</strong>al Polynomials. American Mathematical Society, Providence.<br />

41


A QUADRATIC ARCH MODEL WITH LONG MEMORY AND<br />

LÉVY-STABLE BEHAVIOR OF SQUARES<br />

SURGAILIS, DONATAS Vilnius <strong>Institut</strong>e of Mathematics and In<strong>for</strong>matics, Lithuania, sd<strong>on</strong>atas@ktl.mii.lt<br />

ARCH process; L<strong>on</strong>g memory; Scaling limit; <strong>Lévy</strong> stable process; Fracti<strong>on</strong>al Brownian moti<strong>on</strong> :<br />

We introduce a new modificati<strong>on</strong> of Sentana’s (1995) Quadratic ARCH (QARCH), the Linear ARCH (LARCH)<br />

(Giraitis et al., 2000, 2004) and the bilinear models (Giraitis and Surgailis, 2002), which can combine the following<br />

properties:<br />

(a.1) c<strong>on</strong>diti<strong>on</strong>al heteroskedasticity<br />

(a.2) l<strong>on</strong>g memory<br />

(a.3) the leverage effect<br />

(a.4) strict positivity of volatility<br />

(a.5) <strong>Lévy</strong>-stable limit behavior of partial sums of squares<br />

Sentana’s QARCH model is known <strong>for</strong> properties (a.1), (a.3), (a.4), and the LARCH model <strong>for</strong> (a.1), (a.2), (a.3).<br />

Property (a.5) is new.<br />

References<br />

[1] Giraitis, L., Robins<strong>on</strong>, P.M., Surgailis, D. (2000) A model <strong>for</strong> l<strong>on</strong>g memory c<strong>on</strong>diti<strong>on</strong>al heteroscedasticity , Ann.<br />

Appl. Probab. 10, 1002–1024.<br />

[2] Giraitis, L., Surgailis, D. (2002) ARCH-type bilinear models with double l<strong>on</strong>g memory , Stoch. Process. Appl.<br />

100, 275–300.<br />

[3] Giraitis, L., Leipus, R., Robins<strong>on</strong>, P.M., Surgailis, D. (2004) LARCH, leverage and l<strong>on</strong>g memory , J. Financial<br />

Ec<strong>on</strong>ometrics 2, 177–210.<br />

[4] Sentana, E. (1995) Quadratic ARCH models , Rev. Ec<strong>on</strong>. Stud. 3, 77–102.<br />

42


ON INFIMA OF LEVY PROCESSES AND APPLICATION IN RISK<br />

THEORY<br />

VONDRACEK, ZORAN University of Zagreb, v<strong>on</strong>dra@math.hr<br />

Let Y be a <strong>on</strong>e-dimensi<strong>on</strong>al Levy process, C an independent subordinator and X = Y − C. We discuss the<br />

infimum process of X. To be more specific, we are interested in times when a new infimum is reached by a jump<br />

of the subordinator C. We give a necessary and sufficient c<strong>on</strong>diti<strong>on</strong> that such times are discrete. A motivati<strong>on</strong> <strong>for</strong><br />

this problem comes from the ruin theory where X can be interpreted as a perturbed risk process. When X drifts to<br />

infinity, decompositi<strong>on</strong> of the infimum at those times leads to a Pollaczek-Khintchine-type <strong>for</strong>mula <strong>for</strong> the probability<br />

of ruin.<br />

43


POWER VARIATION FOR REFINEMENT RIEMANN-STIELTJES<br />

INTEGRALS WITH RESPECT TO STABLE PROCESSES<br />

WÖRNER, JEANNETTE H.C. University of Göttingen, Germany, woerner@math.uni-goettingen.de<br />

Corcuera, José Manuel University of Barcel<strong>on</strong>a, Spain<br />

Nualart, David University of Kansas, USA<br />

Central limit theorem; power variati<strong>on</strong>; refinement Riemann-Stieltjes integral; stable process:<br />

Over the recent years classical stochastic volatility models based <strong>on</strong> Brownian moti<strong>on</strong> have been generalized to <strong>Lévy</strong>type<br />

stochastic volatility models, where the Brownian moti<strong>on</strong> is replaced by a pure jump <strong>Lévy</strong> process, which leads<br />

to a model of the <strong>for</strong>m<br />

� t<br />

Xt = Yt +<br />

0<br />

σsdLs,<br />

<strong>for</strong> the log-price process, where L denotes a <strong>Lévy</strong> process, Y a mean process, possibly possessing jumps, and σ a<br />

fairly general volatility process.<br />

For these types of models the approach of estimating the integrated volatility by the quadratic variati<strong>on</strong> does not<br />

work as in the Brownian setting, since here the quadratic variati<strong>on</strong> is simply the sum of the squares of the jumps<br />

of X. However, the approach of normed power variati<strong>on</strong> can be modified in a suitable way to estimate � t<br />

0 σp sds. In<br />

this case the norming sequence has to be chosen as ∆1−p/β with p < β, where ∆ denotes the distance between the<br />

observati<strong>on</strong>s and β the Blumenthal-Getoor index of the driving <strong>Lévy</strong> process, i.e. a measure <strong>for</strong> the activity of the<br />

jumps.<br />

We c<strong>on</strong>sider the special case that L is a stable process and view the integral as a refinement Riemann-Stieltjes<br />

integral. Compared to the classical Itô integral this has the advantage that an arbitrary correlati<strong>on</strong> structure between<br />

the volatility process and the driving stable process, as needed <strong>for</strong> modelling leverage effects, may be included without<br />

any complicati<strong>on</strong>s to the proofs. The key point is to use Young’s inequality to estimate the difference between the<br />

integral and a discretizati<strong>on</strong>. There<strong>for</strong>e some regularity c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the sample paths of the volatility process are<br />

needed, which differ from the classical Itô setting. We analyze these c<strong>on</strong>diti<strong>on</strong>s, provide c<strong>on</strong>sistency of the power<br />

variati<strong>on</strong> estimators and a functi<strong>on</strong>al central limit theorem.<br />

References<br />

[1] J. M. Corcuera, D. Nualart and J. H. C. Woerner (2007) A functi<strong>on</strong>al central limit theorem <strong>for</strong> the realized power<br />

variati<strong>on</strong> of integrated stable processes, Stochastic Analysis and Applicati<strong>on</strong>s, 25, 169-186.<br />

44


MODULI OF CONTINUITY FOR INFINITELY DIVISIBLE<br />

PROCESSES<br />

XIAO, YIMIN Michigan State University, U.S.A., xiao@stt.msu.edu<br />

Infinitely divisible processes; stable processes; modulus of c<strong>on</strong>tinuity; harm<strong>on</strong>izable fracti<strong>on</strong>al stable moti<strong>on</strong>; linear<br />

fracti<strong>on</strong>al stable moti<strong>on</strong>.<br />

Let X = {X(t), t ∈ RN } be an infinitely divisible process of the <strong>for</strong>m<br />

�<br />

X(t) = f(t, x)M(dx),<br />

R N<br />

where f is a deterministic functi<strong>on</strong> and M is an independently scattered infinitely divisible random measure. C<strong>on</strong>tinuity<br />

of such processes has been studied by many authors. See Marcus and Pisier (1984), Nolan (1989), Kwapień<br />

and Rosiński (2004), Marcus and Rosiński (2005), Talagrand (1990, 2006).<br />

When X is a stable process such as a harm<strong>on</strong>izable fracti<strong>on</strong>al stable moti<strong>on</strong> or a linear fracti<strong>on</strong>al stable moti<strong>on</strong>,<br />

Kôno and Maejima (1991a, 1991b) studied the uni<strong>for</strong>m modulus of c<strong>on</strong>tinuity of X by using series representati<strong>on</strong>s<br />

<strong>for</strong> X and the c<strong>on</strong>diti<strong>on</strong>al Gaussian argument. Ayache, Roueff and Xiao (2007) proved similar results <strong>for</strong> a linear<br />

fracti<strong>on</strong>al stable sheet X by first establishing a wavelet expansi<strong>on</strong> <strong>for</strong> X.<br />

In this talk, we present a different method <strong>for</strong> establishing local and uni<strong>for</strong>m moduli of c<strong>on</strong>tinuity <strong>for</strong> X. When<br />

applied to stable processes, our results improve the previous theorems of Kôno and Maejima (1991a, 1991b) <strong>for</strong><br />

harm<strong>on</strong>izable fracti<strong>on</strong>al stable moti<strong>on</strong> and linear fracti<strong>on</strong>al stable moti<strong>on</strong>.<br />

References<br />

[1] Ayache, A., Roueff, F. and Xiao, Y. (2007), Local and asymptotic properties of linear fracti<strong>on</strong>al stable sheets. C.<br />

R. Acad. Sci. Paris, Ser. A. 344, 389–394.<br />

[2] Kôno, N. and Maejima, M. (1991a), Self-similar stable processes with stati<strong>on</strong>ary increments. In: Stable processes<br />

and related topics (Ithaca, NY, 1990), pp. 275–295, Progr. Probab., 25, Birkhäuser Bost<strong>on</strong>, Bost<strong>on</strong>, MA.<br />

[3] Kôno, N. and Maejima, M. (1991b), Hölder c<strong>on</strong>tinuity of sample paths of some self-similar stable processes. Tokyo<br />

J. Math. 14, 93–100.<br />

[4] Marcus, M. B. and Pisier, G. (1984), Some results <strong>on</strong> the c<strong>on</strong>tinuity of stable processes and the domain of<br />

attracti<strong>on</strong> of c<strong>on</strong>tinuous stable processes. Ann. H. Poincaré, Secti<strong>on</strong> B, 20, 177–199.<br />

[5] Marcus, M. B. and Rosinski, J. (2005), C<strong>on</strong>tinuity and boundedness of infinitely divisible processes: a Poiss<strong>on</strong><br />

point process approach. J. Theoret. Probab. 18, 109–160.<br />

[6] Nolan, J. (1989), C<strong>on</strong>tinuity of symmetric stable processes. J. Maultivariate Anal. 29, 84–93.<br />

[7] Talagrand, M. (1990), Sample boundedness of stochastic processes under increments c<strong>on</strong>diti<strong>on</strong>s. Ann. Probab.<br />

18, 1-49.<br />

[8] Talagrand, M. (2006), Generic Chaining. Springer-Verlag, New York.<br />

45


BRANCHING PROCESSES AND STOCHASTIC EQUATIONS<br />

DRIVEN BY STABLE PROCESSES<br />

ZENGHU, LI Beijing Normal University, China, lizh@bnu.edu.cn<br />

C<strong>on</strong>tinuous state branching process; One-sided stable process; Stochastic equati<strong>on</strong>; Affine process:<br />

A c<strong>on</strong>tinuous state branching process with immigrati<strong>on</strong> (CBI-process) arises as the high density limit of a sequence<br />

of Galt<strong>on</strong>-Wats<strong>on</strong> branching processes with immigrati<strong>on</strong>. The simplest CBI-process is the str<strong>on</strong>g soluti<strong>on</strong> of the<br />

stochastic differential equati<strong>on</strong><br />

dx(t) = x(t) 1/2 dB(t) + dt, (1)<br />

which involves critical binary branching. A slight generalizati<strong>on</strong> of the above equati<strong>on</strong> is<br />

dx(t) = x(t−) 1/α dz(t) + dt, (2)<br />

where {z(t)} is a <strong>on</strong>e-sided stable process with index α ∈ (1, 2]. While the weak existence and uniqueness of the<br />

soluti<strong>on</strong> of (2) can be derived from a result of Kawazu and Watanabe (Theory Probab. Appl. 1971), the pathwise<br />

uniqueness of the soluti<strong>on</strong> still remains open.<br />

In this talk, we present some Yamada-Watanabe type criteri<strong>on</strong>s <strong>for</strong> stochastic equati<strong>on</strong>s of n<strong>on</strong>-negative processes<br />

with n<strong>on</strong>-negative jumps. From <strong>on</strong>e of those results, the CBI-process defined by (2) is characterized as the unique<br />

str<strong>on</strong>g soluti<strong>on</strong> of another stochastic equati<strong>on</strong> which are much easier to handle. Using similar ideas, we define some<br />

catalytic branching models which extends the <strong>on</strong>e of Daws<strong>on</strong> and Fleischmann (J. Theoret. Probab. 1997). We<br />

also specify the c<strong>on</strong>necti<strong>on</strong>s of the catalytic branching models with the affine Markov models introduced by Duffie,<br />

Filipović and Schachermayer (Ann. Appl. Probab. 2003), which have been used widely in mathematical finance.<br />

References<br />

[1] Daws<strong>on</strong>, D.A.; Li, Z.H. (2006): Skew c<strong>on</strong>voluti<strong>on</strong> semigroups and affine Markov processes. Ann. Probab. 34, 3:<br />

1103–1142.<br />

[2] Fu, Z.F.; Li, Z.H. (2007): Stochastic equati<strong>on</strong>s of n<strong>on</strong>-negative processes with n<strong>on</strong>-negative jumps. Preprint.<br />

[3] Li, Z.H.; Ma, C.H. (2007): Catalytic discrete state branching models and related limit theorems. Preprint.<br />

46


Posters<br />

47


NESTED SEQUENCE OF SOME SUBCLASSES OF THE CLASS OF<br />

TYPE G SELFDECOMPOSABLE DISTRIBUTIONS ON R d<br />

AOYAMA, TAKAHIRO Keio University, Japan, taoyama@math.keio.ac.jp<br />

Infinitely divisible distributi<strong>on</strong> <strong>on</strong> R d ; type G distributi<strong>on</strong>; selfdecomposable distributi<strong>on</strong>; stochastic integral<br />

representati<strong>on</strong>; <strong>Lévy</strong> process:<br />

The class G(R d ) of type G distributi<strong>on</strong>s and the class L(R d ) of selfdecomposable distributi<strong>on</strong>s are known as important<br />

two subclasses of infinitely divisible distributi<strong>on</strong>s. In Urbanik [5] and Sato [4], they studied nested subclasses of<br />

selfdecomposable distributi<strong>on</strong>s and showed relati<strong>on</strong> with the class of stable distributi<strong>on</strong>s. Also in Maejima and<br />

Rosiński [3], nested subclasses of type G distributi<strong>on</strong>s and relati<strong>on</strong> with the class of stable distributi<strong>on</strong>s are studied.<br />

In Aoyama et. al. [2], a subclass of type G and selfdecomposable distributi<strong>on</strong>s <strong>on</strong> R d , denote by M0(R d ), is<br />

studied. It is a strict subclass of the intersecti<strong>on</strong> of G(R d ) and L(R d ). An analytic characterizati<strong>on</strong> in terms of <strong>Lévy</strong><br />

measures and probablistic characterizati<strong>on</strong>s by stochastic integral representati<strong>on</strong>s <strong>for</strong> M0(R d ) are shown.<br />

In this presentati<strong>on</strong>, we define nested subclasses of M0(R d ), denote by Mn(R d ), n = 1, 2, · · ·. Analytic characterizati<strong>on</strong>s<br />

<strong>for</strong> Mn(R d ), n = 1, 2, · · · are given in terms of <strong>Lévy</strong> measures as well as probabilistic characterizati<strong>on</strong>s by<br />

stochastic integral representati<strong>on</strong>s <strong>for</strong> all classes are shown.<br />

References<br />

[1] Aoyama, T. (2007) Nested sequence of some subclasses of the class of type G selfdecomposable distributi<strong>on</strong>s <strong>on</strong><br />

R d , submitted.<br />

[2] Aoyama, T., Maejima, M., Rosiński, J. (2007) A Subclass of type G selfdecomposable distributi<strong>on</strong>s, to appear in<br />

J. Theoretic. Probab..<br />

[3] Maejima, M. and Rosiński, J. (2001) The class of type G distributi<strong>on</strong>s <strong>on</strong> R d and related subclasses of infinitely<br />

divisible distributi<strong>on</strong>s, Dem<strong>on</strong>stratio Math. 34, 251–266.<br />

[4] Sato, K. (1980) Class L of multivariate distributi<strong>on</strong>s and its subclasses, J. Multivar. Anal., 10, 207–232.<br />

[5] Urbanik, K. (1973) Limit laws <strong>for</strong> sequences of normed sums statisfying some stability c<strong>on</strong>diti<strong>on</strong>s, Multivariate<br />

Analysis–III (ed. Krishnaiah, P.R., Academic Press, New York), 225–237.<br />

49


MEAN ESTIMATION OF A SHIFTED WIENER SHEET 1<br />

BARAN, SÁNDOR University of Debrecen, Hungary, barans@inf.unideb.hu<br />

Pap, Gyula University of Debrecen, Hungary<br />

Van Zuijlen, Martien C. A. Radboud University Nijmegen, The Netherlands<br />

Wiener sheet; L 2 -Riemann integrals; L 2 -processes al<strong>on</strong>g a curve; Rad<strong>on</strong>-Nykodim derivative.<br />

Let {W(s, t) : s, t ≥ 0} be a standard Wiener sheet and c<strong>on</strong>sider the process Z(s, t) := W(s, t) + mg(s, t) with<br />

some given functi<strong>on</strong> g : R 2 + → R and with an unknown parameter m ∈ R. Let [a, c] ⊂ (0, ∞) and b1, b2 ∈ (a, c),<br />

let γ1,2 : [a, b1] → R and γ0 : [b2, c] → R be c<strong>on</strong>tinuous, strictly decreasing functi<strong>on</strong>s and let γ1 : [b1, c] → R and<br />

γ2 : [a, b2] → R be c<strong>on</strong>tinuous, strictly increasing functi<strong>on</strong>s with γ1,2(b1) = γ1(b1) > 0, γ2(b2) = γ0(b2), γ1,2(a) = γ2(a)<br />

and γ1(c) = γ0(c). Using discrete approximati<strong>on</strong> we show that the maximum likelihood estimator of the unknown<br />

parameter m based <strong>on</strong> the observati<strong>on</strong> of the process Z <strong>on</strong> the set G which c<strong>on</strong>tains the points bounded by the<br />

functi<strong>on</strong>s γ0, γ1, γ2 and γ1,2 has the <strong>for</strong>m �m = ζ/A, where<br />

and<br />

A := g(b1, γ1,2(b1)) 2<br />

b1γ1,2(b1) +<br />

+<br />

γ1,2(a) �<br />

γ1,2(b1)<br />

�b1<br />

a<br />

� ∂2g(γ −1<br />

1,2 (t), t)� 2<br />

γ −1<br />

1,2 (t)<br />

ζ := g(b1, γ1,2(b1))Z(b1, γ1,2(b1))<br />

b1γ1,2(b1)<br />

�<br />

+<br />

+<br />

a<br />

b1<br />

�<br />

g(s, γ1,2(s)) − s∂1g(s, γ1,2(s)) �2 s2 �<br />

ds +<br />

γ1,2(s)<br />

dt +<br />

�<br />

+<br />

b1<br />

c<br />

γ2(b2) �<br />

γ2(a)<br />

� ∂2g(γ −1<br />

2 (t), t)� 2<br />

∂1g(s, γ1(s))<br />

γ1(s)<br />

γ −1<br />

2 (t)<br />

b1<br />

c<br />

��<br />

dt +<br />

G<br />

��<br />

Z(ds, γ1(s)) +<br />

�<br />

g(s, γ1,2(s)) − s∂1g(s, γ1,2(s)) �<br />

�<br />

Z(s, γ1,2(s))ds − sZ(ds, γ1,2(s)) �<br />

γ1,2(a) �<br />

γ1,2(b1)<br />

s 2 γ1,2(s)<br />

∂2g(γ −1<br />

1,2 (t), t)<br />

γ −1<br />

1,2 (t)<br />

Z(γ −1<br />

1,2 (t), dt) +<br />

γ2(b2) �<br />

γ2(a)<br />

∂2g(γ −1<br />

2 (t), t)<br />

γ −1<br />

2 (t)<br />

G<br />

�<br />

∂1g(s, γ1(s)) �2 ds<br />

γ1(s)<br />

� ∂1∂2g(s, t) � 2 ds dt,<br />

∂1∂2g(s, t)Z(ds, dt)<br />

Z(γ −1<br />

2 (t), dt).<br />

The obtained result is a generalizati<strong>on</strong> of the results of [1] and [2] and the structure of �m is similar to that of the<br />

estimator c<strong>on</strong>sidered in [3] where Z is observed <strong>on</strong> a rectangle.<br />

References<br />

[1] Arató, N. M. (1997) Mean estimati<strong>on</strong> of Brownian sheet, Comput. Math. Appl. 33, 13–25.<br />

[2] Baran, S., Pap, G. and Zuijlen, M. v. (2004) Estimati<strong>on</strong> of the mean of a Wiener sheet, Stat. Inference Stoch.<br />

Process. 7, 279–304.<br />

[3] Baran, S., Pap, G. and Zuijlen, M. v. (2003) Estimati<strong>on</strong> of the mean of stati<strong>on</strong>ary and n<strong>on</strong>stati<strong>on</strong>ary Ornstein-<br />

Uhlenbeck processes and sheets, Comput. Math. Appl. 45, 563–579.<br />

2005.<br />

1 Research has been supported by the hungarian scientific research fund under grants no. OTKA-F046061/2004 and OTKAT048544/<br />

50


CUBATURE ON WIENER SPACE FOR INFINITE DIMENSIONAL<br />

PROBLEMS<br />

BAYER, CHRISTIAN Vienna University of Technology, Austria, cbayer@fam.tuwien.ac.at<br />

Teichmann, Josef Vienna University of Technology, Austria<br />

Stochastic partial differential equati<strong>on</strong>s; numerical approximati<strong>on</strong>; cubature <strong>on</strong> Wiener space:<br />

Let H be a separabel real Hilbert space and c<strong>on</strong>sider a stochastic partial differential equati<strong>on</strong> in the sense of da Prato<br />

and Zabczyk [3], i. e.<br />

d�<br />

drt = (Art + α(rt))dt + βi(rt)dB i t , (3)<br />

where A : D(A) ⊂ H → H is the generator of a C0-semi-group (St)t≥0, α, β1, . . . , βd : H → H are smooth vector<br />

fields and Bt = (B 1 t , . . . , B d t ) is a d-dimensi<strong>on</strong>al Brownian moti<strong>on</strong>. By a (mild) soluti<strong>on</strong> of the above equati<strong>on</strong> <strong>on</strong>e<br />

understands a stochastic process (rt)t≥0 with values in H such that<br />

� t<br />

rt = Str0 +<br />

0<br />

St−sα(rs)ds +<br />

i=1<br />

d�<br />

i=1<br />

� t<br />

0<br />

St−sβi(rs)dB i s . (4)<br />

Naturally, (3) can <strong>on</strong>ly be solved in very special cases, and usually <strong>on</strong>e has to use numerical approximati<strong>on</strong>s based<br />

<strong>on</strong> finite difference or finite elements schemes, see, <strong>for</strong> instance, Hausenblas [2]. We propose using the method of Cubature<br />

<strong>on</strong> Wiener space, introduced by Ly<strong>on</strong>s and Victoir [3] in the finite dimensi<strong>on</strong>al setting, <strong>for</strong> weak approximati<strong>on</strong><br />

of the stochastic partial differential equati<strong>on</strong> (3). This means that we approximate<br />

E(f(rt)) ≈<br />

n�<br />

λkf(rt(ωk)),<br />

k=1<br />

where f : H → R is a smooth functi<strong>on</strong>al, λ1, . . .,λn > 0 and ω1, . . . , ωn are functi<strong>on</strong>s of bounded variati<strong>on</strong> [0, t] → R d .<br />

rt(ωk) is the soluti<strong>on</strong> of equati<strong>on</strong> (4) with Brownian moti<strong>on</strong> replaced by ωk. Unlike Euler methods, cubature methods<br />

in this sense fit naturally to the c<strong>on</strong>cept of mild soluti<strong>on</strong>s.<br />

We present some theoretical results and a few numerical examples of the method.<br />

References<br />

[1] Da Prato, G., Zabczyk, J. (1992) Stochastic equati<strong>on</strong>s in infinite dimensi<strong>on</strong>s, Cambridge University Press.<br />

[2] Hausenblas, E. (2003) Approximati<strong>on</strong> <strong>for</strong> semilinear stochastic evoluti<strong>on</strong> equati<strong>on</strong>s, Potential Anal. 18(2), 141–<br />

186.<br />

[3] Ly<strong>on</strong>s, T., Victoir, N. (2004) Cubature <strong>on</strong> Wiener space, Proc. R. Soc.. L<strong>on</strong>d. Ser. A 460, 169–198.<br />

51


APPLICATION OF FILTERING IN LÉVY BASED<br />

SPATIO-TEMPORAL POINT PROCESSES<br />

BENEˇS, VIKTOR Charles University in Prague, Czech Republic, benesv@karlin.mff.cuni.cz<br />

