05.02.2013 Views

High Modulus Asphalt (HiMA) Technology Transfer (T2) May ... - CSIR

High Modulus Asphalt (HiMA) Technology Transfer (T2) May ... - CSIR

High Modulus Asphalt (HiMA) Technology Transfer (T2) May ... - CSIR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>High</strong> <strong>Modulus</strong> <strong>Asphalt</strong> (<strong>HiMA</strong>)<br />

<strong>Technology</strong> <strong>Transfer</strong> (T 2 )<br />

<strong>May</strong> 2010 Progress report<br />

Prepared for presentation at the 19 th meeting of<br />

the Roads Pavements Forum (RPF), Salt Rock, 5<br />

<strong>May</strong> 2010<br />

Erik Denneman


Presentation structure<br />

• Background on <strong>HiMA</strong>,<br />

• The sabita <strong>HiMA</strong> T 2 project,<br />

• Progress,<br />

• Preliminary results,<br />

• Way forward.<br />

Slide 2<br />

© <strong>CSIR</strong> 2006 www.csir.co.za


<strong>High</strong> <strong>Modulus</strong> <strong>Asphalt</strong> (<strong>HiMA</strong>)<br />

• Origin: France early 90s “Enrobés à Module Elevé”<br />

(EME)<br />

• Typical characteristics:<br />

• <strong>High</strong> binder content ≈ 6% by mass of aggregate,<br />

• Hard binder: Pen 10-25,<br />

• Low air voids content,<br />

• <strong>High</strong> <strong>Modulus</strong> > 14 GPa at 10°C, 25 Hz,<br />

• <strong>High</strong> resistance against permanent deformation,<br />

• Good fatigue resistance,<br />

• Impermeable,<br />

• <strong>High</strong> mixing temperature.<br />

Slide 3<br />

© <strong>CSIR</strong> 2006 www.csir.co.za


Slide 4<br />

Application examples<br />

Case #1: HMA vs <strong>HiMA</strong><br />

70mm <strong>HiMA</strong>, 9000 MPa 70mm HMA, 3500 MPa<br />

150mm G1, 300 MPa<br />

© <strong>CSIR</strong> 2006 www.csir.co.za<br />

300mm C3, 1500 MPa<br />

Subgrade, 100 MPa


Slide 5<br />

Case #1: HMA vs <strong>HiMA</strong><br />

Vertical plane parallel to Y-Z at X = 0<br />

Normal Stress ZZ<br />

3<br />

-37<br />

-77<br />

-116<br />

-156<br />

-195<br />

-235<br />

-275<br />

-314<br />

-354<br />

-394<br />

-433<br />

-473<br />

-512<br />

-552<br />

-592<br />

-631<br />

-671<br />

-710<br />

-750<br />

Vertical plane parallel to Y-Z at X = 0<br />

<strong>HiMA</strong> HMA<br />

© <strong>CSIR</strong> 2006 www.csir.co.za<br />

Normal Stress ZZ<br />

3<br />

-37<br />

-77<br />

-116<br />

-156<br />

-196<br />

-235<br />

-275<br />

-315<br />

-354<br />

-394<br />

-434<br />

-473<br />

-513<br />

-553<br />

-592<br />

-632<br />

-671<br />

-711<br />

-751


Case #2: BTB+HMA vs <strong>HiMA</strong><br />

Slide 6<br />

50mm HMA, 3500 MPa<br />

180mm BTB, 5000 MPa<br />

450mm C3, 1500 MPa<br />

Subgrade, 100 MPa<br />

Reduction of 130mm in thickness<br />

© <strong>CSIR</strong> 2006 www.csir.co.za<br />

