02.02.2013 Views

An Alternative Approach to the Diagnosis of ... - Diabetes Care

An Alternative Approach to the Diagnosis of ... - Diabetes Care

An Alternative Approach to the Diagnosis of ... - Diabetes Care

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

R E V I E W A R T I C L E<br />

<strong>An</strong> <strong>Alternative</strong> <strong>Approach</strong> <strong>to</strong><br />

<strong>the</strong> <strong>Diagnosis</strong> <strong>of</strong> <strong>Diabetes</strong><br />

With a Review <strong>of</strong> <strong>the</strong><br />

Literature<br />

MAYER B. DAVIDSON, MD<br />

ANNE L. PETERS, MD<br />

DAVID L. SCHRIGER, MD, MPH<br />

T<br />

wo thoughtful articles in <strong>the</strong> May<br />

1994 issue <strong>of</strong> <strong>Diabetes</strong> <strong>Care</strong> argued<br />

<strong>the</strong> case for screening for type II di-<br />

Knowler (2) discussed <strong>the</strong> general principles<br />

<strong>of</strong> screening and made <strong>the</strong> following<br />

points that are pertinent for diabetes.<br />

abetes (1, 2). Harris and Modan (1) First, hyperglycemia is a continuum, and<br />

pointed out that 1) large population sur- <strong>the</strong>refore <strong>the</strong> choice <strong>of</strong> cu<strong>to</strong>ff values for<br />

veys repeatedly show that approximately diagnosis is somewhat arbitrary. Second,<br />

one-half <strong>of</strong> people with type II diabetes screening for diabetes is unusual because,<br />

are undiagnosed; 2) type II diabetes (i.e., depending on <strong>the</strong> test(s) chosen, <strong>the</strong><br />

hyperglycemia) is present for ~10 years screening test may also be <strong>the</strong> diagnostic<br />

before <strong>the</strong> diagnosis is made; 3) compli- one. Third, as for all diseases, <strong>the</strong> screencations<br />

are <strong>of</strong>ten present at <strong>the</strong> time <strong>of</strong> ing test should have high test-perfor-<br />

diagnosis; 4) diabetes (<strong>of</strong> which type II mance characteristics, i.e., sensitivity,<br />

accounts for 90% <strong>of</strong> cases) exacts a dread- specificity, and predictive value. Finally,<br />

ful <strong>to</strong>ll on <strong>the</strong> population (e.g., 15% <strong>of</strong> all in a nonresearch setting, relatively strin-<br />

blindness, 35% <strong>of</strong> all end stage renal disgent criteria should be selected <strong>to</strong> maxiease,<br />

50% <strong>of</strong> all nontraumatic lower exmize <strong>the</strong> chance that detected subjects<br />

tremity amputations, >100 billion dol- will benefit from <strong>the</strong>rapy. Interestingly,<br />

lars annual cost); 5) it is well established Harris and Modan (1) concluded that <strong>the</strong><br />

that hyperglycemia is <strong>the</strong> proximate cause oral glucose <strong>to</strong>lerance test (OGTT) should<br />

<strong>of</strong> <strong>the</strong> microvascular (retinopathy and ne- be used as <strong>the</strong> primary screening (and diphropathy)<br />

and neuropathic complicaagnostic) method, whereas Knowler (2)<br />

tions <strong>of</strong> diabetes; and 6) early interven- concluded that a glycated hemoglobin<br />

tion (e.g., diet, exercise, medications) is level measurement should be <strong>the</strong> method<br />

helpful in reducing hyperglycemia. <strong>of</strong> choice.<br />

From <strong>the</strong> Department <strong>of</strong> Medicine (M.B.D., A.L.P.), Cedars-Sinai Research Institute, Cedars-<br />

Sinai Medical Center, and <strong>the</strong> UCLA School <strong>of</strong> Medicine (M.B.D., A.L.P., D.L.S.), Los <strong>An</strong>geles,<br />

California.<br />

Address correspondence and reprint requests <strong>to</strong> Mayer B. Davidson, MD, 2103 Overland<br />

Ave., Los <strong>An</strong>geles, CA 90025.<br />

Received for publication 15 August 1994 and accepted in revised form 2 March 1995.<br />

FPG, fasting plasma glucose; IGT, impaired glucose <strong>to</strong>lerance; NDDG, National <strong>Diabetes</strong> Data<br />