Frcalová, Blaˇzena Charles University in Prague, Czech Republic<br />

Filtering, overdispersi<strong>on</strong>, spatio-temporal point process:<br />

A doubly stochastic point process is investigated with random driving intensity of type<br />

�<br />

Λ(ξ) = g(ξ, η)Z(dη)<br />

where Z is a <strong>Lévy</strong> basis and g a suitable functi<strong>on</strong> [1]. The problem of n<strong>on</strong>-linear filtering is solved, i.e. inference is<br />

d<strong>on</strong>e <strong>on</strong> a parametric <strong>for</strong>m of the driving intensity given the events of the point process. The jump character of the<br />

intensity model based <strong>on</strong> a compound Poiss<strong>on</strong> background driving field Z suggests to apply a hierarchical Bayesian<br />

approach to filtering using the point process densities with respect to the unit Poiss<strong>on</strong> process. Markov chain M<strong>on</strong>te<br />

Carlo (MCMC) techniques [2] then enable simultaneous filtering and parameter estimati<strong>on</strong> based <strong>on</strong> the posterior.<br />

The presented model is related to an experiment m<strong>on</strong>itoring the spiking activity of a place cell of hippocampus<br />

of an experimental rat moving in a bounded arena. Since an overdispersi<strong>on</strong> of events (spikes - electrical impulses)<br />

was experimentally observed in previous studies, a doubly stochastic spatio-temporal point process <strong>on</strong> the rat’s path<br />

is a relevant model [3]. C<strong>on</strong>diti<strong>on</strong>ally given the data of events (realizati<strong>on</strong> of a Cox point process) and given a path,<br />

computing using the Metropolis within Gibbs algorithm enables to get estimators of any characteristics of the driving<br />

intensity. The model selecti<strong>on</strong> is evaluated by means of posterior predictive distributi<strong>on</strong>s <strong>for</strong> a) counts of events in<br />

spatio-temporal subregi<strong>on</strong>s, b) sec<strong>on</strong>d-order characteristics (L-functi<strong>on</strong>), which allows <strong>for</strong> a comparis<strong>on</strong> of the fit of<br />

various models.<br />

References<br />

[1] Barndorff-Nielsen, O.E., Schmiegel J. (2004). <strong>Lévy</strong> based tempo-spatial modelling; with applicati<strong>on</strong>s to turbulence.<br />

Usp. Mat. Nauk 159, 63–90.<br />

[2] Møller, J., Waagepetersen, R. (2003). Statistics and simulati<strong>on</strong>s of spatial point processes. Singapore, World Sci.<br />

[3] Lánsk´y, P., Vaillant, J. (2000). Stochastic model of the overdispersi<strong>on</strong> in the place cell discharge. BioSystems 58,<br />

27–32.<br />

52


THE QUINTUPLE LAW FOR SUMS OF DEPENDENT LÉVY<br />

PROCESSES<br />

EDER, IRMINGARD Munich University of Technology, Germany, eder@ma.tum.de<br />

Clayt<strong>on</strong> <strong>Lévy</strong> copula; fluctuati<strong>on</strong> theory; insurance risk process; multivariate dependence:<br />

We prove the quintuple law <strong>for</strong> a general <strong>Lévy</strong> process X = X 1 + X 2 <strong>for</strong> possibly dependent processes X 1 , X 2 . The<br />

dependence between X 1 and X 2 is modeled by a <strong>Lévy</strong> copula. The quintuple law describes the ruin event of a <strong>Lévy</strong><br />

process by five quantities: the time of first passage relative to the time of the last maximum at first passage, the<br />

time of the last maximum at first passage, the overshoot at first passage, the undershoot at first passage and the<br />

undershoot of the last maximum at first passage. We calculate these quantities <strong>for</strong> some examples and present an<br />

applicati<strong>on</strong> in insurance risk theory. This is joint work with Claudia Klüppelberg.<br />

References<br />

[1] D<strong>on</strong>ey, R., Kyprianou, A. (2006) Overshoot and undershoot of <strong>Lévy</strong> processes, Ann. Appl. Probab. 16, 91–106.<br />

[2] Eder, I., Klüppelberg, C. (2007) The quintuple law <strong>for</strong> sums of dependent <strong>Lévy</strong> processes, In preparati<strong>on</strong>.<br />

[3] Kallsen, J., Tankov, P. (2006) Characterizati<strong>on</strong> of dependence of multidimensi<strong>on</strong>al <strong>Lévy</strong> processes using <strong>Lévy</strong><br />

copulas, Journal of Multivariate Analysis 97, 1551–1572.<br />

53


PARAMETER ESTIMATION OF LÉVY COPULA<br />

ESMAEILI, HABIB Munich University of Technology, Germany, esmaeili@ma.tum.de<br />

<strong>Lévy</strong> copula, maximum likelihood estimati<strong>on</strong>, dependence structure, compound Poiss<strong>on</strong> process:<br />

We review the c<strong>on</strong>cept of a <strong>Lévy</strong> copula to describe the dependence structure of a multidimensi<strong>on</strong>al <strong>Lévy</strong> process.<br />

We c<strong>on</strong>sider parametric models <strong>for</strong> the <strong>Lévy</strong> copula and estimate the parameters based <strong>on</strong> a maximum likelihood<br />

approach. For a bivariate compound Poiss<strong>on</strong> model (i.e. finite <strong>Lévy</strong> measure) we derive the likelihood functi<strong>on</strong> based<br />

<strong>on</strong> the three independent comp<strong>on</strong>ents of the process. Each comp<strong>on</strong>ent c<strong>on</strong>veys the parameters of the <strong>Lévy</strong> copula<br />

and some parameters of the <strong>Lévy</strong> measure depend <strong>on</strong> single jumps <strong>on</strong>ly in <strong>on</strong>e comp<strong>on</strong>ent, or simultaneous jumps in<br />

both comp<strong>on</strong>ents. For infinite <strong>Lévy</strong> measures we truncate the small jumps and base our statistical analysis <strong>on</strong> the<br />

resulting compound Poiss<strong>on</strong> model. We also present a simulati<strong>on</strong> study to investigate the influence of the truncati<strong>on</strong>.<br />

Some references<br />

[1] Bregman, Y. and Klüppelberg, C. (2005) Ruin estimati<strong>on</strong> in multivariate models with Clayt<strong>on</strong> dependence<br />

structure., Scand. Act. J. 2005(6), 462-480.<br />

[2] C<strong>on</strong>t, R. and Tankov, P. (2004) Financial Modelling with Jump <strong>Processes</strong>. Chapman & Hall/CRC, Boca Rat<strong>on</strong>.<br />

[3] Esmaeili, H. and Klüppelberg, C. (2007) Parameter estimati<strong>on</strong> of multivariate <strong>Lévy</strong> measure . In preparati<strong>on</strong>.<br />

[4] Kallsen, J. and Tankov, P. (2006) Characterizati<strong>on</strong> of dependence of multidimensi<strong>on</strong>al <strong>Lévy</strong> processes using <strong>Lévy</strong><br />

copulas. J. Mult. Anal. 97, 1551-1572.<br />

54


ALMOST SURE LIMIT THEOREMS FOR SEMI-SELFSIMILAR<br />

PROCESSES<br />

FAZEKAS, ISTVÁN University of Debrecen, Hungary, fazekasi@inf.unideb.hu<br />

Almost sure limit theorem; Semi-selfsimilar process; Semistable process; Ergodic theorem; Functi<strong>on</strong>al limit theorem:<br />

An integral analogue of the almost sure limit theorem is presented <strong>for</strong> semi-selfsimilar processes. In the theorem,<br />

instead of a sequence of random elements, a c<strong>on</strong>tinuous time random process is involved, moreover, instead of the<br />

logarithmic average, the integral of delta-measures is c<strong>on</strong>sidered.<br />

X(u), u ≥ 0, is called a semi-selfsimilar process if there exists a c > 1 such that<br />

� �<br />

X(cu) d=<br />

, u ≥ 0 {X(u), u ≥ 0},<br />

c1/α <strong>for</strong> some α > 0. The sign d = means that the finite dimensi<strong>on</strong>al distributi<strong>on</strong>s are equal.<br />

For t > 0 let Xt(u), u ∈ [0, 1], denote the following process<br />

Xt(u) = X(tu)<br />

, u ∈ [0, 1] .<br />

t1/α Let µt denote the distributi<strong>on</strong> of the process Xt <strong>on</strong> D[0, 1].<br />

Theorem. Let X(u), u ≥ 0, be a semi-selfsimilar process with càdlàg trajectories. Let X(0) = 0 a.s. Assume<br />

that the tail σ-algebra of the process X(u) is trivial, i.e. <strong>for</strong> any A ∈ F∞ P(A) is zero or <strong>on</strong>e. Then <strong>for</strong> any bounded<br />

measurable functi<strong>on</strong>al F : D[0, 1] → R<br />

<strong>for</strong> almost all ω ∈ Ω where<br />

lim<br />

T →∞<br />

� T<br />

1 1<br />

log T 1 t F[Xt(.,<br />

�<br />

ω)] dt = F[x] dµ(x)<br />

D[0,1]<br />

µ = 1<br />

� c<br />

1<br />

log c 1 t µt dt<br />

is a mixture of the distributi<strong>on</strong>s of the processes Xt.<br />

Let µT, ω be the following random measure <strong>on</strong> the space D[0, 1]<br />

Then<br />

µT, ω(A) = 1<br />

� T<br />

1<br />

log T 1 t IA(Xt(., ω)) dt .<br />

lim<br />

T →∞ µT, ω = µ<br />

<strong>for</strong> almost all ω ∈ Ω.<br />

Then the theorem is applied to obtain almost sure limit theorems <strong>for</strong> semistable processes. Discrete versi<strong>on</strong>s of<br />

the above theorems are proved. In particular, an almost sure functi<strong>on</strong>al limit theorem is obtained <strong>for</strong> semistable<br />

random variables.<br />

References<br />

[1] Fazekas, I., Rychlik, Z., (2005) Almost sure limit theorems <strong>for</strong> semi-selfsimilar processes, Probab. Math. Statist.<br />

25, 241–255.<br />

[2] Major, P. (1998) Almost sure functi<strong>on</strong>al limit theorems. Part I. The general case, Studia Sci. Math. Hungar. 34,<br />

273–304.<br />

55


ESTIMATES OF GREEN FUNCTION FOR SOME<br />

PERTURBATIONS OF FRACTIONAL LAPLACIAN<br />

GRZYWNY, TOMASZ Wroc̷law University of Technology, POLAND, tomasz.grzywny@pwr.wroc.pl<br />

Ryznar, Micha̷l Wroc̷law University of Technology, POLAND<br />

Green functi<strong>on</strong>; symmetric stable process; relativistic stable process; <strong>Lévy</strong> process:<br />

Suppose that Yt is a d-dimensi<strong>on</strong>al symmetric <strong>Lévy</strong> process with its <strong>Lévy</strong> measure such that it differs from the <strong>Lévy</strong><br />

measure of the isotropic α-stable process (0 < α < 2) by a finite signed measure. For a bounded Lipschitz open<br />

set D we compare the Green functi<strong>on</strong>s of the process Y and its stable counterpart. We prove a few comparability<br />

results either <strong>on</strong>e sided or two sided. Assuming an additi<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> about the difference of the densities of the<br />

<strong>Lévy</strong> measures, namely that it is of order of |x| −d+ϱ as |x| → 0, where ϱ > 0, we prove that the Green functi<strong>on</strong>s are<br />

comparable, provided D is c<strong>on</strong>nected.<br />

These results apply <strong>for</strong> example to the relativistic α-stable process. The bounds <strong>for</strong> its Green functi<strong>on</strong>s were<br />

proved be<strong>for</strong>e <strong>for</strong> d > α and smooth sets. In the paper we also c<strong>on</strong>sidered <strong>on</strong>e-dimensi<strong>on</strong>al case <strong>for</strong> α ≥ 1 and proved<br />

that the Green functi<strong>on</strong>s <strong>for</strong> a bounded open interval are comparable which is the case not treated in the literature<br />

to our best knowledge.<br />

References<br />

[1] Grzywny, T., Ryznar, M., Estimates of Green functi<strong>on</strong> <strong>for</strong> some perturbati<strong>on</strong>s of fracti<strong>on</strong>al Laplacian, Illinois J.<br />

Math. (to appear).<br />

[2] Grzywny, T., Ryznar, M., Two-sided optimal bounds <strong>for</strong> Green functi<strong>on</strong>s of half-spaces <strong>for</strong> relativistic α-stable<br />

process, preprint (2007).<br />

56


APPROXIMATION OF JUMP PROCESSES ON FRACTALS<br />

HINZ, MICHAEL University of Jena, Germany, mhinz@minet.uni-jena.de<br />

Jump processes; fractals; Dirichlet <strong>for</strong>ms; c<strong>on</strong>vergence:<br />

We c<strong>on</strong>sider Markov pure jump processes <strong>on</strong> fractal sets in Euclidean space. Such processes have been studied<br />

by several authors in a number of recent works. First we investigate jump processes given <strong>on</strong> a general d-set, usually<br />

of zero Lebesgue measure. On closed parallel sets of positive Lebesgue measure decreasing to the d-set we can define<br />

jump processes via Dirichlet <strong>for</strong>ms. We show they c<strong>on</strong>verge in a reas<strong>on</strong>able way to the process <strong>on</strong> the d-set. Our<br />

main idea is to use some suitable spatial averaging encoded in measures <strong>on</strong> the parallel sets and to prove the Mosco<br />

c<strong>on</strong>vergence of the Dirichlet <strong>for</strong>ms associated to the processes. This implies the c<strong>on</strong>vergence of the spectral structures<br />

in the sense of Kuwae and Shioya and in particular the weak c<strong>on</strong>vergence of the finite dimensi<strong>on</strong>al distributi<strong>on</strong>s of<br />

the processes under a can<strong>on</strong>ical choice of initial distributi<strong>on</strong>s. For nice classes of self-similar sets, we also provide<br />

approximati<strong>on</strong>s in terms of finite Markov chains. As usual, their state spaces are the vertices of the prefractal<br />

graphs. The proofs are similar to the d-set case. Without much additi<strong>on</strong>al ef<strong>for</strong>t, we also obtain a result c<strong>on</strong>cerning<br />

the c<strong>on</strong>vergence of the processes in the Skorohod spaces D in this case.<br />

References<br />

[1] Chen, Z.-Q., Kumagai, T. (2003) Heat kernel estimates <strong>for</strong> stable-like processes <strong>on</strong> d-sets, Stoch. Proc. and<br />

their Appl. 108 , 27–62. [2] Ethier, St.N., Kurtz, Th.G. (1986) Markov processes, Wiley, New York. [3] Fukushima,<br />

M., Oshima, Y., Takeda, M. (1994) Dirichlet <strong>for</strong>ms and symmetric Markov processes, deGruyter, Berlin, New York.<br />

[4] Hansen, W., Zähle, M. (2006) Restricting α-stable <strong>Lévy</strong> processes from R n to fractal sets, Forum Math. 18,<br />

171–191. [5] Kumagai, T. (2001) Some remarks <strong>for</strong> jump processes <strong>on</strong> fractals, In: Grabner, Woess (Eds.), Trends<br />

in mathematics: Fractals in Graz 2001, Birkhäuser, Basel. [6] Kuwae, K., Shioya, T. (2003) C<strong>on</strong>vergence of spectral<br />

structures, Comm. Anal. Geom. 11 (4), 599–673. [7] Stós, A. (2000) Symmetric α-stable processes <strong>on</strong> d-sets, Bull.<br />

Polish Acad. Sci. Math. 48, 237–245.<br />

57


ON TRACTABLE FINITE-ACTIVITY LÉVY LIBOR MARKET<br />

MODELS<br />

HUBALEK, FRIEDRICH Vienna University of Technology, Austria, fhubalek@fam.tuwien.ac.at<br />

Hula, Andreas Vienna University of Technology, Austria<br />

<strong>Lévy</strong> LIBOR market model; marked point process; interest rate models; jump processes in finance:<br />

Two attractive features of classical LIBOR market models are (i) positive interest rates, and (ii) validity of the<br />

Black 76 <strong>for</strong>mula <strong>for</strong> caplets resp. floorlets. We investigate, how far those two properties can be realized in a <strong>Lévy</strong><br />

LIBOR market model al<strong>on</strong>g the lines of Eberlein and Özkan [1], either exactly, or approximately.<br />

We study in particular models driven by finite-activity jump processes (marked point processes) with and without<br />

Gaussian comp<strong>on</strong>ents. In the <strong>for</strong>mer case the model is c<strong>on</strong>diti<strong>on</strong>ally lognormal, in the latter piecewise deterministic<br />

<strong>on</strong> (small) time intervals inbetween jumps. This allows quite explicit exact simulati<strong>on</strong> and calculati<strong>on</strong>.<br />

References<br />

[1] Eberlein, E., Ózkan, F. (2005) The <strong>Lévy</strong> Libor Model, Finance and Stochastics 9 (3), 327–348.<br />

[2] Eberlein, E., Kluge, W. (2007) Calibrati<strong>on</strong> of <strong>Lévy</strong> term structure models, In Advances in Mathematical Finance:<br />

In H<strong>on</strong>or of Dilip Madan, M. Fu, R. A. Jarrow, J.-Y. Yen, and R. J. Elliott (Eds.), Birkhäuser, 155–180.<br />

[3] Belomestny, D., Schoenmakers, J. (2006) A jump-diffusi<strong>on</strong> Libor model and its robust calibrati<strong>on</strong>, SFB 649<br />

Discussi<strong>on</strong> Paper, number SFB649DP2006–037, Humboldt University, Berlin.<br />

58


STOCHASTICALLY LIPSCHITZIAN FUNCTIONS AND LIMIT<br />

THEOREMS FOR FUNCTIONALS OF SHOT NOISE PROCESSES<br />

ILIENKO, ANDRII, Nati<strong>on</strong>al Technical University of Ukraine, Ukraine, a ilienko@ukr.net<br />

Shot noise process; N<strong>on</strong>-linear functi<strong>on</strong>; Integrated process; Central limit theorem<br />

C<strong>on</strong>sider the stati<strong>on</strong>ary shot noise process θ of the <strong>for</strong>m<br />

�<br />

θ(t) = g(t − s)dζ(s), t ∈ R, (5)<br />

R<br />

with a n<strong>on</strong>-random functi<strong>on</strong> g ∈ L2(R) and a driving <strong>Lévy</strong> process ζ.<br />

We focuse <strong>on</strong> limit theorems <strong>for</strong> n<strong>on</strong>-linear functi<strong>on</strong>als of the process (5). More precisely, we discuss the asymptotic<br />

behavior of the integrated process ΘK of the <strong>for</strong>m<br />

ΘK(T) =<br />

� T<br />

where K : R → R is a n<strong>on</strong>-random c<strong>on</strong>tinuous functi<strong>on</strong>.<br />

0<br />

K(θ(t))dt, T > 0,<br />

Denote by L2(Ω, R2 ) the space of all two-dimensi<strong>on</strong>al random vectors � ξ = (ξ1, ξ2) <strong>on</strong> the given probability space<br />

with Eξ2 i < ∞, i = 1, 2, and let B(R) be the Borel σ-algebra <strong>on</strong> R.<br />

Definiti<strong>on</strong> 1. Let M ⊂ L2(Ω, R 2 ). We say that a c<strong>on</strong>tinuous functi<strong>on</strong> K : R → R is stochastically Lipschitzian<br />

w.r.t. M if there exists L > 0 such that<br />

<strong>for</strong> each � ξ ∈ M.<br />

E(K(ξ1 + ξ2) − K(ξ1)) 2 ≤ L · Eξ 2 2<br />

Definiti<strong>on</strong> 2. Let M ⊂ L2(Ω, R 2 ). We say that a c<strong>on</strong>tinuous functi<strong>on</strong> K : R → R is stochastically locally<br />

Lipschitzian w.r.t. M if there exist ɛ > 0, L > 0 such that<br />

E � �2 2<br />

(K(ξ1 + ξ2) − K(ξ1)) · I {|ξ2|≤ɛ} ≤ L · Eξ2 <strong>for</strong> each � ξ ∈ M. Here IA denotes the indicator functi<strong>on</strong> of the event A.<br />

Definiti<strong>on</strong> 3. Let θ be a shot noise process with representati<strong>on</strong> (5), and<br />

�<br />

Mθ = �ξ ∈ L2(Ω, R 2 �<br />

�<br />

): ξi = g(−s)dζ(s), i = 1, 2; A1, A2 ∈ B(R), A1 ∩ A2 = ∅ .<br />

Ai<br />

We say that a functi<strong>on</strong> K : R → R is stochastically Lipschitzian (resp., stochastically locally Lipschitzian) w.r.t. the<br />

shot noise process θ (and write K ∈ SLθ or K ∈ SLLθ ) if K is stochastically Lipschitzian (resp., stochastically<br />

locally Lipschitzian) w.r.t. the set Mθ.<br />

We prove central limit theorems <strong>for</strong> ΘK(T) in both SLθ and SLLθ cases, and give some general examples of SLθ<br />

and SLLθ functi<strong>on</strong>s.<br />

59


COMPOSITION OF POISSON VARIABLES WITH<br />

DISTRIBUTIONS<br />

ISHIKAWA, YASUSHI Ehime University, Japan, slishi@math.sci.ehime-u.ac.jp<br />

Compositi<strong>on</strong>; Poiss<strong>on</strong> space; asymptotic expansi<strong>on</strong>:<br />

In the Wiener space, Watanabe theory <strong>for</strong> Sobolev spaces over Wiener space and the theory of stochastic calculus<br />

c<strong>on</strong>structed <strong>on</strong> these spaces have been aplied to finance by Yoshida [8], [9], especially by using asymptotic expansi<strong>on</strong>.<br />

On the Poiss<strong>on</strong> space <strong>on</strong>e may try to c<strong>on</strong>struct similar <strong>for</strong>mulati<strong>on</strong>. However the situati<strong>on</strong> differs greatly due to the<br />

lack of what plays the same role as the Ornstein-Uhlembeck operator <strong>on</strong> the Wiener space. In this article we try this<br />

subject based <strong>on</strong> some tools <strong>for</strong> analysis developed by Picard, Kunita et al.<br />

In expanding a functi<strong>on</strong> g<br />

∞� 1<br />

g(x) ∼ g(a) +<br />

j! g(j) (a)(x − a) j ,<br />

j=1<br />

it happens that g (j) (.) is no l<strong>on</strong>ger a functi<strong>on</strong> <strong>for</strong> j ≥ j0, but an element of Schwarz distributi<strong>on</strong>s. This causes a<br />

difficulity in studying the expansi<strong>on</strong> g ◦F, where F is a random variable. For this reas<strong>on</strong> we first study the composite<br />

T ◦ F, where T is a distribut<strong>on</strong>.<br />

We define the compositi<strong>on</strong> by Fourier trans<strong>for</strong>m <strong>for</strong> a tempered distributi<strong>on</strong> T with a “smooth” random variable<br />

F. A sufficient c<strong>on</strong>diti<strong>on</strong> so that the compositi<strong>on</strong> is weel defined is the n<strong>on</strong> degeneracy c<strong>on</strong>diti<strong>on</strong> (ND) of the first<br />

order appearing below, as it often appears in the Malliavin calculus of jump type.<br />

To this end we introduce a suitable functi<strong>on</strong> space (Sobolev spaces) over Poiss<strong>on</strong> space, the dual spaces, and<br />

define the composite. In this article we c<strong>on</strong>fine ourselves to tempered distributi<strong>on</strong> <strong>for</strong> T due to the computati<strong>on</strong>al<br />

c<strong>on</strong>venience.<br />

Arguments <strong>for</strong> the asymptotic expansi<strong>on</strong> will be treated in Hayashi [2].<br />

References<br />

[1] Bichteler, K., Gravereaux, J.B., Jacod,J., Malliavin calculus <strong>for</strong> processes with jumps. Stochastic M<strong>on</strong>ographs,<br />

vol.2, M. Davis, ed., L<strong>on</strong>d<strong>on</strong>, Gord<strong>on</strong> and Breach 1987.<br />

[2] Hayashi, M., Asymptotic expansi<strong>on</strong> <strong>for</strong> functi<strong>on</strong>als of Poiss<strong>on</strong> random measure, PhD Thesis (Preprint), 2007.<br />

[3] Ishikawa, Y. and Kunuts, H., Malliavin calculus <strong>on</strong> the Wiener-Poiss<strong>on</strong> space and its applicati<strong>on</strong> to can<strong>on</strong>ical<br />

SDE with jumps, Stochastic processes and their applicati<strong>on</strong>s 116 (2006) 1743–1769.<br />

[4] Ishikawa, Y., Compositi<strong>on</strong> with distributi<strong>on</strong>s, Preprint, 2007.<br />

[5] Kunita, H., Stochastic flows acting <strong>on</strong> Schwartz distributi<strong>on</strong>s, J. Theor. Prabab. 7 (1994), 247–278.<br />

