03.02.2013 Views

Score winning cDNA yields with SuperScript III RT - Invitrogen

Score winning cDNA yields with SuperScript III RT - Invitrogen

Score winning cDNA yields with SuperScript III RT - Invitrogen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Score</strong> <strong>winning</strong> <strong>cDNA</strong> <strong>yields</strong><br />

<strong>with</strong> <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong><br />

<strong>SuperScript</strong> <strong>III</strong> Reverse Transcriptase<br />

<strong>SuperScript</strong> <strong>III</strong> offers:<br />

• Higher <strong>cDNA</strong> <strong>yields</strong><br />

• Higher thermal stability<br />

• Longer half-life<br />

...than any other <strong>RT</strong><br />

you could use


Announcing <strong>SuperScript</strong> TM<br />

Reverse Transcriptase<br />

How could we possibly improve on <strong>SuperScript</strong> II Reverse Transcriptase?<br />

After all, more researchers all over the world depend on <strong>SuperScript</strong> than any<br />

other Reverse Transcriptase. Well, we did it. Higher thermostability. Longer half-<br />

life. The one Reverse Transcriptase you trust is now even more reliable. Get<br />

full-length <strong>cDNA</strong> and higher sensitivity. Perform <strong>RT</strong> at higher temperatures and<br />

get even higher <strong>yields</strong>. Whether you’re cloning, analyzing a single gene, or monitoring expression of<br />

every gene, <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> will move your research forward even faster.<br />

<strong>SuperScript</strong> TM<br />

<strong>SuperScript</strong> <strong>III</strong> reverse transcriptase (<strong>RT</strong>) 138 , a point -<br />

mutant of <strong>SuperScript</strong> II <strong>RT</strong>5 , provides increased thermal<br />

stability and higher <strong>yields</strong>. Like M-MLV <strong>RT</strong>, it’s a DNA<br />

polymerase that synthesizes a complementary DNA strand<br />

from single-stranded DNA, RNA, or an RNA:DNA hybrid.<br />

And like <strong>SuperScript</strong> II <strong>RT</strong>, it’s engineered to be RNase H- ,<br />

2<br />

improved<br />

Table 1 – <strong>SuperScript</strong> <strong>III</strong> features and benefits<br />

Feature Benefit<br />

delivering high <strong>yields</strong> and full-length <strong>cDNA</strong>. Compared to<br />

all other <strong>RT</strong>s, <strong>SuperScript</strong> <strong>III</strong> has full activity at 50˚C and<br />

an incredibly long half-life of 220 minutes. You’ll get even<br />

higher <strong>cDNA</strong> <strong>yields</strong> and you can work at higher<br />

temperatures for superior performance in all your <strong>RT</strong><br />

experiments (Table 1).<br />

Half-life of 220 minutes at 50˚C High <strong>cDNA</strong> <strong>yields</strong><br />

Thermal stability at 50˚C Reduced background <strong>with</strong> gene-specific primer<br />

Results <strong>with</strong> RNA secondary structure<br />

RNase H negative High <strong>cDNA</strong> <strong>yields</strong><br />

Full-length <strong>cDNA</strong> to 12 kb<br />

Routine detection from as low as 1.0 pg total RNA<br />

Increased units Can increase <strong>RT</strong> units <strong>with</strong>out inhibiting subsequent PCR (1).<br />

Use 1-10 µl of a 20 µl <strong>RT</strong> reaction for subsequent PCR.<br />

www.invitrogen.com


Increased half-life for higher <strong>yields</strong><br />

The longer half-life of <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> gives you<br />

greater <strong>cDNA</strong> <strong>yields</strong>. At its optimal temperature of<br />

50˚C, <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> has a half-life of 220<br />

minutes—that’s 35 times longer than <strong>SuperScript</strong> II<br />

Figure 1 – Half-life of <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> and <strong>SuperScript</strong> II <strong>RT</strong> at 50˚C<br />

More <strong>cDNA</strong>, get the message<br />

<strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> generates more <strong>cDNA</strong> than any<br />

other <strong>RT</strong>. This includes <strong>cDNA</strong> from total RNA or a<br />

specific gene. To demonstrate, we compared <strong>cDNA</strong><br />

yield from various <strong>RT</strong>s (Figure 2). The results speak<br />

A<br />

<strong>cDNA</strong> synthesis (pmol)<br />

Figure 2 – <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> generates the highest<br />