Group; NGT, normal glucose <strong>to</strong>lerance; OGTT, oral glucose <strong>to</strong>lerance test; ULN, upper limit <strong>of</strong><br />

normal.<br />

BACKGROUND FOR<br />

DIAGNOSTIC CRITERIA —<br />

Before 1979, <strong>the</strong>re were many different<br />

criteria for interpreting OGTT results (3)<br />

and no consensus existed regarding <strong>the</strong><br />

best cu<strong>to</strong>ff points for diagnosing diabetes.<br />

Studies performed in <strong>the</strong> 1970s and<br />

1980s (4-7) evaluated <strong>the</strong> association between<br />

2-h post-glucose load values<br />

(two studies [6,7] also assessed fasting<br />

plasma glucose [FPG] concentrations,<br />

and in one, glycated hemoglobin levels<br />

were also compared [7]) and <strong>the</strong> subsequent<br />

development <strong>of</strong> <strong>the</strong> microvascular<br />

complications <strong>of</strong> diabetes. These<br />

complications, especially diabetic retinopathy,<br />

are considered <strong>to</strong> be specific<br />

for diabetes. Two <strong>of</strong> <strong>the</strong>se studies (4,5)<br />

evaluated patients who had abnormal<br />

2-h capillary blood glucose values after<br />

administration <strong>of</strong> 50 g <strong>of</strong> oral glucose<br />

(fasting values were not considered).<br />

The patients were classified as ei<strong>the</strong>r diabetic<br />

(2-h blood glucose ^200 mg/dl<br />

[11.1 mmol/1]) or "borderline" diabetic<br />

(2-h blood glucose 120-199 mg/dl<br />

[6.7-11 mmol/1]) and were followed for<br />

5-8 years with ophthalmoscopic examination<br />

through dilated pupils <strong>to</strong> detect<br />

diabetic retinopathy. Diabetic retinopathy<br />

was defined in <strong>the</strong>se studies as <strong>the</strong><br />

presence <strong>of</strong> vascular lesions, such as microaneurysms<br />

alone (small red dots) or<br />

obvious hemorrhage with or without<br />

Table 1—5- <strong>to</strong> 8-year follow-up in subjects<br />

with IGT or diabetes based on a 2-h<br />

capillary blood glucose measurement after a<br />

50-g glucose load<br />

Subjects with diabetic retinopathy<br />

and an initial 2-h blood glucose<br />

measurement<br />

120-199 mg/dl >200 mg/dl<br />

Reference (6.7-11.1 mmol/1) (11.1 mmol/1)<br />

5/245 *<br />

0/112<br />

20/108T<br />

6/38<br />

Three patients who had diabetic retinopathy at<br />

baseline were excluded. TEight patients who had<br />

diabetic retinopathy at baseline were excluded.<br />

DIABETES CARE, VOLUME 18, NUMBER 7, JULY 1995 1065


<strong>Alternative</strong> approach <strong>to</strong> diagnosing diabetes<br />

Table 2—Results <strong>of</strong> a 3-year follow-up in Pima Indians<br />

Initial FPG<br />

140 mg/dl (7.8 mmol/1)<br />

2-h plasma glucose<br />

200 mg/dl (11.1 mmol/1).<br />

n<br />

181<br />

39<br />

117<br />

43<br />

60<br />

Retinopathy<br />

2*<br />

15<br />

0<br />

0<br />

7t<br />

Proteinuria<br />

Data are n at risk at baseline. tThese two patients had a 2-h plasma glucose level ^200 mg/dl (11.1 mmol/1),<br />

and one had an FPG between 130 and 139 mg/dl (7.2-7.7 mmol/1). TFive <strong>of</strong> <strong>the</strong>se patients had FPG<br />

concentrations S140 mg/dl (7.8 mmol/1). Data from Pettitt et al. (6).<br />

exudates. Exudates alone did not constitute<br />

diabetic retinopathy. The results<br />

<strong>of</strong> <strong>the</strong>se studies are summarized in Table<br />

1.<br />

Several <strong>of</strong> <strong>the</strong>se studies were carried<br />

out in Pima Indians (6,7). There is a<br />

high prevalence <strong>of</strong> diabetes in this population,<br />

and fasting and 2-h plasma glucose<br />

concentrations and glycated hemoglobin<br />

levels are found in a bimodal distribution,<br />

which allows for <strong>the</strong> clear identification <strong>of</strong><br />

patients with diabetes. Both cross-sectional<br />

and longitudinal data on diabetes<br />

and its complications in this population<br />

have been collected since 1965. At least<br />

two <strong>of</strong> <strong>the</strong> studies published provide longitudinal<br />