100mm <strong>HiMA</strong>, 9000 MPa<br />

450mm C3, 1500 MPa<br />

Subgrade, 100 MPa


Case #3: G1+HMA vs <strong>HiMA</strong><br />

Slide 7<br />

50mm HMA, 3500 MPa<br />

150mm G1, 300 MPa<br />

300mm C3, 1500 MPa<br />

Subgrade, 100 MPa<br />

Reduction of 130mm in thickness<br />

© <strong>CSIR</strong> 2006 www.csir.co.za<br />

70mm <strong>HiMA</strong>, 9000 MPa<br />

300mm C3, 1500 MPa<br />

Subgrade, 100 MPa


Slide 8<br />

sabita <strong>HiMA</strong> T 2 project<br />

© <strong>CSIR</strong> 2006 www.csir.co.za


Slide 9<br />

sabita <strong>HiMA</strong> T 2 progress<br />

• Phase I: Feasibility, completed July 2008<br />

• Phase II: Prelim guidelines mix design and structural<br />

design<br />

• Task 1: Finalisation mix designs and benchmarking,<br />

partially completed. Task had to be revised after<br />

French mix design failed to make specs.<br />

• Task 2: Structural design and cost comparisons,<br />

ongoing<br />

• Task 3: Experimental design for phase 3, ongoing<br />

• Tests feed into SANRAL revision of SAPDM project<br />

© <strong>CSIR</strong> 2006 www.csir.co.za


Dynamic modulus (MPa)<br />

Master curve development<br />

100000<br />

10000<br />

1000<br />

Slide 10<br />

100<br />

10<br />

1E-06 0.001 1 1000 1000000<br />

© <strong>CSIR</strong> 2006 www.csir.co.za<br />

Reduced frequency (Hz)<br />

Model (Master curve)<br />

-5-deg C<br />

5-deg C<br />

20-deg C (Tref)<br />

40-deg C<br />

55-deg C


100000<br />

Dynamic <strong>Modulus</strong> (MPa)<br />

10000<br />

Comparison of mix moduli<br />

1000<br />

100<br />

10<br />

1<br />

0.00001 0.001 0.1 10 1000 100000<br />

Slide 11 © <strong>CSIR</strong> 2006 www.csir.co.za<br />

Reduced frequency (Hz)<br />

BTB Mix<br />

Coarse/SBS<br />

Medium/SBS<br />

<strong>HiMA</strong>


Permanent strain [%]<br />

Permanent deformation (RSST-CH)<br />

5.0%<br />

4.5%<br />

4.0%<br />

3.5%<br />

3.0%<br />

2.5%<br />

2.0%<br />

1.5%<br />

1.0%<br />

0.5%<br />

0.0%<br />

Mix 1 25°C Mix 1 40°C Mix 1 55°C<br />

Mix 2 25°C Mix 2 40°C Mix 2 55°C<br />

Mix 3 25°C Mix 3 40°C Mix 3 55°C<br />

<strong>HiMA</strong> 25°C <strong>HiMA</strong> 40°C <strong>HiMA</strong> 55°C<br />

0 5000 10000 15000 20000 25000 30000<br />

Load repetitions<br />

Slide 12 © <strong>CSIR</strong> 2006 www.csir.co.za


10000<br />

STRAIN (Microstrain)<br />

1000<br />

100<br />

10<br />

Fatigue results (10 °C 25 Hz)<br />

1000 10000 100000 1000000 10000000 100000000<br />

Slide 13<br />

Strain-fatigue relationship at test temperatures at 70% initial stiffness reduction<br />

All at 10 Degrees C<br />

Number of load cycles<br />

© <strong>CSIR</strong> 2006 www.csir.co.za<br />

Mix 1 (BTB)<br />

Mix 3<br />

Mix 4 (<strong>HiMA</strong>)