<strong>cDNA</strong> <strong>yields</strong> from total RNA<br />

1,200<br />

1,000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

PowerScript <br />

StrataScript <br />

ImProm-II <br />

<strong>SuperScript</strong> <strong>III</strong><br />

<strong>SuperScript</strong> II<br />

45°C<br />

<strong>SuperScript</strong> <strong>III</strong> Reverse Transcriptase<br />

and 70 times longer than M-MLV <strong>RT</strong>. The longer<br />

half-life makes <strong>SuperScript</strong> <strong>III</strong> more robust (Figure<br />

1) and your experiments more dynamic.<br />

<strong>RT</strong> was incubated in 1X first-strand buffer at<br />

50˚C. Samples were taken at time points<br />

indicated and activity measured by unit assay.<br />

for themselves. It’s simple: for maximized <strong>cDNA</strong><br />

yield in library construction, array applications, or<br />

<strong>RT</strong>-PCR, use <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> and make every<br />

message count.<br />

B<br />

6 kb<br />

4 kb<br />

2 kb<br />

M PowerScript<br />

StrataScript<br />

45°C<br />

ImProm-II<br />

<strong>SuperScript</strong> <strong>III</strong><br />

<strong>SuperScript</strong> II<br />

The <strong>cDNA</strong> synthesis reactions were<br />

performed in 20 µl <strong>with</strong> 20 µg HeLa<br />

total RNA, 0.5 µg of oligo(dT)25 and<br />

0.1 µl of a-32P-dCTP (10 µCi/µl).<br />

Competitive products followed the<br />

manufacturer’s recommended<br />

protocols. After the reaction mixtures<br />

were pre-incubated at 45°C for 2 min,<br />

1 µl of each <strong>RT</strong> (400 U for <strong>SuperScript</strong><br />

<strong>III</strong>) was added and incubated at 45°C<br />

for another 50 min. The reactions were<br />

stopped by adding 10 µl of 0.5 M EDTA.<br />

5 µl of each reaction was TCAprecipitated<br />

and dried on GF/C filters.<br />

A. The total <strong>cDNA</strong> synthesized was<br />

calculated by 32P counts.<br />

B. The rest of the samples were ethanol<br />

precipitated and electrophoresed on<br />

1.2% agarose gel. The dried gel was<br />

exposed on the film for 1 hour.<br />

www.invitrogen.com 3


Active at higher temperatures<br />

<strong>SuperScript</strong> <strong>III</strong> is active in a wide temperature range,<br />

making it more useful than any other <strong>RT</strong> you could select<br />

(Figure 3A & 3B). It’s fully active at 50˚C but can be used<br />

4<br />

from 45-55˚C (Figure 4). Incubation at higher temperature<br />

is important when using gene-specific primers (Figure 5)<br />

or tackling RNA <strong>with</strong> secondary structure (Figure 6).<br />

More full-length, first-strand <strong>cDNA</strong> <strong>with</strong> <strong>SuperScript</strong> TM<br />

Figure 3A – <strong>SuperScript</strong> <strong>III</strong> compared to <strong>SuperScript</strong> II and M-MLV<br />

kb<br />

9.5<br />

7.5<br />

4.4<br />

2.4<br />

1.4<br />

Figure 3B – <strong>SuperScript</strong> <strong>III</strong> outperforms other <strong>RT</strong>'s<br />

6 kb<br />

4 kb<br />

2 kb<br />

Figure 4 – Activity of <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> at various temperatures<br />

2.4 kb (BF)<br />

<strong>SuperScript</strong> <strong>III</strong><br />

M 37˚ 42˚ 45˚ 50˚ 55˚<br />

<strong>SuperScript</strong> <strong>III</strong> StrataScript PowerScript ImProm-II Omniscript<br />