data on <strong>the</strong> development <strong>of</strong> retinopathy<br />

and nephropathy in <strong>the</strong>se patients<br />

for several years compared with<br />

baseline data on glucose <strong>to</strong>lerance (6,7).<br />

Initially, glycated hemoglobin levels were<br />

not available. A 3-year follow-up was provided<br />

for patients who had a 75-g OGTT<br />

with both FPG and 2-h plasma glucose<br />

measured (Table 2), and 6-year follow up<br />

was available for patients who had a measurement<br />

<strong>of</strong> 2-h plasma glucose value<br />

alone (Table 3). The presence or absence<br />

<strong>of</strong> diabetic retinopathy (identified by microaneurysms,<br />

hemorrhages, and neovascularization,<br />

but not hard exudates because<br />

<strong>the</strong>y were considered less specific<br />

for diabetes) was determined based on<br />

ophthalmoscopic examination through<br />

dilated pupils, and <strong>the</strong> presence <strong>of</strong> diabetic<br />

nephropathy was defined as "heavy<br />

proteinuria" (urine protein-<strong>to</strong>-creatinine<br />

0<br />

2<br />

0<br />

0<br />

2<br />

ratio >1.0). These studies suggested that<br />

FPG values > 140 mg/dl (7.8 mmol/1) and<br />

2-h plasma glucose values ^200 mg/dl<br />

(11.1 mmol/1) defined a subset <strong>of</strong> Pima<br />

Indians who were more likely <strong>to</strong> develop<br />

diabetic retinopathy or nephropathy.<br />

In a later study in Pima Indians,<br />

941 patients without retinopathy or nephropathy<br />

at baseline were followed for<br />

4.5 (1.4-8.3) years (7). The development<br />

<strong>of</strong> retinopathy or nephropathy (assessed<br />

using <strong>the</strong> same criteria described above)<br />

during follow-up was compared with<br />

baseline fasting and 2-h glucose concentrations<br />

and glycated hemoglobin levels.<br />

The frequency distributions <strong>of</strong> <strong>the</strong>se three<br />

parameters <strong>of</strong> glycemia were analyzed by<br />

a maximum-likelihood estimation using a<br />

model <strong>of</strong> two overlapping distributions<br />

(7). <strong>An</strong>timodal cutpoints that provided<br />

<strong>the</strong> minimum overlap between <strong>the</strong> two<br />

components <strong>of</strong> <strong>the</strong> distribution were an<br />

FPG concentration <strong>of</strong> 167 mg/dl (9.3<br />

mmol/1), a 2-h plasma glucose concentration<br />

<strong>of</strong> 227 mg/dl (12.6 mmol/1), an<br />

HbAlc level <strong>of</strong> 7.8%, and an HbA: level <strong>of</strong><br />

Table 3—Results <strong>of</strong> a 6-year follow-up in Pima Indians<br />

Initial 2-h blood glucose level<br />

200 mg/dl (11.1 mmol/1)<br />

n<br />

335<br />

111<br />

113<br />

9.4% (7). The ~5 year incidence <strong>of</strong> microvascular<br />

complications in Pima Indians<br />

without <strong>the</strong>se complications at baseline<br />

above and below <strong>the</strong> cutpoints is<br />

shown in Table 4.<br />

This recent study using Pima Indians<br />

is <strong>the</strong> most complete in terms <strong>of</strong><br />

evaluating all <strong>of</strong> <strong>the</strong> glycemic tests for diagnosing<br />

diabetes and <strong>the</strong> development<br />

<strong>of</strong> complications. It was not available at<br />

<strong>the</strong> time <strong>the</strong> National <strong>Diabetes</strong> Data<br />

Group (NDDG) criteria for diagnosing diabetes<br />

were developed (8) (see below),<br />

and it uses somewhat higher glycemic<br />

cutpoints for diagnosing diabetes than<br />

had been used earlier. The conclusions<br />

from all <strong>of</strong> <strong>the</strong>se studies are based on <strong>the</strong><br />

premise that defining glycemic indica<strong>to</strong>rs<br />

that predict <strong>the</strong> development <strong>of</strong> microvascular<br />

complications (particularly retinopathy)<br />

should be used <strong>to</strong> make <strong>the</strong> diagnosis<br />

<strong>of</strong> diabetes.<br />

In <strong>the</strong> studies from <strong>the</strong> 1970s, <strong>the</strong><br />