[6] Nualart, D., The Malliavin calculus and related topics, Springer, 1995.<br />

[7] Picard, J., On the existence of smooth densities <strong>for</strong> jump processes, PTRF 105, 481-511 (1996).<br />

[8] Yoshida, N., Asymptotic expansi<strong>on</strong> <strong>for</strong> statistics related to small diffusi<strong>on</strong>s, J. Japan Statist. Soc. 22 (1992), no.<br />

2, 139–159.<br />

[9] Yoshida, N., C<strong>on</strong>diti<strong>on</strong>al expansi<strong>on</strong>s and their applicati<strong>on</strong>s. (English summary) Stochastic Process. Appl. 107<br />

(2003), no. 1, 53–81.<br />

60


MULTIVARIATE IBNR CLAIMS RESERVING MODEL 1<br />

IVANOVA, NATALIA Tver State University, Russia, natioanidi@tvcom.ru<br />

Multidimensi<strong>on</strong>al Poiss<strong>on</strong> process; collective risk model; IBNR reserves:<br />

We c<strong>on</strong>sider the total ultimate multivariate claims random vector process U(t) of the m (comm<strong>on</strong>ly dependent)<br />

lines of business as multidimensi<strong>on</strong>al compound Poiss<strong>on</strong> [2], where claims arrival process has following special <strong>for</strong>m<br />

of comp<strong>on</strong>ent dependence:<br />

�<br />

�<br />

N(t) = (N1(t), . . ., Nm(t)) = N (i) (t), �<br />

N (i) (t), . . . , �<br />

i∈I1<br />

i∈I2<br />

i∈Im<br />

N (i) �<br />

(t) ,<br />

where i = (i1, . . .,im) is multivariate index, ik = 0, 1, k = 1, . . . , m; I is the set of all possible values of the index i;<br />

Ik = {i ∈ I : ik = 1}; N (i) (t) are independent Poiss<strong>on</strong> processes with parameters λ (i) ≥ 0, λ = �<br />

i∈I λ(i) > 0. Here<br />

each comp<strong>on</strong>ent Nk(t) shows the number of claims of the k-th type, that occur up to the moment t. The coordinates<br />

of the vector N(t) are dependent.<br />

For each index i let {X (i)<br />

j } be a sequence of independent identically distributed m-dimensi<strong>on</strong>al vectors. These<br />

variables represent the random claim sizes of the policies, whose payments has structure corresp<strong>on</strong>ding to index i.<br />

This means that if the coordinate ik of the index i is equal 0, then the corresp<strong>on</strong>ding coordinate of the random vector<br />

X (i)<br />

j is equal 0 almost surely. If ik = 1, then the k-th comp<strong>on</strong>ent of the coordinate X (i,k)<br />

j<br />

i∈I<br />

j=1<br />

in the vector X (i)<br />

j describes<br />

the payment by a c<strong>on</strong>tract of k-th type <strong>for</strong> the policy with claim structure i. Corresp<strong>on</strong>ding total ultimate claim<br />

process model has the <strong>for</strong>m<br />

U(t) = (U1(t), . . . , Um(t)) = � N (i) (t) �<br />

I(εj = i)X (i)<br />

j ,<br />

where {εj, j ≥ 1} are i.i.d.r.v. with values from the index set I, whose distributi<strong>on</strong> is given by the law P(εj = i) =<br />

λ (i) /λ.<br />

The total ultimate claims (TUC) incurred in a given period is defined as follows:<br />

TUC = paid claims + outstanding claims reserve + IBNR (Incurred But Not Reported) claims reserve.<br />

In [1] it was offered <strong>on</strong>e dimensi<strong>on</strong>al claims reserving model with independent gamma distributed paid claims under<br />

special type “homogeneous allocati<strong>on</strong> principle”. It allocates the coefficient of variati<strong>on</strong> (CoV ) of the TUC with<br />

multiple underwriting periods to the CoV of the TUC of the single <strong>on</strong>e.<br />

We have following quantities <strong>for</strong> n underwriting periods, which are divided into the parts of each (i-th, i = 1, . . .,n)<br />

underwriting period: V (Vi) — premium volume; U (Ui) — TUC; µ = E(U) (µi = E(Ui)) — mean of the TUC;<br />

k = CoV (U) (ki = CoV (Ui)) — coefficient of variati<strong>on</strong>; Sik, 1 ≤ i, k ≤ n — claims occurred in period i and reported<br />

in period i + k − 1 (paid in period i + k); R = �n �n i=2 k=n−i+2 Sik — total INBR reserve.<br />

In the paper [1] under the assumpti<strong>on</strong>s:<br />

– V = (1 + θ)µ (Vi = (1 + θ)µi), where θ is the loading factor;<br />

– Sik, 1 ≤ i, k ≤ n are independent, gamma distributed;<br />

– E(Sik) = Vi/V xiyk (<strong>for</strong> some parameters xi, yk); CoV (Sik) = � �<br />

V/Vi 1/α (<strong>for</strong> some parameters α > 0)<br />

the (<strong>on</strong>e-dimensi<strong>on</strong>al) estimati<strong>on</strong> procedure of parameters (xi, yk, α) was offered; the IBNR claims reserves<br />

parameters and distributi<strong>on</strong> was restored. We c<strong>on</strong>sider multivariate generalizati<strong>on</strong> of offered method of IBNR claims<br />

reserves modelling, based <strong>on</strong> the proposed multidimensi<strong>on</strong>al collective risk model.<br />

References<br />

[1] Hürlimann, W. (2004) A Gamma IBNR claims reserving model with dependent development period. Prepared<br />

<strong>for</strong> the Actuarial Studies in N<strong>on</strong>-Life Insurance Colloquium, June 19-22 2007, Orlando.<br />

[2] Ivanova, N.L., Khokhlov, Yu.S. (2005) On multivariate collective risk models, Mosc. Univ. Comput. Math.<br />

Cybern., No. 3, 22–30.<br />

1 This work was supported by the Russian Foundati<strong>on</strong> <strong>for</strong> Basic Research, grant 05-01-00583, 06-01-626.<br />

61


ROBUST WAVELET-DOMAIN ESTIMATION OF THE<br />

FRACTIONAL DIFFERENCE PARAMETER IN HEAVY-TAILED<br />

TIME SERIES<br />

JACH, AGNIESZKA Universidad Carlos III de Madrid, Spain, ajach@est-ec<strong>on</strong>.uc3m.es<br />

Kokoszka, Piotr Utah State University, USA<br />

Heavy tails; trend; wavelets; pseudo-likelihood:<br />

We investigate the per<strong>for</strong>mance of several wavelet-based estimators of the fracti<strong>on</strong>al difference parameter. We c<strong>on</strong>sider<br />

situati<strong>on</strong>s where, in additi<strong>on</strong> to l<strong>on</strong>g-range dependence, the time series exhibit heavy tails and are perturbed by<br />

polynomial and change-point trends. We study in greater detail a Wavelet-domain pseudo Maximum Likelihood<br />

Estimator (WMLE), <strong>for</strong> which we provide an asymptotic and finite sample justificati<strong>on</strong>. Using numerical experiments,<br />

we show that unlike the traditi<strong>on</strong>al time-domain estimators, the estimators based <strong>on</strong> the wavelet trans<strong>for</strong>m are robust<br />

to additive trends and change points in mean, and produce accurate estimates even under significant departures from<br />

normality. The WMLE appears to dominate a regressi<strong>on</strong>-based wavelet estimator in terms of smaller RMSE. The<br />

techniques under c<strong>on</strong>siderati<strong>on</strong> are applied to the Ethernet traffic traces.<br />

References<br />

[1] Craigmile, P., Guttorp, P., Percival, D. (2005) Wavelet-Based Parameter Estimati<strong>on</strong> <strong>for</strong> Polynomial C<strong>on</strong>taminated<br />

Fracti<strong>on</strong>ally Differenced <strong>Processes</strong>, IEEE Transacti<strong>on</strong>s <strong>on</strong> Signal Processing 53, 3151–61.<br />

[2] Hsu, N-J. (2006) L<strong>on</strong>g-memory wavelet models, Statistica Sinica 16, 1255–1272.<br />

[3] Moulines, E., Roueff, F., Taqqu, M. (2006) A Wavelet Whittle estimator of the memory parameter of a n<strong>on</strong>stati<strong>on</strong>ary<br />

Gaussian time series, Arxiv preprint.<br />

[4] Park, C, Hernández-Campos, F., Marr<strong>on</strong> J., Smith, F. (2005) L<strong>on</strong>g-Range Dependence in a Changing Traffic Mix,<br />

Computer Networks 48, 4010-422.<br />

[5] Percival, D., Walden, A. (2000) Wavelet Methods <strong>for</strong> Time Series Analysis, Cambridge University Press.<br />

[6] Stoev, S., Michailidis, G., Taqqu, M. (2006) Estimating heavy-tail exp<strong>on</strong>ents through max self-similarity, Tech.<br />

Report 445 University of Michigan.<br />

62


PERTURBATIONS OF FRACTIONAL LAPLACIAN BY<br />

GRADIENT OPERATORS<br />

JAKUBOWSKI, TOMASZ Wroc̷law University of Technology, Poland, Tomasz.Jakubowski@pwr.wroc.pl<br />

Symmetric α-stable process; gradient perturbati<strong>on</strong>s, Green functi<strong>on</strong>; Harnack Principles:<br />

We c<strong>on</strong>struct a c<strong>on</strong>tinuous transiti<strong>on</strong> density of the semigroup generated by ∆α/2 + b(x) · ∇ <strong>for</strong> 1 < α < 2, d ≥ 1<br />

and b in the Kato class K α−1<br />

d <strong>on</strong> Rd . For small time the transiti<strong>on</strong> density is comparable with that of the symmetric<br />

α-stable process. Then we study the potential theory of the perturbed process Yt. Green functi<strong>on</strong> of the process Yt<br />

is comparable with the <strong>on</strong>e of symmetric α-stable process. Harnack Inequality and Boundary Harnack Principle hold<br />

<strong>for</strong> Yt.<br />

References<br />

[1] Bogdan, K., Jakubowski, T. (2007) Estimates of heat kernel of fracti<strong>on</strong>al Laplacian perturbed by gradient operators,<br />

Commun. Math. Phys. 271 (1), 179–198.<br />

[2] Jakubowski, T., (2007) Estimates of Green functi<strong>on</strong> <strong>for</strong> fracti<strong>on</strong>al Laplacian perturbed by gradient, Preprint.<br />

63


EXOTIC OPTION PRICING ON SINGLE NAME CDS UNDER<br />

JUMP MODELS<br />

JÖNSSON, HENRIK EURANDOM, The Netherlands, j<strong>on</strong>ss<strong>on</strong>@eurandom.tue.nl<br />

Garcia, João Dexia Group, Belgium<br />

Goossens, Serge Dexia Bank, Belgium<br />

Schoutens, Wim K.U. Leuven, Belgium<br />

<strong>Lévy</strong> processes; firm value model; Credit Default Swaps; swapti<strong>on</strong>s:<br />

Credit Default Swaps (CDSs) have become in the last decennium very important instruments to deal with credit<br />

risk. These financial c<strong>on</strong>tracts are now available in quite liquid <strong>for</strong>m <strong>on</strong> thousands of underlyers and are traded daily<br />

in huge volume. A market has been <strong>for</strong>med dealing with opti<strong>on</strong>s or derivatives <strong>on</strong> these CDSs. The market is <strong>for</strong><br />

the moment quite illiquid, but is expected to gain volume over the next years.<br />

Credit risk modeling is about modeling losses. These losses are typically coming unexpectedly and triggered by<br />

shocks. So any process modeling the stochastic nature of losses should reas<strong>on</strong>able include jumps. The presents of<br />

jumps is even of greater importance if <strong>on</strong>e deals with derivatives <strong>on</strong> CDSs because of the leveraging effects. Jump<br />

processes have proven already their modeling abilities in other settings like equity and fixed income (see <strong>for</strong> example<br />

[2]) and have recently found their way into credit risk modeling. In this paper we review a few jump driven models <strong>for</strong><br />

the valuati<strong>on</strong> of CDSs and show how under these dynamic models also pricing of (exotic) derivatives <strong>on</strong> single name<br />

CDSs is possible. More precisely, we set up fundamental firm value models that allow <strong>for</strong> fast pricing of the ’vanillas’<br />

of the CDS derivative markets: payer and receiver swapti<strong>on</strong>s. Moreover, we detail how a CDS spread simulator can<br />

be set up under this framework and illustrate its use <strong>for</strong> the pricing of exotic derivatives <strong>on</strong> single name CDSs as<br />

underlyers.<br />

The starting point of the model is the approach originally presented by Black and Cox [1]. According to this<br />

approach an event of default occurs when the asset value of the firm crosses a deterministic barrier. This barrier<br />

corresp<strong>on</strong>ds to the recovery value of the firm’s debt. Black and Cox assumed a geometrical Brownian moti<strong>on</strong> <strong>for</strong> the<br />

firm’s value process.<br />

We use the same methodology as Black and Cox but work under exp<strong>on</strong>ential <strong>Lévy</strong> models with positive drift and<br />

allowing <strong>on</strong>ly <strong>for</strong> negative jumps. The pricing of a CDS depends fully <strong>on</strong> the default probability of the firm, that is,<br />

the probability of jumping below the lower barrier. In our setting, <strong>on</strong>ly allowing <strong>for</strong> negative jumps, we can calculate<br />

these probabilities using the double Laplace inversi<strong>on</strong> approach based <strong>on</strong> the Wiener-Hopf factorizati<strong>on</strong>.<br />

References<br />

[1] Black, F., Cox, J. (1976) Valuing corporate securities: some effects <strong>on</strong> b<strong>on</strong>d indenture provisi<strong>on</strong>s, J. Finance 31,<br />

351–367.<br />

[2] Schoutens, W. (2003) <strong>Lévy</strong> <strong>Processes</strong> in Finance: Pricing Financial Derivatives, Wiley.<br />

64


TWO-SIDED EXIT PROBLEMS FOR A COMPOUND POISSON<br />

PROCESS WITH EXPONENTIAL NEGATIVE JUMPS AND<br />

ARBITRARY POSITIVE JUMPS<br />

KADANKOVA, TETYANA Hasselt University, Belgium, tetyana.kadankova@uhasselt.be<br />

Noël Veraverbeke Hasselt University, Belgium<br />

Two-sided exit; process with reflecting barriers; asymptotic distributi<strong>on</strong>; scale functi<strong>on</strong>;<br />

<strong>Lévy</strong> processes reflected from the barriers are an object of many studies. Spectrally <strong>on</strong>e-sided reflected <strong>Lévy</strong> processes,<br />

<strong>for</strong> instance, were studied in [3], [9], [10] and [8]. D<strong>on</strong>ey and Maller [5] c<strong>on</strong>sidered random walks with curved barriers,<br />

while reflected random walks with general barrier in c<strong>on</strong>text of molecular biology were studied in [6]. Asmussen and<br />

Pihlsg˚ard studied loss rates of general <strong>Lévy</strong> processes with two reflecting barriers.<br />

In this work we c<strong>on</strong>sider a special class of <strong>Lévy</strong> processes reflected at <strong>on</strong>e (two) barriers. We will determine<br />

several boundary characteristics <strong>for</strong> a compound Poiss<strong>on</strong> process with arbitrary positive jumps and with negative<br />

exp<strong>on</strong>ential jumps reflected at the barriers. Our motivati<strong>on</strong> to study such problems stems from the fact that reflected<br />

<strong>Lévy</strong> processes are widely applied as mathematical models in queueing theory [2] and financial mathematics [1], [4].<br />

Some of the present results obtained are given in terms of the scale functi<strong>on</strong> [3] of the process. The limit<br />

distributi<strong>on</strong> of the first passage times and the first exit time is found. The joint distributi<strong>on</strong> of the supremum,<br />

infimum and the value of the process is also determined. The transient and asymptotic distributi<strong>on</strong> of the process<br />

reflected at two barriers is obtained. These results can be generalized to some other <strong>Lévy</strong> processes.<br />

References<br />

[1] Avram, F., Kyprianou, A.E. and Pistorius, M.R. (2004) Exit problems <strong>for</strong> spectrally negative <strong>Lévy</strong> processes and<br />

applicati<strong>on</strong>s to (Canadized) Russian opti<strong>on</strong>s. Ann. Appl. Prob., 14, 215-235.<br />

[2] Asmussen, S. (2003) Applied Probability and Queues, 2nd ed. Springer, New York.<br />

[3] Bertoin, J. (1996). <strong>Lévy</strong> processes. Cambridge University Press.<br />

[4] C<strong>on</strong>t, R., Tankov, P. (2004) Financial modelling with jump processes. Chapman & Hall, Boca, Rat<strong>on</strong>.<br />

[5] D<strong>on</strong>ey, R.A., Maller, R.A. (2000) Random walks crossing curved boundaries: functi<strong>on</strong>al limit theorems, stability<br />

and asymptotic distributi<strong>on</strong>s <strong>for</strong> exit times and positi<strong>on</strong>s. Adv. Appl. Prob. 32, 1117-1149.<br />

[6] Hansen, N.R. (2006) The maximum of a random walk reflected at a general barrier. Ann. Appl. Prob. 16(1),<br />

15-29.<br />

[7] Kou, S.G., Wang H. (2003) First passage times of a jump diffusi<strong>on</strong> process. Adv. Appl. Prob, 35, 504-531.<br />

[8] Lambert, A. (2000) Completely asymmetric <strong>Lévy</strong> processes c<strong>on</strong>fined in a finite interval. Ann. Inst. H. Poincare<br />

Prob. Stat. 36, 251–274.<br />

[9] Pistorius, M.R. (2004) On exit and ergodicity of the completely asymmetric <strong>Lévy</strong> process reflected at its infimum.<br />

J. Theor. Prob., 17(1), 183-220.<br />

[10] Pistorius, M.R. (2003) On doubly reflected completely asymmetric <strong>Lévy</strong> processes. Stoch. Proc. and their<br />

Appl., 107, 131-143.<br />

[11] Kadankov, V. F., Kadankova, T. (2005) On the distributi<strong>on</strong> of the first exit time from an interval and the value<br />

of overshoot through the boundaries <strong>for</strong> processes with independent increments and random walks. Ukr. Math. J.<br />

10(57), 1359–1384.<br />

12] Kadankova T., Veraverbeke N. On several two-boundary problems <strong>for</strong> a particular class of <strong>Lévy</strong> processes. J.<br />

Theor. Prob.(to appear).<br />

65


APPROXIMATION OF SYMMETRIC JUMP PROCESSES<br />

KASSMANN, MORITZ University of B<strong>on</strong>n, Germany, kassmann@iam.uni-b<strong>on</strong>n.de<br />

Husseini, Ryad University of B<strong>on</strong>n, Germany<br />

Jump processes; Markov chains; central-limit :<br />

We study the problem of how to approximate symmetric jump processes with state dependent jump intensities<br />

which may be quite irregular, e.g. <strong>on</strong>ly measurable. A similar result has been established <strong>for</strong> diffusi<strong>on</strong>s with generators<br />

in n<strong>on</strong>-divergence <strong>for</strong>m by Stroock/Zheng in 1997 and has been extended by Bass/Kumagai in 2006.<br />

More precisely, let Yn be <strong>for</strong> each n a c<strong>on</strong>tinuous-time Markov chain whose state space is the grid n−1Zd . Specifying<br />

<strong>for</strong> each chain a starting distributi<strong>on</strong> gives rise to a sequence Qn of probability measures <strong>on</strong> the space of càdlàg paths<br />

in Rd . We give criteria under which this sequence is tight and c<strong>on</strong>verges to a Hunt process associated to the regular<br />

Dirichlet <strong>for</strong>m<br />

E(f, f) = 1<br />

2<br />

�<br />

R d ×R d<br />

� f(x) − f(y) � k(x, y)dxdy .<br />

<strong>on</strong> L 2 (R d ) where k: R d × R d → R + is measurable, symmetric, bounded from above by c1|x − y| −d−α and satisfies<br />

an additi<strong>on</strong>al lower bound. Our assumpti<strong>on</strong>s cover the case k(x, y) ≥ c2|x − y| −d−α . Here, we provide an explicit<br />

c<strong>on</strong>structi<strong>on</strong> of approximating Markov chains. We are also able to c<strong>on</strong>siderably weaken this lower bound, allowing,<br />

<strong>for</strong> example, the jump kernel to vanish <strong>on</strong> certain open subsets touching the diag<strong>on</strong>al in R d × R d .<br />

This joint project of R. Husseini and M. Kassmann is financially supported by the German Science Foundati<strong>on</strong><br />

(DFG) via the collaborative research center SFB 611.<br />

References<br />

[1] Bass, R. F., Kumagai, T. (2006) Symmetric Markov chains <strong>on</strong> Z d with unbounded range Trans. Amer. Math.<br />

Soc., in press.<br />

[2] Husseini, R., Kassmann, M. (2007) Markov chain approximati<strong>on</strong>s <strong>for</strong> symmetric jump processes To appear in<br />

Potential Analysis.<br />

[3] Stroock, D. W., Zheng, W. (1997) Markov chain approximati<strong>on</strong>s to symmetric diffusi<strong>on</strong>s Ann. Inst. Henri<br />

Poincaré, Probab. Statist. 33, 619–649.<br />

66


YIELD CURVE SHAPES IN AFFINE ONE-FACTOR MODELS<br />

KELLER-RESSEL, MARTIN Vienna University of Technology, Austria, mkeller@fam.tuwien.ac.at<br />

Steiner, Thomas Vienna University of Technology, Austria, thomas@fam.tuwien.ac.at<br />

Affine Process; Term Structure of Interest Rates; Ornstein-Uhlenbeck-Type Process; Yield Curve<br />

We c<strong>on</strong>sider a model <strong>for</strong> interest rates, where the short rate is given by a time-homogenous, <strong>on</strong>e-dimensi<strong>on</strong>al affine<br />

process in the sense of Duffie, Filipović and Schachermayer. We show that in such a model yield curves can <strong>on</strong>ly be<br />

normal, inverse or humped (i.e. endowed with a single local maximum). Each case can be characterized by simple<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the present short rate rt. We give c<strong>on</strong>diti<strong>on</strong>s under which the short rate process will c<strong>on</strong>verge to a limit<br />

distributi<strong>on</strong> and describe the limit distributi<strong>on</strong> in terms of its cumulant generating functi<strong>on</strong>. We apply our results<br />

to the Vasiček model, the CIR model, a CIR model with added jumps and a model of Ornstein-Uhlenbeck type.<br />

References<br />

[1] Duffie, D., Filipović, D., Schachermayer, W. (2003) Affine processes and applicati<strong>on</strong>s in finance, The Annals of<br />

Applied Probability, 13(3), 984–1053.<br />

67


ASYMPTOTIC PROPERTIES OF RANDOM SUMS<br />

KHOKHLOV, YURY Tver State University, Russia, yskhokhlov@yandex.ru<br />

D’apice, Ciro Salerno University, Italy<br />

Sidorova, Oksana Tver State University, Russia<br />

Random sums; n<strong>on</strong>random centering; teletraffic modelling :<br />

In many problems of probability theory and mathematical statistics and their applicati<strong>on</strong>s we need to c<strong>on</strong>sider<br />

of centered sums of independent random variables (r.v.) when the number of summunds is itself a random variables.<br />

There are two types of centering of random sums: random centering and n<strong>on</strong>random centering. An important result<br />

<strong>for</strong> random sums with random centering is transfer theorem of Gnedenko and Fahim ([1]). This result allows us<br />

to reduce the problems <strong>for</strong> random sums to the analogous problems <strong>for</strong> n<strong>on</strong>random sums. In practical problems<br />

n<strong>on</strong>random centering is more natural. The most results in theory of random summati<strong>on</strong> have been proved in the<br />

case when the summands are independent identically distributed random variables (i.i.d.r.v.). We c<strong>on</strong>sider the case<br />

where the summands of random sums have the distributi<strong>on</strong>s from finite set of different distributi<strong>on</strong>s.<br />

Let (X (k)<br />

j , j ≥ 1) be a sequence of i.i.d.r.v. whose comm<strong>on</strong> distributi<strong>on</strong> functi<strong>on</strong> (d.f.) Fk(x) = P(X (k)<br />

j < x)<br />

bel<strong>on</strong>gs to a finite set of different d.f. {F1, . . . , Fr}, and mk(n) be the number of summands with distributi<strong>on</strong> functi<strong>on</strong><br />

