07.02.2013 Views

Finite Element Modeling of Shear in Thin Walled Beams with a ...

Finite Element Modeling of Shear in Thin Walled Beams with a ...

Finite Element Modeling of Shear in Thin Walled Beams with a ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>F<strong>in</strong>ite</strong> <strong>Element</strong> <strong>Model<strong>in</strong>g</strong> <strong>of</strong><br />

<strong>Shear</strong> <strong>in</strong> Th<strong>in</strong> <strong>Walled</strong> <strong>Beams</strong><br />

<strong>with</strong> a S<strong>in</strong>gle Warp<strong>in</strong>g Function<br />

Promoteurs:<br />

Bernard Espion & Guy Warzée<br />

Année académique 2004-2005<br />

Katy Saadé<br />

UNIVERSITE LIBRE DE BRUXELLES<br />

Faculté des Sciences Appliquées<br />

Services des Milieux Cont<strong>in</strong>us & Génie Civil<br />

Dissertation orig<strong>in</strong>ale présentée en<br />

vue de l’obtention du grade de<br />

docteur en Sciences Appliquées


ACKNOWLEDGEMENTS<br />

With all the pleasure and pride <strong>of</strong> a mother after delivery and after several years <strong>of</strong> pregnancy and<br />

several months <strong>of</strong> labor, here is the thesis. It has been pump<strong>in</strong>g out the best <strong>of</strong> me for its development<br />

and accomplishment. Now that it is almost over, what I had carried around <strong>with</strong> me for so long is<br />

ready for the tough adventure that every newborn and mother have been through. I would like to<br />

express my gratitude for all who contributed <strong>in</strong> a way or another <strong>in</strong> the accomplishment <strong>of</strong> this work.<br />

Most importantly, I would like to thank my supervisors Pr. Bernard Espion and Pr. Guy Warzée for<br />

their commitment to guid<strong>in</strong>g me through my doctoral research as well as for their patience and<br />

supervision. Their helpful comments, advices, suggestions and contributions regard<strong>in</strong>g all the critical<br />

aspects <strong>of</strong> my thesis have been very pr<strong>of</strong>itable over the past years. I feel especially <strong>in</strong>debted to them<br />

for the weekends they had spent read<strong>in</strong>g the various drafts <strong>of</strong> this thesis and overview<strong>in</strong>g the<br />

<strong>in</strong>term<strong>in</strong>able lists <strong>of</strong> equations. I imag<strong>in</strong>e now they can say ‘Ouuuuuuf’.<br />

I thank Pr. Philippe Bouillard who has also been very helpful <strong>in</strong> my work. His warm hospitality,<br />

enthusiasm, goodwill and energy have played a major role <strong>in</strong> my <strong>in</strong>tegration and well be<strong>in</strong>g from the<br />

beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> my stay <strong>in</strong> Belgium till now.<br />

I would thank all the former and present dear colleagues <strong>in</strong> Structural and Material Computational<br />

mechanics (SMC) and Civil Eng<strong>in</strong>eer<strong>in</strong>g (SGC) departments for be<strong>in</strong>g extremely helpful and for<br />

creat<strong>in</strong>g a comfortable work<strong>in</strong>g environment. Their friendship has provided a real support.<br />

Special thoughts go to my beloved Lebanon <strong>in</strong> this particular tough period where I was born and<br />

where I grew. Many thanks for my sisters, friends and especially for the family <strong>of</strong> my uncle Boulos<br />

and aunt Danielle who made it possible for me to come to Brussels.<br />

I know I would not have been here <strong>with</strong>out those who have been my first and best teachers, the ones<br />

who <strong>in</strong>spired me to learn and to cont<strong>in</strong>ue learn<strong>in</strong>g: my lov<strong>in</strong>g father Sayed and mother Damia. Now<br />

that I am a mother, I can appreciate and understand all their sacrifices that enabled me to reach my<br />

goal.<br />

How can I forget the contribution <strong>of</strong> my lovely cute Joanne <strong>in</strong> delay<strong>in</strong>g my project? You decided to be<br />

my first child and you managed to choose a critical tim<strong>in</strong>g! BIJOU, I thank you for all the joy and the<br />

wonderful moments you gave to me and to your daddy.<br />

I would f<strong>in</strong>ally give my very special thanks to you Naim. Your patience and comprehensive love<br />

enabled me to complete this work. With lot <strong>of</strong> emotions and gratitude, I thank you Habibi for the<br />

<strong>in</strong>spiration and support you provided throughout my research work. You left everyth<strong>in</strong>g and you<br />

followed me. I know that lately I have been too busy and you have been lonely. You shared, supported<br />

and contributed to the entire preparation. I really love you.


CHAPTER 0 - INTRODUCTION<br />

CONTENTS<br />

0.1 Background..............................................................................................................................0-1<br />

0.2 Motivation and purpose <strong>of</strong> the research ...................................................................................0-1<br />

0.3 Scope and content <strong>of</strong> the dissertation.......................................................................................0-2<br />

PART I. OVERVIEW<br />

CHAPTER 1 - LITERATURE REVIEW AND RESEARCH PROBLEM STATEMENT<br />

1.1 Goal <strong>of</strong> the chapter...................................................................................................................1-1<br />

1.2 Survey <strong>of</strong> model<strong>in</strong>g th<strong>in</strong> walled beam structures<br />

1.2.1 General considerations .......................................................................................................1-1<br />

1.2.2 Review at the geometrical level .........................................................................................1-1<br />

1.2.3 Review at the physical model<strong>in</strong>g level...............................................................................1-2<br />

1.2.4 Review at the mathematical level.......................................................................................1-5<br />

1.3 Survey <strong>of</strong> the stability behavior<br />

1.3.1 Increas<strong>in</strong>g need for stability and post-critical behavior analyses .......................................1-5<br />

1.3.2 Def<strong>in</strong><strong>in</strong>g non l<strong>in</strong>ear calculations <strong>in</strong>clud<strong>in</strong>g stability...........................................................1-6<br />

1.3.3 Historical overview on buckl<strong>in</strong>g analyses <strong>of</strong> th<strong>in</strong> walled structures ..................................1-6<br />

1.3.4 Analytical and numerical methods used for stability problems..........................................1-8<br />

1.4 Orig<strong>in</strong>al contributions <strong>of</strong> the present work ..............................................................................1-8<br />

CHAPTER 2 – BACKGROUND INFORMATION<br />

2.1 <strong>Beams</strong> <strong>with</strong> bend<strong>in</strong>g shear effects<br />

2.1.1 Bernoulli.............................................................................................................................2-1<br />

2.1.2 Timoshenko........................................................................................................................2-2<br />

2.1.3 High order theories.............................................................................................................2-3<br />

2.1.4 Applications .......................................................................................................................2-4<br />

2.2 Uniform and non uniform torsion (mixed torsion)<br />

2.2.1 General overview ...............................................................................................................2-9<br />

2.2.2 de Sa<strong>in</strong>t Venant torsion (uniform torsion)..........................................................................2-9<br />

2.2.3 Non uniform torsion...........................................................................................................2-13<br />

2.3 Distortion<br />

2.3.1 General overview ...............................................................................................................2-27<br />

2.3.2 Problem def<strong>in</strong>ition..............................................................................................................2-28<br />

2.3.3 Assumptions for Takahashi model.....................................................................................2-30<br />

2.3.4 K<strong>in</strong>ematics..........................................................................................................................2-31<br />

2.4 Buckl<strong>in</strong>g <strong>of</strong> elastic th<strong>in</strong>-walled columns<br />

2.4.1 Us<strong>in</strong>g Vlassov warp<strong>in</strong>g function ........................................................................................2-34<br />

2.4.2 Us<strong>in</strong>g Benscoter warp<strong>in</strong>g function .....................................................................................2-35<br />

I


2.5 Lateral buckl<strong>in</strong>g <strong>of</strong> elastic th<strong>in</strong> walled beams .......................................................................2-36<br />

PART II. THEORETICAL DEVELOPMENTS<br />

CHAPTER 3 - KINEMATICS OF THE PRESENT ANALYSIS OF THIN WALLED BEAMS<br />

3.1 Geometric description and assumptions...................................................................................3-1<br />

3.2 Torsional warp<strong>in</strong>g <strong>of</strong> the cross section<br />

3.2.1 Contour warp<strong>in</strong>g function ..................................................................................................3-2<br />

3.2.2 Thickness warp<strong>in</strong>g function ...............................................................................................3-2<br />

3.2.3 Torsional warp<strong>in</strong>g function and decoupl<strong>in</strong>g equations.......................................................3-4<br />

3.3 Warp<strong>in</strong>g associated <strong>with</strong> bend<strong>in</strong>g shear effects<br />

3.3.1 Problem presentation..........................................................................................................3-9<br />

3.3.2 Warp<strong>in</strong>g function <strong>with</strong> shear bend<strong>in</strong>g effects.....................................................................3-10<br />

3.3.3 Additional equations. .........................................................................................................3-11<br />

3.4 Distortional warp<strong>in</strong>g<br />

3.4.1 Introduction........................................................................................................................3-12<br />

3.4.2 Warp<strong>in</strong>g function and displacement field...........................................................................3-12<br />

3.4.3 K<strong>in</strong>ematics decoupl<strong>in</strong>g.......................................................................................................3-13<br />

CHAPTER 4 - ANALYTICAL DEVELOPMENTS<br />

4.1 Introduction..............................................................................................................................4-1<br />

4.2 L<strong>in</strong>ear elastic analysis <strong>with</strong> torsional warp<strong>in</strong>g effects<br />

4.2.1 Deformations......................................................................................................................4-1<br />

4.2.2 Hooke law ..........................................................................................................................4-1<br />

4.2.3 Pr<strong>in</strong>cipal <strong>of</strong> virtual work ....................................................................................................4-2<br />

4.2.4 Stress resultants..................................................................................................................4-3<br />

4.2.5 Equilibrium equations ........................................................................................................4-6<br />

4.3 L<strong>in</strong>ear elastic analysis <strong>with</strong> bend<strong>in</strong>g warp<strong>in</strong>g effects<br />

4.3.1 Displacement field and stra<strong>in</strong>s ...........................................................................................4-7<br />

4.3.2 Pr<strong>in</strong>cipal <strong>of</strong> virtual work ....................................................................................................4-8<br />

4.3.3 Stress resultants..................................................................................................................4-9<br />

4.3.4 Equilibrium equations ........................................................................................................4-10<br />

4.3.5 An application ....................................................................................................................4-11<br />

4.4 L<strong>in</strong>ear elastic analysis <strong>with</strong> distortional warp<strong>in</strong>g effects<br />

4.4.1 Deformations......................................................................................................................4-12<br />

4.4.2 Pr<strong>in</strong>cipal <strong>of</strong> virtual work ....................................................................................................4-12<br />

4.4.3 Stress resultants..................................................................................................................4-13<br />

4.4.4 Equilibrium equations ........................................................................................................4-15<br />

4.5 Basic equations for l<strong>in</strong>earized structural stability analysis<br />

4.5.1 Introduction........................................................................................................................4-16<br />

4.5.2 Displacement field and stresses..........................................................................................4-16<br />

4.5.3 Pr<strong>in</strong>cipal <strong>of</strong> virtual work ....................................................................................................4-18<br />

4.5.4 Govern<strong>in</strong>g equations ..........................................................................................................4-18<br />

4.5.5 Buckl<strong>in</strong>g <strong>of</strong> simply supported columns..............................................................................4-20<br />

4.5.6 Buckl<strong>in</strong>g <strong>of</strong> simply supported beams <strong>with</strong> equal end moments .........................................4-21<br />

II


4.5.7 Analytical analyses <strong>of</strong> th<strong>in</strong> walled structure buckl<strong>in</strong>g........................................................4-23<br />

PART III. DISCRETE MODELS<br />

CHAPTER 5 - FINITE ELEMENT DISCRETIZATION<br />

5.1 Introduction..............................................................................................................................5-1<br />

5.2 <strong>F<strong>in</strong>ite</strong> elements <strong>with</strong> torsional warp<strong>in</strong>g<br />

5.2.1 A 2-node beam element “FEM1”.......................................................................................5-1<br />

5.2.2 A 3-node beam element “FEM2”.......................................................................................5-4<br />

5.2.3 Adapt<strong>in</strong>g “FEM1”& “FEM2” to the torsional theory <strong>of</strong> th<strong>in</strong>-walled beams......................5-8<br />

5.2.4 Nodal forces equivalent to distributed loads ......................................................................5-12<br />

5.2.5 Assembly <strong>of</strong> beam elements...............................................................................................5-13<br />

5.2.6 Applications on th<strong>in</strong> walled beam behavior <strong>in</strong>clud<strong>in</strong>g torsional warp<strong>in</strong>g ..........................5-18<br />

5.2.7 Applications <strong>in</strong>volv<strong>in</strong>g connections ...................................................................................5-32<br />

5.3 <strong>F<strong>in</strong>ite</strong> element <strong>with</strong> shear bend<strong>in</strong>g warp<strong>in</strong>g<br />

5.3.1 Displacement field..............................................................................................................5-37<br />

5.3.2 <strong>F<strong>in</strong>ite</strong> element def<strong>in</strong>ition ....................................................................................................5-37<br />

5.3.3 Stiffness matrix and additional equations...........................................................................5-38<br />

5.3.4 Applications on bend<strong>in</strong>g shear warp<strong>in</strong>g .............................................................................5-39<br />

5.4 <strong>F<strong>in</strong>ite</strong> element <strong>with</strong> distortional warp<strong>in</strong>g<br />

5.4.1 Displacement field..............................................................................................................5-48<br />

5.4.2 <strong>F<strong>in</strong>ite</strong> element def<strong>in</strong>ition ....................................................................................................5-48<br />

5.4.3 Stiffness matrix and additional equations...........................................................................5-49<br />

5.4.4 Applications on distortional warp<strong>in</strong>g .................................................................................5-51<br />

5.5 Non l<strong>in</strong>ear element for buckl<strong>in</strong>g analyses<br />

5.5.1 step by step solution ...........................................................................................................5-62<br />

5.5.2 Updated Lagrangian formulation .......................................................................................5-62<br />

5.5.3 Discretized equilibrium equations......................................................................................5-64<br />

5.5.4 Tangent stiffness matrix calculation...................................................................................5-66<br />

5.5.5 Solution procedures............................................................................................................5-67<br />

5.5.6 Applications to buckl<strong>in</strong>g problems <strong>of</strong> th<strong>in</strong> walled structures .............................................5-67<br />

CHAPTER 6 - DISCUSSION, CONCLUSIONS AND RECOMMANDATIONS<br />

6.1 Objectives ................................................................................................................................6-1<br />

6.2 Complexity...............................................................................................................................6-1<br />

6.3 Research topics ........................................................................................................................6-2<br />

6.4 Methodologies..........................................................................................................................6-2<br />

6.5 Result summary and discussion ...............................................................................................6-3<br />

6.5.1 The torsional behavior........................................................................................................6-4<br />

6.5.2 The flexural behavior .........................................................................................................6-4<br />

6.5.3 The distortional behavior ...................................................................................................6-5<br />

6.5.4 Buckl<strong>in</strong>g .............................................................................................................................6-5<br />

6.5.5 Discussion on warp<strong>in</strong>g functions and locations <strong>of</strong> torsional and distortional centers ........6-5<br />

6.6 Suggestions for future works ...................................................................................................6-7<br />

III


REFERENCES<br />

APPENDICES<br />

0 Constitutive relations<br />

1 Calculation <strong>of</strong> geometrical properties<br />

2 <strong>Element</strong>ary stiffness matrix <strong>with</strong>out shear effects<br />

3 <strong>Element</strong>ary stiffness matrix <strong>with</strong> Timoshenko shear effects<br />

4 Transition to global axes<br />

5 <strong>Element</strong>ary stiffness matrix <strong>with</strong> (xz) bend<strong>in</strong>g warp<strong>in</strong>g effects<br />

6 <strong>Shear</strong> lock<strong>in</strong>g problem presentation<br />

7 <strong>Element</strong>ary stiffness matrix <strong>with</strong> distortional effects<br />

8 Basic concepts <strong>of</strong> non-l<strong>in</strong>ear analyses<br />

9 Solution methods for the non l<strong>in</strong>ear problem<br />

LIST OF FIGURES<br />

LIST OF TABLES<br />

IV


0.1 Background<br />

CHAPTER 0. INTRODUCTION<br />

Throughout history, th<strong>in</strong> walled structures have been classified as very common construction<br />

elements. Their extensive use orig<strong>in</strong>ates probably from the trend to reduce the structural weight and to<br />

m<strong>in</strong>imize build<strong>in</strong>g materials. This very natural optimization strategy constituted an important design<br />

pr<strong>in</strong>ciple and guided the evolution process <strong>of</strong> constructions start<strong>in</strong>g from the ancient ‘trial and error’<br />

approach. Early developments, aim<strong>in</strong>g at idealiz<strong>in</strong>g and predict<strong>in</strong>g structural responses, managed to<br />

condense a complex 3D structure to a ‘mathematically manageable’ beam model and to superpose<br />

pr<strong>in</strong>cipal types <strong>of</strong> mechanical behaviors: tension/compression, bend<strong>in</strong>g, torsion and so on… This<br />

simple but <strong>in</strong>genious formulation is still extensively developed nowadays despite the exist<strong>in</strong>g 2D and<br />