data defining glycemic cutpoints for diagnosing<br />

diabetes are somewhat sketchy. In<br />

two <strong>of</strong> <strong>the</strong> studies (4,5), FPG concentrations<br />

were not available for <strong>the</strong> individuals<br />

with 2-h plasma glucose concentrations<br />

^200 mg/dl (11.1 mmol/1) who<br />

subsequently developed microvascular<br />

complications, making an analysis <strong>of</strong> FPG<br />

versus 2-h plasma glucose concentrations<br />

impossible. In <strong>the</strong> third study (6), FPG<br />

concentrations were available for subjects<br />

followed for 3 years (but not in those followed<br />

for 6 years). Of <strong>the</strong> seven subjects<br />

who developed retinopathy, all had a 2-h<br />

value ^200 mg/dl (11.1 mmol/1) at baseline.<br />

Five <strong>of</strong> <strong>the</strong>se subjects also had an<br />

FPG concentration ^140 mg/dl (7.8<br />

mmol/1), one had an abnormal FPG con-<br />

Retinopathy<br />

3<br />

3<br />

23<br />

Proteinuria<br />

Data are n at risk at baseline. *Three <strong>of</strong> <strong>the</strong>se subjects had possible causes for developing proteinuria o<strong>the</strong>r<br />

than diabetes. Data from Pettitt et al. (6).<br />

1066 DIABETES CARE, VOLUME 18, NUMBER 7, JULY 1995<br />

4*<br />

0<br />

5


Table A—5-year incidence <strong>of</strong> retinopathy and nephropathy in Pima Indians<br />

Retinopathy<br />

Nephropathy<br />

2-h plasma glucose<br />

[mg/dl (mmol/1)]<br />

227(12.6)<br />

769 (0%) 158 (17.5%)<br />

768 (1.2%) 173 (3.6%)<br />

Data are n at risk at baseline (5-year incidence).<br />

centration between 130-139 mg/dl (7.2-<br />

7.7 mmol/1), and in <strong>the</strong> remaining subject<br />

<strong>the</strong> FPG level was 200(ll.l)<br />

=£200(11.1)<br />

NDDG<br />

Venous whole<br />

blood glucose<br />

< 100 (5.6)<br />

200(ll.l)<br />

—<br />

=£200(11.1)<br />

• Unequivocal elevation <strong>of</strong> plasma glucose<br />

(>200 mg/dl [11.1 mmol/1]) and<br />

classic symp<strong>to</strong>ms <strong>of</strong> diabetes, including<br />

polydipsia, polyuria, polyphagia, and<br />

weight loss.<br />

• FPG >140 mg/dl (7.8 mmol/1) on two<br />

occasions.<br />

WHO<br />

Venous whole<br />

blood glucose<br />


<strong>Alternative</strong> approach <strong>to</strong> diagnosing diabetes<br />

Table 6—Prevalence <strong>of</strong> nondiagnostic OGTT by NDDG criteria and diagnosis by<br />

WHO criteria<br />

Reference<br />

12<br />

13<br />

14<br />

15<br />

Total<br />

Data are n'<br />

Total<br />

OGTT<br />

3704<br />

543<br />

2040<br />

216<br />

6503<br />

Nondiagnostic<br />

OGTT<br />

536<br />

179<br />

405<br />

54<br />

1174(18)<br />

• FPG < 140 mg/dl (7.8 mmol/l) and two<br />

OGTTs with <strong>the</strong> 2-h plasma glucose<br />

^200 mg/dl (11.1 mmol/l) and one intervening<br />

value ^200 mg/dl (11.1<br />

mmol/l) after a 75-g glucose load.<br />

IGT<br />

• FPG < 140 mg/dl (7.8 mmol/l) and 2-h<br />

plasma glucose ^140 (7.8 mmol/l) and<br />


Table 7—Results <strong>of</strong> OGTTs in individuals with glycated hemoglobin levels >\% above<br />

<strong>the</strong> ULN<br />

Reference<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

Total<br />

Total <strong>Diabetes</strong> 1GT NGT Undetermined<br />

22<br />

22<br />

23<br />

14<br />

25<br />

18<br />

38<br />

57<br />

43<br />

22<br />

49<br />

12<br />

87<br />

14<br />

12<br />

8<br />

466<br />

21<br />

22<br />

23<br />

13<br />

24<br />

17<br />

37<br />

54<br />

41<br />

22<br />

46<br />

12<br />

84<br />

14<br />

6<br />

8<br />

444<br />

1<br />

—<br />

—<br />

—<br />

1<br />

1<br />

1<br />

1<br />

2<br />

—<br />

3<br />

—<br />

3<br />

—<br />

3<br />

—<br />

16<br />

—<br />

—<br />

—<br />

—<br />

—<br />

2<br />

3<br />

5 1<br />

Data are n. For those undetermined, information not available <strong>to</strong> determine if individual was normal or had<br />