Fk am<strong>on</strong>g the first <strong>on</strong>es. We assume also that these sequenses are independent <strong>for</strong> different k = 1, . . .,r, and there<br />

exist finite µk = E(X (k)<br />

j ). Let us assume that there exists a sequence of positive numbers Bn such that Bn → ∞,<br />

n → ∞, and<br />

S ∗ r� mk �<br />

n := B−1 n ((X (k)<br />

j − µk) ⇒ Y , (6)<br />

k=1 j=1<br />

where Y is some r.v. with n<strong>on</strong>degenerate distributi<strong>on</strong> G. In what follows we c<strong>on</strong>sider <strong>on</strong>ly the case where limit<br />

distributi<strong>on</strong> G in (1) is a c<strong>on</strong>voluti<strong>on</strong> of r stable distributi<strong>on</strong>s with different indices αk.<br />

Now suppose {N (1)<br />

n }, . . .,{N (r)<br />

n } are some independent sequences of positive integer-valued r.v. (but may be<br />

dependent <strong>on</strong> summands!) that are defined <strong>on</strong> the same probability space as (X (k)<br />

j ). Denote<br />

Zn = B −1<br />

n<br />

⎛<br />

r�<br />

N<br />

⎝<br />

(k)<br />

n�<br />

k=1<br />

Tn = B −1<br />

n<br />

U (k)<br />

n<br />

X<br />

j=1<br />

(k)<br />

j − mk · µk<br />

r�<br />

n�<br />

N (k)<br />

k=1 j=1<br />

(X (k)<br />

j − µk) ,<br />

= B−1<br />

n (N(k)<br />

n − mk) · µk ,<br />

Un = U (1)<br />

n + . . . + U (r)<br />

n .<br />

It is evident that Zn = Tn + Un. The main result of our c<strong>on</strong>tributi<strong>on</strong> is the following<br />

Theorem. If µk �= 0 and U (k)<br />

n<br />

⎞<br />

⎠ ,<br />

P<br />

→ U (k) , n → ∞, k = 1, . . .,r, U = U (1) + . . . + U (r) , then Zn ⇒ Z, n → ∞, and<br />

r.v. Z has representati<strong>on</strong> Z d = Y + U, where Y and U are independent.<br />

We c<strong>on</strong>sider <strong>on</strong>e applicati<strong>on</strong> of this result to modelling of telecommunicati<strong>on</strong> traffic.<br />

This investigati<strong>on</strong> was supported by Russian Foundati<strong>on</strong> <strong>for</strong> Basic Research, grants 05-01-00583, 06-01-00626.<br />

References<br />

[1] Gnedenko B.V., Fahim H (1969). On a transfer theorem, Soviet Math. Dokl. 10, 769–772.<br />

68


PRICING EQUITY SWAPS IN AN ECONOMY DRIVEN BY GEOMETRIC<br />

ITÔ-LÉVY PROCESSES<br />

KONLACK, VIRGINIE University of Yaoundé I, Camero<strong>on</strong>, ksognia@yahoo.fr<br />

Itô-<strong>Lévy</strong> processes; martingale; Finance:<br />

We c<strong>on</strong>sider the pricing of equity swaps and capped equity swaps. Since models driven by Itô-<strong>Lévy</strong> processes are more<br />

attractive than classical diffusi<strong>on</strong> models, we suppose that the market is driven by a geometric Itô-<strong>Lévy</strong> processes. We<br />

use the martingale method and the technique of c<strong>on</strong>vexity correcti<strong>on</strong> of Hinnerich (2005). We extend the generalized<br />

pricing <strong>for</strong>mula <strong>for</strong> equity swaps to the case of geometric Itô-<strong>Lévy</strong> processes. Our results are extensi<strong>on</strong> of that of<br />

Hinnerich (2005) where she derived the generalized <strong>for</strong>mula <strong>for</strong> pricing equity swaps in an ec<strong>on</strong>omy driven by a<br />

diffusi<strong>on</strong> and market point process. We also use the two-side Laplace trans<strong>for</strong>m to derive the generalized pricing<br />

<strong>for</strong>mula of capped equity swaps.<br />

References<br />

[1] Björk, T. (1998) Arbitrage Theory in C<strong>on</strong>tinuous Time, Ox<strong>for</strong>d University Press.<br />

[2] Chance, D. M. (July 2003) Equity swaps and equty investing.<br />

[3] C<strong>on</strong>t, R. and Tankov, P. (2004) Financial Modelling With Jump <strong>Processes</strong>, Chapman & Hall/CRC Press.<br />

[4] Eberlien, E., Liinev, L. (January 2006) The <strong>Lévy</strong> swap market model<br />

[5] Hinnerich, M. (2005) Pricing Equity Swaps in and Ec<strong>on</strong>omy with Jumps.<br />

[6] Jacob, J., Shiryaev (1987) Limit Theorems <strong>for</strong> Stochastic <strong>Processes</strong>, Springer-Verlag.<br />

[7] Liao, Wang (2003) Pricing Models of Equity Swaps, The Journal of Futures Markets.23, 8, 751–772.<br />

[8] Musiela, M., Rutkowski, M. (1997) Martingale Methods in Financial Modelling, Springer, New York.<br />

[9] ∅ksendal, B., Sulem, A. (2005) Aplied Stochastic C<strong>on</strong>trol of Jump Diffusi<strong>on</strong>s, Springer.<br />

[10] Raible, S. (2000), <strong>Lévy</strong> processes in Finance: Theory, Numerics, and Empirical Facts. Ph.D. thesis, University<br />

of Freiburg.<br />

[11] Sato, K. I. (1999) <strong>Lévy</strong> <strong>Processes</strong> and Infinitely Divisible Distributi<strong>on</strong>s, Cambridge University Press.<br />

69


UNIFORM BOUNDARY HARNACK INEQUALITY AND MARTIN<br />

REPRESENTATION FOR α-HARMONIC FUNCTIONS<br />

KWA´SNICKI, MATEUSZ Wroc̷law University of Technology, Poland, mateusz.kwasnicki@pwr.wroc.pl<br />

Bogdan, Krzysztof Wroc̷law University of Technology, Poland<br />

Kulczycki, Tadeusz Wroc̷law University of Technology, Poland<br />

Boundary Harnack inequality; Martin representati<strong>on</strong>; Stable process:<br />

Let Xt be the isotropic α-stable process in R d , α ∈ (0, 2), d ≥ 1. C<strong>on</strong>sider an arbitrary open D ⊆ R d and define<br />

the first exit time τD = inf{t ≥ 0 : Xt /∈ D}. A n<strong>on</strong>negative functi<strong>on</strong> f : R d → [0, ∞) is called α-harm<strong>on</strong>ic, if<br />

f(x) = Exf(XτU) whenever x ∈ U and U is an open, precompact subset of D. If Xt was the Brownian moti<strong>on</strong> (i.e.<br />

the isotropic 2-stable process), we would <strong>on</strong>ly need to c<strong>on</strong>sider f defined <strong>on</strong> D, and 2-harm<strong>on</strong>icity would reduce to<br />

classical harm<strong>on</strong>icity. In our case Xt have disc<strong>on</strong>tinuous paths and XτU ∈ D c with positive probability, so we need<br />

f to be defined <strong>on</strong> whole R d . In fact we may extend the definiti<strong>on</strong> of α-harm<strong>on</strong>icity, allowing f to be a measure µ<br />

<strong>on</strong> Dc , which will be referred to as the outer charge.<br />

Let GD(x, y) denote the Green functi<strong>on</strong> of Xt <strong>on</strong> D, i.e. � GD(x, y)f(y)dy = Ex<br />

point x0 ∈ D and define the Martin Kernel<br />

whenever the limit exists. Furthermore we let<br />

�<br />

PD(x, z) =<br />

� τD<br />

0 f(Xt)dt. We fix a reference<br />

GD(x, y)<br />

MD(x, z) = lim , x ∈ D, z ∈ ∂D (7)<br />

D∋y→z GD(x0, y)<br />

D<br />

GD(x, y)ν(z − y)dy , x ∈ D, z ∈ D c<br />

be the Poiss<strong>on</strong> kernel of Xt; here ν(z −y) = cd,α|y −z| −d−α is density of the <strong>Lévy</strong> measure of Xt. These are standard<br />

definiti<strong>on</strong>s, see e.g. [2].<br />

To simplify notati<strong>on</strong>, in what follows we assume that D is bounded. The results can be easily extended to the<br />

case of unbounded D be means of Kelvin trans<strong>for</strong>m.<br />

Theorem. Let D ⊆ R d be open and bounded. The limit (7) exists <strong>for</strong> all z ∈ ∂D. Define the set of accessible points<br />

∂MD = {z ∈ ∂D : PD(x, z) = ∞} ; (9)<br />

this definiti<strong>on</strong> does not depend <strong>on</strong> x ∈ D. Then MD(x, z) is α-harm<strong>on</strong>ic in x ∈ D with zero outer charge if and <strong>on</strong>ly<br />

if z ∈ ∂MD. If z ∈ ∂D \ ∂MD, then MD(x, z) = PD(x, z)/PD(x0, z).<br />

Theorem. (Boundary Harnack Inequality) Let D ⊆ B(0, 1) be open, x1, x2 ∈ B(0, 1<br />

2 ) ∩ D, z1, z2 ∈ B(0, 1) c . Then:<br />

PD(x1, z1)PD(x2, z2) ≤ cd,αPD(x1, z2)PD(x2, z1). (10)<br />

Theorem. If f ≥ 0 is α-harm<strong>on</strong>ic in bounded D ⊆ Rd with outer charge µ, then <strong>for</strong> some finite measure σ <strong>on</strong> ∂MD:<br />

�<br />

�<br />

f(x) = PD(x, z)µ(dz) + MD(x, z)σ(dz) (11)<br />

Above theorems extend earlier results in this area, see e.g. [1], [2], [3], [4], where Lipschitz and κ-fat domains are<br />

c<strong>on</strong>sidered. In these specific cases ∂MD = ∂D and MD(x, y) is always α-harm<strong>on</strong>ic.<br />

∂MD<br />

References<br />

[1] Bogdan, K., (1997) The boundary Harnack principle <strong>for</strong> the fracti<strong>on</strong>al Laplacian, Studia Math. 123, 43–80.<br />

[2] Bogdan, K., (1999) Representati<strong>on</strong> of α-harm<strong>on</strong>ic functi<strong>on</strong>s in Lipschitz domains, Hiroshima Math. J. 29, 227–243.<br />

[3] Chen, Z.-Q., S<strong>on</strong>g, R., (1998) Martin Boundary and Integral Representati<strong>on</strong> <strong>for</strong> Harm<strong>on</strong>ic Functi<strong>on</strong>s of Symmetric<br />

Stable <strong>Processes</strong>, J. Funct. Anal. 159, 267–294.<br />

[4] S<strong>on</strong>g, R., Wu, J.-M., (1999) Boundary Harnack Principle <strong>for</strong> Symmetric Stable <strong>Processes</strong>, J. Funct. Anal. 168,<br />

403–427<br />

70<br />

(8)


ON MINIMAL β-HARMONIC FUNCTIONS OF RANDOM WALKS<br />

LEMPA, JUKKA Turku School of Ec<strong>on</strong>omics, Turku, jukka.lempa@tse.fi<br />

Random walk; Minimal β-harm<strong>on</strong>ic functi<strong>on</strong>s; Drifting Brownian moti<strong>on</strong>:<br />

We first c<strong>on</strong>sider the determinati<strong>on</strong> of the minimal β-harm<strong>on</strong>ic functi<strong>on</strong>s of a general random walk <strong>on</strong> R. We<br />

present a characterizati<strong>on</strong> of the minimal β-harm<strong>on</strong>ic functi<strong>on</strong>s <strong>for</strong> the general random walks. This characterizati<strong>on</strong><br />

is a straight<strong>for</strong>ward generalizati<strong>on</strong> of the <strong>on</strong>e by Doob et al. [2] <strong>for</strong> spatially discrete random walks. Then we utilize<br />

this characterizati<strong>on</strong> to determine the minimal β-harm<strong>on</strong>ic functi<strong>on</strong>s <strong>for</strong> the random walk. In particular, we find<br />

that there exist two of such functi<strong>on</strong>s and that they are of the same functi<strong>on</strong>al <strong>for</strong>m as the <strong>on</strong>es of drifting Brownian<br />

moti<strong>on</strong>.<br />

We c<strong>on</strong>sider also a class of trans<strong>for</strong>mati<strong>on</strong>s of the general random walk and their minimal β-harm<strong>on</strong>ic functi<strong>on</strong>s.<br />

We show that <strong>for</strong> this class of trans<strong>for</strong>mati<strong>on</strong>s the minimal β-harm<strong>on</strong>ic functi<strong>on</strong>s can be obtained from the minimal<br />

β-harm<strong>on</strong>ic functi<strong>on</strong>s of the original random walk via functi<strong>on</strong>al trans<strong>for</strong>mati<strong>on</strong>s. This class of trans<strong>for</strong>med random<br />

walks c<strong>on</strong>tains, <strong>for</strong> example, geometric random walk <strong>on</strong> R+.<br />

We discuss the potential applicability of the minimal β-harm<strong>on</strong>ic functi<strong>on</strong>s in optimal stopping of random walks.<br />

We address some key questi<strong>on</strong>s related to this potential c<strong>on</strong>necti<strong>on</strong>.<br />

References<br />

[1] Borodin, A. and Salminen, P. (2002) Handbook <strong>on</strong> Brownian moti<strong>on</strong> - Facts and <strong>for</strong>mulae, Birkhauser<br />

[2] Doob, J. L., Snell J. L. and Williams<strong>on</strong> R. E. (1960) Applicati<strong>on</strong> of boundary theory to sums of random variables,<br />

C<strong>on</strong>tributi<strong>on</strong>s to probability and statistics,, Stan<strong>for</strong>d University Press, 182 – 197<br />

[3] Dynkin, E. B., (1969) Boundary theory of Markov processes (the discrete case), Russian Math. Surveys, 24:2,<br />

1–42<br />

[4] Peskir, G. and Shiryaev, A. (2006) Optimal stopping and free-boundary problems, Birkhauser<br />

[5] Revuz, D., (1984) Markov Chains, North-Holland<br />

71


MINIMAL Q-ENTROPY MARTINGALE MEASURES FOR<br />

EXPONENTIAL LÉVY PROCESSES<br />

LIEBMANN, THOMAS Ulm University, Germany, thomas.liebmann@uni-ulm.de<br />

Kassberger, Stefan Ulm University, Germany<br />

Exp<strong>on</strong>ential <strong>Lévy</strong> process; minimal generalized entropy; q-optimal equivalent martingale maesure:<br />

Financial markets modeled by exp<strong>on</strong>ential <strong>Lévy</strong> processes usually are incomplete and infinitely many equivalent<br />

martingale measures exist. Excepti<strong>on</strong>s are models based <strong>on</strong> Brownian moti<strong>on</strong> or a Poiss<strong>on</strong> process, see <strong>for</strong> instance<br />

Selivanov (2005). Choosing the martingale measure minimizing relative entropy with respect to the real-world<br />

probability measure is c<strong>on</strong>sidered e.g. in Fujiwara and Miyahara (2003). Generalizati<strong>on</strong>s of relative entropy are given<br />

by m<strong>on</strong>ot<strong>on</strong>ic functi<strong>on</strong>s of the q-th moment of the Rad<strong>on</strong>-Nikod´ym derivative; the martingale measures resulting<br />

from a minimizati<strong>on</strong> of these q-entropies are called q-optimal martingale measures. For q less than 0 or greater than<br />

1, these measures are investigated by Jeanblanc et al. (2007). A related approach is minimizati<strong>on</strong> of the q-Hellinger<br />

process, c<strong>on</strong>sidered in a semimartingale setting by Choulli et al. (2007). If the support of the <strong>Lévy</strong> measure is too<br />

large, however, relative q-entropy does not necessarily attain a minimum within the set of equivalent martingale<br />

measures. Bender and Niethammer (2007) there<strong>for</strong>e c<strong>on</strong>sider minimizati<strong>on</strong> in the domain of signed measures in<br />

order to show c<strong>on</strong>vergence of q-optimal measures as q decreases to 1 in a portfolio optimizati<strong>on</strong> c<strong>on</strong>text. Admitting<br />

arbitrage, however, signed measures are not suitable <strong>for</strong> pricing.<br />

Here, we c<strong>on</strong>sider a multidimensi<strong>on</strong>al exp<strong>on</strong>ential <strong>Lévy</strong> process setting. The structure of martingale measures<br />

minimizing q-entropy is derived <strong>for</strong> every q in terms of the Rad<strong>on</strong>-Nikod´ym derivative and of the characteristic triplet<br />

of the <strong>Lévy</strong> process. Restricting the jump size of the Rad<strong>on</strong>-Nikod´ym derivative, equivalent probability measures can<br />

be obtained in cases where minimizati<strong>on</strong> of relative q-entropy does not assure equivalence. We derive the measure<br />

trans<strong>for</strong>mati<strong>on</strong> minimizing q-entropy subject to these restricti<strong>on</strong>s and show that, except <strong>for</strong> the bounds introduced,<br />

its structure is analogous to the unrestricted case. If they exist, all of these equivalent martingale measures preserve<br />

the <strong>Lévy</strong> property. Further, their relati<strong>on</strong> to the popular Esscher trans<strong>for</strong>m and an extensi<strong>on</strong> to time-changed <strong>Lévy</strong><br />

processes is investigated.<br />

References<br />

[1] Bender, C., Niethammer, C. (2007) On q-optimal signed martingale measures in exp<strong>on</strong>ential <strong>Lévy</strong> models, preprint.<br />

[2] Choulli, T., Stricker, C., Li, J. (2007) Minimal Hellinger martingale measures of order q, Finance and Stochastics<br />

11, 399–427.<br />

[3] Fujiwara, T., Miyahara, Y. (2003) The minimal entropy martingale measure <strong>for</strong> geometric <strong>Lévy</strong> processes, Finance<br />

and Stochastics 7, 509–531.<br />

[4] Jeanblanc, M., Klöppel, S., Miyahara, Y. (2007) Minimal f q martingale measures <strong>for</strong> exp<strong>on</strong>ential <strong>Lévy</strong> processes,<br />

Annals of Applied Probability, <strong>for</strong>thcoming.<br />

[5] Selivanov, A. V. (2005) On the martingale measures in exp<strong>on</strong>ential <strong>Lévy</strong> models, Theory Probab. Appl. 49,<br />

261–274.<br />

72


HAUSDORFF-BESICOVITCH DIMENSION OF GRAPHS AND<br />

P-VARIATION OF SOME LÉVY PROCESSES<br />

MANSTAVIČIUS, MARTYNAS Vilnius University, Lithuania, martynas.manstavicius@mif.vu.lt<br />

Hausdorff-Besicovitch dimensi<strong>on</strong>; <strong>Lévy</strong> process; Blumenthal-Getoor index; p-variati<strong>on</strong>:<br />

A c<strong>on</strong>necti<strong>on</strong> between Hausdorff-Besicovitch dimensi<strong>on</strong> of graphs of trajectories and various indices of Blumenthal<br />

and Getoor is well known <strong>for</strong> α-stable <strong>Lévy</strong> processes as well as <strong>for</strong> some stati<strong>on</strong>ary Gaussian processes possessing<br />

Orey index. Here we show that the same relati<strong>on</strong>ship holds <strong>for</strong> several classes of <strong>Lévy</strong> processes that are popular in<br />

financial mathematics models, in particular, the CGMY, the NIG, the GH, the GZ and the Meixner processes.<br />

References<br />

[1] Manstavičius, M., (2007) Hausdorff-Besicovitch dimensi<strong>on</strong> of graphs and p-variati<strong>on</strong> of some <strong>Lévy</strong> processes,<br />

Bernoulli 13(1), 40–53.<br />

73


LÉVY BASE CORRELATION<br />

MASOL, VIKTORIYA K.U.Leuven & EURANDOM, Belgium & The Netherlands,<br />

masol@eurandom.tue.nl<br />

Garcia, João Dexia Group, Belgium<br />

Goossens, Serge Dexia Bank, Belgium<br />

Schoutens, Wim K.U.Leuven, Belgium<br />

<strong>Lévy</strong> CDO models; Base correlati<strong>on</strong>; Pricing bespoke tranches:<br />

Recently, a set of <strong>on</strong>e-factor models that extend the classical Gaussian copula model <strong>for</strong> pricing synthetic CDOs<br />

have been proposed in the literature. Albrecher, Ladoucette, and Schoutens (2007) unified these approaches and<br />

proposed a <strong>on</strong>e-factor <strong>Lévy</strong> model. In the talk, we introduce, investigate, and compare some of these <strong>Lévy</strong> models.<br />

The proposed models are very tractable and per<strong>for</strong>m significantly better than the classical Gaussian copula model.<br />

Furthermore, we introduce the c<strong>on</strong>cept of <strong>Lévy</strong> base correlati<strong>on</strong>. As shown in Garcia, Goossens, Masol, Schoutens<br />

(2007), the obtained <strong>Lévy</strong> base correlati<strong>on</strong> curve is much flatter than the corresp<strong>on</strong>ding Gaussian <strong>on</strong>e. This indicates<br />

that the <strong>Lévy</strong> models indeed do much better from a fitting point of view. Additi<strong>on</strong>ally, flat base correlati<strong>on</strong> curves<br />

allow to reduce the interpolati<strong>on</strong> error and hence provide much more stable pricing of bespoke tranches.<br />

In c<strong>on</strong>clusi<strong>on</strong>, we illustrate the applicati<strong>on</strong> of <strong>Lévy</strong> base correlati<strong>on</strong> to price n<strong>on</strong>-standardized tranches of a<br />

synthetic CDO, and compare the prices obtained under Gaussian and <strong>Lévy</strong> models.<br />

References<br />

[1] Albrecher, H., Ladoucette, S. and, Schoutens, W. (2007) A generic <strong>on</strong>e-factor <strong>Lévy</strong> model <strong>for</strong> pricing synthetic<br />

CDOs., Advances in Mathematical Finance, R.J. Elliott et al. (eds.), Birkhaeuser, to appear.<br />

[2] Garcia J., Goossens, S., Masol, V., Schoutens, W. (2007) <strong>Lévy</strong> Base Correlati<strong>on</strong>, EURANDOM Report 2007-038,<br />

Technical University of Eindhoven, The Netherlands.<br />

74


GENERALIZED FRACTIONAL ORNSTEIN-UHLENBECK<br />

PROCESSES<br />

MATSUI, MUNEYA Keio University, Japan, mmuneya@math.keio.ac.jp<br />

Kotaro, Endo Keio University, Japan<br />

Fracti<strong>on</strong>al Ornstein-Uhlenbeck processes; Generalized fracti<strong>on</strong>al Ornstein-Uhlenbeck processes; Stati<strong>on</strong>arity; L<strong>on</strong>g<br />

memory:<br />

An extended versi<strong>on</strong> of the fracti<strong>on</strong>al Ornstein-Uhlenbeck process of which integrand is replaced by the exp<strong>on</strong>ential<br />

functi<strong>on</strong> of an independent <strong>Lévy</strong> process is c<strong>on</strong>sidered. We call the process the generalized fracti<strong>on</strong>al<br />

Ornstein-Uhlenbeck process. The process is also c<strong>on</strong>structed by replacing the variable of integrati<strong>on</strong> of the generalized<br />

Ornstein-Uhlenbeck process with an independent fracti<strong>on</strong>al Brownian moti<strong>on</strong> (FBM). The stati<strong>on</strong>ary property<br />

and the auto-covariance functi<strong>on</strong> of the process are studied. C<strong>on</strong>sequently, some c<strong>on</strong>diti<strong>on</strong>s of stati<strong>on</strong>arity and the<br />

l<strong>on</strong>g memory property of the process are obtained. Our underlying intenti<strong>on</strong> is to introduce the l<strong>on</strong>g memory property<br />

into the generalized Ornstein-Uhlenbeck process which has the short memory property.<br />

Definiti<strong>on</strong><br />

Let {ξt, t ∈ R} be a two sided <strong>Lévy</strong> process and a FBM {B H t } with index H ∈ (0, 1] which is independent of {ξt}.<br />

Then, <strong>for</strong> λ > 0, σ > 0 and t ≥ 0 a generalized fracti<strong>on</strong>al Ornstein-Uhlenbeck process with initial value x ∈ R is<br />

defined as<br />

Y H,x<br />

t<br />

If the initial variable satisfies (if definable)<br />

we can write Y H,x<br />

t<br />

as<br />

It is shown that Y H<br />

t is stati<strong>on</strong>ary.<br />

The auto-covariance functi<strong>on</strong><br />

:= e −λξt<br />

�<br />

x + σ<br />

� t<br />

0<br />

e λξs− dB H s<br />

� 0<br />

σ e<br />

−∞<br />

λξs− dB H s ,<br />

Y H<br />

� t<br />

t := σ e<br />

−∞<br />

−λ(ξt−ξs−) dB H s .<br />

Let H ∈ (0, 1<br />

H<br />

2 ) ∪ (1<br />

2 , 1] and N = 0, 1, 2, . . .. Then, the generalized fracti<strong>on</strong>al Ornstein-Uhlenbeck process {Yt }<br />

based <strong>on</strong> a two-sided <strong>Lévy</strong> process {ξt, t ∈ R} and an independent FBM {BH t , t ∈ R} has the following asymptotic<br />

dependent structure under some assumpti<strong>on</strong>s (change of expectati<strong>on</strong>s, etc.). For fixed t ∈ R as s → ∞,<br />