3D models and the considerable growth <strong>of</strong> simulation techniques. Many extensions, such as transverse<br />

shear deformation, non uniform warp<strong>in</strong>g torsion, cross sectional distortion and further ref<strong>in</strong>ements<br />

were progressively <strong>in</strong>cluded over the years. The multitude <strong>of</strong> efforts recently <strong>in</strong>vested <strong>in</strong> this research<br />

area is probably justified by:<br />

- the complexity <strong>of</strong> th<strong>in</strong> walled structure behavior,<br />

- the optimization <strong>of</strong> pr<strong>of</strong>ile geometries as much as possible <strong>in</strong> order to fit esthetics, strength and<br />

connectivity requirements,<br />

- the need for brief but accurate and reliable design methods <strong>in</strong> order to rema<strong>in</strong> time competitive...<br />

0.2 Motivation and purpose <strong>of</strong> the research<br />

The <strong>in</strong>itial motivation <strong>of</strong> this thesis was driven by the need for a reliable tool enabl<strong>in</strong>g an accurate<br />

analysis <strong>of</strong> th<strong>in</strong> walled civil eng<strong>in</strong>eer<strong>in</strong>g beam applications <strong>with</strong> arbitrary cross sections submitted to<br />

torsion (e.g. bridges, towers…). One <strong>of</strong> the major problems <strong>in</strong> model<strong>in</strong>g a real-life structure is the<br />

choice <strong>of</strong> the appropriate model. Which effects are to be taken <strong>in</strong>to consideration and which are to be<br />

left apart? Which approximations are useful, what is admissible and what is not? Is it necessary to<br />

apply a shell theory and <strong>in</strong> this case, how many degrees <strong>of</strong> freedom should be <strong>in</strong>cluded? Is it crucial to<br />

develop a huge amount <strong>of</strong> numerical results? A multitude <strong>of</strong> similar questions, coupled <strong>with</strong> the need<br />

for the a scientific background <strong>in</strong> order to use any exist<strong>in</strong>g commercial f<strong>in</strong>ite element code, <strong>in</strong>itiated a<br />

first <strong>in</strong>terest <strong>in</strong> advanced torsional k<strong>in</strong>ematical formulations and the result<strong>in</strong>g numerical properties <strong>of</strong><br />

th<strong>in</strong> walled beam f<strong>in</strong>ite elements.<br />

Moreover, pure scientific <strong>in</strong>terest motivated other research subjects such as warp<strong>in</strong>g effects due to<br />

bend<strong>in</strong>g shear forces, limitations <strong>of</strong> a formulation, the <strong>in</strong>fluence <strong>of</strong> shear lock<strong>in</strong>g… Later on, the<br />

<strong>in</strong>terest <strong>in</strong> <strong>in</strong>vestigat<strong>in</strong>g the cross sectional deformation <strong>of</strong> very th<strong>in</strong> walled beams <strong>in</strong> <strong>in</strong>dustrial<br />

applications (e.g. railroad bridges, stiffeners, diaphragms and brac<strong>in</strong>g <strong>in</strong> civil, aeronautical and naval<br />

constructions…) led to the analysis <strong>of</strong> distortional behavior. Cold formed and welded members (such<br />

as steel framed houses, portal frames, purl<strong>in</strong>s, rack<strong>in</strong>g systems…) are <strong>in</strong> expand<strong>in</strong>g use due to their<br />

cost competitiveness, resistance and their 100% recyclable property.<br />

Therefore, this thesis <strong>in</strong>troduces a theoretical background and presents detailed analyses <strong>in</strong> order to<br />

improve the understand<strong>in</strong>g <strong>of</strong> the l<strong>in</strong>ear behavior and stability <strong>of</strong> th<strong>in</strong>-walled beam structures,<br />

particularly when exhibit<strong>in</strong>g important warp<strong>in</strong>g due to non uniform torsion, shear bend<strong>in</strong>g and<br />

distortion. On the basis <strong>of</strong> this knowledge, an advanced beam f<strong>in</strong>ite element has been developed,<br />

0-1


implemented <strong>in</strong>to a computer program and used as a general tool for the purpose <strong>of</strong> analyz<strong>in</strong>g th<strong>in</strong><br />

walled structures. Despite the wide literature -as it is shown <strong>in</strong> chapter 1- concern<strong>in</strong>g this general<br />

scope and despite the numerous “published” beam f<strong>in</strong>ite elements that <strong>in</strong>clude warp<strong>in</strong>g, this work<br />

presents orig<strong>in</strong>al achievements, namely:<br />

- a detailed understand<strong>in</strong>g and precise comparison <strong>of</strong> exist<strong>in</strong>g theories and f<strong>in</strong>ite elements;<br />

- a unified formulation that uses a s<strong>in</strong>gle warp<strong>in</strong>g function for theoretical developments and<br />

f<strong>in</strong>ite element applications <strong>of</strong> a general study that covers:<br />

• uniform and/or non uniform torsion<br />

• uniform and/or non uniform distortion<br />

• bend<strong>in</strong>g shear effects<br />

<strong>in</strong> different cases <strong>of</strong>:<br />

• asymmetrical cross sectional shapes where shear centers and centroids do not co<strong>in</strong>cide<br />

• partial warp<strong>in</strong>g transmission <strong>in</strong> beam assemblies<br />

While develop<strong>in</strong>g analytical and numerical formulations, many problems and unclear po<strong>in</strong>ts had to be<br />

solved. Some were related to mechanical model decisions and others were purely due to f<strong>in</strong>ite element<br />

approximations. Solv<strong>in</strong>g these specific problems and <strong>in</strong>spect<strong>in</strong>g the relation between a mechanical<br />

behavior and a mathematical equation <strong>in</strong>spired lots <strong>of</strong> research subjects that gave <strong>in</strong>terest<strong>in</strong>g<br />

conclud<strong>in</strong>g remarks or led to fruitful discussions. Among other problems, here are some examples: the<br />

<strong>in</strong>terpretation <strong>of</strong> mathematical or numerical messages (like non def<strong>in</strong>ite symmetrical stiffness matrix),<br />

a large error due to a f<strong>in</strong>ite element discretization, the <strong>in</strong>fluence <strong>of</strong> the shape function…<br />

Another important motivation throughout all the work was an <strong>in</strong>-depth exam<strong>in</strong>ation <strong>of</strong> exist<strong>in</strong>g<br />

mechanical models concerned <strong>with</strong> the present subject. Some unclear conclusions, unjustified l<strong>in</strong>ks or<br />

non-evident remarks led to important <strong>in</strong>vestigations about the mechanical content or the importance <strong>of</strong><br />

some assumptions or remarks (such as a dependency <strong>of</strong> degrees <strong>of</strong> freedom, determ<strong>in</strong><strong>in</strong>g distortional<br />

rotational ratio <strong>in</strong> case <strong>of</strong> asymmetrical pr<strong>of</strong>ile…).<br />

0.3 Scope and content <strong>of</strong> the dissertation<br />

The primary aims <strong>of</strong> this thesis are to provide an understand<strong>in</strong>g <strong>of</strong> the behavior <strong>of</strong> th<strong>in</strong> walled beams<br />

<strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g applications (civil, mechanical, naval…) and to produce a reliable tool for accurate<br />

prediction <strong>of</strong> their behavior. In order to fit this objective, a methodology is developed for the beam<br />

structural analysis <strong>in</strong>clud<strong>in</strong>g the identification <strong>of</strong> a possible <strong>in</strong>stability by follow<strong>in</strong>g the response <strong>of</strong> the<br />

structure dur<strong>in</strong>g the deformation process. The analysis focuses on the case <strong>of</strong> a static beam <strong>with</strong><strong>in</strong> the<br />

framework <strong>of</strong> geometrically nonl<strong>in</strong>ear elasticity by consider<strong>in</strong>g small deformations and neglect<strong>in</strong>g<br />

time dependent effects –i.e. forces whose direction and <strong>in</strong>tensity do not depend on the beam<br />

deformation. It is believed that these restrictions respect the above-stated motivation and allow an<br />

accurate estimation <strong>of</strong> the strength and the safety assessment <strong>of</strong> a structure. The present research could<br />

be used for a design analysis or as a guid<strong>in</strong>g tool <strong>in</strong> an optimization process.<br />

The dissertation is organized as follows. In chapter 1, a general survey summarizes most<br />

representative work on the subject and concludes by position<strong>in</strong>g the thesis <strong>with</strong><strong>in</strong> its field and<br />

highlight<strong>in</strong>g its contribution to the published material. Chapter 2 presents and compares different<br />

exist<strong>in</strong>g theories that analyze the behavior <strong>of</strong> th<strong>in</strong>-walled members submitted to axial, bend<strong>in</strong>g,<br />

torsional and distortional loads. Chapter 3 is conf<strong>in</strong>ed to the k<strong>in</strong>ematics <strong>of</strong> the present work. The basic<br />

assumptions are clearly def<strong>in</strong>ed <strong>in</strong> order to <strong>in</strong>duce the displacement fields that <strong>in</strong>clude torsional,<br />

0-2


distortional and shear bend<strong>in</strong>g effects. Chapter 4 <strong>in</strong>troduces the pr<strong>in</strong>ciple <strong>of</strong> virtual work which is the<br />

basis <strong>of</strong> the present work and <strong>of</strong>fers analytical solutions to some problems. Although the analytical<br />

methods shown <strong>in</strong> this chapter are only valid for simple structures, they constitute a very important<br />

part <strong>of</strong> the developments done <strong>in</strong> this work. They <strong>of</strong>fer a simple tool that enables focus<strong>in</strong>g on the basic<br />

hypotheses, reduc<strong>in</strong>g to the pr<strong>in</strong>cipal mechanical behavior and validat<strong>in</strong>g mathematical, physical and<br />

mechanical approximations. Besides, together <strong>with</strong> numerical shell analyses, they contribute to the<br />

validation <strong>of</strong> the numerical results presented <strong>in</strong> chapter 5. General conclusions are drawn <strong>in</strong> chapter 6<br />

while some useful calculations and non orig<strong>in</strong>al developments are placed <strong>in</strong> appendices (such as<br />

matrices and calculations too detailed for text presentation, technical notes on methods, common<br />

developments…) s<strong>in</strong>ce they <strong>in</strong>terrupt the guid<strong>in</strong>g l<strong>in</strong>e <strong>of</strong> the report (and the pleasure <strong>of</strong> read<strong>in</strong>g!).<br />

0-3


PART I. OVERVIEW


CHAPTER 1. LITTERATURE REVIEW AND RESEARCH<br />

PROBLEM STATEMENT<br />

1.1 Goal <strong>of</strong> the chapter<br />

Th<strong>in</strong>-walled structures have ga<strong>in</strong>ed a grow<strong>in</strong>g importance due to their efficiency <strong>in</strong> strength and cost<br />

(see e.g. Now<strong>in</strong>ski 1959, Davis 2000, Hancock 2003…). While significant advances have been made<br />

through experimental test<strong>in</strong>g and theoretical work, new research is still required s<strong>in</strong>ce many important<br />

questions rema<strong>in</strong> partially or controversially answered such as: the importance <strong>of</strong> shear bend<strong>in</strong>g<br />

effects, lateral torsional buckl<strong>in</strong>g (see Braham 2001) and distortional buckl<strong>in</strong>g, the compatibility <strong>of</strong><br />

connections, the choice <strong>of</strong> adapted and consistent types <strong>of</strong> non l<strong>in</strong>ear analyses (see Bažant 2000)…<br />

This chapter aims at synthesiz<strong>in</strong>g, discuss<strong>in</strong>g and criticiz<strong>in</strong>g accredited knowledge established from<br />

the literature accord<strong>in</strong>g to the guid<strong>in</strong>g concepts <strong>of</strong> this thesis. It concludes by highlight<strong>in</strong>g the orig<strong>in</strong>al<br />

contribution <strong>of</strong> this work to the overviewed research fields.<br />

1.2 Survey <strong>of</strong> model<strong>in</strong>g th<strong>in</strong> walled beam structures<br />

1.2.1 General considerations<br />

Doubtlessly, most analyzed and designed th<strong>in</strong> walled structures consist <strong>of</strong> beams and columns <strong>with</strong><br />

different th<strong>in</strong> pr<strong>of</strong>iles. Recently, a wide variety <strong>of</strong> cross-sectional shapes have been produced <strong>in</strong> the<br />

market, result<strong>in</strong>g from an optimization based on strength, stiffness, connectivity and esthetics criteria<br />

[Menn<strong>in</strong>k 2003…]. As <strong>in</strong> other eng<strong>in</strong>eer<strong>in</strong>g fields, the result<strong>in</strong>g complexity constitutes a considerable<br />

challenge for computational schemes. The accuracy <strong>of</strong> the structural behavior description depends to a<br />

large extent on the assumed approximations.<br />

The follow<strong>in</strong>g ‘state <strong>of</strong> the art’ presents, at several levels <strong>of</strong> model<strong>in</strong>g, a multitude <strong>of</strong> generalizations,<br />

simplifications and assumptions <strong>in</strong> published research. At the geometrical level, the <strong>in</strong>fluence <strong>of</strong> the<br />

shape and dimensions <strong>of</strong> a structure is shown: beam or shell structures, open or closed pr<strong>of</strong>iles,<br />

prismatic or tapered beams… At the physical or k<strong>in</strong>ematical model<strong>in</strong>g level, the theoretical<br />

assumptions are exam<strong>in</strong>ed <strong>in</strong> terms <strong>of</strong> validity, efficiency and ability to describe the structural<br />

behavior: discretiz<strong>in</strong>g k<strong>in</strong>ematically a beam structure by its longitud<strong>in</strong>al axis, <strong>in</strong>clud<strong>in</strong>g shear<br />

deformation due to bend<strong>in</strong>g or torsion, relax<strong>in</strong>g the planar and normality assumptions <strong>of</strong> a cross<br />

section, neglect<strong>in</strong>g warp<strong>in</strong>g shear variation through the thickness <strong>of</strong> a mid-wall, tak<strong>in</strong>g <strong>in</strong>to<br />

consideration the deformability <strong>of</strong> a cross section, model<strong>in</strong>g a partial or total transmission <strong>of</strong> warp<strong>in</strong>g<br />

at a connection… At the mathematical level, many questions are raised about the completeness and<br />

logical consistency <strong>of</strong> the chosen formulation and the result<strong>in</strong>g computations. The description <strong>of</strong> the<br />

deformation and the formulation <strong>of</strong> the set <strong>of</strong> equilibrium equations <strong>with</strong> boundary conditions and<br />

constra<strong>in</strong>ts are discussed: <strong>in</strong>terpolation functions, shear lock<strong>in</strong>g, accuracy <strong>of</strong> solutions… Among these<br />

equations, the constitutive equations are the physical equations associated <strong>with</strong> the material or<br />

mechanical model. The quality and performance <strong>of</strong> th<strong>in</strong> walled analyses depend on the convergence <strong>of</strong><br />

all <strong>of</strong> these multi-level challenges.<br />

1.2.2 Review at the geometrical level<br />

Several geometrical aspects <strong>in</strong>fluence the modell<strong>in</strong>g <strong>of</strong> th<strong>in</strong> walled structures. The dimensional aspect<br />

ratios (thickness to contour length, contour length to longitud<strong>in</strong>al dimension) are <strong>of</strong>ten used to identify<br />

1-1


and classify a structure (e.g. Batoz 1990, page 2): solid or th<strong>in</strong>; shell, plate, membrane or beam. The<br />

cross sectional geometry <strong>in</strong>fluences to a large extent the behavior <strong>of</strong> th<strong>in</strong> walled beams and<br />

specifically, whether the section is open or closed. The torsional analysis is generally presented by<br />

different methods for open and closed cross sections [Murray 1986; Gjelsvik 1981; Shakourzadeh<br />

1995; …]. Many researchers [De Ville 1989 §3.4; Batoz 1990 & Shakourzadeh 1995; Gjelsvick 1981<br />

pages 10 & 114; Musat 1996 & 1999; …] propose multiple expressions <strong>of</strong> warp<strong>in</strong>g functions for<br />

different cross sectional types (open or closed th<strong>in</strong> pr<strong>of</strong>iles). Although <strong>of</strong>ten used <strong>in</strong> order to save<br />

weight, non prismatic beams <strong>with</strong> ‘tapered’ cross sections are not recovered by most structural<br />

analyses. Specific studies have dealt <strong>with</strong> the l<strong>in</strong>ear and non l<strong>in</strong>ear behavior <strong>of</strong> th<strong>in</strong>-walled beamcolumn<br />

structures <strong>with</strong> variable cross section along the longitud<strong>in</strong>al axis [Kitipornchai 1975; Bradford<br />

1988; Chan 1990; Rajasekaran 1994; Dube 1996; Ronagh 2000; Kim 2000…].<br />

1.2.3 Review at the physical model<strong>in</strong>g level<br />

Beam model<strong>in</strong>g <strong>of</strong> a th<strong>in</strong>-walled structure<br />

There seems to be a general guid<strong>in</strong>g concept [Gjelsvik 1981; Murray 1986; De Ville 1989; Batoz<br />

1990; …] for represent<strong>in</strong>g a th<strong>in</strong> walled structure by its longitud<strong>in</strong>al beam axis. Accord<strong>in</strong>g to Sa<strong>in</strong>t<br />