IGT. Positive predictive value = true positive X 100/true positives + false positives = 95.3%.<br />

physicians revealed that over two-thirds<br />

never considered ordering an OGTT <strong>to</strong><br />

diagnose diabetes (22). In fact,


<strong>Alternative</strong> approach <strong>to</strong> diagnosing diabetes<br />

stitute a diagnosis but would simply alert<br />

<strong>the</strong>se individuals (and <strong>the</strong>ir physicians) <strong>to</strong><br />

<strong>the</strong> potential benefits <strong>of</strong> altering <strong>the</strong>ir lifestyles<br />

<strong>to</strong> minimize <strong>the</strong>se risks. Regardless<br />

<strong>of</strong> <strong>the</strong> results if an OGTT were performed<br />

in subjects with glycated hemoglobin levels<br />

120% <strong>of</strong> desirable body weight); 3)<br />

Native American, African American, or<br />

Hispanic ethnicity; 4) previously identified<br />

IGT; 5) hypertension or dyslipidemia;<br />

or 6) his<strong>to</strong>ry <strong>of</strong> gestational diabetes<br />

or delivery <strong>of</strong> a baby weighing >9 lb.<br />

Since diabetes is so common in <strong>the</strong> elderly,<br />

consideration should also be given <strong>to</strong><br />

measuring FPG concentrations in those<br />

>65 years <strong>of</strong> age regardless <strong>of</strong> risk fac<strong>to</strong>rs.<br />

References<br />

1. Harris MI, Modan M: Screening for<br />

NIDDM: why is <strong>the</strong>re no national program?<br />

<strong>Diabetes</strong> <strong>Care</strong> 17:440-444, 1994<br />

2. Knowler WC: Screening for NIDDM: opportunities<br />

for detection, treatment, and<br />

prevention. <strong>Diabetes</strong> <strong>Care</strong> 17:445-450,<br />

1994<br />

3. Valleron AJ, Eschwege E, Papoz L, Rosselin<br />

GE: Agreement and discrepancy in <strong>the</strong><br />

evaluation <strong>of</strong> normal and diabetic oral<br />

glucose <strong>to</strong>lerance test. <strong>Diabetes</strong> 24:585-<br />

596,1975<br />

4. Jarrett RJ, Keen H: Hyperglycaemia and<br />

diabetes mellitus. Lancet ii: 1009-1012,<br />

1976<br />

5. Sayegh HA, Jarrett RJ: Oral glucose<strong>to</strong>lerance<br />

tests and <strong>the</strong> diagnosis <strong>of</strong> diabetes:<br />

results <strong>of</strong> a prospective study based<br />

on <strong>the</strong> Whitehall survey. Lancet ii:431-<br />

433,1979<br />

6. Pettitt DJ, Knowler WC, Lisse JR, Bennett<br />

PH: Development <strong>of</strong> retinopathy and proteinuria<br />

in relation <strong>to</strong> plasma-glucose<br />

concentrations in Pima Indians. Lancet ii:<br />

1050-1052, 1980<br />

7. McCance DR, Hanson RL, Charles MA,<br />

Jacobsson LTH, Pettitt DJ, Bennett PH,<br />

Knowler WC: Comparison <strong>of</strong> tests for glycated<br />

haemoglobin and fasting and two<br />

hour plasma glucose concentrations as diagnostic<br />

methods for diabetes. Br Med J<br />

308:1323-1328, 1994<br />

8. National <strong>Diabetes</strong> Data Group: Classification<br />

and diagnosis <strong>of</strong> diabetes mellitus<br />

and o<strong>the</strong>r categories <strong>of</strong> glucose in<strong>to</strong>lerance.<br />

<strong>Diabetes</strong> 28:1039-1057, 1979<br />

9. American <strong>Diabetes</strong> Association Position<br />

Statement: Office guide <strong>to</strong> diagnosis and<br />

classification <strong>of</strong> diabetes mellitus and<br />

o<strong>the</strong>r categories <strong>of</strong> glucose in<strong>to</strong>lerance.<br />