Cov � Y H<br />

t , Y H � 1<br />

t+s =<br />

2 σ2<br />

N�<br />

θ −2n<br />

� �<br />

2n−1 �<br />

1 (2H − k) s 2H−2n + O(s 2H−2N−2 ),<br />

where θ1 := − logE[e −λξ1 ] > 0.<br />

Thus, the process Y H<br />

t<br />

with H ∈ (1<br />

2<br />

n=1<br />

k=0<br />

�<br />

.<br />

, 1] can exhibit l<strong>on</strong>g-range dependence.<br />

References<br />

[1] Cheridito, P. and Kawaguchi, H. and Maejima, M. (2003) Fracti<strong>on</strong>al Ornstein-Uhlenbeck processes, Electr<strong>on</strong>. J.<br />

Probab. 8, 1–14.<br />

[2] Endo, K. and Matsui, M. (2007) Generalized fracti<strong>on</strong>al Ornstein-Uhlenbeck <strong>Processes</strong> , Preprint.<br />

[3] Lindner, A. and Maller, R.A. (2005) <strong>Lévy</strong> integrals and the stati<strong>on</strong>arity of generalized Ornstein-Uhlenbeck<br />

processes, Stochastic. <strong>Processes</strong>. Appl. 115, 1701–1722.<br />

75


OCCUPATION TIME FLUCTUATIONS OF BRANCHING<br />

PROCESSES<br />

MI̷LO´S, PIOTR <strong>Institut</strong>e of Mathematics, Polish Accademy of Sciences, Poland, pmilos@mimuw.edu.pl<br />

Functi<strong>on</strong>al central limit theorem; Occupati<strong>on</strong> time fluctuati<strong>on</strong>; Branching particles system; generalised Wiener<br />

process:<br />

Branching particles systems <strong>for</strong>m an area which receives a lot of research attenti<strong>on</strong>. I focus <strong>on</strong> a system that c<strong>on</strong>sists<br />

of particles in R d evolving independently according to a symmetric α-stable <strong>Lévy</strong> moti<strong>on</strong> and undergoing critical<br />

finite variance branching after exp<strong>on</strong>ential time. The system starts off either from Poiss<strong>on</strong> homogenous measure or<br />

equilibrium measure.<br />

The object of my interest is the occupati<strong>on</strong> time fluctuati<strong>on</strong> process<br />

Xt =<br />

� t<br />

0<br />

Ns − ENsds,<br />

where Ns(A) denotes empirical process of the above system (i.e. <strong>for</strong> set A, Nt(A) is the number of particles of that<br />

system in set A at time t). Functi<strong>on</strong>al central limit theorems can be obtained under rescaling of time and space of<br />

Xt. Apart from str<strong>on</strong>g (functi<strong>on</strong>al) type of c<strong>on</strong>vergence the results are interesting because the limit processes may<br />

exhibit a l<strong>on</strong>g range dependence (depending <strong>on</strong> initial distributi<strong>on</strong> and dimensi<strong>on</strong> d of the space). The theorems are<br />

“classical” in a sense that the limit processes are Gaussian.<br />

Another remarkable feature is the proof technique. The space-time method and Mitoma’s theorem are powerful tools<br />

<strong>for</strong> proving the functi<strong>on</strong>al c<strong>on</strong>vergence in space of tempered distributi<strong>on</strong>s S ′ (R d ) (process Xt is measure-valued and<br />

can be c<strong>on</strong>sidered as S ′ (R d -valued).<br />

My work is a part of a bigger program initiated by Bojdecki et al. Papers [4], [5] extend their previous results. Improving<br />

results obtained <strong>for</strong> infinite variance branching law (where limits are stable processes) and adding immigrati<strong>on</strong><br />

to the system needs further investigati<strong>on</strong>.<br />

References<br />

[1] Bojdecki T., Gorostiza L.G., Ramaswamy S, (1986), C<strong>on</strong>vergence of S ′ -valued processes and space time random<br />

fields, J. Funct. Anal. 66, pp. 21–41.<br />

[2] Bojdecki T., Gorostiza L.G. , Talarczyk A, (2006) Limit theorems <strong>for</strong> occupati<strong>on</strong> time fluctuati<strong>on</strong>s of branching<br />

systems II: Critical and large dimensi<strong>on</strong>s Functi<strong>on</strong>al, Stoch. Proc. Appl. 116, 19–35<br />

[3] Bojdecki T., Gorostiza L.G. , Talarczyk A, (2005) Occupati<strong>on</strong> time fluctuati<strong>on</strong>s of an infinite variance branching<br />

systems in large dimensi<strong>on</strong>s, arxiv:math.PR/0511745.<br />

[4] Mi̷lo´s , P. (2006) Occupati<strong>on</strong> time fluctuati<strong>on</strong>s of Poiss<strong>on</strong> and equilibrium finite variance branching systems, to<br />

appear in Probab. and Math. Stat.<br />

[5] Mi̷lo´s , P. (2007) Occupati<strong>on</strong> time fluctuati<strong>on</strong>s of Poiss<strong>on</strong> and equilibrium branching systems in critical and large<br />

dimensi<strong>on</strong>s, arXiv:0707.0316v1<br />

76


GARCH MODELLING IN CONTINUOUS TIME FOR<br />

IRREGULARLY SPACED TIME SERIES DATA<br />

MÜLLER, GERNOT Munich University of Technology, Germany, cklu@ma.tum.de<br />

Maller, Ross Australian Nati<strong>on</strong>al University, Canberra, Australia<br />

Klüppelberg, Claudia Munich University of Technology, Germany<br />

Szimayer, Alexander Fraunhofer <strong>Institut</strong> (ITWM) Kaiserslautern, Germany<br />

COGARCH Process; C<strong>on</strong>tinuous Time GARCH Process; GARCH Process; Quasi-Maximum Likelihood Estimati<strong>on</strong>;<br />

Skorokhod Distance; Stochastic Volatility<br />

Discrete time GARCH methodology has had a profound influence <strong>on</strong> the modelling of stochastic volatility in time<br />

series. The GARCH model is intuitively well motivated in capturing many of the “stylised facts” c<strong>on</strong>cerning financial<br />

series, in particular; and it is almost routine now to fit it in a wide range of situati<strong>on</strong>s.<br />

C<strong>on</strong>tinuous time models are useful, especially, <strong>for</strong> the modelling of irregularly spaced data, and it is natural to<br />

attempt to extend the successful GARCH paradigm to this arena. Probably the best known of these extensi<strong>on</strong>s is<br />

the diffusi<strong>on</strong> limit of Nels<strong>on</strong> (1990). Problems have arisen with the applicati<strong>on</strong> of his result, however, am<strong>on</strong>g them<br />

being that GARCH models and c<strong>on</strong>tinuous time diffusi<strong>on</strong> processes are not statistically equivalent (Wang 2002).<br />

As an alternative, Klüppelberg, Lindner and Maller (2004) recently introduced a c<strong>on</strong>tinuous time versi<strong>on</strong> of the<br />

GARCH (the “COGARCH” process) which is c<strong>on</strong>structed directly from a background driving <strong>Lévy</strong> process. One<br />

of our aims is to show how to fit this model to irregularly spaced time series data using discrete time GARCH<br />

methodology. To do this, the COGARCH is first approximated with an embedded sequence of discrete time GARCH<br />

series which c<strong>on</strong>verges to the c<strong>on</strong>tinuous time model in a str<strong>on</strong>g sense (in probability, in the Skorohod metric), rather<br />

than just in distributi<strong>on</strong>. The way is then open to using, <strong>for</strong> the COGARCH, similar statistical techniques to those<br />

already worked out <strong>for</strong> GARCH models, and we show how to implement a pseudo-maximum likelihood procedure to<br />

estimate parameters from a given data set.<br />

For illustrati<strong>on</strong>, an empirical investigati<strong>on</strong> using ASX stock index data is given, and the quality of estimati<strong>on</strong> is<br />

investigated using simulati<strong>on</strong>s.<br />

References<br />

[1] Klüppelberg, C., A. Lindner, and R.A. Maller (2004) A C<strong>on</strong>tinuous Time GARCH Process Driven by a <strong>Lévy</strong><br />

Process: Stati<strong>on</strong>arity and Sec<strong>on</strong>d Order Behaviour, Journal of Applied Probability 41, 601–622.<br />

[2] Nels<strong>on</strong>, D.B. (1990) ARCH Models as Diffusi<strong>on</strong> Approximati<strong>on</strong>s, Journal of Ec<strong>on</strong>ometrics 45, 7–38.<br />

[3] Wang, Y. (2004) Asymptotic N<strong>on</strong>equivalence of GARCH Models and Diffusi<strong>on</strong>s, Annals of Statistics 30, 754–783.<br />

77


GENERALIZED HYPERBOLIC MODEL: EUROPEAN OPTION<br />

PRICING IN DEVELOPED AND EMERGING MARKETS<br />

MWANIKI, IVIVI JOSEPH University of Nairobi, Kenya,jimwaniki@u<strong>on</strong>bi.ac.ke<br />

Virginie, S. K<strong>on</strong>lack University of Yaoundé I , Camero<strong>on</strong><br />

Keyword Generalized Hyperbolic subclasses; Esscher Trans<strong>for</strong>m; Emerging Markets; Fourier Trans<strong>for</strong>m:<br />

Generalized Hyperbolic Distributi<strong>on</strong> and some of it subclasses like normal, hyperbolic and variance gamma distributi<strong>on</strong>s<br />

are used to fit daily log returns of eight listed companies in Nairobi Stock Exchange (NSE) and M<strong>on</strong>tréal<br />

Exchange. We use EM-based ML estimati<strong>on</strong> procedure to locate parameters of the model. Densities of Simulated<br />

and Empirical data are used to measure how well model fits the data. We use goodness of fit statistics to compare the<br />

selected distributi<strong>on</strong>s. Empirical results indicate that Generalized hyperbolic Distributi<strong>on</strong> is capable of correcting<br />

bias of Black-Scholes and Mert<strong>on</strong> normality assumpti<strong>on</strong> both in Developed and Emerging markets. Moreover both<br />

markets do have different stochastic time clock.<br />

References<br />

[1] Barndoff-Nielsen, O.E. (1977).Exp<strong>on</strong>entially decreasing distributi<strong>on</strong>s <strong>for</strong> the logarithm of particle size. Proc. Roy.<br />

Soc. L<strong>on</strong>d<strong>on</strong> Ser. A, 353: 401-419.<br />

[2] Black,F.,and M.Scholes,The Pricing of Opti<strong>on</strong>s and Corporate Liabilities Journal of political ec<strong>on</strong>omy 81,637-659.<br />

[3] Carr, P., Madan, D. (1999). Opti<strong>on</strong> valuati<strong>on</strong> using the fast Fourier trans<strong>for</strong>m. Journal of Computati<strong>on</strong>al Finance<br />

2: 61-73.<br />

[4] C<strong>on</strong>t, R., Tankov, P. (2004). Financial Modeling With Jump <strong>Processes</strong>.Chapman & Hall/CRC Press.<br />

[5] Carr, P and Wu Liuren.(2004):Time -Changed <strong>Lévy</strong> process and opti<strong>on</strong> pricing. Journal of Financial Ec<strong>on</strong>omics<br />

71:113-141.<br />

[6] Madan, D., Chang, C. & Carr, P. (1998). The Variance Gamma Process and Opti<strong>on</strong> Pricing. European Finance<br />

Review. 2,79-105.<br />

[7] Madan, D., Seneta, E. (1989).Chebyschev Polynomial Approximati<strong>on</strong> <strong>for</strong> the Characteristic Functi<strong>on</strong> Estimati<strong>on</strong>:Some<br />

Theoretical Supplements. Journal of the Royal Statistic Society. Series B (Methodological). 51, 2: 281-285.<br />

[8] Eberlein, E., Keller, U. (1995). Hyperbolic Distributi<strong>on</strong>s in Finance. Bernoulli 3: 281-299.<br />

[9] Senata, E. (2004).Fitting the Variance-Gamma Model to Financial Data.Journal of Applied Probability. Special<br />

Volume 41A<br />

[10] Fajardo, J., Farias, A. (2003). Generalized Hyperbolic Distributi<strong>on</strong>s and Brazilian Data. Financelab working<br />

paper.<br />

[11] Hu, W. (2005). Calibrati<strong>on</strong> of Multivariate Generalized Hyperbolic Distributi<strong>on</strong>s Using the EM Algorithm, with<br />

Applicati<strong>on</strong>s in Risk Management, Portfolio Optimizati<strong>on</strong> and Portfolio Credit Risk. Ph.D. thesis, The Florida State<br />

University.<br />

[12] McNeil,A.,Frey,R.,Embrechts,P.(2005). Quantitaive risk management: C<strong>on</strong>cepts Techniques and Tools. Pricet<strong>on</strong><br />

University Press(2005).<br />

[13] ∅ksendal, B. Sulem, A. (2005). Aplied Stochastic C<strong>on</strong>trol of Jump Diffusi<strong>on</strong>s. Springer.<br />

[14] Prause, K. (1999).The Generalized Hyperbolic Model: Estimati<strong>on</strong>, Financial Derivatives, and Risk Measures.<br />

Ph.D. thesis, University of Freiburg.<br />

[15] Predota, M. (2005).On European and Asian opti<strong>on</strong> pricing in the generalized hyperbolic model. European Jnl<br />

of Applied Mathematics 11,111-144.<br />

[16] Raible,S. (2000).<strong>Lévy</strong> processes in Finance: Theory, Numerics, and Empirical Facts. Ph.D. thesis, University of<br />

Freiburg.<br />

[17] Sato, K.I. (1999).<strong>Lévy</strong> <strong>Processes</strong> and Infinitely Divisible Distributi<strong>on</strong>s.Cambridge University Press.<br />

[18] Shoutens,W.(2003). <strong>Lévy</strong> <strong>Processes</strong> in Finance : Pricing Financial derivatives John Wiley&S<strong>on</strong>s.<br />

78


STOCHASTIC SIMULATION OF CORRELATION EFFECTS IN<br />

CLOUDS OF ULTRA COLD ATOMS EXPOSED TO AN<br />

ELECTROMAGNETIC FIELD<br />

PIIL, RUNE University of Aarhus, Denmark, piil@phys.au.dk<br />

Mølmer, Klaus University of Aarhus, Denmark<br />

Cold atoms; Bose-Hubbard model; optical lattice:<br />

In physics, the research of cold atoms has drawn a lot of attenti<strong>on</strong> during the last decade and recently, in 2001, the<br />

Nobel prize was appointed to three key pers<strong>on</strong>s in this field. The physics of cold atoms has brought together atomic<br />

physicists, opticians and solid state physicists; the cold atom clouds can possess the same coherence as laser light and<br />

the clouds can be embedded in artificial crystals, i.e. periodic potentials, created by standing electromagnetic waves<br />

generated by lasers to imitate solid state dynamics and thereby draw advantage of the rich world of possibilities in<br />

periodic potentials.<br />

One example of this overlap of the different fields of physics is the parametric generati<strong>on</strong> and amplificati<strong>on</strong> of<br />

ultra cold atom pairs in effectively <strong>on</strong>e-dimensi<strong>on</strong>al periodic potentials. It has l<strong>on</strong>g been known that a coherent beam<br />

of light shined <strong>on</strong>to a crystal can result in creati<strong>on</strong> of two new highly correlated beams with different wavelengths.<br />

The same is possible, if a moving cloud (beam) of atoms is exposed to a periodic potential. The potential will<br />

modify the energy-momentum spectrum and create certain sets of degenerate momenta, which will allow <strong>for</strong> a similar<br />

process as <strong>for</strong> the coherent light, where the cloud of atoms initially having <strong>on</strong>e specific momentum will come out<br />

as beams with two new momenta. It has been shown that in an effectively <strong>on</strong>e-dimensi<strong>on</strong>al system a simple cosine<br />

potential will allow <strong>for</strong> <strong>on</strong>ly <strong>on</strong>e set of momenta in the outcome [1,2]. This process makes it possible to create<br />

two macroscopically populated and correlated clouds of atoms, which might be an invaluable resource to quantum<br />

computing and modern measurement theory.<br />

Our present research is dedicated to give a precise descripti<strong>on</strong> of this phenomen<strong>on</strong>, where we make use of the<br />

Bose-Hubbard model and the Gutzwiller approximati<strong>on</strong>, which both stem from solid state physics. When the<br />

above menti<strong>on</strong>ed process was first predicted in 2005 [1], a mean-field calculati<strong>on</strong> was per<strong>for</strong>med, which ignores all<br />

correlati<strong>on</strong>s between the atoms. The correlati<strong>on</strong>/entanglement of the outcome has yet to be proven. The Gutzwiller<br />

approximati<strong>on</strong> goes bey<strong>on</strong>d mean-field, but still does not include correlati<strong>on</strong>s. The correlati<strong>on</strong>s, however, can be<br />

introduced into this model by adding stochastic noise [3]. The stochastic approach has already proved its worth<br />

when searching <strong>for</strong> the ground state of atomic clouds in periodic potentials, but appears to diverge heavily <strong>on</strong> short<br />

timescales when doing real time simulati<strong>on</strong>s.<br />

In order to describe the a<strong>for</strong>ementi<strong>on</strong>ed process we have to use a modified Bose-Hubbard model, which again<br />

needs a modified stochastic approach. This modified approach and hopefully some neat results <strong>on</strong> the correlati<strong>on</strong>s<br />

will be presented.<br />

References<br />

[1] Hilligsøe, K. M. and Mølmer, K. Phase-matched four wave mixing and quantum beam splitting of matter waves<br />

in a periodic potential, Physical Review A 71, (2005) 041602.<br />

[2] Campbell, G. K. and Mun, J. and Boyd, M. and Streed, E. W. and Ketterle, W. and Pritchard, D. E. Parametric<br />

Amplificati<strong>on</strong> of Scattered Atom Pairs, Phys. Rev. Lett. 96, (2006) 020406.<br />

[3] Carusotto, I. and Castin, Y. An exact re<strong>for</strong>mulati<strong>on</strong> of the Bose–Hubbard model in terms of a stochastic Gutzwiller<br />

ansatz, New Journal of Physics 5, (2003) 91.<br />

79


HEAVY TRAFFIC SCALINGS AND LIMIT MODELS IN A<br />

WIRELESS SYSTEM WITH LONG RANGE DEPENDENCE AND<br />

HEAVY TAILS<br />

PIPIRAS, VLADAS University of North Carolina, USA, pipiras@email.unc.edu<br />

Buche, Robert North Carolina State University, USA<br />

Ghosh, Arka University of Iowa, USA<br />

High-speed wireless networks carrying applicati<strong>on</strong>s with high capacity requirements (such as multimedia) are<br />

becoming a reality where the transmitted data exhibit l<strong>on</strong>g range dependence and heavy-tailed properties. We<br />

obtain heavy traffic limit models incorporating these properties, extending from previous results limited to short<br />

range dependence and light-tailed cases. An infinite source Poiss<strong>on</strong> arrival process is used and fundamental inequality<br />

between the exp<strong>on</strong>ent in the power tail distributi<strong>on</strong> of the data from source and the rate of channel variati<strong>on</strong>s in<br />

the departure process is obtain. This inequality is important <strong>for</strong> determining the heavy traffic scaling in both the<br />

“fast growth” and “slow growth” regimes <strong>for</strong> the arrival process, and al<strong>on</strong>g with the source rate, define the possible<br />

queueing limit models—across the cases, they are reflected stochastic differential equati<strong>on</strong>s driven by Brownian<br />

moti<strong>on</strong>, fracti<strong>on</strong>al Brownian moti<strong>on</strong>, or stable <strong>Lévy</strong> moti<strong>on</strong>.<br />

80


OPTIMAL DIVIDENDS IN PRESENCE OF DOWNSIDE RISK<br />

RAKKOLAINEN, TEPPO Turku School of Ec<strong>on</strong>omics, Finland, teppo.rakkolainen@tse.fi<br />

Luis H. R. Alvarez E. Turku School of Ec<strong>on</strong>omics, Finland<br />

Dividend optimizati<strong>on</strong>; Downside risk; Impulse c<strong>on</strong>trol; Jump diffusi<strong>on</strong>; Optimal stopping; Singular stochastic<br />

c<strong>on</strong>trol:<br />

We analyze the determinati<strong>on</strong> of a value maximizing dividend policy <strong>for</strong> a broad class of cash flow processes modeled as<br />

spectrally negative jump diffusi<strong>on</strong>s. We extend previous results based <strong>on</strong> c<strong>on</strong>tinuous diffusi<strong>on</strong> models and characterize<br />

the value of the optimal dividend policy explicitly. Utilizing this result, we also characterize explicitly the values<br />

as well as the optimal dividend thresholds <strong>for</strong> a class of associated optimal stopping and sequential impulse c<strong>on</strong>trol<br />

problems. Our results indicate that both the value as well as the marginal value of the optimal policy are increasing<br />

functi<strong>on</strong>s of policy flexibility in the disc<strong>on</strong>tinuous setting as well.<br />

References<br />

[1] Alvarez, L.H.R. (1996) Demand uncertainty and the value of supply opportunities, J. Ec<strong>on</strong>. 64, 163–175.<br />

[2] Alvarez, L.H.R. (2001) Reward functi<strong>on</strong>s, salvage values and optimal stopping, Math. Oper. Res. 54, 315–337.<br />

[3] Alvarez, L.H.R. (2003) On the properties of r-excessive mappings <strong>for</strong> a class of diffusi<strong>on</strong>s, Ann. Appl. Probab.<br />

13, 1517–1533.<br />

[4] Alvarez, L.H.R. (2004) A class of solvable impulse c<strong>on</strong>trol problems, Appl. Math. Opt. 49, 265–295.<br />

[5] Alvarez, L.H.R., Rakkolainen, T. (2006) A class of solvable optimal stopping problems of spectrally negative jump<br />

diffusi<strong>on</strong>s, Aboa Centre <strong>for</strong> Ec<strong>on</strong>omics, Discussi<strong>on</strong> Paper No. 9.<br />

[6] Alvarez, L.H.R., Virtanen, J. (2006) A class of solvable stochastic dividend optimizati<strong>on</strong> problems: <strong>on</strong> the general<br />

impact of flexibility <strong>on</strong> valuati<strong>on</strong>, Ec<strong>on</strong>. Theory 28, 373–398.<br />

[7] Avram, F., Palmowski, Z., Pistorius, M. (2007) On the optimal dividend problem <strong>for</strong> a spectrally negative <strong>Lévy</strong><br />

process, Ann. Appl. Probab. 17, 1, 156–180.<br />

[8] Bar-Ilan, A., Perry, D., Stadje W. (2004) A generalized impulse c<strong>on</strong>trol model of cash management, J. Ec<strong>on</strong>.<br />

Dyn. C<strong>on</strong>trol 28, 1013–1033.<br />

[9] Bertoin, J. (1996) <strong>Lévy</strong> processes, Cambridge University Press.<br />

[10] Borodin, A., Salminen, P. (2002) Handbook <strong>on</strong> Brownian moti<strong>on</strong> - facts and <strong>for</strong>mulae (2nd editi<strong>on</strong>), Birkhäuser.<br />

[11] Chan, T., Kyprianou, A. (2006) Smoothness of scale functi<strong>on</strong>s <strong>for</strong> spectrally negative <strong>Lévy</strong> processes, preprint.<br />

[12] Duffie, D., Pan, J., Singlet<strong>on</strong>, K. (2000) Trans<strong>for</strong>m analysis and asset pricing <strong>for</strong> affine jump diffusi<strong>on</strong>s, Ec<strong>on</strong>ometrica<br />

68, 6, 1343–1376.<br />

[13] Gerber, H., Shiu, E. (2004) Optimal dividends analysis with Brownian moti<strong>on</strong>, N. Amer. Actuarial J. 8, 1, 1–20.<br />

[14] Mordecki, E. (2002) Optimal stopping and perpetual opti<strong>on</strong>s <strong>for</strong> <strong>Lévy</strong> processes, Financ. Stoch. 6:4, 473–493.<br />

[15] Mordecki, E., Salminen, P. (2006) Optimal stopping of Hunt and <strong>Lévy</strong> processes, preprint.<br />

[16] Perry, D., Stadje W. (2000) Risk analysis <strong>for</strong> a stochastic cash management model with two types of customers,<br />

Ins.: Mathematics Ec<strong>on</strong>. 26, 25–36.<br />

[17] Protter, P. (2004) Stochastic integrati<strong>on</strong> and differential equati<strong>on</strong>s (2nd editi<strong>on</strong>), Springer.<br />