Venant pr<strong>in</strong>ciple, the local perturbation effects <strong>of</strong> concentrated loads and boundary particularities are<br />

neglected [Calgaro 1988 page 1-5; Murray 1986 §1.1 …]. The stresses, and thus the stra<strong>in</strong>s, are<br />

considered to depend exclusively on beam <strong>in</strong>ternal forces caused by the applied load<strong>in</strong>g. The<br />

membrane force and bend<strong>in</strong>g moments are related to the centroidal axis while the torsional moment<br />

and shear forces are related to the shear center axis. One <strong>of</strong> the most important computational<br />

difficulties is the accurate calculation under non uniform torsional load<strong>in</strong>g <strong>of</strong> the beam response when<br />

it exhibits a significant cross sectional warp<strong>in</strong>g. Shell or th<strong>in</strong> plate models <strong>of</strong>fer general and welladapted<br />

solutions to various cases <strong>of</strong> geometry, load<strong>in</strong>g and boundary conditions <strong>of</strong> th<strong>in</strong> walled<br />

structures. However, such an approach is not always affordable and requires powerful numerical<br />

methods. It generates excessive data so that the post-process<strong>in</strong>g is time and energy consum<strong>in</strong>g. In<br />

addition, it does not allow easy physical <strong>in</strong>terpretations. It is unable to isolate membrane, bend<strong>in</strong>g,<br />

uniform torsion, torsional warp<strong>in</strong>g, distortional warp<strong>in</strong>g, bend<strong>in</strong>g shear warp<strong>in</strong>g or local effects (e.g.<br />

normal stress computations). Moreover, it does not po<strong>in</strong>t out the contribution <strong>of</strong> <strong>in</strong>dividual parts; e.g.<br />

the <strong>in</strong>fluence <strong>of</strong> stiffeners on the total resistance <strong>of</strong> the structure is not obviously highlighted. This<br />

expla<strong>in</strong>s why various researchers develop and adapt new advanced beam theories to take <strong>in</strong>to<br />

consideration the particular behavior <strong>of</strong> a th<strong>in</strong>-walled structure and to give satisfactory results that the<br />

usual beam theory is unable to provide. They always have limited applications; e.g. beam theories<br />

stated hereafter do not take <strong>in</strong>to consideration local effects. Several <strong>in</strong>termediate theories between<br />

beams and shells are based on enriched k<strong>in</strong>ematics, e.g. f<strong>in</strong>ite strip method [Cheung 1996; Cheung<br />

1998]. Some researchers propose orig<strong>in</strong>al ideas <strong>in</strong> order to m<strong>in</strong>imize the complexity <strong>of</strong> the problem.<br />

Meek (1983) considered that the wall is meshed <strong>in</strong>to rectangular elements. Some degrees <strong>of</strong> freedom<br />

are related to the beam axis and others to rectangular elements or to the nodes connect<strong>in</strong>g them. This<br />

technique uses a shell theory for torsion and a beam theory for bend<strong>in</strong>g. Musat (1996;1999) <strong>in</strong>troduced<br />

the concept <strong>of</strong> strip-plates to def<strong>in</strong>e macro-elements. The wall surface is divided <strong>in</strong>to strip plates <strong>with</strong><br />

rectangular cross sections connected along longitud<strong>in</strong>al axes.<br />

Cross-section deformation<br />

When a cross section is assumed to rema<strong>in</strong> planar dur<strong>in</strong>g deformation, the result<strong>in</strong>g beam model<br />

describes the behavior <strong>of</strong> a massive and regular cross section outside the application zone <strong>of</strong> the<br />

concentrated load<strong>in</strong>g. However, the behavior <strong>of</strong> th<strong>in</strong>-walled beams is essentially different s<strong>in</strong>ce shear<br />

1-2


stresses and stra<strong>in</strong>s are large. Transversal stiffeners are required <strong>in</strong> order to m<strong>in</strong>imize these effects but<br />

also to prevent the distortion and the local bend<strong>in</strong>g.<br />

Most researchers [Reilly 1972; De Ville 1989; Gunnlaugsson 1989; Chen 1989; Batoz 1990; Back<br />

1998; Frey 2000; …] generally agree on the fact that for a beam submitted to tension/compression or<br />

bend<strong>in</strong>g, the cross section rema<strong>in</strong>s planar. Some adopt the normality condition <strong>of</strong> the cross section, i.e.<br />

Bernoulli theory (De Ville 1989, page 2.2), by neglect<strong>in</strong>g the stra<strong>in</strong> energy due to the shear forces<br />

[Batoz 1990, page 80]. If the normality assumption is relaxed while the planar assumption is kept, i.e.<br />

Timoshenko theory, a constant shear stra<strong>in</strong> is calculated [Reilly 1972; Gunnlaugsson 1982; Chen<br />

1989; Batoz 1990; Back 1998; …] and a shear correction factor is needed [Cowper 1966; Pilkey 1994,<br />

page 28; Batoz 1990, page 62; Frey 2000, page 193; …] <strong>in</strong> order to compensate the fact that the<br />

displacement field violates the ‘no shear’ boundary condition at the edges <strong>of</strong> open pr<strong>of</strong>iles. More<br />

detailed theories [Massonnet 1983; Reddy 1997; Wang 2000; Eisenberger 2003…] take <strong>in</strong>to<br />

consideration the warp<strong>in</strong>g due to shear forces. Batoz refers to Chen (1989) and highlights that shear<br />

stra<strong>in</strong> effects may be more important <strong>in</strong> bend<strong>in</strong>g than <strong>in</strong> torsion.<br />

When submitted to torsion, the pr<strong>of</strong>ile exhibits a longitud<strong>in</strong>al out <strong>of</strong> plane warp<strong>in</strong>g. The difficulty <strong>of</strong><br />

solv<strong>in</strong>g exactly the general torsional problem has led many researchers to formulate simplified models.<br />

Bredt (1842-1900) gave an approximated model <strong>in</strong> order to solve the torsional problem <strong>of</strong> hollow<br />

sections. Sa<strong>in</strong>t Venant (1855) described the well known primary torsion or uniform torsion where<br />

transversal shear stresses result from uniform rotation <strong>of</strong> two adjacent cross sections. Accord<strong>in</strong>g to<br />

Now<strong>in</strong>ski (1959), the torsional rigidity <strong>of</strong> composite th<strong>in</strong> sections was analyzed by Weber <strong>in</strong> 1924 and<br />

important literature work was recast by Foppl <strong>in</strong> 1928. The case <strong>of</strong> uniform torsion (uniform moment<br />

distribution <strong>with</strong> unrestra<strong>in</strong>ed warp<strong>in</strong>g) is not <strong>of</strong>ten exhibited <strong>in</strong> practice. In general cases <strong>of</strong> load<strong>in</strong>g<br />

and boundary conditions, an additional ‘secondary torsion’ <strong>in</strong>duces normal stresses. Neglect<strong>in</strong>g these<br />

normal stresses <strong>of</strong>ten leads to important errors. The sum <strong>of</strong> both primary and secondary torsion, called<br />

‘mixed torsion’, describes the total behavior due to the applied torque. The term<strong>in</strong>ology ‘primary’ and<br />

‘secondary’ [Trahair 1993, page 304] is also used <strong>in</strong> the literature for the torsional warp<strong>in</strong>g <strong>in</strong> order to<br />

dist<strong>in</strong>guish between the contour and the thickness warp<strong>in</strong>g [Gjelsvik 1981, page 12] <strong>of</strong> the th<strong>in</strong>-walled<br />

cross section (known also as global and local respectively [De Ville 1989]).<br />

Many researchers have tackled the problem <strong>of</strong> non uniform torsion. The most well-known authors are<br />

Timoshenko (1905), Weber (1924), Reissner (1926), Wagner (1929), Vlassov (1940), v. Karman<br />

(1944), Argyris (1949), Benscoter (1954) [Now<strong>in</strong>ski, 1959]… Timoshenko studied the problem <strong>of</strong> non<br />

uniform torsion <strong>of</strong> I beams <strong>with</strong> constra<strong>in</strong>ed torsion by assum<strong>in</strong>g l<strong>in</strong>ear normal stress distributions <strong>in</strong><br />

the flanges. His third order differential equilibrium equation, developed <strong>in</strong> the particular case <strong>of</strong> an I<br />

beam, is still valid and can be deducted from all subsequent general theories.<br />

Consider<strong>in</strong>g or neglect<strong>in</strong>g the stra<strong>in</strong> energy associated <strong>with</strong> warp<strong>in</strong>g generated two pr<strong>in</strong>cipal theories<br />

<strong>in</strong> the non uniform torsional field: respectively Vlassov <strong>in</strong> 1940 and Benscoter <strong>in</strong> 1954. The<br />

term<strong>in</strong>ology used for these two theories may appear as a controversy <strong>in</strong> literature. Who is the first to<br />

study the general theory <strong>of</strong> non uniform torsion for closed cross sections? Umanski 1939 [Now<strong>in</strong>ski<br />

1959; Prokić 1994; Musat 1996; …] or Benscoter 1954 as commonly assumed? Is Vlassov theory<br />

suitable for closed cross sections or not? The well known published work by Benscoter is a paper<br />

published <strong>in</strong> the ASME journal <strong>in</strong> 1954 but Umanski and Vlassov published earlier <strong>in</strong> Russian<br />

important works <strong>in</strong> 1939 and 1940. The names <strong>of</strong> these three researchers have been associated <strong>with</strong><br />

torsional theories till today. In his <strong>in</strong>terest<strong>in</strong>g survey on th<strong>in</strong> walled beam references, Now<strong>in</strong>ski (1959)<br />

stated that the first <strong>in</strong>vestigations <strong>of</strong> constra<strong>in</strong>ed warp<strong>in</strong>g <strong>of</strong> a freely supported box beam is attributed<br />

by Ebner to Eggenschwyler <strong>in</strong> 1920. Reissner (1926) analyzed a particular case <strong>of</strong> tapered beam box<br />

under l<strong>in</strong>early vary<strong>in</strong>g torque.<br />

1-3


Vlassov well known hypothesis (1961, Ch I. §2.3) consists <strong>of</strong> neglect<strong>in</strong>g shear warp<strong>in</strong>g at the mid wall<br />

<strong>of</strong> an open cross section. In most literature referr<strong>in</strong>g to Vlassov work [Kollbrunner 1970; Reilly 1972;<br />

Murray 1986 page 4&115; Mottershead 1988; De Ville 1989; Batoz 1990; Razaqpur 1991; Musat<br />

1999; …], this assumption is used for open pr<strong>of</strong>iles and the gradient <strong>of</strong> torsional angle is taken as<br />

warp<strong>in</strong>g degree <strong>of</strong> freedom. Benscoter theory characterizes the warp<strong>in</strong>g degree <strong>of</strong> freedom by an<br />

<strong>in</strong>dependent function which is different from the gradient <strong>of</strong> torsional angle. For closed cross sections,<br />

this <strong>in</strong>dependent warp<strong>in</strong>g degree <strong>of</strong> freedom [Gunnlaugsson 1982; Chen 1989; Back 1998;<br />

Shakourzadeh 1995; …] is used <strong>in</strong>stead <strong>of</strong> the derivative <strong>of</strong> torsional angle <strong>in</strong> order to <strong>in</strong>clude shear<br />

stra<strong>in</strong> <strong>in</strong> k<strong>in</strong>ematics. However, <strong>in</strong> other works [De Ville 1989 §3.4.1.3; …], Vlassov theory is stated as<br />

applicable for closed cross sections by comb<strong>in</strong><strong>in</strong>g the assumption <strong>of</strong> neglect<strong>in</strong>g shear warp<strong>in</strong>g at midwalls<br />

for the calculation <strong>of</strong> pr<strong>of</strong>ile warp<strong>in</strong>g function <strong>with</strong> Benscoter <strong>in</strong>dependent warp<strong>in</strong>g degree <strong>of</strong><br />

freedom. Back (1998) used this comb<strong>in</strong>ation.<br />

Massonnet (1983) generalized Sa<strong>in</strong>t Venant theory to the case <strong>of</strong> a l<strong>in</strong>ear distribution <strong>of</strong> the torsional<br />

moment. Without be<strong>in</strong>g explicitly stated, a restriction was imposed: the torsional warp<strong>in</strong>g must be<br />

free. His work is at half way between Sa<strong>in</strong>t Venant and Vlassov. The exact stress distribution is found<br />

by us<strong>in</strong>g Sa<strong>in</strong>t Venant theory but the beam equilibrium is ensured by <strong>in</strong>troduc<strong>in</strong>g Vlassov bimoment.<br />

Prokić (1990) proposes an orig<strong>in</strong>al approach us<strong>in</strong>g a s<strong>in</strong>gle warp<strong>in</strong>g function <strong>in</strong> order to analyze both<br />

open and closed pr<strong>of</strong>iles. The ma<strong>in</strong> idea is to discretize a pr<strong>of</strong>ile <strong>in</strong>to transversal nodes and segments<br />

and to develop a new contour warp<strong>in</strong>g function based on a l<strong>in</strong>ear variation <strong>of</strong> warp<strong>in</strong>g between these<br />

transversal nodes. Vlassov hypothesis <strong>of</strong> no shear stra<strong>in</strong> <strong>in</strong> mid wall is relaxed for contour warp<strong>in</strong>g.<br />

When the hypothesis <strong>of</strong> cross section non-deformability is relaxed, additional modes called<br />

distortional modes are added to the classical ones describ<strong>in</strong>g the behavior <strong>of</strong> a th<strong>in</strong>-walled beam:<br />

tension/compression, bend<strong>in</strong>g and torsion. These additional modes are related to the <strong>in</strong>-plane<br />

deformation <strong>of</strong> a th<strong>in</strong>-walled cross section. In some early works [Now<strong>in</strong>ski 1959; Timoshenko 1961<br />

page 211], this phenomenon was identified <strong>with</strong>out be<strong>in</strong>g analyzed; Timoshenko presented the brac<strong>in</strong>g<br />

<strong>in</strong> cross sectional planes as a solution to elim<strong>in</strong>ate the distortion. Vlassov (1961, §4) presented an<br />

orig<strong>in</strong>al analysis for the behavior <strong>of</strong> polygonal th<strong>in</strong>-walled closed cross sections <strong>with</strong> deformable<br />

contour by represent<strong>in</strong>g the displacements <strong>in</strong> the form <strong>of</strong> f<strong>in</strong>ite series. Later (1977), Trahair illustrated<br />

briefly the buckl<strong>in</strong>g accentuated by distortion <strong>of</strong> an I-beam which results <strong>in</strong> the web bend<strong>in</strong>g [Trahair<br />

1995 page 225]. In 1978, Takahashi and Hancock published articles about the distortional behavior.<br />

Takahashi (1978, 1980, 1982, 1987, 2003) developed analytical analyses for the distortion <strong>of</strong><br />

asymmetric open cross sections constituted by the assembly <strong>of</strong> four or more th<strong>in</strong> segments <strong>with</strong>out<br />

ramifications. He also presented a similar analysis <strong>in</strong> order to study closed th<strong>in</strong> walled cross sections<br />

(Takahashi 2001, 2003). Other researchers developed different experimental [Hancock 1992; Serrette<br />

1997; Kesti 1999…], analytical [Razapur 1991; Bradford 1992] or numerical methods [Hancock 1997;<br />

Ronagh 1996; Bradford 1997, 1998, 1999; Degée 2000…] <strong>in</strong> order to study the distortion. The<br />

‘Generalized beam theory’ has been applied extensively dur<strong>in</strong>g the last years <strong>in</strong> order to analyze the<br />

distortion <strong>of</strong> prismatic members [e.g. Davies 1998, 2000; Silvestre 2002, 2003, 2004; Gonçalves<br />

2004…]. It is a new approach essentially based on the separation <strong>of</strong> the behavior <strong>of</strong> a prismatic<br />

member <strong>in</strong>to a series <strong>of</strong> orthogonal displacement modes.<br />

Connection compatibilities<br />

The carry<strong>in</strong>g capacity and stability <strong>of</strong> some structures <strong>with</strong> uniform cross sections are <strong>of</strong>ten <strong>in</strong>creased<br />

by rivet<strong>in</strong>g or weld<strong>in</strong>g additional plates <strong>in</strong> highly stressed parts. The result<strong>in</strong>g cross section changes<br />

abruptly and the stiffness conditions <strong>of</strong> a connection (flexible, fully or partially rigid) modify the<br />

behavior <strong>of</strong> the structure. <strong>Model<strong>in</strong>g</strong> the real connection <strong>of</strong> cross sections <strong>in</strong> beam theory is a<br />

1-4


complicated task s<strong>in</strong>ce the assembled beams and columns may not have the same centroid and the<br />

same torsional center. The non uniform torsional warp<strong>in</strong>g (<strong>in</strong>dependent, cont<strong>in</strong>uous, fully or partially<br />

transmitted) is particularly difficult to analyze for beams connected <strong>with</strong> different orientations. The<br />

<strong>in</strong>ternal force associated <strong>with</strong> the warp<strong>in</strong>g is auto-equilibrated and cannot be axially projected like<br />

other vectors and couples. Different researchers [Gjelsvik 1981; Gunnlaugsson 1982; De Ville 1989;<br />