<strong>Diabetes</strong> <strong>Care</strong> 16 (Suppl. 2):4, 1993<br />

10. World Health Organization: <strong>Diabetes</strong> Mellitus:<br />

Report <strong>of</strong> a WHO Study Group. Geneva,<br />

World Health Org., 1985 (Tech.<br />

Rep. Ser.,no. 727)<br />

11. American <strong>Diabetes</strong> Association Committee<br />

on Statistics: Standardization <strong>of</strong> <strong>the</strong><br />

oral glucose <strong>to</strong>lerance test. <strong>Diabetes</strong> 18:<br />

299-310, 1969<br />

12. Harris MI, Hadden WC, Knowler WC,<br />

Bennett PH: International criteria for <strong>the</strong><br />

diagnosis <strong>of</strong> diabetes and impaired glucose<br />

<strong>to</strong>lerance. <strong>Diabetes</strong> <strong>Care</strong> 8:562-567,<br />

1985<br />

13. Massari V, Eschwege E, Valleron AH: Imprecision<br />

<strong>of</strong> new criteria for <strong>the</strong> oral glucose<br />

<strong>to</strong>lerance test. Diabe<strong>to</strong>logia 24:100-<br />

106,1983<br />

14. Modan M, Halkin H, Karasik A, Lusky A:<br />

Effectiveness <strong>of</strong> glycosylated hemoglobin,<br />

fasting plasma glucose, and a single post<br />

load plasma glucose level in population<br />

screening for glucose in<strong>to</strong>lerance. Am J<br />

Epidemiol 119:431-444, 1984<br />

15. Forrest RD, Jackson CA, Yudkin JS: The<br />

abbreviated glucose <strong>to</strong>lerance test in<br />

screening for diabetes: The Isling<strong>to</strong>n <strong>Diabetes</strong><br />

Survey. Diabetic Med 5:557-561,<br />

1988<br />

16. Modan M, Harris MI, Halkin H: Evaluation<br />

<strong>of</strong> WHO and NDDG criteria for impaired<br />

glucose <strong>to</strong>lerance: results from two<br />

national samples. <strong>Diabetes</strong> 38:1630-<br />

1635, 1989<br />

17. Olefsky JM, Reaven GM: Insulin and glucose<br />

responses <strong>to</strong> identical oral glucose<br />

<strong>to</strong>lerance tests performed forty-eight<br />

hours apart. <strong>Diabetes</strong> 23:449-453, 1974<br />

18. Kosaka K, Mizuno Y, Kuzuga T: Reproducibility<br />

<strong>of</strong> <strong>the</strong> oral glucose <strong>to</strong>lerance test<br />

and <strong>the</strong> rice-meal test in mild diabetes.<br />

<strong>Diabetes</strong> 15:901-904, 1966<br />

19. Wilkerson HLC, Butler FK, Francis JO'S:<br />

The effect <strong>of</strong> prior carbohydrate intake on<br />

<strong>the</strong> oral glucose <strong>to</strong>lerance test. <strong>Diabetes</strong><br />

9:386-391, 1960<br />

20. Aparicio NJ, Puchulu FE, Gagliardino JJ,<br />

Ruiz M, Llorens JM, Ruiz J, Lamas A, De<br />

Miguel R: Circadian variation <strong>of</strong> <strong>the</strong> blood<br />

glucose, plasma insulin and human<br />

growth hormone levels in response <strong>to</strong> an<br />

oral glucose load in normal subjects. <strong>Diabetes</strong><br />

23:132-137, 1974<br />

1070 DIABETES CARE, VOLUME 18, NUMBER 7, JULY 1995


21. Rushforth NB, Miller M, Bennett PH:<br />

Fasting and two-hour post-load glucose<br />

levels for <strong>the</strong> diagnosis <strong>of</strong> diabetes. Diabe<strong>to</strong>logia<br />

16:373-379, 1979<br />

22. Orchard TJ: From diagnosis and classification<br />

<strong>to</strong> complications and <strong>the</strong>rapy. <strong>Diabetes</strong><br />