M 45˚ 50˚ 55˚ 45˚ 50˚ 55˚ 45˚ 50˚ 55˚ 45˚ 50˚ 55˚ 45˚ 50˚ 55˚<br />

www.invitrogen.com<br />

<strong>SuperScript</strong> II<br />

<strong>SuperScript</strong> II<br />

<strong>SuperScript</strong> <strong>III</strong><br />

M-MLV<br />

37˚ 42˚ 45˚ 50˚ 55˚ 37˚ 42˚ 45˚ 50˚ 55˚ M<br />

M 45˚ 50˚ 55˚ 60˚ 45˚ 50˚ 55˚ 60˚ M<br />

Targets<br />

9.5 kb<br />

7.5 kb<br />

4.4 kb<br />

2.4 kb<br />

1.4 kb<br />

<strong>III</strong> <strong>RT</strong><br />

An autoradiograph is shown of 32 P-labeled <strong>cDNA</strong><br />

synthesized from a mixture of 0.25 µg each of<br />

1.35 kb, 2.4 kb, 4.4 kb, 7.5 kb, and 9.5 kb <strong>with</strong><br />

200 units of each <strong>RT</strong> at various temperatures.<br />

Lane M is 32 P-labeled 1 kb DNA ladder.<br />

32 P-labeled <strong>cDNA</strong> was synthesized in 20 µl at<br />

temperatures indicated (˚C) for 50-60 min. from a<br />

mixture of 0.2 µg each of 1.4 kb, 2.4 kb, 4.4 kb,<br />

7.5 kb, and 9.5 kb poly(A)-tailed RNA and 0.5 µg<br />

oligo(dT) 25 using buffers and components<br />

supplied <strong>with</strong> each kit. 1 µl of each <strong>RT</strong> or 400 U of<br />

<strong>SuperScript</strong> <strong>III</strong> was added to pre-warmed reaction<br />

mixtures (hot start). The reactions were stopped<br />

by adding 10 µl 0.5 M EDTA. After ethanol<br />

precipitation, the 32 P-labeled <strong>cDNA</strong> products were<br />

loaded on 1.2% alkaline agarose gel. The dried gel<br />

was exposed on film for 2 hours.<br />

<strong>cDNA</strong> was synthesized in 20 µl for 50 minutes at<br />

temperatures indicated from 500 ng HeLa total RNA<br />

<strong>with</strong> oligo(dT) primer. 400 U <strong>SuperScript</strong> II or<br />

<strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> was added to pre-warmed<br />

reaction mixtures (hot start). 2 µl of <strong>cDNA</strong> was<br />

added to 50 µl PCR reaction containing primers for<br />

2.4 kb Human Β-Factor properdin (BF) gene.


<strong>SuperScript</strong> <strong>III</strong> Reverse Transcriptase<br />

Increased priming specificity <strong>with</strong> gene specific primer<br />

<strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong>’s activity at higher temperatures<br />

allows you to use gene-specific primers <strong>with</strong> a high<br />

Tm, increasing specificity, reducing background, and<br />

Figure 5 – Increased specificity <strong>with</strong> various genes<br />

Dynein (12.3 kb)<br />

CH (9.3 kb)<br />

Pol ε (6.8 kb)<br />

RAD (5.6 kb)<br />

42°C 50°C 55°C<br />

Relax: GC-rich RNA is not a problem<br />

High temperatures relax RNA secondary structure;<br />

temperatures where <strong>SuperScript</strong> <strong>III</strong> is active when<br />

other <strong>RT</strong>s are not. Increasing the reaction<br />

temperature to 55˚C melts hairpin structures,<br />

allowing synthesis to proceed. To demonstrate,<br />

Figure 6 – High <strong>yields</strong> <strong>with</strong> GC-rich RNA and gene specific primer<br />

55˚C<br />

M<br />

512 bp<br />

414 bp<br />

344 bp<br />

225 bp<br />

199 bp<br />

generating higher yield of your specific product. Use<br />

<strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> at 55˚C to achieve maximum<br />

yield <strong>with</strong> GSPs (Figure 5).<br />

M<br />

<strong>cDNA</strong> was synthesized in 20 µl<br />

from 2 µg total rat brain RNA for<br />

the Dynein 12.3 kb gene (Oligo<br />

dT 20) or from 1 µg total HeLa<br />

RNA for the other targets (GSP)<br />

using 200 units of <strong>SuperScript</strong><br />

<strong>III</strong>, 50 min at 42°C, 50°C, or<br />

55°C. One tenth of each reaction<br />

was amplified <strong>with</strong> Platinum ® Taq<br />

DNA Polymerase High Fidelity.<br />

we performed <strong>RT</strong>-PCR on a region of 28S rRNA that<br />

is 84% GC-rich. <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> performed<br />

brilliantly, processing through all regions <strong>with</strong> high<br />

yield and low background (Figure 6).<br />

<strong>cDNA</strong> was synthesized from 100 ng HeLa<br />

total RNA <strong>with</strong> gene-specific primer (GSP)<br />

and 200 U <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> in 20 µl for<br />