Pedersen 1991; Prokić 1993; Shakourzadeh 1999] consider that warp<strong>in</strong>g is partially or totally<br />

transmitted by the connection. In general, a transformation matrix l<strong>in</strong>ks beam degrees <strong>of</strong> freedom to<br />

best ensure the compatibility. Mottershead (1988) proposed to take the most unfavorable conditions.<br />

Batoz (1990, page 212) refers to Sharman (1985) for the calculation <strong>of</strong> transmission coefficients and<br />

<strong>in</strong>dependent warp<strong>in</strong>g coefficients.<br />

1.2.4 Review at the mathematical level<br />

The analytical resolution <strong>of</strong> all these problems is possible for simple cases but rema<strong>in</strong>s <strong>in</strong>accessible for<br />

most practical applications. The resolution <strong>of</strong> the differential equations and the calculation <strong>of</strong><br />

geometrical characteristics for a complete structure require complicated and sometimes impossible<br />

calculations. The numerical model<strong>in</strong>g deals <strong>with</strong> this complexity by allow<strong>in</strong>g simulations <strong>of</strong> physical<br />

problems. The f<strong>in</strong>ite element method is an effective method where the cont<strong>in</strong>uum mechanical problem<br />

is discretized by a f<strong>in</strong>ite number <strong>of</strong> unknown parameters to be determ<strong>in</strong>ed by variational formulations.<br />

The unknown parameters are the nodal displacements or forces. Some authors [Krajc<strong>in</strong>ovic 1970] used<br />

the force method to analyze th<strong>in</strong>-walled structures but the displacement f<strong>in</strong>ite element method is<br />

nowadays the most widely used. Complex eng<strong>in</strong>eer<strong>in</strong>g applications stimulated important<br />

developments <strong>in</strong> this field so that a wide range <strong>of</strong> different elements have been presented <strong>in</strong> the<br />

literature, depend<strong>in</strong>g on several parameters:<br />

-the number <strong>of</strong> nodes by element and the number <strong>of</strong> degrees <strong>of</strong> freedom by node;<br />

-the polynomial or hyperbolic <strong>in</strong>terpolation functions used <strong>in</strong> order to relate the displacements <strong>in</strong> any<br />

po<strong>in</strong>t to the nodal displacement vector.<br />

Usually, polynomial <strong>in</strong>terpolation functions are used <strong>in</strong> the literature for membrane and bend<strong>in</strong>g while<br />

the hyperbolic functions are <strong>of</strong>ten used for non uniform torsion [Gunnlaugsson 1982; De Ville 1989;<br />

Dvork<strong>in</strong> 1989; Batoz 1990; Shakourzadeh 1995; …]. A discussion about the use <strong>in</strong> the literature <strong>of</strong> the<br />

hyperbolic functions is presented <strong>in</strong> Saadé (2004). Some numerical problems have to be solved, e.g.<br />

shear lock<strong>in</strong>g that numerically stiffens the structure [Batoz 1990; Wang 2000…].<br />

1.3 Survey <strong>of</strong> the stability behavior<br />

1.3.1 Increas<strong>in</strong>g need for stability and post-critical behavior analyses<br />

Stability is a fundamental problem <strong>in</strong> structural mechanics s<strong>in</strong>ce it must be taken <strong>in</strong>to account <strong>in</strong> order<br />

to ensure the safety aga<strong>in</strong>st collapse. The collapse must be analyzed for each <strong>in</strong>dividual structural<br />

member and for the whole structure <strong>in</strong> order to compute accurately the load-carry<strong>in</strong>g capacity <strong>of</strong> th<strong>in</strong><br />

walled structures like beams, columns, frames, trusses, etc… Once the collapse strength is reached,<br />

th<strong>in</strong>-walled members <strong>of</strong>ten stop bear<strong>in</strong>g any additional load. A small disturb<strong>in</strong>g force can cause large<br />

displacements result<strong>in</strong>g <strong>in</strong> a catastrophic collapse. The effects <strong>of</strong> this elastic <strong>in</strong>stability phenomenon<br />

vary from <strong>in</strong>fluences on stable equilibrium state up to highly non l<strong>in</strong>ear effects as <strong>in</strong> catastrophic<br />

failure processes. The theory <strong>of</strong> stability or buckl<strong>in</strong>g [Gjelsvick 1981; Waszczyszyn 1994;…] deals<br />

<strong>with</strong> critical loads and deformation <strong>of</strong> structures which are associated <strong>with</strong> a sudden quantitative<br />

change <strong>of</strong> the structure state at a particular load level by exhibit<strong>in</strong>g previously zero displacement<br />

1-5


components. An <strong>in</strong>teraction or coupl<strong>in</strong>g among bend<strong>in</strong>g, twist<strong>in</strong>g and membrane deformations may<br />

occur for beam members.<br />

1.3.2 Def<strong>in</strong><strong>in</strong>g non l<strong>in</strong>ear calculations <strong>in</strong>clud<strong>in</strong>g stability<br />

The difference between l<strong>in</strong>ear and non l<strong>in</strong>ear analyses lies <strong>in</strong> the formulation <strong>of</strong> the equilibrium<br />

equations. A l<strong>in</strong>ear analysis formulates these equations <strong>with</strong> respect to the undeformed structure so<br />

that stra<strong>in</strong>s are evaluated as l<strong>in</strong>ear functions <strong>of</strong> displacement for a l<strong>in</strong>ear elastic behavior. In the case <strong>of</strong><br />

a non l<strong>in</strong>ear analysis (<strong>in</strong>clud<strong>in</strong>g stability), the displacements, rotations and/or deformations are not<br />

small and the deformed structure has to be used <strong>in</strong> order to express the equilibrium equations. The<br />

stress, load and deflection cannot be considered to be l<strong>in</strong>ear functions <strong>of</strong> displacements. Thus, <strong>with</strong><br />

respect to a geometrical non l<strong>in</strong>ear behavior, several pr<strong>in</strong>cipal analyses can be dist<strong>in</strong>guished <strong>in</strong> the<br />

literature: first order analysis, bifurcation or eigenvalue buckl<strong>in</strong>g analysis, second order analysis, large<br />

rotation analysis and large stra<strong>in</strong> analysis. Stability equations, requir<strong>in</strong>g the use <strong>of</strong> the current<br />

configuration <strong>of</strong> a structure, are nonl<strong>in</strong>ear. S<strong>in</strong>ce the complete analysis results <strong>in</strong> a strongly nonl<strong>in</strong>ear<br />

system <strong>of</strong> equations, the analysis <strong>of</strong> dom<strong>in</strong>ant factors <strong>in</strong> the geometrical nonl<strong>in</strong>earities [Hsiao 2000…]<br />

justify the selection <strong>of</strong> one <strong>of</strong> these different analyses.<br />

First-order and second order terms are used <strong>in</strong> order to dist<strong>in</strong>guish between analyses that neglect or<br />

take <strong>in</strong>to account the actual configuration (<strong>in</strong>fluence <strong>of</strong> deflections upon stresses or P-δ effects). When<br />

the non l<strong>in</strong>ear equations are l<strong>in</strong>earized, the result<strong>in</strong>g theory is the so-called l<strong>in</strong>ear buckl<strong>in</strong>g theory<br />

[Murray 1986; Waszczyszyn 1994 §5…]: the structure is assumed to deform l<strong>in</strong>early till buckl<strong>in</strong>g<br />

occurs. The terms ‘first-order stability analysis’ and ‘second order stability analysis’ are used <strong>in</strong> the<br />

literature <strong>in</strong> order to dist<strong>in</strong>guish between l<strong>in</strong>earized calculations that lead to the determ<strong>in</strong>ation <strong>of</strong><br />

critical loads (i.e. eigenvalue problem) and other non l<strong>in</strong>ear computations that compute stresses<br />

<strong>in</strong>duced by the generated deflections and reveal the post-buckl<strong>in</strong>g response <strong>of</strong> the structure.<br />

The non l<strong>in</strong>ear analysis requires a high level <strong>of</strong> numerical expertise and experience [Volokh 2001]. In<br />

many practical cases [Peng 1998; Chan 1995; Agyris 1978 accord<strong>in</strong>g to Chen 1991], the assumption<br />

<strong>of</strong> l<strong>in</strong>earity up to the critical load does not give useful results and non l<strong>in</strong>ear buckl<strong>in</strong>g analysis is<br />

necessary. Some researchers [Bakker 2001; Volokh 2001…] propose and discuss how to check the<br />

smallness <strong>of</strong> displacements, rotations and stra<strong>in</strong>s <strong>in</strong> order to choose the related type <strong>of</strong> geometrical<br />

nonl<strong>in</strong>ear analysis. Volokh (2001) presented a numerical criterion which predicts the stage <strong>in</strong> which<br />

the non l<strong>in</strong>ear analysis is necessary.<br />

A geometrically non-l<strong>in</strong>ear analysis <strong>in</strong>volves complex formulations. Different formulations,<br />

theoretically equivalent, have been proposed <strong>in</strong> the literature: total [Frey 1977; De Ville 1989; Hsiao<br />

2000; …] or updated [Frey 1977; Chen 1991; Yang 1986a,b; Meek 1989; Conci 1990 (see Chen<br />

1991); …] lagrangian formulation and corotational approach [De Ville 1989; Hsiao 2000; …]. Many<br />

works <strong>in</strong> the literature assumed f<strong>in</strong>ite rotations such that the stra<strong>in</strong>s rema<strong>in</strong> small [Hsiao 2000]. By<br />

choos<strong>in</strong>g adapted element sizes, numerical approaches (corotational, natural approaches) validate<br />

these assumptions by elim<strong>in</strong>at<strong>in</strong>g and separat<strong>in</strong>g rigid body motions from the total displacements. In<br />

order to solve the non l<strong>in</strong>ear system, several <strong>in</strong>cremental and/or iterative numerical methods are<br />

proposed <strong>in</strong> the literature [Criesfield 1997…].<br />

1.3.3 Historical overview on buckl<strong>in</strong>g analyses <strong>of</strong> th<strong>in</strong>-walled structures<br />

Early work by Euler (1744) was concerned <strong>with</strong> flexural buckl<strong>in</strong>g <strong>of</strong> elastic p<strong>in</strong> ended columns<br />

submitted to compression. He used these developments to compute critical loads <strong>with</strong> various<br />

boundary conditions. By the end <strong>of</strong> the 19 th century, many basic elastic problems <strong>of</strong> structural stability<br />

(Kirchh<strong>of</strong>f 1859; Engesser 1889; …) were solved. Accord<strong>in</strong>g to Now<strong>in</strong>ski (1959) who gave an<br />

1-6


<strong>in</strong>terest<strong>in</strong>g survey on most important work on the behavior <strong>of</strong> th<strong>in</strong> walled beams, th<strong>in</strong>-walled open<br />

buckl<strong>in</strong>g beam theory was <strong>in</strong>fluenced by the work <strong>of</strong> Prandtl and Michell on lateral buckl<strong>in</strong>g <strong>of</strong> narrow<br />

beams <strong>in</strong> 1899. In the 20 th century, the stability theory expanded significantly. An important<br />

contribution for the analysis <strong>of</strong> particular buckl<strong>in</strong>g problems <strong>in</strong>clud<strong>in</strong>g the non uniform torsion <strong>of</strong> open<br />

beams was given by Timoshenko [e.g. 1913; 1961 §5…]. Similarly to the major part <strong>of</strong> his work, his<br />

buckl<strong>in</strong>g analyses are still consulted today s<strong>in</strong>ce they <strong>of</strong>fer an important and clear physical way when<br />

approach<strong>in</strong>g the subject. Among other researchers, Wagner (1929), Vlassov (1940), Goodier (1942),<br />

Koiter (1945) and Now<strong>in</strong>ski (1947) also contributed to the analytical study <strong>of</strong> one-member buckl<strong>in</strong>g.<br />

Wagner <strong>in</strong>vestigated <strong>in</strong> details the torsional buckl<strong>in</strong>g <strong>of</strong> open cross sections. His work is based on a<br />

general analysis <strong>of</strong> non uniform torsion and his creative way is still adopted <strong>in</strong> present works. In their<br />

published and widely used textbooks, Bleich (1952) and Timoshenko (1961) covered analytically a<br />

wide range <strong>of</strong> structural stability problems for columns, cont<strong>in</strong>uous beams, trusses and frames <strong>in</strong><br />

several cases <strong>of</strong> geometry (changes <strong>in</strong> cross section), load<strong>in</strong>g and boundary conditions (elastic<br />

supports,…). They analyzed the torsional buckl<strong>in</strong>g and the lateral buckl<strong>in</strong>g <strong>of</strong> beams and discussed<br />

briefly the <strong>in</strong>teraction between bend<strong>in</strong>g and torsional buckl<strong>in</strong>g. Bleich treated the case <strong>of</strong> unequal<br />

flanges for the elastic and plastic behaviors. Gjelsvik (1981), Murray (1986), Trahair (1993,1995),<br />

etc., <strong>in</strong>troduced the basic concepts <strong>of</strong> the stability theory, detailed the <strong>in</strong>teraction phenomenon and<br />

developed the flexural torsional buckl<strong>in</strong>g <strong>of</strong> columns and the lateral torsional buckl<strong>in</strong>g <strong>of</strong> beams.<br />

Among nonl<strong>in</strong>ear stability analyses, the problems <strong>of</strong> strength, general and local stability have been<br />

discussed by Bažant (1991) us<strong>in</strong>g the classical theory <strong>of</strong> non uniform torsion <strong>of</strong> th<strong>in</strong>-walled beams.<br />

Dur<strong>in</strong>g the follow<strong>in</strong>g years, numerical methods were used for stability analysis [Murray 1986; Trahair<br />

1993; Waszczyszyn 1994]. Intensive research devoted to open th<strong>in</strong>-walled pr<strong>of</strong>iles stability [Ramm<br />

1983; Ronagh 1999; Kwak 2001; Mohri 2003…] were published <strong>in</strong> both numerical and theoretical<br />

procedures tak<strong>in</strong>g <strong>in</strong>to account tapered beams [Ronagh 2000; …], jo<strong>in</strong>t equilibrium at connections,<br />

imperfections [Frey 1977; Bažant 1991; …] and composite cross sections [Bažant 1991, …]. The<br />

material and geometrical nonl<strong>in</strong>ear behavior, the dynamic stability, the importance <strong>of</strong> non conservative<br />

systems, etc… were also <strong>in</strong>vestigated. Many papers have limited their scope to particular restrictions<br />

such as pr<strong>of</strong>ile <strong>with</strong> double symmetry [Meek 1998…] or monosymmetry [Kitipornchai 1986; Trahair<br />

1993; Kim 2000; Hsiao 2000; Mohri 2003].<br />

In most early and recent works on general analysis <strong>of</strong> structural stability, Vlassov hypotheses and<br />

k<strong>in</strong>ematics for non uniform torsion have been adopted. The potential energy and the govern<strong>in</strong>g<br />

equations have been extensively developed <strong>in</strong> the case <strong>of</strong> l<strong>in</strong>ear elastic stability [Timoshenko 1961; De<br />

Ville 1989; Trahair 1993; Mohri 2003;…]. Nevertheless, <strong>in</strong> the particular case <strong>of</strong> lateral torsional<br />

buckl<strong>in</strong>g, current research <strong>in</strong>vestigations still aim at elaborat<strong>in</strong>g satisfactory practical rules and<br />

<strong>in</strong>clud<strong>in</strong>g them <strong>in</strong> design codes. Appendix F <strong>of</strong> the European Code for the Design <strong>of</strong> Steel Structures<br />

(1992) evaluates a critical flexural moment for different cases <strong>of</strong> pr<strong>of</strong>ile geometry, load<strong>in</strong>g and<br />

boundary conditions. Accord<strong>in</strong>g to Mohri (2000, 2003) and Braham (2001), most <strong>of</strong> this design rule is<br />

<strong>in</strong>spired from the work <strong>of</strong> Djalaly (1974). An <strong>in</strong>terest<strong>in</strong>g state <strong>of</strong> the art related to the formulae <strong>of</strong> the<br />

Eurocode has been given by Braham (2001). It is followed by a comparison between various analytical<br />

methods and f<strong>in</strong>ite element models for some bisymmetrical and monosymmetrical pr<strong>of</strong>iles. By<br />

referr<strong>in</strong>g to the work <strong>of</strong> Mohri (2000), Braham emphasizes on the unsafe application <strong>of</strong> the Eurocode<br />

formula for lateral torsional buckl<strong>in</strong>g <strong>in</strong> some cases. This formula and the correspond<strong>in</strong>g data are<br />

<strong>in</strong>appropriate and require adjustments. The carry<strong>in</strong>g capacities result<strong>in</strong>g from numerical and<br />

experimental analyses are shown to be lower than those result<strong>in</strong>g from Eurocode formula [Mohri<br />

2000, 2003; Braham 2001; Villette 2002; Galéa 2002…]. This problem is probably due to limited<br />

availability <strong>of</strong> numerical techniques at the time <strong>of</strong> earlier researchers [Djalaly 1974]. Because <strong>of</strong> the<br />