<strong>Care</strong> 17:326-338, 1994<br />

23. Mel<strong>to</strong>n LJ, Palumbo PJ, Chu C-P: Incidence<br />

<strong>of</strong> diabetes mellitus by clinical type.<br />

<strong>Diabetes</strong> <strong>Care</strong> 6:75-86, 1983<br />

24. The <strong>Diabetes</strong> Control and Complications<br />

Trial Research Group: The effect <strong>of</strong> intensive<br />

treatment <strong>of</strong> diabetes on <strong>the</strong> development<br />

and progression <strong>of</strong> long-term complications<br />

in insulin-dependent diabetes<br />

meilitus. N Engl J Med 329:977-986,<br />

1993<br />

25. Boucher BJ, Welch SG, Beer MS: Glycosylated<br />

haemoglobins in <strong>the</strong> diagnosis <strong>of</strong> diabetes<br />

meilitus and impaired glucose <strong>to</strong>lerance<br />

for <strong>the</strong> assessment <strong>of</strong> chronic<br />

hyperglycemia. Diabe<strong>to</strong>logia 21:34-36,<br />

1981<br />

26. Svendsen PA,JorgensenJ, NerupJ: HbAlc<br />

and <strong>the</strong> diagnosis <strong>of</strong> diabetes meilitus.<br />

Ada Med Scand 210:313-316,1981<br />

27. Clipson KL, Kansal PC, Poon M-C,<br />

Boshell BR: Hemoglobin Ax in <strong>the</strong> diagnosis<br />

<strong>of</strong> chemical diabetes meilitus. Horm<br />

MetabRes 13:129-131, 1982<br />

28. Kesson CM, Youn RE, Talwar D,<br />

WhitelawJW, Robb DA: Glycosylated hemoglobin<br />

in <strong>the</strong> diagnosis <strong>of</strong> non-insulindependent<br />

diabetes meilitus. <strong>Diabetes</strong><br />

<strong>Care</strong> 5:395-398, 1982<br />

29. Verillo A, De Teresa A, Golia R, Nunziata<br />

V: The relationship between glycosylated<br />

haemoglobin levels and various degrees<br />

<strong>of</strong> glucose in<strong>to</strong>lerance. Diabe<strong>to</strong>logia 24:<br />

391-393, 1983<br />

30. Hall PM, John, MS, Cook G, Sheldon J,<br />

Ru<strong>the</strong>rford SM, Gould BJ: Glycosylated<br />

hemoglobins and glycosylated plasma<br />

proteins in <strong>the</strong> diagnosis <strong>of</strong> diabetes meilitus<br />

and impaired glucose <strong>to</strong>lerance. <strong>Diabetes</strong><br />

<strong>Care</strong> 7:147-150, 1984<br />

31. CederholmJ, Ronquist G, Wibell L: Comparison<br />

<strong>of</strong> glycosylated hemoglobin with<br />

<strong>the</strong> oral glucose <strong>to</strong>lerance test: a study in<br />

subjects with normoglycemia, glucose in<strong>to</strong>lerance<br />

and non-insulin-dependent diabetes<br />

meilitus. Diabete & Metab 10:224-<br />

229,1984<br />

32. Albutt EC, Nattrass M, Northam BE: Glucose<br />

<strong>to</strong>lerance test and glycosylated haemoglobin<br />

measurement for diagnosis <strong>of</strong><br />

diabetes mellitus:an assessment <strong>of</strong> <strong>the</strong> criteria<br />

<strong>of</strong> <strong>the</strong> WHO expert committee on<br />

diabetes meilitus 1980. <strong>An</strong>n Clin Biochem<br />

22:67-73, 1985<br />

33. Lester E, Frazer AD, Shepherd CA, Woddr<strong>of</strong>fe<br />

FJ: Glycosylated haemoglobin as an<br />

alternative <strong>to</strong> <strong>the</strong> glucose <strong>to</strong>lerance test for<br />

<strong>the</strong> diagnosis <strong>of</strong> diabetes meilitus. <strong>An</strong>n<br />

Clin Biochem 22:74-78, 1985<br />

34. Jeppsson J-O, Jeren<strong>to</strong>rp P, Sundkvist G,<br />

Englund H, Nylund V: Measurement <strong>of</strong><br />

hemoglobin Alc by a new liquid-chroma<strong>to</strong>graphic<br />

assay: methodology, clinical<br />

utility, and relation <strong>to</strong> glucose <strong>to</strong>lerance<br />