50 minutes at 55˚C. 2 µl of <strong>cDNA</strong> was<br />

added to 50 µl PCR reaction containing<br />

primers for regions on 28S rRNA indicated<br />

and 1 U of Platinum® Taq DNA Polymerase<br />

High Fidelity, at 97˚C for 2 min., then 40<br />

cycles, at 97˚C for 30 sec., 60˚C for 30 sec.,<br />

and 68˚C for 1 min.<br />

www.invitrogen.com 5


Routine detection in 1.0 pg total RNA<br />

<strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> has high sensitivity to work <strong>with</strong><br />

small sample sizes. You can routinely detect genes from<br />

low inputs of total RNA down to 1.0 pg. Compared to<br />

other <strong>RT</strong>s, <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> not only detects genes<br />

Starting total HeLa<br />

RNA (pg)<br />

6<br />

Figure 7 – <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> generates highest yield <strong>with</strong> low input RNA<br />

Starting total HeLa<br />

RNA (pg)<br />

GAPDH (532 bp)<br />

GAPDH (532 bp)<br />

Clontech<br />

PowerScript <br />

1<br />

42°C – 50 min<br />

10 100<br />

Figure 8 – Effect of <strong>RT</strong> units and <strong>cDNA</strong> volume on PCR<br />

www.invitrogen.com<br />

M<br />

Qiagen<br />

Omniscript <br />

M<br />

<strong>SuperScript</strong><br />

50 U 200 U<br />

II<br />

Stratagene<br />

StrataScript 1<br />

42°C – 60 min<br />

10 100<br />

from low input RNA, it also produces the highest yield<br />

(Figure 7). Increased units or <strong>cDNA</strong> volume is not<br />

inhibiting to PCR (Figure 8).<br />

Promega ImProm-II <br />

<strong>RT</strong> System<br />

<strong>Invitrogen</strong><br />

<strong>SuperScript</strong> <strong>III</strong><br />

50°C – 50 min<br />

1 10 100<br />

M M<br />

37°C – 60 min<br />

42°C – 60 min<br />

50°C – 50 min<br />

1 10 100<br />

1 10 100<br />

1 10 100<br />

M M M M<br />

<strong>SuperScript</strong> <strong>III</strong><br />

50 U 200 U<br />

<strong>Invitrogen</strong><br />

<strong>SuperScript</strong> <strong>III</strong><br />

<strong>cDNA</strong> was synthesized from HeLa total RNA <strong>with</strong> oligo(dT) primer using buffer supplied <strong>with</strong> each <strong>RT</strong><br />

and recommended conditions (400 U of <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong>). 10% of <strong>cDNA</strong> reaction was added to 50 µl<br />

PCR reaction containing primers for 532 bp GAPDH gene and 2 U of Platinum® Taq DNA Polymerase, 40<br />

cycles, 1 min/kb.<br />

TSC (5.3 kb)<br />

<strong>cDNA</strong> was synthesized from 100 ng total HeLa RNA <strong>with</strong> oligo(dT) primers using <strong>SuperScript</strong> II at 45˚C or<br />

<strong>SuperScript</strong> <strong>III</strong> at 50˚C. One third (7 µl) of the 20 µl reaction was amplified in 50 µl <strong>with</strong> 1 unit of Platinum ®<br />

Taq DNA Polymerase High Fidelity at 94˚C for 2 min, then 35 cycles at 94˚C for 15 sec, 55˚C for 30 sec, and<br />

68˚C for 6 min. PCR was performed <strong>with</strong> primers for human tuberous sclerosis (TSC 5.3 kb).


Full-length <strong>cDNA</strong>, high <strong>yields</strong><br />

Generate full-length <strong>cDNA</strong> <strong>with</strong> high <strong>yields</strong> from mimimal<br />

starting material for gene analysis or cloning <strong>with</strong><br />

<strong>SuperScript</strong> <strong>III</strong> (Figure 9). At 200 U/µl, you can set up<br />

reactions for high-throughput or increase units to increase<br />

Figure 9 – <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> generates highest yield <strong>with</strong> various-sized targets<br />