1-7


general tendency to <strong>in</strong>crease the slenderness, further research is required for safe and economic<br />

calculations and for more accurate design codes.<br />

1.3.4 Analytical and numerical methods used for stability problems<br />

Start<strong>in</strong>g from the total potential energy expression <strong>in</strong> l<strong>in</strong>ear stability, most developments <strong>in</strong> the<br />

literature approximate the buckl<strong>in</strong>g loads by elaborat<strong>in</strong>g the equilibrium equations correspond<strong>in</strong>g to<br />

the buckled state. Different methods are used <strong>in</strong> the literature: Ritz, Galerk<strong>in</strong>, f<strong>in</strong>ite differences, f<strong>in</strong>ite<br />

<strong>in</strong>tegral (Chan 2001)… The first two methods are extensively used <strong>in</strong> the literature <strong>in</strong> order to compute<br />

analytically buckl<strong>in</strong>g loads. Rayleigh-Ritz method is based on the stationary conditions <strong>of</strong> the total<br />

potential energy while Galerk<strong>in</strong> method is based on the variational formulation <strong>of</strong> equilibrium<br />

equations. Both methods are based on assumed deflected shapes and therefore are limited to simple<br />

problems where the deflected shape can be accurately assumed [Timoshenko 1961; Trahair 1993 §3,<br />

Murray 1986; De ville 1989 §4]. The displacement modes <strong>in</strong> bend<strong>in</strong>g and torsion are approximated by<br />

analytical functions and the solution depends on this choice. The approximation <strong>of</strong> a s<strong>in</strong>usoidal<br />

function is suitable for the simple case <strong>of</strong> uniform moment distribution along a beam <strong>with</strong> a<br />

bisymmetrical cross section. However, for general load<strong>in</strong>g and arbitrary pr<strong>of</strong>iles, the displacements<br />

must be approximated by s<strong>in</strong>usoidal series. However, <strong>in</strong> the EC3 and previous works [Djalaly<br />

1974;…], the analytical analyses based on Vlassov warp<strong>in</strong>g function used only one s<strong>in</strong>usoidal term for<br />

the displacement functions. Recent researchers [Mohri 2003; Braham 2001…] emphasize on the<br />

<strong>in</strong>accurate results obta<strong>in</strong>ed by this approach for general asymmetrical cases <strong>of</strong> load<strong>in</strong>g and geometry.<br />

S<strong>in</strong>ce the advent <strong>of</strong> the computer <strong>in</strong> the 1950’s, research <strong>in</strong> the numerical stability field has developed<br />

extensively: [Frey 1977; De Ville 1989; Trahair 1993 §4 and almost all recent works]. The growth <strong>of</strong><br />

computer power comb<strong>in</strong>ed <strong>with</strong> the use <strong>of</strong> the discretization concept and the energy method <strong>in</strong>duced<br />

<strong>in</strong>tensive recent developments <strong>of</strong> non l<strong>in</strong>ear numerical methods. The f<strong>in</strong>ite element method presents<br />

many advantages: generality and flexibility for assign<strong>in</strong>g properties, configuration, boundary and load<br />

conditions.<br />

1.4 Orig<strong>in</strong>al contributions <strong>of</strong> the present work<br />

This paragraph aims at briefly def<strong>in</strong><strong>in</strong>g the problem statement and at identify<strong>in</strong>g the present work <strong>in</strong><br />

the previously reviewed research state <strong>of</strong> the art (§1.2). The ma<strong>in</strong> purpose <strong>of</strong> this thesis is to formulate<br />

a unified approach for model<strong>in</strong>g the behavior <strong>of</strong> elastic 3D structures consist<strong>in</strong>g <strong>of</strong> th<strong>in</strong> walled beams<br />

and columns <strong>with</strong> arbitrary shaped cross sections, <strong>in</strong>clud<strong>in</strong>g the important <strong>in</strong>fluence <strong>of</strong> warp<strong>in</strong>g due to<br />

non uniform torsion, to shear forces and to distortion.<br />

The present research work builds itself upon previous and ongo<strong>in</strong>g work on 3D th<strong>in</strong> walled structure<br />

analyses. Particularly, it improves Prokić k<strong>in</strong>ematic formulation (1990, 1993, 1994, 1996) <strong>in</strong> order to<br />

analyze the non uniform torsion <strong>of</strong> arbitrary th<strong>in</strong> walled pr<strong>of</strong>iles. Rather than us<strong>in</strong>g different warp<strong>in</strong>g<br />

functions for open and closed cross sections (Vlassov or Benscoter theories) as it is extensively done<br />

<strong>in</strong> the literature [Now<strong>in</strong>ski 1959; Murray 1986; Mohri 2003 … ], the present work aims ma<strong>in</strong>ly at<br />

adapt<strong>in</strong>g and validat<strong>in</strong>g a s<strong>in</strong>gle approach to model the behavior <strong>of</strong> 3D th<strong>in</strong> walled beam structures.<br />

The follow<strong>in</strong>g first three <strong>in</strong>vestigations (1-3) are provided relatively to Prokić work. Result<strong>in</strong>g from an<br />

<strong>in</strong>-depth exam<strong>in</strong>ation <strong>of</strong> Prokić theoretical and practical research limitations, they summarize the<br />

orig<strong>in</strong>al work <strong>of</strong> the present research <strong>in</strong> order to implement correctly a th<strong>in</strong> walled beam model.<br />

1- In a first and global exam<strong>in</strong>ation <strong>of</strong> Prokić work, it is surpris<strong>in</strong>g to f<strong>in</strong>d an unjustified statement that<br />

the <strong>in</strong>troduction <strong>of</strong> the notion <strong>of</strong> shear center is not necessary. While analyz<strong>in</strong>g the torsional warp<strong>in</strong>g<br />

1-8


<strong>of</strong> open asymmetrical pr<strong>of</strong>iles, no dist<strong>in</strong>ction was made between the centroid and the shear center<br />

[1990 page 73, 75 & 76; 1993; 1994; 1996]. It is therefore necessary to f<strong>in</strong>d out if the proposed<br />

k<strong>in</strong>ematic formulation assumes a rotation <strong>of</strong> the cross section around the centroid which is<br />

<strong>in</strong>admissible for asymmetrical and even monosymmetrical pr<strong>of</strong>iles. The necessity <strong>of</strong> <strong>in</strong>clud<strong>in</strong>g the<br />

shear center <strong>in</strong> order to uncouple torsional and bend<strong>in</strong>g effects is to be <strong>in</strong>vestigated.<br />

2- A more detailed study <strong>of</strong> Prokić work shows that the presented comb<strong>in</strong>ation <strong>of</strong> warp<strong>in</strong>g degrees <strong>of</strong><br />

freedom is not completely associated <strong>with</strong> the torsional warp<strong>in</strong>g <strong>of</strong> a th<strong>in</strong>-walled beam structure.<br />

Warp<strong>in</strong>g degrees <strong>of</strong> freedom are coupled <strong>with</strong> membrane and bend<strong>in</strong>g degrees <strong>of</strong> freedom even <strong>in</strong><br />

l<strong>in</strong>ear stiffness matrix (e.g. 1990 page 28). Computations show that the stiffness matrix is not def<strong>in</strong>ite<br />

positive. In his thesis and published papers, the numerical results have been limited to pure torsional<br />

problems. Therefore, it is necessary to <strong>in</strong>vestigate the feasibility <strong>of</strong> an implementation <strong>of</strong> Prokić<br />

formulation <strong>in</strong> order to study the general behavior <strong>of</strong> a 3D th<strong>in</strong>-walled structure, e.g. the flexuraltorsional<br />

behavior due to a transversal load act<strong>in</strong>g on a asymmetrical cross sections. The possibilities<br />

<strong>of</strong> add<strong>in</strong>g additional k<strong>in</strong>ematic relations <strong>in</strong> order to restra<strong>in</strong> the warp<strong>in</strong>g degrees <strong>of</strong> freedom to non<br />

uniform torsional behavior (as <strong>in</strong> Vlassov and Benscoter theories) must be found out. In the case <strong>of</strong><br />

pure stretch<strong>in</strong>g or bend<strong>in</strong>g, does Prokić formulation detect undesirable warp<strong>in</strong>g (i.e. warp<strong>in</strong>g<br />

associated <strong>with</strong> pure tension/compression or flexure)?<br />

3- After f<strong>in</strong>ish<strong>in</strong>g the first two <strong>in</strong>vestigations and after demonstrat<strong>in</strong>g the feasibility <strong>of</strong> a correct<br />

implementation <strong>of</strong> the previously discussed k<strong>in</strong>ematic formulation, another important unf<strong>in</strong>ished task<br />

<strong>in</strong> Prokić published research is the numerical stability analysis. In his thesis and published papers,<br />

Prokić presented the general guidel<strong>in</strong>e for non l<strong>in</strong>ear analyses us<strong>in</strong>g the f<strong>in</strong>ite element method <strong>with</strong>out<br />

present<strong>in</strong>g developed details or numerical results. It was noticed <strong>in</strong> a recent review paper about non<br />

l<strong>in</strong>ear behavior and design <strong>of</strong> steel structures [Chan 2001], that, <strong>in</strong> Prokić work, ‘non l<strong>in</strong>ear frame<br />

analysis allow<strong>in</strong>g for warp<strong>in</strong>g and bimoment has not yet been developed to a stage <strong>of</strong> practical use,<br />

even for relatively simple frames’. Therefore, more <strong>in</strong>vestigations are needed <strong>in</strong> order to analyze the<br />

stability <strong>of</strong> th<strong>in</strong>-walled structures.<br />

The follow<strong>in</strong>g <strong>in</strong>vestigations (4-9) present general orig<strong>in</strong>al issues <strong>in</strong> the study <strong>of</strong> th<strong>in</strong>-walled analyses:<br />

4- An <strong>in</strong>terest<strong>in</strong>g task is to <strong>in</strong>vestigate the <strong>in</strong>fluence <strong>of</strong> warp<strong>in</strong>g <strong>in</strong>duced by shear forces <strong>in</strong> bend<strong>in</strong>g and<br />

particularly how it is possible to apply Prokić formulation <strong>in</strong> order to model this behavior. Is a<br />

complete study <strong>in</strong>clud<strong>in</strong>g warp<strong>in</strong>g due to bend<strong>in</strong>g shear forces important for the behavior analysis <strong>of</strong><br />

th<strong>in</strong>-walled structures? In the case where the modified Timoshenko theory gives satisfy<strong>in</strong>g bend<strong>in</strong>g<br />

results, it is <strong>in</strong>terest<strong>in</strong>g to determ<strong>in</strong>e the shear correction factor for arbitrary pr<strong>of</strong>iles. With<strong>in</strong> the same<br />

guid<strong>in</strong>g concept def<strong>in</strong>ed above, it is <strong>in</strong>terest<strong>in</strong>g to <strong>in</strong>vestigate this analysis by keep<strong>in</strong>g the same<br />

orig<strong>in</strong>al unified approach for arbitrary pr<strong>of</strong>iles.<br />

5- In the literature, the stability analysis is restricted to the case <strong>of</strong> beams or columns <strong>with</strong> open cross<br />

sections us<strong>in</strong>g Vlassov warp<strong>in</strong>g function. This approach is justified by the high torsional and bend<strong>in</strong>g<br />

stiffness <strong>of</strong> a closed cross section, so that collapse by local buckl<strong>in</strong>g or yield<strong>in</strong>g is more critical than<br />

collapse by global <strong>in</strong>stability. However, it is <strong>in</strong>terest<strong>in</strong>g to <strong>in</strong>vestigate structural elements <strong>with</strong> pr<strong>of</strong>iles<br />

which are neither totally open, nor fully closed. e.g. an open pr<strong>of</strong>ile <strong>with</strong> one relatively small cell<br />

compared to the pr<strong>of</strong>ile dimensions.<br />

1-9


6- An important contribution to th<strong>in</strong> walled beam analyses is to adapt Prokić warp<strong>in</strong>g function <strong>in</strong> order<br />

to analyze some distortional modes which <strong>in</strong>volve the deformation <strong>of</strong> the entire pr<strong>of</strong>ile <strong>in</strong>duc<strong>in</strong>g a non<br />

local beam behavior.<br />

7- The physical and pure k<strong>in</strong>ematical separation between different mechanical effects<br />

(tension/compression, bend<strong>in</strong>g, torsion and distortion) is achieved <strong>in</strong> this work by impos<strong>in</strong>g restra<strong>in</strong><strong>in</strong>g<br />

conditions on the displacement field. This k<strong>in</strong>ematical step, usually achieved <strong>in</strong> the literature by<br />

impos<strong>in</strong>g restra<strong>in</strong><strong>in</strong>g conditions on equilibrium equations and stresses, has the advantage <strong>of</strong> present<strong>in</strong>g<br />

a correct and well-def<strong>in</strong>ed k<strong>in</strong>ematical formulation <strong>with</strong>out any restriction on the material law.<br />

1-10


CHAPTER 2. BACKGROUND INFORMATION<br />

2.1 <strong>Beams</strong> <strong>with</strong> bend<strong>in</strong>g shear effects<br />

Beam analyses have been performed by implement<strong>in</strong>g different k<strong>in</strong>ematic formulations for bend<strong>in</strong>g<br />

shear deformation. The developments given hereafter are limited to the case <strong>of</strong> elastic behavior, where<br />

E and G are respectively Young’s and shear modulus. The pr<strong>in</strong>cipal axes are used to uncouple bend<strong>in</strong>g<br />

effects (xy & xz). For simplicity only, the bend<strong>in</strong>g <strong>of</strong> beams <strong>in</strong> the (xz) plane is analyzed <strong>in</strong> this<br />

session. Similar developments can be identically made for bend<strong>in</strong>g <strong>in</strong> the (xy) plane.<br />

q<br />

z z<br />

x<br />

Figure 2.1 Pr<strong>in</strong>cipal axes <strong>of</strong> a beam pr<strong>of</strong>ile<br />

2.1.1 Bernoulli<br />

The simplest beam theory is the Euler-Bernoulli theory <strong>in</strong> which it is assumed that the cross section<br />

rema<strong>in</strong>s planar and normal to the longitud<strong>in</strong>al axis after bend<strong>in</strong>g deformation. The rotation angle <strong>of</strong> the<br />

cross section is thus equal to the slope (w,x). This assumption neglects transverse shear.<br />

This beam theory is based on the displacement field:<br />

⎧u<br />

⎫ ⎧− ⎫<br />

q zw,<br />

x<br />

⎪ ⎪ ⎪ ⎪<br />

⎨v<br />

q ⎬ = ⎨0<br />

⎬<br />

⎪ ⎪ ⎪ ⎪<br />

⎩<br />

w ⎪⎭<br />

⎪w<br />

q ⎩ ⎪⎭<br />

where q(x,y,z) is an arbitrary po<strong>in</strong>t <strong>of</strong> the beam (figure 2.1).<br />

and the expression <strong>of</strong> l<strong>in</strong>ear part <strong>of</strong> the stra<strong>in</strong> tensor is reduced to:<br />

⎧εx<br />

⎪<br />

⎨2ε<br />

⎪<br />

⎩2ε<br />

xy<br />

xz<br />

⎫ ⎧u<br />

⎪ ⎪<br />

⎬ = ⎨v<br />

⎪ ⎪<br />

⎭ ⎪w<br />

⎩<br />

q<br />

q<br />

q<br />

, x<br />

, x<br />

, x<br />

y<br />

+ u<br />

q<br />

+ u<br />

q<br />

, y<br />

, z<br />

⎫ ⎧− zw<br />

⎪<br />

⎪<br />

⎬ = ⎨0<br />

⎪ ⎪<br />

⎪ ⎪0<br />

⎭ ⎩<br />

, xx<br />

The stra<strong>in</strong> energy per unit length <strong>of</strong> the beam is given by:<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎭<br />

y<br />

1 2<br />

U = ∫ EεxxdA (2.3)<br />

2 A<br />

where A is the cross-sectional area. The stra<strong>in</strong> energy associated <strong>with</strong> the shear<strong>in</strong>g stra<strong>in</strong> is zero.<br />

(2.1)<br />

(2.2)<br />

2-1


The bend<strong>in</strong>g moment can be expressed <strong>in</strong> terms <strong>of</strong> generalized displacements and the shear force must<br />

be found from the equilibrium equation (2.4). The shear stresses, stra<strong>in</strong>s and shear <strong>in</strong>ternal forces<br />

( xz G xz<br />

∫<br />

τ = ε , Tz = τxzdA)<br />

cannot be found from the k<strong>in</strong>ematic formulation (2.1, 2.2), because if<br />

done so, they would be zero.<br />

M = zσ dA = E zε dA =−EI<br />

w<br />

z<br />

A<br />

∫ ∫<br />

y x x y ,xx<br />

A A<br />

M T = (2.4)<br />

y,<br />

x<br />

where EIy is the bend<strong>in</strong>g stiffness <strong>of</strong> the beam.<br />

2.1.2 Timoshenko<br />

The Timoshenko beam theory is based on the follow<strong>in</strong>g displacement field:<br />