[18] Taksar, M. (2000) Optimal risk and dividend distributi<strong>on</strong> c<strong>on</strong>trol models <strong>for</strong> an insurance company, Math. Oper.<br />

Res. 51, 1-42.<br />

[19] Øksendal, B. (2003) Stochastic differential equati<strong>on</strong>s. An introducti<strong>on</strong> with applicati<strong>on</strong>s (6th editi<strong>on</strong>), Springer.<br />

[20] Øksendal, B., Sulem, A. (2005) Applied stochastic c<strong>on</strong>trol of jump diffusi<strong>on</strong>s, Springer.<br />

81


CHARACTERIZATIONS OF THE CLASS OF FREE SELF<br />

DECOMPOSABLE DISTRIBUTIONS AND ITS SUBCLASSES<br />

SAKUMA, NORIYOSHI Keio University, Japan, noriyosi@math.keio.ac.jp<br />

Free probability; free selfdecomposable distributi<strong>on</strong>; Voiculescu trans<strong>for</strong>m; Bercovici-Pata bijecti<strong>on</strong>:<br />

In probability theory based <strong>on</strong> measure theory (classical probability theory), the key c<strong>on</strong>cept <strong>on</strong> relati<strong>on</strong>s am<strong>on</strong>g<br />

random variables is independence. Free probability is n<strong>on</strong>-commutative probability adding with free independence.<br />

In 1980’s, D. Voiculescu introduced free independence and free c<strong>on</strong>voluti<strong>on</strong>, which is distributi<strong>on</strong> of sum of two free<br />

independently random variables. Many free analogue of probabilistic c<strong>on</strong>cept based <strong>on</strong> measure theory was studied.<br />

Especially, Voiculescu trans<strong>for</strong>m and free cumulant functi<strong>on</strong>, which are free analogue of characteristic functi<strong>on</strong> and<br />

cumulant functi<strong>on</strong> respectively, open analytic and combinatoric study of free probability.<br />

In Bercovici and Voiculescu [2], free infinitely divisible distributi<strong>on</strong>s and free stable distributi<strong>on</strong>s, which was<br />

free analogue of (classical) infinitely divisible distributi<strong>on</strong>s and stable distributi<strong>on</strong>s, were introduced and Voiculescu<br />

trans<strong>for</strong>m of free stable distributi<strong>on</strong>s were determined.<br />

In Bercovici and Pata [3], Some free analogue of classical limit theorems are proved. They gave the relati<strong>on</strong><br />

between the classical and free infinitely divisible distributi<strong>on</strong>s by the Bercovici-Pata bijecti<strong>on</strong>.<br />

In Barndorff-Nielsen and Thorbjørnsen [1], free analogue of selfdecomposable distributi<strong>on</strong> in classical probability<br />

theory was introduced. They proved that their relati<strong>on</strong>s with some other subclasses of free infinitely divisible<br />

distributi<strong>on</strong>s are the same as in the classical case.<br />

References<br />

[1] Barndorff-Nielsen, O. E. and Thorbjørnsen, S. (2002). Selfdecomposability and <strong>Lévy</strong> processes in free probability,<br />

Bernoulli. 8, 323–366.<br />

[2] Bercovici, H. and Voiculescu, D. (1993). Free c<strong>on</strong>voluti<strong>on</strong> of measures with unbounded support, Indiana. J. math.<br />

42, 733–773.<br />

[3] Bercovici, H. and Pata, V. (1999). Stable laws and domains of attracti<strong>on</strong> in free probability theory, Ann. Math.<br />

149, 1023–1060.<br />

82


STATISTICAL PHYSICS APPROACH TO HIGH-FREQUENCY<br />

FINANCE<br />

SCALAS, ENRICO East-Piedm<strong>on</strong>t University, Italy, enrico.scalas@mfn.unipmn.it<br />

Politi, Mauro Milan University, Italy<br />

High-frequency finance; c<strong>on</strong>tinuous-time random walks; stochastic integrati<strong>on</strong>; opti<strong>on</strong> pricing:<br />

Based <strong>on</strong> the c<strong>on</strong>tinuous-time random walk (CTRW) model <strong>for</strong> high-frequency financial data, we present some<br />

preliminary results <strong>on</strong> the following issues:<br />

• Analysis of the structure of waiting times between c<strong>on</strong>secutive trades fit with Tsallis’ q-exp<strong>on</strong>ential as well as<br />

Weibull distributi<strong>on</strong>s.<br />

• We define stochastic integrals <strong>on</strong> CTRWs and we study the n<strong>on</strong>-Markovian case of n<strong>on</strong>-exp<strong>on</strong>entially distributed<br />

waiting times.<br />

References<br />

[1] Scalas, E. (2006) The applicati<strong>on</strong> of c<strong>on</strong>tinuous-time random walks in finance and ec<strong>on</strong>omics, Physica A 362,<br />

225–239.<br />

83


NON-DANGEROUS RISKY INVESTMENTS FOR INSURANCE<br />

COMPANIES<br />

SCHAEL, MANFRED University of B<strong>on</strong>n, Germany , Inst.Applied Math. schael@uni-b<strong>on</strong>n.de<br />

jump processes; ruin probability ; c<strong>on</strong>trol; financial market:<br />

The c<strong>on</strong>trol of ruin probabilities by investments in a financial market is studied. The insurance business and the<br />

risk driver of the financial market are described by a joint jump model. An investment plan is n<strong>on</strong>-dangerous if the<br />

ruin probability has exp<strong>on</strong>ential decay under the plan, i.e., there exists an adjustment coefficient. It is known that<br />

a plan investing a fixed fracti<strong>on</strong> of capital leads to a polynomial decay and thus is dangerous. An investment plan<br />

is profitable if its adjustment coefficient is larger than the classical Lundberg exp<strong>on</strong>ent defined <strong>for</strong> the unc<strong>on</strong>trolled<br />

case. It is known that there exist profitable plans investing a fixed amount of capital in the stock independently of<br />

the current level of capital. But they are not admissible when the insurance company is poor. Here we investigate<br />

the existence of n<strong>on</strong>-dangerous and profitable investment plans which are admissible as well.<br />

References<br />

[1] Schael, M. (2005) C<strong>on</strong>trol of ruin probabilities by discrete-time investments , Math. Meth. Oper. Res. 62,<br />

141–158.<br />

84


EXTENDING TIME-CHANGED LÉVY ASSET MODELS<br />

THROUGH MULTIVARIATE SUBORDINATORS<br />

SEMERARO, PATRIZIA University of Torino, Italy, semeraro@ec<strong>on</strong>.unito.it<br />

Luciano, Elisa University of Torino, Italy<br />

<strong>Lévy</strong> processes; multivariate subordinators; multivariate asset modelling; multivariate time changed processes :<br />

The technique of time change is a well established way to introduce <strong>Lévy</strong> processes at the univariate level: it has<br />

proven to be theoretically helpful <strong>for</strong> financial applicati<strong>on</strong>s, thanks to M<strong>on</strong>roe’s theorem. At the multivariate level,<br />

however, time changing has been studied much less. The traditi<strong>on</strong>al multivariate <strong>Lévy</strong> process c<strong>on</strong>structed by<br />

subordinating a Brownian moti<strong>on</strong> through a univariate subordinator presents a number of drawbacks, including<br />

the lack of independence and a limited range of dependence. In order to face these, we investigate multivariate<br />

subordinati<strong>on</strong>, with a comm<strong>on</strong> and an idiosyncratic comp<strong>on</strong>ent. Formally the time change can be written as<br />

G(t) = (X1(t) + α1Z(t), X2(t) + α2Z(t), ..., Xn(t) + αnZ(t)) T , (12)<br />

where Z = {Z(t), t ≥ 0}, Xj = {Xj(t), t ≥ 0}, j = 1, ..., n, are independent subordinators.<br />

The multivariate log price process Y = {Y (t), t > 0} is defined by the following time change:<br />

⎛<br />

Y (t) = ⎝ Y1(t)<br />

⎞ ⎛<br />

... ⎠ = ⎝<br />

Yn(t)<br />

µ1G1(t) + σ1B1(G1(t))<br />

....<br />

⎞<br />

⎠, (13)<br />

µnGn(t) + σnBn(Gn(t))<br />

where Bi, i = 1, ..., n are independent Brownian moti<strong>on</strong>s and G is a multivariate subordinator defined as above,<br />

independent from the Brownian moti<strong>on</strong>s.<br />

Specifing the subordinators, we introduce generalizati<strong>on</strong>s of some well known univariate <strong>Lévy</strong> processes <strong>for</strong> financial<br />

applicati<strong>on</strong>s: the multivariate compound Poiss<strong>on</strong>, NIG, Variance Gamma and CGMY. In all these cases the<br />

extensi<strong>on</strong> is parsim<strong>on</strong>ious, in that <strong>on</strong>e additi<strong>on</strong>al parameter <strong>on</strong>ly is needed.<br />

First we characterize the subordinator, then the time changed processes via their <strong>Lévy</strong> triplet. Finally we study<br />

the subordinator associati<strong>on</strong>, as well as the subordinated processes’ linear and n<strong>on</strong> linear dependence. We show that<br />

the processes generated with the proposed time change can include independence and that they span a wide range<br />

of linear dependence. We provide some examples of simulated trajectories, scatter plots and both linear and n<strong>on</strong><br />

linear dependence measures. The input data <strong>for</strong> these simulati<strong>on</strong>s are calibrated values of major stock indices.<br />

References<br />

[1] Barndorff-Nielsen, O.E., Pedersen, J. Sato, K.I. (2001). Multivariate Subordinati<strong>on</strong>, Self-Decomposability and<br />

Stability. Adv. Appl. Prob. 33, 160-187.<br />

[2] Barndorff-Nielsen, O.E.(1995). Normal inverse Gaussian distributi<strong>on</strong>s and the modeling of stock returns. Research<br />

report no. 300, Department of Theoretical Statistics, Aarhus University. Adv. Appl. Prob. 33, 160-187.<br />

[3] Carr, P., Geman, H., Madan, D. H. and Yor, M. (2002) The fine structure of asset returns: an empirical<br />

investigati<strong>on</strong>. Journal of Business 75, 305-332.<br />

[4] C<strong>on</strong>t, R., Tankov, P. (2004) Financial modelling with jump processes. Chapman and hall-CRC financial mathematics<br />

series.<br />

[5] Geman, H., Madan, D.B., Yor, M. (2001) Time changes <strong>for</strong> <strong>Lévy</strong> processes. Mathematical Finance 11, 1, 79-96.<br />

[6] Luciano, E., Schoutens, W. (2005). A multivariate Jump-Driven Financial Asset Model. Quantitative Finance ,<br />

6 (5), 385-402.<br />

[7] Samorodnitsky, G., Taqqu, M.S. (1994) Stable n<strong>on</strong>-gaussian random processes. Stochastic Models with infinite<br />

variance. Chapman & hall. New York.<br />

[8] Sato, K.I. (2003) <strong>Lévy</strong> processes and Infinitely divisible distributi<strong>on</strong>s. Cambridge studies in advanced mathematics<br />

Cambridge University Press.<br />

[9] Semeraro, P. (2006) A multivariate time-changed <strong>Lévy</strong> model <strong>for</strong> financial applicati<strong>on</strong>. Accepted <strong>for</strong> pubblicati<strong>on</strong><br />

Journal of Theoretical and Applied Finance.<br />

85


MULTIFRACTALITY OF PRODUCTS OF GEOMETRIC<br />

ORNSTEIN-UHLENBECK TYPE PROCESSES<br />

SHIEH, NARN-RUEIH Nati<strong>on</strong>al Taiwan University, Taiwan, shiehnr@math.ntu.edu.tw<br />

Anh, Vo V. Queensland University of Technology, Australia<br />

Le<strong>on</strong>enko, Nikolai N. Cardiff University, UK<br />

Multifractal products; geometric Ornstein-Uhlenbeck processes; <strong>Lévy</strong> processes.<br />

We investigate the properties of multifractal products of geometric Ornstein-Uhlenbeck processes driven by <strong>Lévy</strong><br />

moti<strong>on</strong>. The c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the mean, variance and covariance functi<strong>on</strong>s of the resulting cumulative processes are<br />

interpreted in terms of the moment generating functi<strong>on</strong>s. We c<strong>on</strong>sider five cases of infinitely divisible distributi<strong>on</strong>s <strong>for</strong><br />

the background driving <strong>Lévy</strong> processes, namely, the gamma and variance gamma distributi<strong>on</strong>s, the inverse Gaussian<br />

and normal inverse Gaussian distributi<strong>on</strong>s, and the z-distributi<strong>on</strong>s. We establish the corresp<strong>on</strong>ding scenarios <strong>for</strong> the<br />

limiting processes, including their Rényi functi<strong>on</strong>s and dependence structure.<br />

References<br />

[1] Applebaum, D. <strong>Lévy</strong> <strong>Processes</strong> and Stochastic Calculus, Cambridge University Press, Cambridge, 2004.<br />

[2] Anh, V.V. and Le<strong>on</strong>enko, N.N. N<strong>on</strong>-Gaussian scenarios <strong>for</strong> the heat equati<strong>on</strong> with singular initial data, Stochastic<br />

<strong>Processes</strong> and their Applicati<strong>on</strong>s 84(1999), 91–114.<br />

[3] Barndorff-Nielsen, O.E. Superpositi<strong>on</strong>s of Ornstein-Uhlenbeck type processes, Theory Probab. Appl. 45(2001),<br />

175–194.<br />

[4] Barndorff-Nielsen, O.E. and Le<strong>on</strong>enko, N.N. Spectral properties of superpositi<strong>on</strong>s of Ornstein-Uhlenbeck type<br />

processes, Methodol. Comput. Appl. Probab. 7 (2005), 335–352.<br />

[5] Kahane, J.-P. Sur la chaos multiplicatif , Ann. Sc. Math. Québec 9(1985), 105–150.<br />

[6] Kahane, J.-P. Positive martingale and random measures, Chinese Annals of Mathematics 8B(1987), 1–12.<br />

[7] Mannersalo, P., Norris, I. and Riedi, R. Multifractal products of stochastic processes: c<strong>on</strong>structi<strong>on</strong> and some basic<br />

properties , Adv. Appl. Probab. 34(2002), 888–903.<br />

[8] Mörters, P. and Shieh, N.-R. On multifractal spectrum of the branching measure <strong>on</strong> a Galt<strong>on</strong>-Wats<strong>on</strong> tree , J.<br />

Appl. Probab. 41(2004), 1223-1229.<br />

[9] Shieh, N.-R. and Taylor, S.J. Multifractal spectra of branching measure <strong>on</strong> a Galt<strong>on</strong>-Wats<strong>on</strong> tree, J. Appl. Probab.<br />

39(2002), 100-111.<br />

86


QUESTIONABLE RESULTS ON CONVOLUTION EQUIVALENT<br />

DISTRIBUTIONS<br />

SHIMURA, TAKAAKI The <strong>Institut</strong>e of Statistical Mathematics<br />

T. Watanabe The University of Aizu<br />

Cline [1] is <strong>on</strong>e of the most well known and often referred paper in the study of exp<strong>on</strong>ential tail and c<strong>on</strong>voluti<strong>on</strong><br />

equivalent distributi<strong>on</strong>s. However, un<strong>for</strong>tunately, it c<strong>on</strong>tains some mistakes and influences many other papers refer<br />

it. We investigate this c<strong>on</strong>fusi<strong>on</strong>. Cline [1] obtains several results from wr<strong>on</strong>g lemmas. We can not regard something<br />

based <strong>on</strong> uncertain basis as the truth. On the other hand, we can not declare that it is not true because its proof<br />

is not perfect either. There<strong>for</strong>e, what we should do is to investigate each doubtful statement minutely and to judge<br />

whether it is true or not. We classify the uncertain statements into three cases including the unidentified. 1. The<br />

statement is wr<strong>on</strong>g. 2. The statement itself is true. 3. We are not sure whether the statement is true or not.<br />

The classificati<strong>on</strong> is d<strong>on</strong>e mainly <strong>for</strong> the statements in Cline [1], but other influenced results are also menti<strong>on</strong>ed.<br />

In additi<strong>on</strong>, we aim to put the situati<strong>on</strong> in order by proper statements. This presentati<strong>on</strong> will c<strong>on</strong>tribute toward<br />

lessening the c<strong>on</strong>fusi<strong>on</strong>.<br />

References<br />

[1] Cline, D.B.H. (1987). C<strong>on</strong>voluti<strong>on</strong>s of distributi<strong>on</strong>s with exp<strong>on</strong>ential and subexp<strong>on</strong>ential tails, J.Austral. Math.Soc.<br />

Ser.A, 43, 347-365.<br />

87


STOCHASTIC STABILIZATION<br />

SIAKALLI, MICHAILINA University of Sheffield, UK, stp05ms@shef.ac.uk<br />

Applebaum, D. University of Sheffield, UK<br />

Stochastic stabilizati<strong>on</strong>; almost surely exp<strong>on</strong>ential stability; <strong>Lévy</strong> processes :<br />

C<strong>on</strong>sider a first order n<strong>on</strong>-linear differential equati<strong>on</strong> system dx(t)<br />

dt<br />

= f(x(t)).<br />

In my poster I will present stochastic stabilizati<strong>on</strong> of the given n<strong>on</strong>-linear system when is perturbed by<br />

(a) a compensated Poiss<strong>on</strong> noise that will represent the “small jumps” of a <strong>Lévy</strong> process and<br />

(b) a Poiss<strong>on</strong> random measure which represents the “large jumps” of a <strong>Lévy</strong> process.<br />

We will show that the compensated Poiss<strong>on</strong> noise and the Poiss<strong>on</strong> noise can have a similar role to the Brownian<br />

moti<strong>on</strong> noise (as in [2]) in stabilizing dynamical systems.<br />

References<br />

[1] Applebaum, D. (2004) <strong>Lévy</strong> processes and Stochastic Calculus, 1st editi<strong>on</strong>. Cambridge.<br />

[2] Mao, X. (1994) Stochastic Stabilizati<strong>on</strong> and destabilizati<strong>on</strong>, Systems and C<strong>on</strong>trol Letters 23, 279–290 .<br />

[3] Mao, X. (1997) Stochastic Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s, Horwood.<br />

88


MULTIVARIATE CONTINUOUS TIME LÉVY-DRIVEN GARCH<br />

PROCESSES<br />

STELZER, ROBERT Munich University of Technology, Germany, rstelzer@ma.tum.de<br />

COGARCH; multivariate GARCH; sec<strong>on</strong>d order moment structure; stati<strong>on</strong>arity; stochastic differential equati<strong>on</strong>s;<br />

stochastic volatility:<br />

A multivariate extensi<strong>on</strong> of the COGARCH(1,1) process introduced in [2] is presented and shown to be well-defined.<br />

The definiti<strong>on</strong> generalizes the idea of [1] <strong>for</strong> the definiti<strong>on</strong> of the univariate COGARCH(p, q) process and is in a<br />

natural way related to multivariate discrete time GARCH processes as well as positive-definite Ornstein-Uhlenbeck<br />

type processes.<br />

Furthermore, we establish important Markovian properties and sufficient c<strong>on</strong>diti<strong>on</strong>s <strong>for</strong> the existence of a stati<strong>on</strong>ary<br />

distributi<strong>on</strong> <strong>for</strong> the volatility process, which lives in the positive semi-definite matrices, by bounding it by a<br />

univariate COGARCH(1,1) process in a special norm. Moreover, criteria ensuring the finiteness of moments of both<br />

the multivariate COGARCH process as well as its volatility process are given. Under certain assumpti<strong>on</strong>s <strong>on</strong> the<br />

moments of the driving <strong>Lévy</strong> process, explicit expressi<strong>on</strong>s <strong>for</strong> the first and sec<strong>on</strong>d order moments and (asymptotic)<br />

sec<strong>on</strong>d order stati<strong>on</strong>arity are obtained.<br />

As a necessary prerequisite we study the existence of soluti<strong>on</strong>s and some other properties of stochastic differential<br />

equati<strong>on</strong>s being <strong>on</strong>ly defined <strong>on</strong> a subset of R d and satisfying <strong>on</strong>ly local Lipschitz c<strong>on</strong>diti<strong>on</strong>s.<br />

References<br />

[1] Brockwell, P., Chadraa, E., Lindner,A. (2006) C<strong>on</strong>tinuous-time GARCH <strong>Processes</strong>, Ann. Appl. Probab. 16,<br />

790–826.<br />

[2] Klüppelberg, C., Lindner, A., and Maller, R. (2004) A C<strong>on</strong>tinuous-Time GARCH Process Driven by a <strong>Lévy</strong><br />

Process: Stati<strong>on</strong>arity and Sec<strong>on</strong>d-order Behaviour, J. Appl. Probab. 41, 601–622.<br />

89


REGULARITY OF HARMONIC FUNCTIONS FOR ANISOTROPIC<br />

FRACTIONAL LAPLACIAN<br />

SZTONYK, PAWE̷L Wroc̷law University of Technology, Poland and Philipps Universität Marburg,<br />

Germany, szt<strong>on</strong>yk@pwr.wroc.pl<br />

Potential kernel, Green functi<strong>on</strong>, harm<strong>on</strong>ic functi<strong>on</strong>, Hölder c<strong>on</strong>tinuity, stable process:<br />

We prove (see [1,2]) that bounded harm<strong>on</strong>ic functi<strong>on</strong>s of anisotropic fracti<strong>on</strong>al Laplacians are Hölder c<strong>on</strong>tinuous<br />

under mild regularity assumpti<strong>on</strong>s <strong>on</strong> the corresp<strong>on</strong>ding <strong>Lévy</strong> measure. Under some str<strong>on</strong>ger assumpti<strong>on</strong>s the Green<br />

functi<strong>on</strong>, Poiss<strong>on</strong> kernel and the harm<strong>on</strong>ic functi<strong>on</strong>s are even differentiable of order up to three.<br />

References<br />

[1] Szt<strong>on</strong>yk, P., Bogdan, K. (2007) Estimates of potential kernel and Harnack’s inequality <strong>for</strong> anisotropic fracti<strong>on</strong>al<br />

Laplacian , to appeare in Studia Math.<br />

[2] Szt<strong>on</strong>yk, P., (2007) Regularity of harm<strong>on</strong>ic functi<strong>on</strong>s <strong>for</strong> anisotropic fracti<strong>on</strong>al Laplacian , preprint.<br />

90


SERIES APPROXIMATION OF THE DISTRIBUTION OF LÉVY<br />

PROCESS<br />

TIKANMÄKI, HEIKKI Helsinki University of Technology, Finland, heikki.tikanmaki@tkk.fi<br />

<strong>Lévy</strong> processes; asymptotic expansi<strong>on</strong>s; Cramér c<strong>on</strong>diti<strong>on</strong>; cumulants; Edgeworth approximati<strong>on</strong> :<br />

The <strong>Lévy</strong>-Khinchine theorem gives the characteristic functi<strong>on</strong> of a <strong>Lévy</strong> process. In spite of this the distributi<strong>on</strong><br />

functi<strong>on</strong> of a <strong>Lévy</strong> process is not analytically known, except in few special cases like Brownian moti<strong>on</strong>, Poiss<strong>on</strong><br />

process etc. For example, the distributi<strong>on</strong> of the compound Poiss<strong>on</strong> process is not known in general though the<br />

popularity of the process as a risk process in insurance applicati<strong>on</strong>s.<br />

The normal approximati<strong>on</strong> gives good asymptotic results when t → ∞, see <strong>for</strong> instance [1]. Many authors<br />

have c<strong>on</strong>sidered asymptotic expansi<strong>on</strong>s <strong>for</strong> the sums of independent random variables, see e.g. [2]. In insurance<br />

mathematics and statistics this is often called the Edgeworth approximati<strong>on</strong> [3,4]. Some approximati<strong>on</strong> is introduced<br />

also <strong>for</strong> <strong>Lévy</strong> processes in [5] as an analogue to the i.i.d case.<br />

This work goes bey<strong>on</strong>d this analogue and clarifies the c<strong>on</strong>necti<strong>on</strong> between <strong>Lévy</strong> processes and classical approximati<strong>on</strong><br />

results of sums of independent random variables.<br />

If a <strong>Lévy</strong> process has all momens we can also prove with some extra assumpti<strong>on</strong>s exact series representati<strong>on</strong> <strong>for</strong><br />

its distributi<strong>on</strong>. This work also shows how the approximating functi<strong>on</strong>s scale al<strong>on</strong>g in time parameter. It is worth<br />

noting that these series representati<strong>on</strong>s work fine <strong>for</strong> all t > 0.<br />

References<br />

[1] Valkeila, E. (1995) On normal approximati<strong>on</strong> of a process with independent increments Russian Math. Surveys<br />