Starting total RNA (ng)<br />

Dynein (12.3 kb)<br />

fibrillin (9.4 kb)<br />

adenomatous polyposis (8.5 kb)<br />

DNA polymerase ε (6.8 kb)<br />

nuclear receptor coactivator (6.1 kb)<br />

guanine nuc. exchange factor (5.9 kb)<br />

vinculin (4.6 kb)<br />

transcription factor (3.6 kb)<br />

B-factor properdin (2.4 kb)<br />

GAPDH (532 bp)<br />

β-actin (353 bp)<br />

1X<br />

HML<br />

λHind<strong>III</strong> fragments<br />

0.01<br />

0.01 10<br />

yield. Compared to other <strong>RT</strong>s, <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> not only<br />

generates the highest <strong>yields</strong>, but it was also able to generate<br />

the 9.4 kb fibrillin target (Figure 10).<br />

10 10 10 10 10 10 1000 1000 1000<br />

<strong>cDNA</strong> was synthesized from HeLa total RNA or rat total RNA for Dynein <strong>with</strong> oligo(dT) primer using<br />

400 U of <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> at 50°C. 10% of <strong>cDNA</strong> reaction was added to 50 µl PCR reaction containing<br />

primers for each gene and 2 U of Platinum® Taq DNA Polymerase or 1 U of Platinum® Taq DNA<br />

Polymerase High Fidelity, 35 or 40 cycles, 1 min/kb.<br />

Figure 10 – <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> outperforms the competition<br />

Starting total HeLa RNA (ng)<br />

fibrillin (9.4 kb)<br />

vinculin (4.6 kb)<br />

B-factor properdin (2.4 kb)<br />

cap binding protein (1.6 kb)<br />

1.5X<br />

LML<br />

Promega<br />

ImProm-II <strong>RT</strong> System<br />

42˚C, 60 min<br />

10 100 100 100<br />

<strong>Invitrogen</strong><br />

<strong>SuperScript</strong> <strong>Invitrogen</strong><br />

<strong>SuperScript</strong> II<br />

42˚C, 50 min<br />

10 100 100 100<br />

Qiagen<br />

Omniscript <strong>III</strong> <strong>RT</strong><br />

50˚C, 50 min<br />

10 100 100 100<br />

Stratagene<br />

StrataScript <strong>RT</strong><br />

37˚C, 60 min<br />

10 100 100 100<br />

Clontech<br />

PowerScript <strong>RT</strong><br />

42˚C, 60 min<br />

10 100 100 100<br />

<strong>RT</strong><br />

42˚C, 50 min<br />

10 100 100 100<br />

1.5X<br />

LML<br />

1.5X<br />

LML<br />

<strong>cDNA</strong> was synthesized from 10 ng HeLa total RNA for cap binding protein (1.6 kb) or 100 ng HeLa total<br />

RNA for B-factor properdin (2.4 kb), vinculin (4.6 kb), and fibrillin (9.4 kb) <strong>with</strong> oligo(dT) primer<br />

using buffer and recommended conditions supplied <strong>with</strong> each <strong>RT</strong> (400 U of <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong>). 10%<br />

of the <strong>cDNA</strong> reaction was added to a 50 µl PCR reaction containing primers for each gene and<br />

2 U Platinum® Taq DNA Polymerase or 1 U Platinum® Taq DNA Polymerase High Fidelity, 35 cycles,<br />

1 min/kb.<br />

λHind<strong>III</strong> fragments<br />

M<br />

9.4<br />

4.6<br />

2.4<br />

1.6<br />

www.invitrogen.com 7


Easily optimize reaction conditions<br />

You can optimize <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> for specific<br />

applications to ensure the best results. We provide<br />

Table 2 – <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> specifications<br />

<strong>SuperScript</strong> <strong>III</strong> at 200 U/µl to allow flexibility in<br />

experimental design (Table 2).<br />

Units To increase <strong>yields</strong>, use 2 µl, or 400 U. Increasing units does not inhibit subsequent<br />

PCR as <strong>with</strong> other RNase H minus <strong>RT</strong>s. Use 400 U when synthesizing long targets (≥5 kb) at high<br />

temperature (≥ 55˚C).<br />

<strong>cDNA</strong> Volume 1-10 µl of <strong>cDNA</strong> reaction can be used in 50 µl PCR reaction.<br />