evaluated. Clin Chem 32:1867-1872,1986<br />

35. John WG, Richardson RW: Glycosylated<br />

haemoglobin levels in patients referred<br />

for oral glucose <strong>to</strong>lerance tests. Diabetic<br />

Med 3:46-48, 1986<br />

36. Forrest RD, Jackson CA, Yudkin JS: The<br />

glycohaemoglobin assay as a screen or<br />

screening test for diabetes meilitus: The<br />

Isling<strong>to</strong>n <strong>Diabetes</strong> Survey. Diabetic Med<br />

4:254-259, 1987<br />

37. Little RR, England JD, Wiedmeyer H-M,<br />

McKenzie EM, Pettitt DJ, Knowler WC,<br />

Goldstein DE: Relationship <strong>of</strong> glycosylated<br />

hemoglobin <strong>to</strong> oral glucose <strong>to</strong>lerance.<br />

<strong>Diabetes</strong> 37:60-64, 1988<br />

38. Guillauseau PJ, Charles MA, Paolaggi F,<br />

Timsit J, Chanson P, Peynet J, Godard<br />

V, Eschwege E, Rousselet F, Lubetzki J:<br />

Comparison <strong>of</strong> HbAx and fruc<strong>to</strong>samine<br />

in diagnosis <strong>of</strong> glucose-<strong>to</strong>lerance abnormalities.<br />

<strong>Diabetes</strong> <strong>Care</strong> 13:898-900,<br />

1990<br />

39. Motala AA, Omar MAK: The value <strong>of</strong> glycosylated<br />

haemoglobin as a substitute for<br />

<strong>the</strong> oral glucose <strong>to</strong>lerance test in <strong>the</strong> detection<br />

<strong>of</strong> impaired glucose <strong>to</strong>lerance<br />

(IGT). Diab Res Clin Pract 17:199-207,<br />

1992<br />

Davidson, Peters, and Schriger<br />

40. Santiago JV, DavisJE, Fisher F: Hemoglobin<br />

Alc levels in a diabetes detection program.<br />

J Clin Endocrinol Metab 47:578-<br />

580.1978<br />

41. Tsuji I, Nakamo<strong>to</strong> K, Hasegawa T,<br />

Hisashige A, Inawashiro H, Fukao A, Hismichi<br />

S: Receiver operating characteristic<br />

analysis on fasting plasma glucose,<br />

HbAlc, and fruc<strong>to</strong>samine on diabetes<br />

screening. <strong>Diabetes</strong> <strong>Care</strong> 14:1075-1077,<br />

1991<br />

42. Larsen ML: The utility <strong>of</strong> glycated hemoglobin<br />

in identification <strong>of</strong> impaired glucose<br />

<strong>to</strong>lerance. <strong>Diabetes</strong> Res 12:67-70,<br />

1989<br />

43. Bolli G, Compagnucci P, Cartechini MG,<br />

Santeusanio F, Cirot<strong>to</strong> C, Scionti L, Brunetti<br />

P: HbAL in subjects with abnormal<br />

glucose <strong>to</strong>lerance but normal fasting<br />

plasma glucose. <strong>Diabetes</strong> 29:272-277,<br />

1980<br />

44. Flock EV, Bennett PH, Savage PJ, Webner<br />

CJ, Howard BV, Rushforth NB, Miller M:<br />

Bimodality <strong>of</strong> glycosylated hemoglobin<br />

distribution in Pima Indians. <strong>Diabetes</strong> 28:<br />

984-989,1979<br />

45. Dix D, Cohen P, Kingsley S, Senkbeil J,<br />

Sex<strong>to</strong>n K: Glycohemoglobin and glucose<br />

<strong>to</strong>lerance tests compared as indica<strong>to</strong>rs <strong>of</strong><br />

borderline diabetes. Clin Chem 25:877-<br />

879.1979<br />

46. Lev-Ran A, VanderLaan WP: Glycohemoglobins<br />

and glucose <strong>to</strong>lerance. JAMA 241:<br />

912-914, 1979<br />

47. Orchard TJ, Daneman D, Becker DJ,<br />

Kuller LH, LaPorte RE, Drash AL, Wagener<br />

D: Glycosylated hemoglobin: a<br />

screening test for diabetes meilitus? Preventive<br />

Med 11:595-601, 1982<br />

48. Shima K, Abe F, Chikakiyo H, I<strong>to</strong> N: The<br />

relative value <strong>of</strong> glycated albumin, hemoglobin<br />

Alc and fruc<strong>to</strong>samine when<br />

screening for diabetes meilitus. Diab Res<br />

Clin Pract 7:243-250, 1989<br />

49. Charles MA, Fontbonne A, Thibult N,<br />

Warnet J-M, Rosselin GE, Eschwege E:<br />

Risk fac<strong>to</strong>rs for NIDDM in white population.<br />

<strong>Diabetes</strong> 40:796-799, 1991<br />

DIABETES CARE, VOLUME 18, NUMBER 7, JULY 1995 1071

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!