50, 945-961.<br />

[2] Petrov, V.V. (1995) Limit Theorems of Probability Theory, Ox<strong>for</strong>d Science Publicati<strong>on</strong>s.<br />

[3] Beard, R.E., Pentikäinen, T., Pes<strong>on</strong>en, E. (1984), Risk Theory The Stochastic Basis of Insurance, Chapman and<br />

Hall.<br />

[4] Kolassa, J.E. (2006), Series Approximati<strong>on</strong> Methods in Statistics, Springer.<br />

[5] Cramér H. (1962) Random Variables and Probability Distributi<strong>on</strong>s<br />

91


FEASIBLE INFERENCE FOR REALISED VARIANCE IN THE<br />

PRESENCE OF JUMPS<br />

VERAART, ALMUT University of Ox<strong>for</strong>d, UK, veraart@stats.ox.ac.uk<br />

Bipower variati<strong>on</strong>; feasible inference; realised variance; semimartingale; stochastic volatility:<br />

Inference <strong>on</strong> the variati<strong>on</strong> of asset prices has been extensively studied in the last decade. Due to the fact that high<br />

frequency asset price data have become widely available, <strong>on</strong>e can now use n<strong>on</strong>parametric methods which exploit<br />

the specific structure of high frequency data to learn about the price variati<strong>on</strong> over a given period of time. While<br />

logarithmic asset prices have often been modelled by Brownian semimartingales, the focus of research has recently<br />

shifted towards more general models which allow <strong>for</strong> jumps in the price process. This paper follows this recent stream<br />

of research by assuming that the logarithmic asset price is given by an Itô semimartingale of the <strong>for</strong>m<br />

dXt = btdt + σtdWt + dJt,<br />

which c<strong>on</strong>sists of a Brownian semimartingale (btdt+σtdWt) and a jump comp<strong>on</strong>ent (dJt). The jump comp<strong>on</strong>ent can<br />

be a <strong>Lévy</strong> process or an even more general jump process (where we assume some mild regularity c<strong>on</strong>diti<strong>on</strong>s).<br />

This paper is about inference <strong>on</strong> the quadratic variati<strong>on</strong> process of the price process, which is given by [X]t =<br />

[X] c t + [X] d t , where [X] c t = � t<br />

0 σ2 sds, and [X] d t = �<br />

0≤s≤t (∆Js) 2 denote the c<strong>on</strong>tinuous and disc<strong>on</strong>tinuous (or jump)<br />

part of the quadratic variati<strong>on</strong>, respectively.<br />

While inference <strong>on</strong> the c<strong>on</strong>tinuous part of the quadratic variati<strong>on</strong> has been studied in detail in the literature (see<br />

e.g. Barndorff-Nielsen and Shephard (2002)), inference <strong>on</strong> the entire quadratic variati<strong>on</strong> including the disc<strong>on</strong>tinuous<br />

part has not been studied yet. A quantity called realised variance has become the focus of attenti<strong>on</strong> in this c<strong>on</strong>text.<br />

Let us assume that we observe the price process over a time interval [0, t] at discrete times i∆n <strong>for</strong> i = 0, . . . , [t/∆n],<br />

where ∆n > 0 and ∆n → 0 as n → ∞. We write ∆n i X = Xi∆n − X (i−1)∆n <strong>for</strong> the i-th return. The daily realised<br />

variance is then defined as the sum of the squared returns over a day, i.e. � [t/∆n]<br />

i=1 (∆n i X)2 . It can be shown that this<br />

quantity is a c<strong>on</strong>sistent estimator <strong>for</strong> the accumulated daily variance.<br />

In order to make inference we need a limit result <strong>for</strong> the volatility estimator. For this we use a very important<br />

result by Jacod (2007) who has derived the asymptotic distributi<strong>on</strong> of realised variance in the presence of jumps.<br />

However, this limit result is infeasible since the variance of the limiting process is not observable. In this paper we<br />

propose a new estimator <strong>for</strong> the asymptotic variance of the realised variance, which is based <strong>on</strong> a generalised versi<strong>on</strong><br />

of realised variance and locally averaged realised bipower variati<strong>on</strong>. We prove the c<strong>on</strong>sistency of this estimator and<br />

derive a feasible limit theorem <strong>for</strong> the realised variance. M<strong>on</strong>te Carlo studies show a good finite sample per<strong>for</strong>mance<br />

of our proposed estimator. Finally, an empirical analysis of some high frequency equity data reveals the empirical<br />

relevance of our theoretical results.<br />

References<br />

[1] Barndorff-Nielsen, O. E., Shephard, N. (2002) Ec<strong>on</strong>ometric analysis of realised volatility and its use in estimating<br />

stochastic volatility models, Journal of the Royal Statistical Society B 64, 253–280.<br />

[2] Huang, X., Tauchen, G. (2005) The Relative C<strong>on</strong>tributi<strong>on</strong> of Jumps to Total Price Variance, Journal of Financial<br />

Ec<strong>on</strong>ometrics 3 (4), 456–499.<br />

[3] Jacod, J. (2007) Asymptotic properties of realized power variati<strong>on</strong>s and related functi<strong>on</strong>als of semimartingales,<br />

Stochastic <strong>Processes</strong> and their Applicati<strong>on</strong>s, Forthcoming.<br />

[4] Lee, S. S., Mykland, P. A. (2006) Jumps in financial markets: A new n<strong>on</strong>parametric test and jump dynamics,<br />

technical report 566, Dept of Statistics, The Univ. of Chicago.<br />

92


ESTIMATION OF INTEGRATED VOLATILITY IN THE<br />

PRESENCE OF NOISE AND JUMPS<br />

VETTER, MATHIAS Ruhr-Universität Bochum, Germany, mathias.vetter@rub.de<br />

Podolskij, Mark Ruhr-Universität Bochum, Germany<br />

Bipower Variati<strong>on</strong>; Jumps; High-Frequency Data; Integrated Volatility; Microstructure Noise :<br />

We present a new c<strong>on</strong>cept of modulated bipower variati<strong>on</strong> <strong>for</strong> diffusi<strong>on</strong> models with microstructure noise and jumps.<br />

This method provides simple estimates <strong>for</strong> such important quantities as integrated volatility or integrated quarticity<br />

in the presence of microstructure noise. Under mild c<strong>on</strong>diti<strong>on</strong>s the c<strong>on</strong>sistency of modulated bipower variati<strong>on</strong> can<br />

be proven. Under further assumpti<strong>on</strong>s we are able to prove stable c<strong>on</strong>vergence of our estimates with the optimal rate<br />

n −1<br />

4 .<br />

Moreover, a generalisati<strong>on</strong> of the c<strong>on</strong>cept gives estimates <strong>for</strong> the joint quadratic variati<strong>on</strong> of the underlying process, if<br />

further jumps are present. We are also able to c<strong>on</strong>struct estimates robust to jumps, and obtain there<strong>for</strong>e an estimate<br />

<strong>for</strong> the jump part of the process. Both c<strong>on</strong>sistency and stable c<strong>on</strong>vergence of this quantity can be proven, which<br />

enables us to test whether jumps are present or not.<br />

References<br />

[1] Podolskij, M., Vetter, M. (2006) Estimati<strong>on</strong> of Volatility Functi<strong>on</strong>als in the Simultaneous Presence of Microstructure<br />

Noise and Jumps, Preprint.<br />

93


STUDENT RANDOM WALKS AND RELATED PROBLEMS<br />

VIGNAT, CHRISTOPHE Université de Marne la Vallée, France, vignat@univ-mlv.fr<br />

Berg, Christian University of Copenhagen, Denmark, berg@math.ku.dk<br />

Student t- distributi<strong>on</strong>; random walk; asymptotics:<br />

In a recent c<strong>on</strong>tributi<strong>on</strong> [1], N. Cufaro-Petr<strong>on</strong>i derived several results about the behaviour of n<strong>on</strong> stable <strong>Lévy</strong><br />

processes. More precisely, he c<strong>on</strong>sidered the random walk<br />

N�<br />

ZN =<br />

where N ∈ N and each step Xi follows a Student t-distributi<strong>on</strong> with f = 2n + 1 degrees of freedom. We recall that<br />

the Student t-density with f = 2ν degrees of freedom - where ν is an abitrary positive number - is<br />

Aν<br />

fν (x) =<br />

(1 + x2 1 ; Aν =<br />

ν+ 2 ) Γ � ν + 1<br />

�<br />

2<br />

Γ � �<br />

1 .<br />

2 Γ (ν)<br />

Although Cufaro-Petr<strong>on</strong>i obtained precise results about ZN in the case of f = 3 degrees of freedom <strong>on</strong>ly, he<br />

expressed in his paper the following c<strong>on</strong>jecture:<br />

C<strong>on</strong>jecture 1: ∀N ∈ N and ∀f = 2n + 1, the distributi<strong>on</strong> of N −1ZN is a c<strong>on</strong>vex combinati<strong>on</strong> of Student<br />

t-distributi<strong>on</strong>s with odd degrees of freedom.<br />

We show here that this c<strong>on</strong>jecture holds true, and extend it to the case of a c<strong>on</strong>vex combinati<strong>on</strong> of independent<br />

t-distributed variables Xi with different odd degrees of freedom, as a c<strong>on</strong>sequence of [2].<br />

The next result by Cufaro-Petr<strong>on</strong>i c<strong>on</strong>cerns the distributi<strong>on</strong> of ZN <strong>for</strong> n<strong>on</strong>-integer values of N: in this case, the<br />

N−fold c<strong>on</strong>voluti<strong>on</strong> power of distributi<strong>on</strong> fν is defined, <strong>for</strong> any real positive N, as the inverse Fourier trans<strong>for</strong>m<br />

f ∗N<br />

ν (x) = 1<br />

2π<br />

� +∞<br />

−∞<br />

i=1<br />

Xi<br />

e iux [ϕν (u)] N du<br />

where ϕν (u) is the characteristic functi<strong>on</strong> of the Student t-distributi<strong>on</strong>. Cufaro-Petr<strong>on</strong>i shows in [1] that<br />

Theorem 1: <strong>for</strong> every N > 0, the asymptotic behaviour of the distributi<strong>on</strong> of ZN scales as<br />

f ∗N<br />

3<br />

2<br />

We show that this result can be extended as follows<br />

Theorem 2: : <strong>for</strong> every N ∈ N and <strong>for</strong> every ν > 0,<br />

and <strong>for</strong> every N > 0 and ν = n + 1<br />

2 ,<br />

∼ A3<br />

2 N<br />

x 4 , |x| → +∞<br />

f ∗N<br />

ν ∼ AνN<br />

, |x| → +∞<br />

x2ν+1 f ∗N<br />

n+ 1<br />

2<br />

∼ An+ 1<br />

2 N<br />

, |x| → +∞<br />

x2n+2 Our last result is the following:<br />

Theorem 3: If N /∈ N, the distributi<strong>on</strong> f ∗N<br />

ν can not be expanded as<br />

f ∗N<br />

ν (x) =<br />

+∞�<br />

k=0<br />

βkf 1 k+ (x) .<br />

2<br />

In other words, C<strong>on</strong>jecture 1 holds <strong>for</strong> integer sampling times N <strong>on</strong>ly.<br />

References<br />

[1] Cufaro Petr<strong>on</strong>i, N., (2007) Mixtures in n<strong>on</strong>stable <strong>Lévy</strong> processes, J. Phys. A: Math. Theor. 40, 2227–2250.<br />

[2] Berg C., Vignat C., (2007) Linearizati<strong>on</strong> Coefficients of Bessel Polynomials and Properties of Student t-Distributi<strong>on</strong>s,<br />

to appear in C<strong>on</strong>structive Approximati<strong>on</strong>, DOI: 10.1007/s00365-006-0643-6<br />

94


ORNSTEIN-UHLENBECK PROCESSES IN PHYSICS AND<br />

ENGINEERING<br />

WULFSOHN, AUBREY University of Warwick, UK, awu@maths.warwick.ac.uk<br />

This is the first part of work in progress <strong>on</strong> the use of signal theory methods to simulate fracti<strong>on</strong>al noises. These<br />

are usually assumed to be power-law Gaussian processes and lie between white and the so-called pink or hyperbolic<br />

noises. Signal processes can be interpreted as electrical, acoustic, or optical and even hydrodynamical. Since most of<br />

the processes dealt with are n<strong>on</strong>-stati<strong>on</strong>ary we take a partially frequentist interpretati<strong>on</strong> of probability and introduce<br />

frequency and power-spectral methods to supplement the axiomatic approach.<br />

We indicate the progress due by N.Wiener <strong>on</strong> signal theory and we identify the origins of fracti<strong>on</strong>al Brownian<br />

moti<strong>on</strong>, relating to J. Liouville, Riemann, K. Weierstrauss, H. Weyl, Kolmogorov and P.<strong>Lévy</strong>. We deal with both<br />

Riemann-Liouville and Weierstrauss-Weyl fracti<strong>on</strong>al Brownian moti<strong>on</strong>s. Mathematicians favour Weierstrauss-Weyl.<br />

Engineers usually c<strong>on</strong>sider a linear time-invariant situati<strong>on</strong> and use the impulse- resp<strong>on</strong>se-transfer functi<strong>on</strong> approach.<br />

They favour Riemann-Liouville fracti<strong>on</strong>al Brownian moti<strong>on</strong> as it has causal impulse resp<strong>on</strong>se functi<strong>on</strong>s. However<br />

this approach is restricted to linear time-invariant processes. For n<strong>on</strong> time-invariant systems <strong>on</strong>e can use Wigner’s<br />

phase-space distributi<strong>on</strong>. We describe Frequency/time phase space methods analogous to those of Wigner’s momentum/positi<strong>on</strong><br />

phase space in quantum theory. These were introduced by D. Gabor and J. Ville <strong>for</strong> communicati<strong>on</strong><br />

and signal theory. We discuss also the validity of Planck’s c<strong>on</strong>stant <strong>for</strong> the signal theory analogue of the Heisenberg<br />

uncertainty principle.<br />

We clarify the distincti<strong>on</strong> between the Brownian moti<strong>on</strong>s of Wiener-Einstein-Smulochowski and of Ornstein-<br />

Uhlenbeck (OU). We see that superpositi<strong>on</strong>s of independent OU velocity processes have have rati<strong>on</strong>al spectra so<br />

are unsuitable <strong>for</strong> simulating fBm. We adapt these superpositi<strong>on</strong>s, using filters, to approach processes having the<br />

spectrum of the required noise process. We use also an alternative method of approximati<strong>on</strong> by random Fourier<br />

series and in particular randomised Weierstrauss functi<strong>on</strong>s.<br />

95


Agnieszka Jach<br />

Universidad Carlos III de Madrid<br />

calle Madrid 126<br />

28903 Getafe-Madrid<br />

Spain<br />

ajach@est-ec<strong>on</strong>.uc3m.es<br />

Alexander Lindner<br />

University of Marburg<br />

Fachbereich Mathematik und In<strong>for</strong>matik<br />

Hans-Meerwein-Str.<br />

35032 Marburg<br />

Germany<br />

lindner@mathematik.uni-marburg.de<br />

Almut Veraart<br />

University of Ox<strong>for</strong>d, Department of Statistics<br />

St Anne’s College, Woodstock Road<br />

OX2 6HS Ox<strong>for</strong>d<br />

UK<br />

veraart@stats.ox.ac.uk<br />

Andrea Karlova<br />

Market Risk Methodology, Risk Management Dept.,<br />

CSOB, KBC Group<br />

Radlicka 333/150<br />

150 57 Prague 5<br />

Czech Republic<br />

akarlova@csob.cz<br />

Andreas Kyprianou<br />

Dept. Mathematical Sciences, University of Bath<br />

Clavert<strong>on</strong> Down<br />

BA1 2UU Bath<br />

UK<br />

a.kyprianou@bath.ac.uk<br />

Astrid Hilbert<br />

Växjö Universty<br />

Vejdesplats 7<br />

351 95 Växjö<br />

Sweden<br />

Astrid.Hilbert@vxu.se<br />

List of Participants<br />

97<br />

Ahmadreza Azimifard<br />

Technical University Munich<br />

Dietlinden Strasse 16<br />

80802 Munich<br />

Germany<br />

azimifard@yahoo.com<br />

Alexander Schnurr<br />

Philipps-Universitt Marburg<br />

Hans-Meerwein-Strae<br />

35032 Marburg<br />

Germany<br />

schnurr@mathematik.uni-marburg.de<br />

Anders Tolver Jensen<br />

Faculty of Life Sciences, University of Copenhagen<br />

Thorvaldsensvej 40<br />

1871 Frederiksberg C.<br />

Denmark<br />

tolver@life.ku.dk<br />

Andreas Basse<br />

Aarhus University<br />

<strong>Institut</strong> <strong>for</strong> Matematiske Fag<br />

Ny Munkegade, bygning 1530<br />

8000 ˚Arhus<br />

Denmark<br />

basse@imf.au.dk<br />

Andrii Ilienko<br />

Nati<strong>on</strong>al Technical University of Ukraine, Kiev, and<br />

Mathematical <strong>Institut</strong>e of the University of Cologne<br />

Marienburger Strasse, 8<br />

50968 Cologne<br />

Germany<br />

a ilienko@ukr.net<br />

Aubrey Wulfsohn<br />

Mathematics <strong>Institut</strong>e, Warwick University<br />

CV4 7AL Coventry<br />

UK<br />

awu@maths.warwick.ac.uk


Bernt Øksendal<br />

Center of Mathematics <strong>for</strong> Applicati<strong>on</strong>s (CMA)<br />