Temperature Even though <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> is fully active at 50˚C, you can obtain good results at 45˚C. You<br />

should increase the temperature to 55˚C when using a gene-specific primer or working <strong>with</strong> highly<br />

structured RNA.<br />

Buffer <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> uses the same 5X first-strand buffer as <strong>SuperScript</strong> II <strong>RT</strong>,<br />

making it easy to switch. Buffer formulation: [250 mM Tris-HCI (pH 8.3), 375 mM KCI,15 mM MgCI2] Storage As a single polypeptide, <strong>SuperScript</strong> <strong>III</strong> is very stable. It is shipped on dry ice to ensure full activity<br />

upon arrival. While <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> is stable at –80˚C and can be kept at 4°C overnight <strong>with</strong>out<br />

activity loss, we recommend storage at –20˚C.<br />

Stringent quality control to ensure your results<br />

Each lot of <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> is stringently quality<br />

controlled. Tests include SDS-PAGE to analyze<br />

purity; contamination assays to confirm absence<br />

of endodeoxyribonuclease, 3´ and 5´<br />

Figure 11 - <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> is RNase-free<br />

9.5 kb<br />

7.5 kb<br />

4.4 kb<br />

2.4 kb<br />

1.4 kb<br />

0.24 kb<br />

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8<br />

exodeoxyribonuclease, and ribonuclease activities<br />

(Figure 11); and <strong>cDNA</strong> synthesis of 7.5-kb target<br />

to meet yield and length criteria.<br />

<strong>SuperScript</strong> <strong>III</strong> Reverse Transcriptase<br />

5 µg of 0.24-9.5 kb RNA ladder was incubated <strong>with</strong> 1000 units of<br />

<strong>SuperScript</strong> II and <strong>III</strong> at 37˚C for 30 min followed by phenol extraction,<br />

then analyzed on a 1.25% formaldehyde/agarose/EtBr gel. Lane 1 and<br />

2: RNA Ladder <strong>with</strong> RNase-free water kept on ice for 30 min. Lane 3<br />

and 4: RNA ladder <strong>with</strong> <strong>SuperScript</strong> storage buffer incubated at 37˚C<br />

for 30 min. Lane 5 and 6: RNA ladder <strong>with</strong> 1000 units <strong>SuperScript</strong> II<br />

incubated at 37˚C for 30 min followed by phenol extraction. Lane 7 and<br />

8: RNA ladder <strong>with</strong> 1000 units <strong>SuperScript</strong> <strong>III</strong> incubated at 37˚C for<br />

30 min followed by phenol extraction.<br />

www.invitrogen.com 8


Superior performance for every application<br />

<strong>SuperScript</strong> <strong>III</strong> lets you work at higher<br />

temperatures to get greater <strong>cDNA</strong> <strong>yields</strong> and<br />

reduced background <strong>with</strong> gene-specific primers.<br />

Whether you’re cloning, analysing a single gene or<br />

Try <strong>SuperScript</strong> TM<br />

<strong>III</strong> today<br />

<strong>SuperScript</strong> <strong>III</strong> Reverse Transcriptase<br />

studying expression profiles, <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> will<br />

give you overall superior performance to move your<br />

research forward even faster. For more information,<br />

visit www.invitrogen.com/superscript<strong>III</strong> today.<br />

Maximize <strong>cDNA</strong> yield, increase specificity, and enhance the results in all your <strong>RT</strong> experiments.<br />

Call <strong>Invitrogen</strong> and order <strong>SuperScript</strong> <strong>III</strong> <strong>RT</strong> today.<br />

Product Quantity Cat. no.<br />

<strong>SuperScript</strong> <strong>III</strong> Reverse Transcriptase 10,000 U 18080-044<br />

Accessories<br />

Product Quantity Cat. no.<br />

100 mM dNTP Set 4 x 250 µmol 10297-117<br />

100 mM dNTP Set 4 x 25 µmol 10297-018<br />

100 mM dATP 25 µmol 10216-018<br />

100 mM dCTP 25 µmol 10217-016<br />

100 mM dGTP 25 µmol 10218-014<br />

100 mM dTTP 25 µmol 10219-012<br />

10 mM dNTP Mix 1ml 18427-088<br />

10 mM dNTP Mix 2.5 µmol 18427-013<br />

10 mM dATP 2.5 µmol 18255-018<br />

10 mM dCTP 2.5 µmol 18252-015<br />

10 mM dGTP 2.5 µmol 18254-011<br />

10 mM dTTP 2.5 µmol 18253-013<br />

Oligo (dT) 12-18 Primer 25 µg 18418-012<br />

5, 138 Products mentioned above are subject to Limited Use Label Licenses indicated by the <strong>SuperScript</strong> numbers. Please refer to the <strong>Invitrogen</strong> web site or catalogue for<br />