⎧ u<br />

⎪<br />

⎨v<br />

⎪<br />

⎪w<br />

⎩<br />

q<br />

q<br />

q<br />

⎫ ⎧ ⎫<br />

⎪<br />

zθy<br />

⎪ ⎪ ⎪<br />

⎬ = ⎨ 0 ⎬<br />

⎪ ⎪ ⎪<br />

⎪ ⎪ w<br />

⎩ ⎪<br />

⎭ ⎭<br />

where the longitud<strong>in</strong>al displacement uq is no more proportional to the gradient w,x <strong>of</strong> transverse<br />

displacement but to a new parameter θy that denotes the rotation <strong>of</strong> the cross section. The normality<br />

assumption <strong>of</strong> Bernoulli theory is thus relaxed and a constant transverse shear stra<strong>in</strong> over the cross<br />

section (w,x + θy) is assumed.<br />

⎧εx<br />

⎪<br />

⎨2ε<br />

⎪<br />

⎩2ε<br />

xy<br />

xz<br />

⎫ ⎧u<br />

⎪ ⎪<br />

⎬ = ⎨v<br />

⎪ ⎪<br />

⎭ ⎪w<br />

⎩<br />

q<br />

q<br />

q<br />

, x<br />

, x<br />

, x<br />

+ u<br />

q<br />

+ u<br />

q<br />

, y<br />

, z<br />

⎫ ⎧zθ<br />

⎪<br />

⎪<br />

⎬ = ⎨0<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎭ ⎩<br />

w,<br />

y,<br />

x<br />

x<br />

+ θ<br />

The stra<strong>in</strong> energy <strong>in</strong>cludes a term associated <strong>with</strong> the shear<strong>in</strong>g stra<strong>in</strong>:<br />

A<br />

y<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎭<br />

1 2 2<br />

U = ∫ (Eε xx + 4G εxz<br />

)dA<br />

(2.7)<br />

2<br />

The bend<strong>in</strong>g moment and the shear force can be expressed <strong>in</strong> terms <strong>of</strong> generalized displacements:<br />

M y = ∫ zσxdA<br />

= EIyθ<br />

A<br />

y,<br />

x<br />

= ∫ τ dA = k GA(<br />

θ + w )<br />

(2.8)<br />

Tz xz y y , x<br />

A<br />

where ky is the shear correction factor.<br />

It is important to note that, from the k<strong>in</strong>ematics (2.5&2.6) and the constitutive equations, shear stresses<br />

are found to be uniform over the cross section (2.8, ky = 1). However, when a cross-section is subject<br />

(2.5)<br />

(2.6)<br />

2-2


to a shear force Tz, the shear stra<strong>in</strong> 2εxz = τ xz /G should vary through the height <strong>of</strong> the cross section<br />

and vanish at free edges. Consequently, the cross section does not rema<strong>in</strong> plane: it warps. The warp<strong>in</strong>g<br />

is the largest at the neutral axis and vanishes at the extreme fibers. This physical behavior is not<br />

compatible <strong>with</strong> the k<strong>in</strong>ematics (2.5) that assumes a constant transverse shear stra<strong>in</strong> distribution (2.6)<br />

and thus constant shear stress distribution. Therefore, the Timoshenko theory requires corrections. To<br />

compensate the fact that the displacement field violates the ‘no shear’ boundary condition at the edges<br />

<strong>of</strong> open pr<strong>of</strong>iles, approximate modifications are <strong>in</strong>troduced by a shear correction factor ky (equation<br />

2.8).<br />

<strong>Shear</strong> correction factors:<br />

When the above described warp<strong>in</strong>g varies along the longitud<strong>in</strong>al (x) axis, the associated deformation<br />

<strong>in</strong>creases the bend<strong>in</strong>g transversal displacements. These shear effects on deflection, which are<br />

significant for bend<strong>in</strong>g <strong>of</strong> short beams, are described by the shear correction factor ky. In the case <strong>of</strong><br />

load<strong>in</strong>g <strong>in</strong> the xz plane, this factor can be evaluated by an energy approach ([Frey, 2000, page 193];<br />

[Pilkey, 1994, page 28 ]; [Batoz, 1990, page 62]…):<br />

y 2<br />

Iy<br />

A<br />

2<br />

A ⎛Sy⎞ k = ∫ ⎜ ⎟ dA<br />

(2.9)<br />

⎝ t ⎠<br />

t is the thickness and Sy is the first moment <strong>in</strong> Jouravski formulation.<br />

The shear correction factor may be viewed as the ratio <strong>of</strong> total beam cross-sectional area to the<br />

effective area resist<strong>in</strong>g shear deformation. Equation (2.9) gives an approximate value [Pilkey, 1994,<br />

page 28]. Other determ<strong>in</strong>ations <strong>of</strong> shear correction factors can be made by us<strong>in</strong>g the theory <strong>of</strong><br />

elasticity ([Cowper, 1966]…). The <strong>in</strong>verse <strong>of</strong> the shear correction factor, called the shear deflection<br />

constant, is <strong>of</strong>ten required as an <strong>in</strong>put <strong>in</strong> general purpose f<strong>in</strong>ite element analysis s<strong>of</strong>tware. It is<br />

important to note that the computation <strong>of</strong> the shear correction factor necessitates the determ<strong>in</strong>ation <strong>of</strong><br />

the first moment distribution over the pr<strong>of</strong>ile contour by choos<strong>in</strong>g appropriate methods usually<br />

different for open and closed cross sections ([Calgaro, 1988, Chapter 2]…)<br />

2.1.3 High-order theories<br />

In high-order theories, the planar assumption is not kept. The follow<strong>in</strong>g Reddy-Bickford displacement<br />

field was used by Wang [2000, page 14]:<br />

⎧ u<br />

⎪<br />

⎨v<br />

⎪<br />

⎪w<br />

⎩<br />

q<br />

q<br />

q<br />

⎫ ⎧ 3<br />

⎪<br />

zθy<br />

− αz<br />

( θy<br />

+ w<br />

⎪ ⎪<br />

⎬ = ⎨ 0<br />

⎪ ⎪<br />

⎪ ⎪ w<br />

⎭ ⎩<br />

, x<br />

) ⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎭<br />

where α = 4/(3h 2 ) for rectangular cross sections.<br />

The stra<strong>in</strong>-displacement relations <strong>of</strong> Reddy-Bickford beam theory are:<br />

⎧εx<br />

⎪<br />

⎨2ε<br />

⎪<br />

⎩2ε<br />

xy<br />

xz<br />

⎫ ⎧zθ<br />

⎪ ⎪<br />

⎬ = ⎨0<br />

⎪ ⎪<br />

⎭ ⎪⎩<br />

w,<br />

y,<br />

x<br />

x<br />

3<br />

− αz<br />

( θ ⎫<br />

y,<br />

x + w,<br />

xx )<br />

⎪<br />

⎬<br />

2 ⎪<br />

+ θy<br />

− βz<br />

( θy<br />

+ w,<br />

x ) ⎪⎭<br />

(2.10)<br />

(2.11)<br />

2-3


where β = 4/h 2 for rectangular cross sections.<br />

S<strong>in</strong>ce the transverse shear stra<strong>in</strong> is quadratic through the height <strong>of</strong> the beam and satisfies the ‘no shear’<br />

boundary condition (values <strong>of</strong> α and β depend on the pr<strong>of</strong>ile geometry), there is no shear correction<br />

factor <strong>in</strong> the Reddy-Bickford beam theory. The boundary conditions and the stress resultants for this<br />

theory differ from the others theories. Wang et al. [2000] developed the complicated equilibrium<br />

equations, generated solutions for some simple examples <strong>of</strong> rectangular cross sections, and developed<br />

a f<strong>in</strong>ite element model free from shear lock<strong>in</strong>g phenomenon. The deflections, slopes/rotations, shear<br />

forces and bend<strong>in</strong>g moments result<strong>in</strong>g from this theory are compared to those <strong>of</strong> Bernoulli and<br />

Timoshenko (available <strong>in</strong> most text books on mechanics <strong>of</strong> materials). Simple cases <strong>of</strong> simply<br />

supported beam <strong>with</strong> rectangular cross sections are analyzed analytically <strong>in</strong> the follow<strong>in</strong>g paragraph<br />

and <strong>in</strong> chapter 4 while the associated numerical computations are done <strong>in</strong> chapter 5.<br />

2.1.4 Applications<br />

The theories presented <strong>in</strong> (§2.1.1, §2.1.2 & §2.1.3) are used hereby to evaluate the <strong>in</strong>fluence <strong>of</strong> shear<br />

deformation effects on the displacement <strong>of</strong> simply supported beams: Bernoulli beam theory (BBT),<br />

Timoshenko beam theory (TBT) that could be modified by <strong>in</strong>troduc<strong>in</strong>g the shear correction factor<br />

(TBTM) and high order theories as Reddy-Bickford beam theory (RBT) [Wang, 2000].<br />

Simply supported beam under uniformly distributed load<br />

Consider a simply supported beam under uniformly distributed load q0. Deriv<strong>in</strong>g the equilibrium<br />

equations <strong>with</strong> Bernoulli k<strong>in</strong>ematic formulae (start<strong>in</strong>g from equations 2.1-2.4), the maximal deflection<br />

<strong>of</strong> the Euler-Bernoulli beam (BBT) is:<br />

w<br />

BBT<br />

4<br />

5 qL 0 = (2.12)<br />

384 EI<br />

By do<strong>in</strong>g the same calculations for Timoshenko beam theory (start<strong>in</strong>g from equations 2.5-2.8), the<br />

maximal deflection <strong>of</strong> the Timoshenko beam (TBT) is modified by <strong>in</strong>troduc<strong>in</strong>g (equation 2.8) the<br />

shear correction factor k (TBTM):<br />

w<br />

TBTM<br />

4 2<br />

0 0<br />

5 qL 1 qL<br />

= + (2.13)<br />

384 EI 8 kGA<br />

The shear correction factor for a rectangular cross section is 5/6 (equation 2.9, Cowper 1966, Pilkey<br />

1994…).<br />

In case <strong>of</strong> higher order theories [Wang, 2000, page 33], the expression <strong>of</strong> the deflection is much more<br />

complicated :<br />

4 ˆ<br />

2<br />

5 qL 0 q0µ Dxx<br />

λL<br />

λ<br />

wRBT<br />

= + [tanh( ) s<strong>in</strong>h( λx)<br />

+ cosh( λx)<br />

+<br />

4<br />

384 EI λ Aˆ xzD 2<br />

2<br />

xx<br />

Where, for a rectangular cross section,<br />

3h<br />

µ =<br />

4<br />

2<br />

( F<br />

xx<br />

Dˆ Â<br />

xx<br />

xz<br />

Fˆ Dˆ −<br />

xx<br />

xx<br />

D<br />

xx<br />

)<br />

2<br />

2 3h<br />

λ<br />

=<br />

4<br />

( F<br />

x(<br />

L<br />

xx<br />

Dˆ A<br />

− x)<br />

−1]<br />

xx<br />

xz<br />

Fˆ D<br />

−<br />

xx<br />

xx<br />

D<br />

xx<br />

)<br />

(2.14)<br />

2-4


( A<br />

2 4 6<br />

xx , Dxx<br />

, Fxx<br />

, H)<br />

= E∫<br />

( 1,<br />

z , z , z ) dA<br />

( Axz<br />

, Dxz<br />

, Fxz<br />

) G∫<br />

4<br />

D<br />

3h<br />

ˆ −<br />

xx = Dxx<br />

F<br />

2 xx Âxz = Axz<br />

− D<br />

2 xz<br />

4<br />

F<br />

3h<br />

ˆ −<br />

h<br />

4<br />

= ( 1,<br />

z , z ) dA<br />

xx = Fxx<br />

H<br />

2 xx Dxz Dxz<br />

F<br />

2 xz<br />

ˆ = −<br />

xz xz 2 xz<br />

h<br />

4<br />

Dˆ 4<br />

A = Â −<br />

(2.15)<br />

h<br />

For a simply supported beam <strong>with</strong> a rectangular cross section submitted to uniform load<strong>in</strong>g, the effect<br />

<strong>of</strong> shear deformation beam is thus proportional to the square <strong>of</strong> the ratio height to length:<br />

wTBTM<br />

− w BBT h<br />

= 1.<br />

92 ( 1 + υ)<br />

w<br />

2<br />

L<br />

BBT<br />

2<br />

2<br />

4<br />

(2.16)<br />

Figure 2.2 shows numerical results from the application <strong>of</strong> (2.12), (2.13) and (2.14) for different<br />

values <strong>of</strong> length to height ratio <strong>of</strong> the simply supported beam (L/h). E=210GPa, G= 84GPa. The<br />

TBTM is taken as a reference and the difference between its results and those <strong>of</strong> other theories is<br />

plotted <strong>in</strong> figure 2.2. It should be noted that the curve (RBT) is nearly on the horizontal axis. RBT and<br />

TBTM theories give similar results for this simple example. The difference is 0.001% as value for L/h<br />

= 8 and 9.10 -07 % for L/h = 50.<br />

Figure 2.2 Difference between TBTM and (BBT, TBT and RBT) for maximal deflection <strong>of</strong><br />

rectangular beams submitted to a uniformly distributed load<br />

Simply supported beam <strong>with</strong> concentrated force P applied at mid span<br />

Similarly, for a concentrated force P applied at mid span <strong>of</strong> the beam:<br />

w<br />

BBT<br />

4%<br />

3%<br />

2%<br />

1%<br />

0%<br />

3<br />

0 10 20 30<br />

L/h<br />

40 50 60<br />

BBT<br />

TBT<br />

RBT<br />

1 PL<br />

= (2.17)<br />

48 EI<br />

2-5


w<br />

TBTM<br />

3<br />

1 PL 1 PL<br />

= + (2.18)<br />

48 EI 4 kGA<br />

wTBTM<br />

− w BBT h<br />

= 2.<br />

4 ( 1 + υ)<br />

w<br />

2<br />

L<br />

BBT<br />

w<br />

2<br />

3<br />

1 PL Pµ<br />

xx<br />

RBT =− +<br />

3<br />

96 D ˆ<br />

xx 2λ<br />

AxzDxx 1 Pl<br />

32 2<br />

DxxAˆ xzλ<br />

2 2ˆ<br />

xz<br />

ˆ<br />

xx<br />

+ ( λ L A + 8µ D )<br />

ˆD<br />

λL<br />

tanh( ) + 1<br />

( −cosh( λ L) + 1) 2<br />

s<strong>in</strong>h( λ L) + cosh( λ L) + 1<br />

(2.19)<br />

(2.19’)<br />

As it is expected from equation (2.19), the difference between (BBT) and (TBTM) depends mostly on<br />

the square <strong>of</strong> the ratio L/h.<br />

5%<br />

4%<br />

3%<br />

2%<br />

1%<br />

0%<br />

0 10 20 30<br />

L/h<br />

40 50 60<br />

BBT<br />

TBT<br />

RBT<br />

Figure 2.3 Difference between TBTM and (BBT, TBT and RBT) for maximal deflection <strong>of</strong><br />

rectangular beams submitted to a concentrated force P at mid span<br />

It can be seen <strong>in</strong> figure 2.3 (where E=210GPa, G= 84GPa) that, for rectangular cross sections,<br />

neglect<strong>in</strong>g shear deformation effects will lead to errors superior to 5% for short beams where h/L ><br />

1/8. The curve (RBT) is nearly on the horizontal axis. RBT and TBTM give also similar results for this<br />

simple example. The difference between the two theories is 0.061% for L/h = 8 and 0.00026% for<br />

L/h = 50.<br />

A numerical application is considered for a simply supported beam (L = 2m) <strong>with</strong> rectangular cross<br />

section 0.002 x 0.25m submitted to a concentrated force P = 10kN. The shear force and bend<strong>in</strong>g<br />

moment distributions [equations (2.4) and (2.8)] along the span co<strong>in</strong>cide for TBT and BBT. The<br />

rotation computed <strong>with</strong> TBT theory is equal to the slope <strong>of</strong> BBT (4.57 10 -03 rad). However, for RBT,<br />

the rotation (θy = 4.54 10 -03 ) is different from the slope (w’ = 4.71 10 -03 ). This is due to the higherorder<br />

theory where both functions (θy and w’) along z describe the quadratic nature <strong>of</strong> the warped<br />

cross section (equation 2.11). It is <strong>in</strong>terest<strong>in</strong>g to note that for statically <strong>in</strong>determ<strong>in</strong>ate structures,<br />

2-6


different bend<strong>in</strong>g moments and shear forces result from (BBT), (RBT) and (TBT) s<strong>in</strong>ce displacements<br />

(and hence stress resultants) are not the same for these theories.<br />

Comparison <strong>of</strong> shear deformation effects for some th<strong>in</strong> walled pr<strong>of</strong>iles<br />

t<br />

tw<br />

tf tf<br />

h<br />

b<br />

b<br />

b<br />

b<br />

(a) (b) (c) (d)<br />

tw<br />

Figure 2.4: (a) Square tubular cross section (b = 0.1m, t = 0.001m), (b) open I cross section<br />

(b = 0.08m, tf = 0.01m, h = 0.38m, tw = 0.0035m), (c) tubular cross section (b = 0.3m, tf = 0.008m, h =<br />

0.8m, tw = 0.001m) and (d) T cross section (b = 0.4m, tf = 0.01m, h = 0.4m, tw = 0.01m)<br />

The <strong>in</strong>fluence <strong>of</strong> shear bend<strong>in</strong>g effects is analyzed for different cross sections (a), (b), (c) and (d) <strong>of</strong> a<br />

simply supported beam where E=210GPa, G= 84Gpa. Two load<strong>in</strong>g cases are considered: uniformly<br />

distributed load (table 2.1 and figure 2.5a) and concentrated load at mid length (table 2.2 and figure<br />

2.5b). <strong>Shear</strong> correction factors are calculated for the cross pr<strong>of</strong>iles <strong>in</strong> figure 2.4 by us<strong>in</strong>g the results <strong>of</strong><br />