University of Oslo<br />

CMA, University of Oslo, Box 1053 Blindern, N-0316<br />

Oslo, Norway<br />

N-0316 Oslo<br />

Norway<br />

oksendal@math.uio.no<br />

Carlo Sgarra<br />

Department of Mathematics-Politecnico di Milano-<br />

Piazza Le<strong>on</strong>ardo Da Vinci, 32<br />

20133 Milano<br />

Italy<br />

carlo.sgarra@polimi.it<br />

Christian Bayer<br />

University of Technology, Vienna<br />

Wiedner hauptstrasse 8 / 105-1<br />

1040 Vienna<br />

Austria<br />

cbayer@fam.tuwien.ac.at<br />

Christophe Vignat<br />

Université de Marne la Vallée<br />

5 Boulevard Descartes<br />

77454 Marne la Valle cedex 2<br />

france<br />

vignat@univ-mlv.fr<br />

Claudia Klüppelberg<br />

Zentrum Mathematik<br />

Technische Universitaet Muenchen<br />

Boltzmannstrasse 3<br />

85747 Garching b. Muenchen<br />

Germany<br />

cklu@ma.tum.de<br />

Desislava Stoilova<br />

Southwest University, Faculty of Ec<strong>on</strong>omics<br />

2 Krali Marko str.<br />

2700 Blagoevgrad<br />

Bulgaria<br />

dstoilova@abv.bg<br />

Edward Kao<br />

Department of Mathematics, University of Houst<strong>on</strong><br />

651 Philip G. Hoffman Hall<br />

77204-3008 Houst<strong>on</strong><br />

USA<br />

edkao@math.uh.edu<br />

98<br />

Björn Böttcher<br />

Uni Marburg<br />

Philipps-Universität Marburg - Fachbereich Mathematik<br />

und In<strong>for</strong>matik - Hans-Meerwein-Strae<br />

35032 Marburg<br />

Germany<br />

boettcher@mathematik.uni-marburg.de<br />

Cathrine Jessen<br />

University of Copenhagen<br />

Department of Mathematical Sciences<br />

Universitetsparken 5<br />

2100 Copenhagen<br />

Denmark<br />

catj@math.ku.dk<br />

Christine Gruen<br />

<strong>Institut</strong>e <strong>for</strong> Applied Mathematics<br />

Im Neuenheimer Feld 294<br />

69120 Heidelberg<br />

Germany<br />

christine.gruen@web.de<br />

Cindy Yu<br />

Department of Statistics, Iowa State University<br />

216A Snedecor Hall<br />

IA 50010 Ames<br />

USA<br />

cindyyu@iastate.edu<br />

Davar Khoshnevisan<br />

University of Utah<br />

Department of Mathematics, 155 S 1400 E<br />

84105 Salt Lake City, UT<br />

USA<br />

davar@math.utah.edu<br />

D<strong>on</strong>atas Surgailis<br />

<strong>Institut</strong>e of mathematics and in<strong>for</strong>matics<br />

Akademijos, 4<br />

LT-08663 Vilnius<br />

Lithuania<br />

sd<strong>on</strong>atas@ktl.mii.lt<br />

Ehsan Azmoodeh<br />

Jämeräntaival 11 B 50<br />

02150 Espoo<br />

Finland<br />

azmoodeh@cc.hut.fi


Eija Päivinen<br />

University of Jyväskylä<br />

P.O.Box 35<br />

FI-40014 University of Jyväskylä<br />

Finland<br />

ekpaivin@maths.jyu.fi<br />

Ely Merzbach<br />

Bar Ilan University<br />

Dept. of Mathematics, Bar-Ilan University<br />

52900 Ramat Gan<br />

Israel<br />

merzbach@macs.biu.ac.il<br />

Erik Baurdoux<br />

Universiteit Utrecht<br />

Mathematical <strong>Institut</strong>e, Budapestlaan 6<br />

3584 CD Utrecht<br />

The Netherlands<br />

baurdoux@math.uu.nl<br />

Filip Lindskog<br />

KTH, Matematik<br />

10044 Stockholm<br />

Sweden<br />

lindskog@kth.se<br />

Frederic Utzet<br />

Universitat Aut<strong>on</strong>oma de Barcel<strong>on</strong>a<br />

Departament de Matematiques, campus de Bellaterra<br />

08193 Bellaterra (Barcel<strong>on</strong>a)<br />

Spain<br />

utzet@mat.uab.cat<br />

Gennady Samorodnitsky<br />

Cornell University<br />

School of ORIE, 220 Rhodes Hall, Cornell University<br />

14850 Ithaca<br />

USA<br />

gennady@orie.cornell.edu<br />

Gunnar Hellmund<br />

University of Aarhus<br />

Department of Mathematical Sciences<br />

DK-8000 Aarhus C<br />

Denmark<br />

ghellmund@gmail.com<br />

99<br />

El Hadj Aly DIA<br />

9B Bd Jourdan, college Franco-Britannique<br />

75014 Paris<br />

France<br />

diaelhadjaly@yahoo.fr<br />

Enrico Scalas<br />

DISTA - Universita’ del Piem<strong>on</strong>te Orientale<br />

via Bellini 25 g<br />

15100 Alessandria<br />

Italy<br />

scalas@unipmn.it<br />

Eva Vedel Jensen<br />

Department of Mathematical Sciences<br />

University of Aarhus<br />

Ny Munkegade<br />

DK-8000 Aarhus C<br />

Denmark<br />

eva@imf.au.dk<br />

Francois Roueff<br />

Telecom Paris<br />

46 rue Barrault<br />

75634 Paris Cedex 13<br />

France<br />

roueff@tsi.enst.fr<br />

Friedrich Hubalek<br />

Financial and Actuarial Mathematics<br />

Vienna University of Technology<br />

Wiedner Hauptstrasse 8 / 105-1<br />

A-1040 Vienna<br />

Austria<br />

fhubalek@fam.tuwien.ac.at<br />

Giulia Di Nunno<br />

CMA - Department of Mathematics<br />

University of Oslo<br />

P.O. Box 1053 Blindern<br />

0316 Oslo<br />

Norway<br />

giulian@math.uio.no<br />

Gyula Pap<br />

University of Debrecen, Faculty of In<strong>for</strong>matics<br />

Pf. 12<br />

4010 Debrecen<br />

Hungary<br />

papgy@inf.unideb.hu


Habib Esmaeili<br />

TU Munich<br />

Munich University of Technology<br />

85747 Garching<br />

Germany<br />

esmaeili@ma.tum.de<br />

Heikki Tikanmäki<br />

Helsinki University of Technology (TKK) <strong>Institut</strong>e<br />

of Mathematics<br />

P.O.Box 1100<br />

02015 TKK<br />

Finland<br />

heikki.tikanmaki@tkk.fi<br />

Henrik J<strong>on</strong>ss<strong>on</strong><br />

EURANDOM<br />

P.O. Box 513<br />

5600 MB Eindhoven<br />

The Netherlands<br />

j<strong>on</strong>ss<strong>on</strong>@eurandom.tue.nl<br />

Ingemar Kaj<br />

Uppsala University<br />

Box 480<br />

SE 751 06 Uppsala<br />

Sweden<br />

ikaj@math.uu.se<br />

Istvan Fazekas<br />

University of Debrecen, Faculty of In<strong>for</strong>matics<br />

B. O. Box 12<br />

4010 Debrecen<br />

Hungary<br />

fazekasi@inf.unideb.hu<br />

Ivivi Mwaniki<br />

university of Nairobi<br />

School of Mathematics<br />

00200-30197 Nairobi<br />

Kenya<br />

jvivben@yahoo.com<br />

Jamis<strong>on</strong> Wolf<br />

Tufts University<br />

51 Cedar St. Apt. 4313<br />

01801 Woburn, MA<br />

USA<br />

jamis<strong>on</strong>bwolf@yahoo.com<br />

100<br />

Haidar Al-Talibi<br />

Växjö universitet<br />

MSI, Matematiska och systemtekniska instituti<strong>on</strong>en<br />

351 95 Växjö<br />

Sweden<br />

Haidar.Al-Talibi@vxu.se<br />

Henrik Hult<br />

Brown University<br />

Divisi<strong>on</strong> of Applied Mathematics, Box F<br />

02912 Providence, RI<br />

United States<br />

henrik hult@brown.edu<br />

Holger Rootzén<br />

Chalmers<br />

Mathematical Sciences, Chalmers<br />

SE 41296 Gteborg<br />

Sweden<br />

rootzen@math.chalmers.se<br />

Irmingard Eder<br />

Graduate Program Applied Algorithmic Mathematics,<br />

TU Munich<br />

Boltzmannstr.3<br />

D-85747 Garching<br />

Germany<br />

eder@ma.tum.de<br />

Iuliana Marchis<br />

Babes-Bolyai University<br />

Kogalniceanu 1<br />

400084 Cluj-Napoca<br />

Romania<br />

marchis julianna@yahoo.com<br />

Jacod Jean<br />

UPMC-Paris 6, <strong>Institut</strong> de mathématqiues<br />

175 rue du chevaleret<br />

75013 Paris<br />

France<br />

jj@ccr.jussieu.fr<br />

Jan Kallsen<br />

TU München<br />

Boltzmannstrae 3<br />

85748 Garching<br />

Germany<br />

kallsen@ma.tum.de


Jan Rosinski<br />

University of Tennessee<br />

Department of Mathematics, 121 Ayres Hall, University<br />

of Tennessee<br />

37996-1300 Knoxville<br />

USA<br />

rosinski@math.utk.edu<br />

Jay Rosen<br />

College of Staten Island, CUNY<br />

152 Penningt<strong>on</strong> Ave.<br />

07055 Passaic<br />

United States<br />

jrosen3@earthlink.net<br />

Jean-François Le Gall<br />

DMA - Ecole normale supé rieure de Paris<br />

45, rue d’Ulm<br />

75005 Paris<br />

France<br />

legall@dma.ens.fr<br />

Jeffrey F. Collamore<br />

University of Copenhagen<br />

Universitetsparken 5<br />

2100 Copenhagen<br />

Denmark<br />

collamore@math.ku.dk<br />

John Joseph Hosking<br />

Imperial College L<strong>on</strong>d<strong>on</strong><br />

Department of Mathematics, South Kensingt<strong>on</strong><br />

Campus, Imperial College L<strong>on</strong>d<strong>on</strong><br />

SW7 2AZ L<strong>on</strong>d<strong>on</strong><br />

United Kingdom<br />

john.hosking@imperial.ac.uk<br />

Juan Carlos Pardo Millan<br />

University of Bath<br />

Mathematical Sciences,University of Bath<br />

BA2 7AY Bath<br />

United Kingdom<br />

pardomil@ccr.jussieu.fr<br />

101<br />

Jang Schiltz<br />

University of Luxembourg<br />

162a, avenue de la Faencerie<br />

1511 Luxembourg<br />

Luxembourg<br />

jang.schiltz@uni.lu<br />

Jean Bertoin<br />

Laboratoire de Probabilités Université Paris 6<br />

175 rue du Chevaleret<br />

F-75013 Paris<br />

France<br />

jbe@ccr.jussieu.fr<br />

Jeannette Wörner<br />

University of Goettingen<br />

<strong>Institut</strong> fuer Mathematische Stochastik,<br />

Maschmuehlenweg 8-10<br />

D-37073 Goettingen<br />

Germany<br />

woerner@math.uni-goettingen.de<br />

Jesper Lund Pedersen<br />

University of Copenhagen<br />

Department of Mathematical Sciences<br />

Universitetsparken 5<br />

2100 Copenhagen<br />

Denmark<br />

jesper@math.ku.dk<br />

Josep Lluís Solé Clivillés<br />

Universitat Autònoma de Barcel<strong>on</strong>a.<br />

Departament de Matemátiques. Facultat de<br />

Ciències.<br />

08193 bellaterra<br />

Catalunya, Spain<br />

jllsole@mat.uab.cat<br />

Juergen Schmiegel<br />

Aarhus University<br />

Peder Skrams Gade 38<br />

8200 Aarhus<br />

Denmark<br />

schmiegl@imf.au.dk


Jukka Lempa<br />

Department of Ec<strong>on</strong>omics<br />

Turku School of Ec<strong>on</strong>omics<br />

Rehtorinpell<strong>on</strong>katu 3<br />

20500 Turku<br />

Finland<br />

jukka.lempa@tse.fi<br />

Larbi Alili<br />

Warwick University<br />

Department of Statistics<br />

The University of Warwick, Coventry<br />

CV4 7AL Coventry<br />

UK<br />

L.Alili@warwick.ac.uk<br />

Loïc Chaum<strong>on</strong>t<br />

Université d’Angers<br />

Larema – 2, boulevard Lavoisier<br />

49045 cedex 01 Angers<br />

France<br />

loic.chaum<strong>on</strong>t@univ-angers.fr<br />

Makoto Maejima<br />

Keio University<br />

Department of Mathematics, Keio University, 3-14-<br />

1, Hiyoshi, Kohoku-ku<br />

223-8522 Yokohama<br />

Japan<br />

maejima@math.keio.ac.jp<br />

Mark Meerschaert<br />

Department of Statistics and Probability<br />

Michigan State University<br />

48824 East Lansing<br />

USA<br />

mcubed@stt.msu.edu<br />

Mark Veillette<br />

Bost<strong>on</strong> University<br />

10 Emers<strong>on</strong> Pl. 18-k<br />

02114 Bost<strong>on</strong><br />

USA<br />

mveillet@bu.edu<br />

102<br />

Katja Krol<br />

Humboldt University Berlin<br />

Unter den Linden 6<br />

10099 Berlin<br />

Germany<br />

krol@math.hu-berlin.de<br />

Lars N. Andersen<br />

Aarhus Universitet<br />

Naturvidenskabeligt Fakultet<br />

Ny Munkegade, Bygning 1530<br />

8000 rhus C<br />

DK<br />

lars@daimi.au.dk<br />

Lukasz Del<strong>on</strong>g<br />

Warsaw School of Ec<strong>on</strong>omics<br />

Niepodleglosci 162<br />

02-554 Warsaw<br />

Poland<br />

ldel<strong>on</strong>g@wp.pl<br />

Manfred Schael<br />

Inst. Applied Math. University B<strong>on</strong>n<br />

Wegelerstr. 6<br />

D 53315 B<strong>on</strong>n<br />

Germany<br />

schael@uni-b<strong>on</strong>n.de<br />

Mark Podolskij<br />

Department of Mathematics, Ruhr-University of<br />

Bochum<br />

Mathematik III, NA 3 / 72 Universittsstrae 150<br />

44780 Bochum<br />

Germany<br />

podolski@cityweb.de<br />

Martin Jacobsen<br />

Dept. of Mathematical Sciences<br />

University of Copenhagen<br />

5 Universitetsparken<br />

2100 Copenhagen<br />

Denmark<br />

martin@math.ku.dk


Martin Keller-Ressel<br />

1040 Vienna<br />

Austria<br />

mkeller@fam.tuwien.ac.at<br />

Mateusz Kwasnicki<br />

Wroclaw University of Technology<br />

Wybrzeze Wyspianskiego 27<br />

50-370 Wroclaw<br />

Poland<br />

mateusz.kwasnicki@pwr.wroc.pl<br />

Matthieu Marouby<br />

Laboratoire de Statistique et Probabilités<br />

Université Paul Sabatier<br />

LSP, Universit Paul Sabatier, 118 Route de Narb<strong>on</strong>ne,<br />

Batiment 1R1 Bureau 12<br />

31062 Toulouse Cedex 9<br />

France<br />

marouby@cict.fr<br />

Mauro Politi<br />

Universita’ degli Studi di Milano<br />

Dipartimento di Fisica, Via Celoria, 16<br />

20133 Milano<br />

Italy<br />

politima@yahoo.it<br />

Michael Hinz<br />

FSU Jena<br />

Friedrich-Schiller-Universitt Jena, Mathematisches<br />

<strong>Institut</strong>, Fak. fr Mathematik und In<strong>for</strong>matik<br />

Ernst-Abbe-Platz 2<br />

07737 Jena<br />

Germany<br />

mhinz@minet.uni-jena.de<br />

Michael Sørensen<br />

University of Copenhagen<br />

Universitetsparken 5<br />

DK-2100 Copenhagen<br />

Denmark<br />

michael@math.ku.dk<br />

103<br />

Martynas Manstavicius<br />

Vilnius University<br />

Naugarduko str. 24<br />

03225 Vilnius<br />

Lithuania<br />

martynas.manstavicius@mif.vu.lt<br />

Mathias Vetter<br />

Ruhr-Universitt Bochum<br />

Stiepeler Str. 131<br />

44801 Bochum<br />

Germany<br />

mathias.vetter@rub.de<br />

Mattias Sunden<br />

Chalmers Technical University<br />

Matematiska Vetenskaper, Chalmers Tvärgata 3<br />

41296 Göteborg<br />

Sweden<br />

mattib@math.chalmers.se<br />

Meredith Brown<br />

Tufts University<br />

85 Frederick Ave.<br />

02155 Med<strong>for</strong>d<br />

USA<br />

meredith.brown@tufts.edu<br />

Michael Marcus<br />

CUNY<br />

253 West 73rd. St., Apt. 2E<br />

10023 New York, NY<br />

USA<br />

mbmarcus@opt<strong>on</strong>line.net<br />

Michaela Prokesova<br />

Department of Mathematical Sciences<br />

University of Aarhus<br />

Ny Munkegade, Building 1530<br />

DK - 8000 Aarhus C<br />

Denmark<br />

prokesov@imf.au.dk


Michailina Siakalli<br />

University of Sheffield<br />

49 Wellingt<strong>on</strong> Street, Dev<strong>on</strong>shire Courtyard, Flat 47<br />

S1 4HG SHEFFIELD<br />

UK<br />

stp05ms@shef.ac.uk<br />

Mohammed Mikou<br />

7, Bd Copernic, Pte 2g<br />

77420 Champs Sur Marne<br />

France<br />

mmikou2004@yahoo.fr<br />

Muneya Matsui<br />

Department of Mathematics , Keio University<br />

3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi<br />

Kanagawa-ken<br />

223-8522 Yokohama<br />

Japan<br />

mmuneya@math.keio.ac.jp<br />

Natalia Ivanova<br />

Guseva srt., 7, 64, Russia, 170043, Tver<br />

170043 Tver<br />

Russia<br />

natioanidi@tvcom.ru<br />

Niels Jacob<br />

University of Wales Swansea<br />

Department of Mathematics<br />

SA2 8PP Swansea<br />

United Kingdom<br />

N.Jacob@swansea.ac.uk<br />

Oksana Sidorova<br />

Tver State University<br />

Zhelyabov str. 33<br />

170100 Tver<br />

Russia<br />

Oksana.Sidorova@tversu.ru<br />

Omar Rachedi<br />

Universit di Pisa<br />

via roma 96<br />

57126 livorno<br />

italy<br />

omar.rachedi@yahoo.com<br />

104<br />

Mladen Savov<br />

University Of Manchester<br />

F5, 105 Hardy Lane, Chorlt<strong>on</strong>-cum-Hardy<br />

M21 8DP Manchester<br />

UK<br />

mladensavov@hotmail.com<br />

Moritz Kassmann<br />

University of B<strong>on</strong>n<br />

<strong>Institut</strong> für Angewandte Mathematik, Beringstrasse<br />

6<br />

53115 B<strong>on</strong>n<br />

Germany<br />

kassmann@iam.uni-b<strong>on</strong>n.de<br />

Narn-Rueih Shieh<br />

Department of Mathematics<br />

Nati<strong>on</strong>al Taiwan University<br />

10617 Taipei City<br />

Taiwan<br />

shiehnr@math.ntu.edu.tw<br />

Niels Hansen<br />

University of Copenhagen<br />

Department of Mathematical Sciences<br />

Universitetsparken 5<br />

2100 Copenhagen<br />

Denmark<br />

richard@math.ku.dk<br />

Noriyoshi Sakuma<br />

Keio University<br />

Kohoku-ku Hiyoshi 7-2-1 Hiyoshi sun-hights 201<br />

223-0061 Yokohama<br />

Japan<br />

noriyosi@math.keio.ac.jp<br />

Ole Eiler Barndorff-Nielsen<br />

Thiele Centre, Aarhus University<br />

Department of Mathematical Sciences<br />

8000 Aarhus<br />

Denmark<br />

oebn@imf.au.dk


Patrizia Semeraro<br />

University of Turin<br />

p.za Arbarello 8<br />

10100 Turin<br />

Italy<br />

semeraro@ec<strong>on</strong>.unito.it<br />

Pawel Szt<strong>on</strong>yk<br />

Wroclaw University of Technology<br />

FB 12 - Mathematik, Universitt Marburg,<br />

D-35032 Marburg<br />

Germany<br />

szt<strong>on</strong>yk@pwr.wroc.pl<br />

Peter Becker-Kern<br />

University of Dortmund<br />

Fachbereich Mathematik, Universität Dortmund<br />

D-44221 Dortmund<br />

Germany<br />

pbk@math.uni-dortmund.de<br />

Piotr Milos<br />

<strong>Institut</strong>e of Mathematics of the<br />

Polish Academy of Sciences<br />

Klaudyny 32/247<br />

01-684 Warsaw<br />

Poland<br />

pmilos@mimuw.edu.pl<br />

Rene Schilling<br />

Uni Marburg<br />

FB 12 - Mathematik<br />

D-35032 Marburg<br />

Germany<br />

schilling@mathematik.uni-marburg.de<br />

Robert Stelzer<br />

Centre <strong>for</strong> Mathematical Sciences<br />

Munich University of Technology<br />

Boltzmannstrae 3<br />

85747 Garching bei Mnchen<br />

Germany<br />

rstelzer@ma.tum.de<br />

R<strong>on</strong>nie Loeffen<br />

University of Bath<br />

Clevelands Building Room 3.2.1 Sydney Wharf<br />

BA2 4EP Bath<br />

United Kingdom<br />

rll22@maths.bath.ac.uk<br />

105<br />

Pauline Sculli<br />

L<strong>on</strong>d<strong>on</strong> School of Ec<strong>on</strong>omics<br />

Department of Statistics, Hought<strong>on</strong> Street<br />

WC2A 2AE L<strong>on</strong>d<strong>on</strong><br />

United Kingdom<br />

p.k.sculli@lse.ac.uk<br />

Perez-Abreu Victor<br />

CIMAT-Guanajuato-Mexico<br />

Apdo Postal 402<br />

36000 Guanajuato<br />

Mexico<br />

pabreu@cimat.mx<br />

Peter Scheffler<br />

University of Siegen, Department of Mathematics<br />

Walter-Flex-Str. 3<br />

57068 Siegen<br />

Germany<br />

scheffler@mathematik.uni-siegen.de<br />

Rama C<strong>on</strong>t<br />

Columbia University and CNRS<br />

500 W120th St, Office 313<br />

10027 New York<br />

USA<br />

Rama.C<strong>on</strong>t@columbia.edu<br />

Riedle Markus<br />

Humboldt University of Berlin<br />

Department of Mathematics, Unter den Linden 6<br />

10099 Berlin<br />

Germany<br />

riedle@mathematik.hu-berlin.de<br />

R<strong>on</strong>ald D<strong>on</strong>ey<br />

Manchester University<br />

School of Mathematics, PO Box 88, Sackville Street<br />

M60 1QD Manchester<br />

UK<br />

rad@ma.man.ac.uk<br />

Rune Piil Hansen<br />

Department of Physics and Astr<strong>on</strong>omy<br />

University of Aarhus<br />

Ny Munkegade, Bygn. 1520<br />

8210 Aarhus<br />

Denmark<br />

piil@phys.au.dk


Ryad Husseini<br />

<strong>Institut</strong>e of Applied Mathematics<br />

Poppelsdorfer Allee 82<br />

53115 B<strong>on</strong>n<br />

Germany<br />

ryad@uni-b<strong>on</strong>n.de<br />

Sándor Baran<br />

Faculty of In<strong>for</strong>matics<br />

University of Debrecen, Hungary<br />

Egyetem square 1.<br />

H-4032 Debrecen<br />

Hungary<br />

barans@inf.unideb.hu<br />

Serge Cohen<br />

<strong>Institut</strong> de Mathmatique Universit Paul Sabatier<br />

serge.cohen@math.ups-tlse.fr<br />

31062 Toulouse<br />

France<br />

serge.cohen@math.ups-tlse.fr<br />

Sidney Resnick<br />

Cornell ORIE<br />

Rhodes 284, Ithaca, NY<br />

14853 Ithaca<br />

USA<br />

sir1@cornell.edu<br />

Suzanne Cawst<strong>on</strong><br />

LAREMA, Université d’Angers<br />

Département de Mathématiques, Université<br />

d’Angers, 2 Bld Lavoisier<br />

49000 Angers<br />

FRANCE<br />

cawst<strong>on</strong>@t<strong>on</strong>t<strong>on</strong>.univ-angers.fr<br />

Takahiro Aoyama<br />

Department of mathematics, Keio University<br />

3-14-1 Hiyoshi, Kouhoku-ku, Yokohama<br />

223-0052 Yokohama<br />

Japan<br />

taoyama@math.keio.ac.jp<br />

Tetyana Kadankova<br />

Hasselt University<br />

Center <strong>for</strong> Statistics, Hasselt University<br />

Agoralaan, building D, 3590 Diepenbeek<br />

Belgium<br />

tetyana.kadankova@uhasselt.be<br />

106<br />

Saeid Rezakhah<br />

Amirkabir University of Technology<br />

rezakhah@aut.ac.ir<br />

15914 Tehran<br />

Iran<br />

rezakhah@aut.ac.ir<br />

Seiji Hiraba<br />

Tokyo University of Science<br />

2641, Yamazaki<br />

278-8510 Noda<br />

Japan<br />

hiraba seiji@ma.noda.tus.ac.jp<br />

Sergio Bianchi<br />

DIMET, University of Cassino<br />

Via S. Angelo<br />

03043 Cassino<br />

Italy<br />

sbianchi@eco.unicas.it<br />

Sören Christensen<br />

Christian-Albrechts-Universitt, Kiel<br />

Ahlmannstrae 19<br />

24118 Kiel<br />

Germany<br />

s.christensen@gmx.net<br />

Takaaki Shimura<br />

The <strong>Institut</strong>e of Statistical Mathematics<br />

4-6-7 Minami-Azabu Minato-ku Tokyo Japan<br />

108-8569 Tokyo<br />

Japan<br />

shimura@ism.ac.jp<br />

Teppo Rakkolainen<br />

Turku School of Ec<strong>on</strong>omics<br />

Dept. of Ec<strong>on</strong>omics, Rehtorinpell<strong>on</strong>katu 3<br />

20500 Turku<br />

Finland<br />

teppo.rakkolainen@tse.fi<br />

Thomas Liebmann<br />

Ulm University<br />

Mörikeweg 5<br />

88339 Bad Waldsee<br />

Germany<br />

thomas.liebmann@uni-ulm.de


Thomas Mikosch<br />

University of Copenhagen<br />

Laboratory of Actuarial Mathematics<br />

Universitetsparken 5<br />

2100 Copenhagen<br />

Denmark<br />

mikosch@math.ku.dk<br />

Thomas Steiner<br />

PhD student at TU Vienna<br />

Wiedner Hauptstrae 8-10/105-1<br />

A-1040 Vienna<br />

Austria<br />

thomas@fam.tuwien.ac.at<br />

Tomasz Jakubowski<br />

Wroclaw University of Technology<br />

ul. Janiszewskiego 14a<br />

Wroclaw<br />

Poland<br />

Tomasz.Jakubowski@pwr.wroc.pl<br />

Vicky Fasen<br />

Munich University of Technology<br />

Centre <strong>for</strong> Mathematical Sciences<br />

Boltzmannstrasse 3<br />

85747 Munich<br />

Germany<br />

fasen@ma.tum.de<br />

Viktor Benes<br />

Charles University<br />

Faculty of Mathematics and Physics<br />

Dept. of Probability and Mathematical Statistics<br />

Sokolovska 83<br />

18675 Praha 8<br />

Czech Republic<br />

benesv@karlin.mff.cuni.cz<br />

Violetta Bernyk<br />

<strong>Institut</strong> de Mathématiques<br />

Ecole Polytechnique<br />

Fédérale de Lausanne, Stati<strong>on</strong> 8<br />

1015 Lausanne<br />

Switzerland<br />

violetta.bernyk@epfl.ch<br />

107<br />

Thomas Sim<strong>on</strong><br />

Departement de Mathematiques<br />

Universite d’Evry-Val d’Ess<strong>on</strong>ne<br />

Cours M<strong>on</strong>seigneur Romero<br />

91025 EVRY<br />

France<br />

tsim<strong>on</strong>@univ-evry.fr<br />

Tomasz Grzywny<br />

Wroclaw University of Technology<br />

<strong>Institut</strong>e of Mathematics and Computer Science<br />

ul. Wybrzeze Wyspianskiego 27<br />

50-370 Wroclaw<br />

Poland<br />

tomasz.grzywny@pwr.wroc.pl<br />

Tomasz Mostowski<br />

Warsaw University<br />

Dluga 44/55<br />

00-241 Warszawa<br />

Poland<br />

tmostowski@wne.uw.edu.pl<br />

Victor Rivero<br />

Centro de Investigaci<strong>on</strong> en Matematicas A. C.<br />

Calle Jalisco s/n col. Mineral de Valenciana, AP 420<br />

36240 Guanajuato<br />

Mexico<br />

rivero@cimat.mx<br />

Viktoriya Masol<br />

K.U. Leuven and EURANDOM<br />

P.O.Box 513<br />

5600 MB Eindhoven<br />

The Netherlands<br />

masol@eurandom.tue.nl<br />

Virginie K<strong>on</strong>lack<br />

University of Yaounde I<br />

Department of Mathematics<br />

Box 812 Yaounde<br />

Camero<strong>on</strong><br />

ksognia@yahoo.fr


Vladas Pipiras<br />

University of North Carolina<br />

Dept. of Statistics & OR<br />

UNC-CH, Smith Bldg, CB#3260<br />

NC 27599 Chapel Hill<br />

USA<br />

pipiras@email.unc.edu<br />

Xiaowen Zhou<br />

C<strong>on</strong>cordia University<br />

1455 de Mais<strong>on</strong>neuve Blvd. W.<br />

H3G 1M8 M<strong>on</strong>treal<br />

Canada<br />

zhou@alcor.c<strong>on</strong>cordia.ca<br />

Yi Shen<br />

Ecole Polytechnique<br />

X-2005 Cie.10, Palaiseau, France<br />

F-91128 Palaiseau<br />

France<br />

yi.shen@polytechnique.edu<br />

Yury Khokhlov<br />

Tver State University<br />

Boulevard Nogina b. 6, ap. 103<br />

170001 Tver<br />

Russia<br />

YSkhokhlov@yandex.ru<br />

Zenghu Li<br />

School of Mathematical Sciences<br />

Beijing Normal University<br />

100875 Beijing<br />

China<br />

lizh@bnu.edu.cn<br />

108<br />

Wei Liu<br />

Universitaet Bielefeld, Germany<br />

App.107, Jakob-Kaiser-Strasse 16<br />

D-33615 Bielefeld<br />

Germany<br />

weiliu0402@yahoo.com.cn<br />

Yasushi Ishikawa<br />

Dept. Math., Ehime University<br />

5 Bunkyocho-2 chome<br />

7908577 Matsuyama<br />

Japan<br />

slishi@math.sci.ehime-u.ac.jp<br />

Yimin Xiao<br />

Michigan State University<br />

Department of Statistics and Probability<br />

A-413 Wells Hall<br />

MI 48824 East Lansing<br />

U.S.A.<br />

xiao@stt.msu.edu<br />

Zbigniew Jurek<br />

<strong>Institut</strong>e of Mathematics<br />

University of Wroclaw,<br />

Pl. Grunwaldzki 2/4<br />

50-384 Wroclaw<br />

Poland<br />

zjjurek@math.uni.wroc.pl<br />

Zoran V<strong>on</strong>dracek<br />

University of Zagreb<br />

Department of Mathematics, Bijenicka 30<br />

10000 Zagreb<br />

Croatia<br />

v<strong>on</strong>dra@math.hr

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!