Limited Use Label Licenses corresponding to the numbers indicated.<br />

StrataScript is a trademark of Stratagene. Omniscript is a trademark of Qiagen. PowerScript is a trademark of Clontech. ImProm-II is a trademark of Promega. <strong>SuperScript</strong><br />

is a trademark of <strong>Invitrogen</strong>. Platinum® is a registered trademark of <strong>Invitrogen</strong>. For research use only. Not intended for any animal or human therapeutic or diagnostic use.<br />

Reference: 1. Huang, L. et al. (2000) Focus® 22:6.<br />

www.invitrogen.com 9


To order<br />

AUSTRIA<br />

<strong>Invitrogen</strong> GmbH<br />

Gebührenfreie Bestellungen:<br />

Tel: 0800 20 10 87<br />

Fax: 0800 21 63 17<br />

BELGIUM<br />

N.V. <strong>Invitrogen</strong> S.A.<br />

Free Phone Orders: 0800 14894<br />

Tel: 09 272 55 99<br />

Fax: 09 272 55 98<br />

DENMARK<br />

<strong>Invitrogen</strong> A/S<br />

Frikaldsnr. ordre: 80 30 17 40<br />

Tel: 43 99 43 44<br />

Fax: 43 99 43 45<br />

Euro Tech-Line SM Numbers<br />

Austria: 0800 21 59 35<br />

Belgium: 0800 16369<br />

Denmark: 80 30 17 38<br />

France: 0800 91 83 92<br />

Germany: 0800 1 81 54 50<br />

FRANCE<br />

<strong>Invitrogen</strong> SARL<br />

Téléphone vert commandes:<br />

0800 23 20 79<br />

Fax vert commandes:<br />

0800 13 58 13<br />

Tél: 01 34 32 31 00<br />

Fax: 01 30 37 50 07<br />

GERMANY<br />

<strong>Invitrogen</strong> GmbH<br />

Gebührenfreie Bestellungen:<br />

Tel: 0800 083 09 02<br />

Fax: 0800 083 34 35<br />

ITALY<br />

<strong>Invitrogen</strong> S.R.L<br />

Free Fax Orders: 800 302 505<br />

Tel: 02 98 22 201<br />

Fax: 02 98 24 15 17<br />

Italy: 800 016 289<br />

Netherlands: 0800 099 8882<br />

Norway: 800 11744<br />

Portugal: 0800 844 319<br />

Spain: 900 964 463<br />

P127<br />

THE NETHERLANDS<br />

<strong>Invitrogen</strong><br />

Gratis Telefoon (Orders):<br />

0800 099 3310<br />

Gratis Fax (Orders):<br />

0800 023 4212<br />

NORWAY<br />

<strong>Invitrogen</strong> AS<br />

Free Phone: 00800 5345 5345<br />

Tel: 22 83 16 00<br />

Free Fax: 00800 7890 7890<br />

SPAIN/PO<strong>RT</strong>UGAL<br />

<strong>Invitrogen</strong> S.A<br />

Pedidos Tel. (Gratuito):<br />

900 181 461<br />

Pedidos Fax. (Gratuito):<br />

900 181 460<br />

Tel: 93 479 69 50<br />

Fax: 93 479 69 55<br />

Sweden: 020 79 84 15<br />

Switzerland: 0800 83 78 64<br />

UK: 0800 838 380<br />

Should you require any technical information<br />

please e-mail us at: eurotech@invitrogen.com<br />

www.invitrogen.com<br />

<strong>SuperScript</strong> <strong>III</strong> Reverse Transcriptase<br />

SWEDEN<br />

<strong>Invitrogen</strong> AB<br />

Ordertelefon: 020 26 34 52<br />

Tel: 08 630 73 20<br />

Fax: 08 732 44 93<br />

SWITZERLAND<br />

<strong>Invitrogen</strong> AG<br />

Free Phone Orders:<br />

0800 84 88 00<br />

Free Fax Orders:<br />

0800 87 68 00<br />

UNITED KINGDOM<br />

<strong>Invitrogen</strong> Ltd<br />

Free Phone Orders:<br />

0800 269 210<br />

Free Fax Orders:<br />

0800 243 485<br />

Tel: 0141 814 6100<br />

Fax: 0141 814 6260<br />

Printed in the UK. ©2003 <strong>Invitrogen</strong> Corporation. Reproduction forbidden <strong>with</strong>out permission.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!