French mix design effort<br />

Parameter Requirement Result SA equivalent<br />

test<br />

Workability<br />

(Gyratory<br />

compactor)<br />

Durability<br />

(Duriez test)<br />

Rutting<br />

(Wheel tracker)<br />

Beam dynamic<br />

modulus<br />

Fatigue<br />

(Prism)<br />

Slide 14<br />

Max 6% voids<br />

after 100<br />

gyrations<br />

Retained<br />

strength: >0.7<br />

Rut depth after<br />

30 000 cycles<br />

14 GPa<br />

µε for 106 fatigue life:<br />

>130<br />

© <strong>CSIR</strong> 2006 www.csir.co.za<br />

5.7 % Gyratory<br />

0.9 Modified Lottmann<br />

5.2 mm RSST-CH, Wheel<br />

tracking<br />

17 GPa Beam or cylinder<br />

dynamic modulus<br />

90 µε Beam fatigue


Binder specifications<br />

Property Result Test method Specification<br />

Before RTFOT<br />

Penetration @ 25 , 10 -1 mm 25 ± 1 ASTM D5 (20-30)<br />

(15-25)<br />

Softening point, R&B, °C 62.8 ASTM D36 (55-63)<br />

Dynamic Viscosity @<br />

60°C, Pas 2713.0<br />

Slide 15 © <strong>CSIR</strong> 2006 www.csir.co.za<br />

ASTM D4402<br />

(55-71)<br />

(≥550)<br />

After RTFOT<br />

Mass change, % (m/m) ±0.061 ASTM D2872 (±0.5)<br />

Softening point, R&B, °C<br />

Increase<br />

69.2<br />

6.4<br />

Penetration @ 25 , 10-1mm % Original 76<br />

(≤0.5)<br />

ASTM D36 (≥57)<br />

(≥ Orig. Min<br />

+2)<br />

ASTM D5 (≥55)<br />

(≥55)


Binder<br />

Mixing temperature<br />

Slide 16<br />

Mixing<br />

Temperature<br />

Lower Mixing<br />

<strong>HiMA</strong> Temperature<br />

binder Upper Mixing<br />

Temperature<br />

TMH1 C2<br />

Recommen<br />

ded<br />

viscosity<br />

Temperat<br />

ure at the<br />

viscosity<br />

190cSt 172°C<br />

150cSt 177°C<br />

© <strong>CSIR</strong> 2006 www.csir.co.za<br />

Mixing<br />

Temperatu<br />

re Used<br />

175°C


Mix improvement<br />

• Develop mix that fulfils the requirements for:<br />

• Workability,<br />

• Durability,<br />

• Resistance against permanent deformation,<br />

• Rutting,<br />

• Dynamic modulus,<br />

• Fatigue.<br />

• Use French mix design as benchmark<br />

• Current challenge: Increase VMA to allow more binder<br />

and increased fatigue life<br />

Slide 17<br />

© <strong>CSIR</strong> 2006 www.csir.co.za


100<br />

90<br />

g<br />

80<br />

in<br />

s 70<br />

s<br />

a<br />

p 60<br />

e<br />

g 50<br />

ta<br />

n<br />

e 40<br />

r<br />

c<br />

e 30<br />

P<br />

20<br />

10<br />

Mix improvement<br />

0<br />

0<br />

Slide 18<br />

Control points<br />

Target<br />

Reference<br />

Trial C<br />

.075 .300 1.18 2.36 4.75 6.7 9.5 13.2 19.2<br />

.015 .600<br />

Sieve © size <strong>CSIR</strong> 2006 (raised www.csir.co.za to power 0.45)


Structural design<br />

• Short term: Use French philosophy i.e. design such<br />

that strains in pavement remain below threshold.<br />

• Medium term: Develop shift functions from APT trials.<br />

Slide 19<br />

© <strong>CSIR</strong> 2006 www.csir.co.za


Way forward:<br />

• Improve mix design<br />

• Complete preliminary mix design and structural design<br />

guideline,<br />

• Perform APT and LTPP,<br />

• Finalize mix design and structural design guidelines<br />

Slide 20<br />

© <strong>CSIR</strong> 2006 www.csir.co.za


Thank you

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!