Cowper [Cowper, 1966] who considered the <strong>in</strong>fluence <strong>of</strong> geometrical and material properties <strong>of</strong> the<br />

cross section. The difference between the modified Timoshenko and Bernoulli deflections calculated<br />

((2)/(1)) <strong>in</strong> tables 2.1 and 2.2 show the <strong>in</strong>fluence <strong>of</strong> shear deformations (2) by compar<strong>in</strong>g it to bend<strong>in</strong>g<br />

moment effects (1) on the maximal deflection. The difference between simple and modified<br />

Timoshenko deflections ((3)/(1)) calculated <strong>in</strong> the seventh column <strong>of</strong> tables 2.1 and 2.2 show the<br />

<strong>in</strong>fluence <strong>of</strong> the shear correction factor. It could be seen from table 2.2 that short beams are sensitive<br />

<strong>with</strong> respect to shear deformation effects. The <strong>in</strong>fluence <strong>of</strong> shear deformation on deflections reaches<br />

10% for L/h smaller than 10. In general, this percentage is smaller for a uniformly applied load<strong>in</strong>g<br />

(table 2.1) than for a concentrated load (table 2.2). In particular, the <strong>in</strong>fluence is smaller for the T<br />

section than for the I and tubular cross sections <strong>in</strong> figure 2.4. It could be concluded that the deflection<br />

due to shear deformations is small compared to the deflection due to flexure.<br />

Table 2.1 <strong>Shear</strong> deformation effects on the maximal deflection [m] <strong>of</strong> beams (Figure 2.4) submitted to<br />

a unit uniformly distributed load<br />

h<br />

tw<br />

tf<br />

h<br />

2-7


Pr<strong>of</strong>ile L/h wTBTM (1) wTBTM-wBBT (2) (2)/(1) wTBTM-wTBT (3) (3)/(1)<br />

(a) 1.57E-06 3.47E-08 2.2% 1.97E-08 1.3%<br />

(b) 20 2.76E-06 6.07E-08 2.2% 3.23E-08 1.2%<br />

(c) 5.25E-06 1.15E-07 2.2% 8.60E-08 1.6%<br />

(d) 1.90E-06 2.38E-08 1.2% 1.19E-08 0.6%<br />

(a) 5.05E-07 1.95E-08 3.9% 1.11E-08 2.2%<br />

(b) 15 9.08E-07 3.41E-08 3.8% 1.81E-08 2.0%<br />

(c) 1.73E-06 6.44E-08 3.7% 4.84E-08 2.8%<br />

(d) 6.16E-07 1.34E-08 2.2% 6.68E-09 1.1%<br />

(a) 1.05E-07 8.68E-09 8.3% 4.92E-09 4.7%<br />

(b) 10 1.88E-07 1.52E-08 8.1% 8.06E-09 4.3%<br />

(c) 3.57E-07 2.86E-08 8.0% 2.15E-08 6.0%<br />

(d) 1.25E-07 5.94E-09 4.8% 2.97E-09 2.4%<br />

(a) 4.48E-08 5.56E-09 12.4% 3.15E-09 7.0%<br />

(b) 8 8.04E-08 9.71E-09 12.1% 5.16E-09 6.4%<br />

(c) 1.53E-07 1.83E-08 12.0% 1.38E-08 9.0%<br />

(d) 5.26E-08 3.80E-09 7.2% 1.90E-09 3.6%<br />

(a) 3.84E-09 1.39E-09 36.1% 7.88E-10 20.5%<br />

(b) 4 6.84E-09 2.43E-09 35.5% 1.29E-09 18.8%<br />

(c) 1.30E-08 4.58E-09 35.3% 3.44E-09 26.5%<br />

(d) 4.00E-09 9.51E-10 23.8% 4.75E-10 11.9%<br />

Table 2.2 <strong>Shear</strong> deformation effects on the maximal deflection [m] <strong>of</strong> beams (Figure 2.4) submitted to<br />

a unit concentrated load at mid span<br />

Pr<strong>of</strong>ile L/h wTBTM (1) wTBTM-wBBT (2) (2)/(1) wTBTM-wTBT (3) (3)/(1)<br />

(a) 1.26E-06 3.47E-08 2.8% 1.97E-08 1.6%<br />

(b) 20 5.97E-07 1.60E-08 2.7% 8.49E-09 1.4%<br />

(c) 5.40E-07 1.43E-08 2.7% 1.08E-08 2.0%<br />

(d) 3.87E-07 5.94E-09 1.5% 2.97E-09 0.8%<br />

(a) 5.44E-07 2.60E-08 4.8% 1.48E-08 2.7%<br />

(b) 15 2.57E-07 1.20E-08 4.7% 6.37E-09 2.5%<br />

(c) 2.32E-07 1.07E-08 4.6% 8.06E-09 3.5%<br />

(d) 1.65E-07 4.46E-09 2.7% 2.23E-09 1.3%<br />

(a) 1.71E-07 1.74E-08 10.2% 9.85E-09 5.8%<br />

(b) 10 8.06E-08 7.98E-09 9.9% 4.24E-09 5.3%<br />

(c) 7.28E-08 7.16E-09 9.8% 5.38E-09 7.4%<br />

(d) 5.06E-08 2.97E-09 5.9% 1.48E-09 2.9%<br />

(a) 9.24E-08 1.39E-08 15.0% 7.88E-09 8.5%<br />

(b) 8 4.36E-08 6.39E-09 14.7% 3.40E-09 7.8%<br />

(c) 3.94E-08 5.73E-09 14.5% 4.30E-09 10.9%<br />

(d) 2.68E-08 2.38E-09 8.9% 1.19E-09 4.4%<br />

(a) 1.68E-08 6.94E-09 41.4% 3.94E-09 23.5%<br />

(b) 4 7.84E-09 3.19E-09 40.7% 1.70E-09 21.6%<br />

(c) 7.07E-09 2.86E-09 40.5% 2.15E-09 30.4%<br />

(d) 4.24E-09 1.19E-09 28.1% 5.94E-10 14.0%<br />

2-8


The same results are illustrated <strong>in</strong> figure (2.5) where the difference between TBTM and BBT is shown<br />

for a uniform distributed load and a mid-length applied concentrated load. It could be seen that the<br />

amount <strong>of</strong> shear effect <strong>of</strong> the T section (d) is different from the others. The curves correspond<strong>in</strong>g for<br />

(a), (b) and (c) nearly co<strong>in</strong>cide. Aga<strong>in</strong>, it is noted that the shear effects are important for short beams.<br />

60%<br />

40%<br />

20%<br />

0%<br />

0 20 40 60<br />

L/h<br />

( a )<br />

( b )<br />

( c )<br />

( d )<br />

Figure 2.5 Variation [(wTBTM-wBBT)/ wBBT] <strong>of</strong> shear deformation effects on maximal deflection [m] <strong>of</strong><br />

beams (Figure 2.4) submitted to a uniformly distributed load (a) and to a unit concentrated load at mid<br />

length (b)<br />

2.2 Uniform and non uniform torsion (Mixed torsion)<br />

0%<br />

0 20 40 60<br />

L/h<br />

2.2.1 General overview<br />

The torsional behavior <strong>of</strong> a beam is ma<strong>in</strong>ly described by twist<strong>in</strong>g angles (θx) <strong>of</strong> its cross sections <strong>with</strong><br />

respect to the longitud<strong>in</strong>al axis (x) pass<strong>in</strong>g through the torsional center C (yc, zc). The angle <strong>of</strong> twist<br />

per unit length at a particular position is calculated as a function <strong>of</strong> the torsional moment Mx result<strong>in</strong>g<br />

from the applied load. However, when submitted to a torsional deformation, a cross section does not<br />

rema<strong>in</strong> planar: it generally warps. This warp<strong>in</strong>g is measured by an axial displacement u.<br />

The total external torque is balanced by the torsional moment Mx that <strong>in</strong>cludes:<br />

- a first part (Mx st ), well known <strong>in</strong> the eng<strong>in</strong>eer<strong>in</strong>g text books <strong>of</strong> Strength <strong>of</strong> Materials, characterizes<br />

the uniform torsion <strong>of</strong> Sa<strong>in</strong>t Venant and is presented <strong>in</strong> the paragraph 2.2.2;<br />

- a second part (Mx ω ), caused by the prevented warp<strong>in</strong>g <strong>of</strong> the cross section, characterizes the non<br />

uniform torsion and is presented <strong>in</strong> paragraph 2.2.3.<br />

If both Mx st and Mx ω are different from zero, the torsion is known to be mixed:<br />

Mx = Mx st + Mx ω<br />

2.2.2 de Sa<strong>in</strong>t Venant torsion (uniform torsion)<br />

Assumption<br />

The particular case <strong>of</strong> uniform torsion (Sa<strong>in</strong>t Venant) is based on the follow<strong>in</strong>g assumption:<br />

HYPSV: the warp<strong>in</strong>g (u) is constant along the longitud<strong>in</strong>al axis (x) <strong>of</strong> the beam.<br />

K<strong>in</strong>ematics<br />

The axial displacement <strong>of</strong> any po<strong>in</strong>t q <strong>of</strong> the cross section under Sa<strong>in</strong>t Venant torsion is:<br />

u = - ω(y,z) θx,x(x) (2.21)<br />

where θx,x is the rate <strong>of</strong> twist and ω(y,z) is the warp<strong>in</strong>g function <strong>of</strong> the cross section.<br />

The expression <strong>of</strong> the displacement field is:<br />

80%<br />

60%<br />

40%<br />

20%<br />

(a) (b)<br />

( a )<br />

( b )<br />

( c )<br />

( d )<br />

(2.20)<br />

2-9


⎧u ⎫ ⎧ −ωθ ⎫<br />

q x,x<br />

⎪ ⎪ ⎪ ⎪<br />

⎨v q ⎬= ⎨−(z−z C) θx⎬<br />

⎪ ⎪ ⎪<br />

w (y y q<br />

C) ⎪<br />

⎪ − θx<br />

⎪<br />

⎩⎪ ⎭⎪<br />

⎩ ⎭<br />

(2.22)<br />

When the assumption HYPSV (uniform warp<strong>in</strong>g along x) is adopted, ωθx,x is assumed to be a constant<br />

rate <strong>with</strong> respect to x. Thus, its derivative ωθx,xx vanishes and the l<strong>in</strong>ear stra<strong>in</strong> vector deduced from<br />

(2.22) is:<br />

⎧εx<br />

⎪<br />

⎨2ε<br />

⎪<br />

⎪⎩<br />

2ε<br />

xy<br />

xz<br />

⎫ ⎧ 0<br />

⎪ ⎪<br />

⎬ = ⎨−<br />

( ω,<br />

y + z − zc<br />

) θ<br />

⎪ ⎪<br />

⎪⎭<br />

⎪⎩<br />

( −ω,<br />

z + y − yc<br />

) θ<br />

x,<br />

x<br />

x,<br />

x<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎪⎭<br />

(2.23)<br />

Equilibrium equation<br />

The torsional equation (2.26) is usually deduced from equilibrium considerations. Alternatively, the<br />

pr<strong>in</strong>ciple <strong>of</strong> virtual work can be used <strong>with</strong> Hooke’s law and stra<strong>in</strong> expressions (2.23). The differential<br />

equilibrium equation (2.26), relat<strong>in</strong>g the rate <strong>of</strong> twist θx,x to the torsional moment Mx (2.24) and to the<br />

torsional stiffness GK (2.25), is obta<strong>in</strong>ed after <strong>in</strong>tegrat<strong>in</strong>g and isolat<strong>in</strong>g the virtual twist<strong>in</strong>g angle θx * .<br />

The torsional resultant is found to be:<br />

∫<br />

M = [( y − y ) τ − ( z − z ) τ ] dA<br />

(2.24)<br />

x<br />

A<br />

C<br />

xz<br />

C<br />

Let the torsional constant K be given by the expression (2.25):<br />

∫<br />

xy<br />

K = [( −ω<br />

( y − y ) + ω ( z − z ) + ( y − y ) + ( z − z ) ] dA<br />

(2.25)<br />

then<br />

A<br />

M x<br />

, z<br />

C<br />

, y<br />

C<br />

C<br />

2<br />

x , x<br />

GK<br />

= θ (2.26)<br />

Equation (2.25) shows that the cross section warp<strong>in</strong>g <strong>in</strong>fluences the value <strong>of</strong> K. The warp<strong>in</strong>g function<br />

(ω) must first be computed <strong>in</strong> order to determ<strong>in</strong>e the torsional stiffness and to solve the Sa<strong>in</strong>t-Venant<br />

torsional problem. The evaluation <strong>of</strong> ω is different for each cross section and depends on the boundary<br />

conditions <strong>of</strong> the shear stresses and on the geometrical shape <strong>of</strong> the pr<strong>of</strong>ile, especially whether the<br />

cross section is open or closed. Batoz et al. [1990, page 170] developed approximate expressions for<br />

the warp<strong>in</strong>g function (ω) <strong>of</strong> some th<strong>in</strong>-walled cross sections so that K can be explicitly evaluated.<br />

However, they <strong>in</strong>sisted on the fact that, for open th<strong>in</strong> walled pr<strong>of</strong>iles, approximated values <strong>of</strong> (ω) lead<br />

to an <strong>in</strong>correct value <strong>of</strong> K if directly substituted <strong>in</strong> (2.25). Deduc<strong>in</strong>g the torsional constant from<br />

explicit values <strong>of</strong> ω is detailed <strong>in</strong> [Batoz, 1990, page 171].<br />

C<br />

2<br />

2-10


The Sa<strong>in</strong>t Venant theory (<strong>with</strong> assumption HYPSV) is exact <strong>in</strong> the case <strong>of</strong> uniform torsional moment<br />

distribution <strong>with</strong>out restra<strong>in</strong>ed warp<strong>in</strong>g <strong>of</strong> the cross sections. Similarly, for some particular pr<strong>of</strong>iles ( ,<br />

+, …) which, due to their radial symmetry, do not warp, the Sa<strong>in</strong>t Venant theory <strong>of</strong> torsion is always<br />

exact, even if the torsional moment distribution is not uniform. For other particular geometries (⊥, ∠,<br />

…), the contour warp<strong>in</strong>g vanishes and, if the thickness warp<strong>in</strong>g is neglected, the de Sa<strong>in</strong>t Venant<br />

theory is used. For all these particular cases, equation (2.26) solves exactly the torsional problem. In<br />

other general cases, the Sa<strong>in</strong>t Venant torsional theory describes only a part <strong>of</strong> the problem (equation<br />

2.20) and the term Mx <strong>in</strong> (2.26) must be substituted by Mx st :<br />

M st<br />

x<br />

x , x<br />

GK<br />

= θ (2.26’)<br />

Stress computations<br />

In this case <strong>of</strong> pure uniform torsion, the beam is only twisted and each th<strong>in</strong> walled member resists to<br />

this uniform torsion by components <strong>of</strong> shear stresses τxs st . s is the coord<strong>in</strong>ate along the contour pr<strong>of</strong>ile<br />

l<strong>in</strong>e. There are no longitud<strong>in</strong>al stresses σx directly associated <strong>with</strong> this torsion. The behavior depends<br />

to a large extent on the cross sectional geometry and specifically, whether the section is open or<br />

closed. When the cross section is an open pr<strong>of</strong>ile, shear stresses due to the Sa<strong>in</strong>t Venant torsion (τxs st )<br />

vary l<strong>in</strong>early through the thickness <strong>of</strong> the walls <strong>with</strong> zero value on the midl<strong>in</strong>e. The maximal value <strong>of</strong><br />

these stresses, which occurs at upper and <strong>in</strong>ner sk<strong>in</strong>s, is proportional to the torsional moment Mx st and<br />

to the thickness ‘e’ and is <strong>in</strong>versely proportional to the uniform torsional stiffness K.<br />

1 3<br />

K = ∑ liei (2.27)<br />

3<br />

st<br />

st<br />

xs<br />

x<br />

M<br />

τ = e<br />

(2.28)<br />

K<br />

When the cross section is a closed pr<strong>of</strong>ile consist<strong>in</strong>g <strong>of</strong> one or more cells, uniform shear stresses flow<br />

through the periphery <strong>with</strong>out chang<strong>in</strong>g sign across the thickness <strong>of</strong> the th<strong>in</strong> walls. The stiffness is<br />

calculated from Bredt formulae ([Kollbrunner, 1970], [Murray, 1986], …). Equations (2.29) are given<br />

<strong>in</strong> case <strong>of</strong> unicellular cross sections:<br />

2<br />

4A<br />

K =<br />

ds<br />

∫� e<br />

st<br />

st Mx<br />

xs<br />

(2.29)<br />

τ = (2.30)<br />

2Ae<br />

where A is the area enclosed by the cell. The mean value <strong>of</strong> these shear stresses at a po<strong>in</strong>t <strong>of</strong> the<br />

contour is proportional to the torsional moment Mx st and <strong>in</strong>versely proportional to the thickness and to<br />

the area limited by the contour <strong>of</strong> the cross section.<br />

Theoretically, a closed pr<strong>of</strong>ile resists to torsion by a global stiffness (2.29) <strong>in</strong> case <strong>of</strong> unicellular<br />

pr<strong>of</strong>ile) related to the circulation <strong>of</strong> a constant flow along contour (2.30) and by a local stiffness<br />

specific to each element <strong>of</strong> the section (2.27) as if the beam was constituted by the assembly <strong>of</strong><br />

longitud<strong>in</strong>al strips. For th<strong>in</strong> pr<strong>of</strong>iles, the local stiffness is negligible when compared to the global one.<br />

2-11


The associated stresses whose distribution is l<strong>in</strong>ear through the thickness (equation 2.28) are also<br />

negligible when compared to those associated to the global stiffness (2.30). At this stage, it is<br />

important to emphasize the fact that the behavior <strong>of</strong> closed pr<strong>of</strong>iles (compris<strong>in</strong>g one or more cells)<br />

constitutes a problem entirely different from that <strong>of</strong> open cross sections. Many studies ([Kollbrunner,<br />

1970], [Murray, 1986]…) presented detailed descriptions <strong>of</strong> the calculation <strong>of</strong> the torsional stiffness<br />

and the stress distribution depend<strong>in</strong>g on the type <strong>of</strong> th<strong>in</strong>-walled pr<strong>of</strong>iles (open or closed). The basic<br />

formulae are found <strong>in</strong> text books on Strength <strong>of</strong> Materials and are commonly used by eng<strong>in</strong>eers <strong>in</strong><br />

beam analyses regardless <strong>of</strong> the validity <strong>of</strong> their application. An <strong>in</strong>terest<strong>in</strong>g analogy between non<br />

uniform torsion and shear<strong>in</strong>g flexure has been highlighted by De Ville [1990, page 3.54]), show<strong>in</strong>g the<br />

similitude between analyses <strong>in</strong>clud<strong>in</strong>g shear deformation effects and non uniform torsional warp<strong>in</strong>g<br />

effects.<br />

Application: uniform torsion <strong>of</strong> open and closed pr<strong>of</strong>iles<br />

Two th<strong>in</strong> cyl<strong>in</strong>drical tubes (figure 2.6) <strong>with</strong> identical dimensions (radius = 200mm and thickness =<br />

8mm) differ by a slit so that the cross section <strong>of</strong> the second tube is an open pr<strong>of</strong>ile. An exterior torque<br />

<strong>in</strong>duces uniform torsion for both closed and open cross sections <strong>with</strong> the same torsional moment<br />

distribution. The strength and stiffness <strong>of</strong> both open and closed cross sections are compared by us<strong>in</strong>g<br />

equations (2.27) and (2.29). The tube <strong>with</strong> open cross section resists to torsion by its local stiffness and<br />

behaves as a narrow rectangular section whose dimensions are equal to the length <strong>of</strong> the developed<br />

average l<strong>in</strong>e (2пr) and to the thickness. However, for the close tubular section, an additional stiffness<br />

(global stiffness, equation 2.29) is proportional to the square <strong>of</strong> the entire surface (пr 2 ) 2 . The stresses<br />

result<strong>in</strong>g from the same torque are 75 times larger <strong>in</strong> the open than <strong>in</strong> the closed cross section. The<br />

twist<strong>in</strong>g angle is 1875 times larger <strong>in</strong> the open pr<strong>of</strong>ile.<br />

For closed cross sections, the global stiffness is much higher than the local one. When the local<br />

stiffness is not taken <strong>in</strong>to account the error on the value <strong>of</strong> twist<strong>in</strong>g angle is 0.05%.<br />

It should however be noted that for this particular geometry, <strong>in</strong> arbitrary load<strong>in</strong>g or boundary<br />

conditions, the closed cross section is always submitted to uniform torsion s<strong>in</strong>ce it does not warp.<br />

However, the open cross section warps and the computations for the open pr<strong>of</strong>ile should <strong>in</strong>clude<br />

warp<strong>in</strong>g effects.<br />

Figure 2.6 Closed and open cross sections<br />

400 400 mm<br />

In general, the difference between the behavior <strong>of</strong> open and closed pr<strong>of</strong>iles is more important for Sa<strong>in</strong>t<br />

Venant torsion (free warp<strong>in</strong>g <strong>of</strong> beams) than for non uniform torsion (prevented warp<strong>in</strong>g). Boundary<br />

conditions <strong>with</strong> prevented warp<strong>in</strong>g modify considerably the behavior <strong>of</strong> open pr<strong>of</strong>iles which are<br />

somehow strongly stiffened. The <strong>in</strong>fluence <strong>of</strong> this phenomenon is much less marked on the closed<br />

boxes and the massive sections than on open pr<strong>of</strong>iles. Comparisons between the <strong>in</strong>fluence <strong>of</strong> these<br />

effects on open and closed cross sections will be shown <strong>in</strong> paragraph 2.2.3.<br />

2-12


2.2.3 Non uniform torsion<br />

For arbitrary pr<strong>of</strong>iles, load<strong>in</strong>g cases and boundary conditions, an important non uniform torsional<br />

warp<strong>in</strong>g occurs so that the Sa<strong>in</strong>t Venant torsional theory, strictly restricted to uniform torsion, is no<br />

longer sufficient and the equilibrium equation (2.26) no longer valid. A th<strong>in</strong> walled member resists to<br />

non uniform warp<strong>in</strong>g by both normal and shear stresses. The stress resultant, i.e. the torsional moment,<br />

is divided <strong>in</strong>to two parts (equation 2.20). <strong>Shear</strong> stresses τxs st , as presented <strong>in</strong> paragraph 2.2.2 (equation<br />

2.28), derive from the Sa<strong>in</strong>t Venant part (Mx st ) and both warp<strong>in</strong>g normal stresses σx ω and warp<strong>in</strong>g<br />

shear stresses τxs ω derive from the non uniform part (Mx ω ). Usually, the k<strong>in</strong>ematic formula (2.21) is<br />

generalized to study the non uniform torsion for a th<strong>in</strong> walled cross section for arbitrary variation <strong>of</strong><br />

twist<strong>in</strong>g rate θx,x. The analysis <strong>of</strong> torsional behavior <strong>of</strong> th<strong>in</strong> walled sections is generally presented by<br />

different methods for open and closed cross sections (e.g. [Murray, 1986], [Gjelsvik, 1981],<br />

[Shakourzadeh, 1995], …).<br />

2.2.3.1 Vlassov theory for open cross sections<br />

Assumptions<br />

The simplest non uniform torsional theory <strong>of</strong> a th<strong>in</strong> walled open cross section is derived from Vlassov<br />

theory by neglect<strong>in</strong>g:<br />

-HYPV1: the shear stra<strong>in</strong> εxe, characteriz<strong>in</strong>g the change <strong>of</strong> angle between longitud<strong>in</strong>al and thickness<br />

coord<strong>in</strong>ate l<strong>in</strong>es; x and e are the coord<strong>in</strong>ates along the longitud<strong>in</strong>al axis and through the thickness <strong>of</strong><br />

the mid wall respectively.<br />

-HYPV2: the shear stra<strong>in</strong> εxs on the mid wall, characteriz<strong>in</strong>g the change <strong>of</strong> angle between longitud<strong>in</strong>al<br />

and contour coord<strong>in</strong>ate l<strong>in</strong>es; x and s are the coord<strong>in</strong>ates along the longitud<strong>in</strong>al axis and the contour<br />

l<strong>in</strong>e.<br />

The first assumption results from the equilibrium conditions and the geometry <strong>of</strong> the pr<strong>of</strong>iles. The<br />

component τxe <strong>of</strong> shear stresses (τxe would be perpendicular to the contour) vanishes at the external<br />

fibers <strong>in</strong> case <strong>of</strong> absence <strong>of</strong> surface load<strong>in</strong>g. S<strong>in</strong>ce the walls are very th<strong>in</strong>, the shear stresses <strong>in</strong>side a<br />

th<strong>in</strong>-walled member are nearly parallel to the contour; τxe is neglected and the non zero rema<strong>in</strong><strong>in</strong>g<br />

component is τxs. The non zero shear stra<strong>in</strong> component is εxs. An open th<strong>in</strong> walled beam is thus<br />

assimilated to a shell <strong>with</strong> undeformed section.<br />

The second assumption <strong>in</strong>troduced by Vlassov [1961, Ch I. §2.3.] considers that warp<strong>in</strong>g shear stra<strong>in</strong>s<br />

at the midl<strong>in</strong>e are <strong>of</strong> a secondary nature and are neglected <strong>in</strong> the k<strong>in</strong>ematic description. Two coord<strong>in</strong>ate<br />

l<strong>in</strong>es along x and s (for e = 0), <strong>in</strong>itially perpendicular before load<strong>in</strong>g, are supposed to rema<strong>in</strong><br />

perpendicular after deformation. This is exact for open pr<strong>of</strong>iles when the warp<strong>in</strong>g is the same along the<br />

longitud<strong>in</strong>al axis x (the torsional moment is constant along the length <strong>of</strong> the beam <strong>with</strong> free warp<strong>in</strong>g<br />

boundary conditions). However, when this is not the case, this assumption is kept to simplify the<br />

developments <strong>of</strong> open pr<strong>of</strong>iles.<br />

K<strong>in</strong>ematics<br />

In Vlassov k<strong>in</strong>ematic formulation, similarly to Sa<strong>in</strong>t Venant k<strong>in</strong>ematic formulation (2.21), the<br />

displacement field is:<br />

⎧ u ⎫ ⎧<br />

⎫<br />

q − ωθx,<br />

x<br />

⎪ ⎪<br />

⎪ ⎪ ⎪<br />

⎪<br />

⎨v<br />

q ⎬ = ⎨−<br />

( z − zC<br />

) θx<br />

⎬<br />

⎪ ⎪ ⎪<br />

⎪<br />

⎪w<br />

⎪ ⎪ ( y − yC<br />

) θx<br />

⎩ q ⎭ ⎩<br />

⎪⎭<br />

(2.31)<br />

2-13


The axial displacement u is assumed to be proportional to the rate <strong>of</strong> the twist<strong>in</strong>g angle θx,x; the<br />

warp<strong>in</strong>g is then calculated by (2.21) where θx,x is no longer constant. The explicit value <strong>of</strong> Vlassov<br />

warp<strong>in</strong>g function ω (2.32) is usually deduced [Gjelsvick 1981 §1.1; Murray 1984 page 71; Batoz 1990<br />

page 193; …] from the above assumptions (HYPV1, HYPV2) neglect<strong>in</strong>g shear deformations and is<br />

divided <strong>in</strong>to contour warp<strong>in</strong>g (or first order warp<strong>in</strong>g, ω1 <strong>in</strong> 2.33) and thickness warp<strong>in</strong>g (second order<br />

warp<strong>in</strong>g, ω2 <strong>in</strong> 2.33). ω1 (Vlassov 1961 Ch. I §4; Calgaro 1988 page 75… ) is called the sectorial area<br />

and is generally used <strong>in</strong> the literature.<br />

s<br />

= ∫ + ne h hds ω (2.32)<br />

0<br />

s<br />

∫<br />

ω = hds<br />

ω e<br />

(2.33)<br />

1<br />

0<br />

2 = hn where h is the distance from the shear center C to the tangent to the mid wall at the given po<strong>in</strong>t q. hn is<br />

the distance from the normal at the given po<strong>in</strong>t to the shear center C (figure 2.7).<br />

De Ville (1989, §3.4.2) deduced a general expression (ω*) for an arbitrary open pr<strong>of</strong>ile from the<br />

expression <strong>of</strong> shear stresses computed <strong>with</strong> the exact warp<strong>in</strong>g function <strong>of</strong> a th<strong>in</strong> rectangular pr<strong>of</strong>ile. He<br />

assumed that each open pr<strong>of</strong>ile behaves similarly to a th<strong>in</strong> rectangular pr<strong>of</strong>ile <strong>with</strong> the same<br />

dimensions. His warp<strong>in</strong>g function is also divided <strong>in</strong>to a contour warp<strong>in</strong>g found to be exactly the<br />

sectorial coord<strong>in</strong>ate ω1 and a second order warp<strong>in</strong>g ω2 * .<br />

The thickness warp<strong>in</strong>g function ω2 was also <strong>in</strong>troduced by Gjelsvik [1981, page 12], Batoz [1990,<br />

page 193] and Prokić [1990, 1993, 1994 and 1996] by assum<strong>in</strong>g that the warp<strong>in</strong>g varies l<strong>in</strong>early<br />

through the thickness and vanishes along the mid-l<strong>in</strong>e. This second order warp<strong>in</strong>g derives from<br />

HYPV1 (developments are detailed <strong>in</strong> paragraph 3.2).<br />

The warp<strong>in</strong>g function ω can be written <strong>in</strong> <strong>in</strong>itial Cartesian system (x,y,z):<br />

d ω = (y −y c)dz −(z− z c)dy<br />

(2.34)<br />

h *<br />

G<br />

z s<br />

Figure 2.7 Cross sectional geometry<br />

h<br />

C<br />

q<br />

e<br />

hn<br />

For open pr<strong>of</strong>iles, the l<strong>in</strong>ear elastic stra<strong>in</strong> expression is deduced from (2.31):<br />

y<br />

2-14


⎧εx<br />

⎪<br />

⎨2ε<br />

⎪<br />

⎪⎩<br />

2ε<br />

xy<br />

xz<br />

⎫ ⎧−<br />

ωθx,<br />

xx<br />

⎪<br />

⎪<br />

⎬ = ⎨−<br />

( ω,<br />

y + z − zc<br />

) θ<br />

⎪ ⎪<br />

⎪⎭<br />

⎪⎩<br />

( −ω,<br />

z + y − yc<br />

) θ<br />

x,<br />

x<br />

x,<br />

x<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎪⎭<br />

(2.35)<br />

The above listed equations (2.31 - 2.35) are limited to open pr<strong>of</strong>iles s<strong>in</strong>ce:<br />

- The warp<strong>in</strong>g function ω is a cont<strong>in</strong>uous function <strong>with</strong> respect to the contour coord<strong>in</strong>ate s <strong>of</strong> the<br />

pr<strong>of</strong>ile. Equations (2.32), (2.33) and (2.34) allow the computation <strong>of</strong> an <strong>in</strong>crement dω <strong>with</strong> respect to s<br />

start<strong>in</strong>g from an arbitrary orig<strong>in</strong> for which ω is equal to zero. The result<strong>in</strong>g warp<strong>in</strong>g function is<br />

therefore discont<strong>in</strong>uous along the contour <strong>of</strong> a cell <strong>with</strong>out a slit; and this discont<strong>in</strong>uity is physically<br />

<strong>in</strong>admissible.<br />

-These explicit expressions <strong>of</strong> ω cannot describe at all the behavior <strong>of</strong> a closed pr<strong>of</strong>ile s<strong>in</strong>ce they are<br />

developed from hypothesis (HYPV2). This assumption (zero shear stra<strong>in</strong> at the mid wall), acceptable<br />

for open pr<strong>of</strong>iles, is not admissible at all for closed pr<strong>of</strong>iles. It has been seen <strong>in</strong> paragraph 2.2.2 that<br />

even <strong>in</strong> the case <strong>of</strong> uniform torsion, shear stresses associated to important shear stra<strong>in</strong>s flow through<br />

the periphery <strong>of</strong> a cell.<br />

Equilibrium equations<br />

The torsional equilibrium equation is deduced from the pr<strong>in</strong>ciple <strong>of</strong> Virtual work by us<strong>in</strong>g Hooke’s<br />

law and expressions (2.35). The follow<strong>in</strong>g equation is obta<strong>in</strong>ed after <strong>in</strong>tegration and isolat<strong>in</strong>g the<br />

virtual twist<strong>in</strong>g angle θx * :<br />

− EIω θx<br />

, xxxx + GKθx,<br />

xx + mxω,<br />

x + mx<br />

= 0<br />

(2.36)<br />

<strong>with</strong> m x = ∫ (( y − yc<br />

) fvz<br />

− ( z − zc<br />

) fvy<br />

) dA and m xω<br />

= ∫ ω fvxdA<br />

A<br />

fvx, fvy and fvz are the components <strong>of</strong> external volume forces.<br />

M = GKθ<br />

(2.37)<br />

st<br />

x x,x<br />

B=−EIωθ x,xx<br />

(2.37’)<br />

where EIω is the non uniform torsional stiffness.<br />

Thus, by us<strong>in</strong>g (2.37) and (2.37’), equation (2.36) can be transformed to (2.38):<br />

B + M + m + m = 0<br />

(2.38)<br />

,xx<br />

st<br />

x,x x ω,x<br />

x<br />

A first part (Mx st ) <strong>of</strong> the torsional moment arises from the uniform torsion (Sa<strong>in</strong>t Venant torsion). A<br />

second part (Mx ω ) <strong>of</strong> the total torsional moment arises from the restra<strong>in</strong>t <strong>of</strong> warp<strong>in</strong>g when the<br />

bimoment, a new <strong>in</strong>ternal equivalent force (B), varies along a beam. B is proportional to the second<br />

derivative <strong>of</strong> the rotation angle (eq. 2.37’).<br />

In most analyses us<strong>in</strong>g the hypotheses <strong>of</strong> th<strong>in</strong> walled beams (assumption HYPTW: thickness


equilibrium equation does not <strong>in</strong>clude the part <strong>of</strong> Sa<strong>in</strong>t Venant. The term M st x,x is not present <strong>in</strong> (2.38)<br />

and the Sa<strong>in</strong>t Venant term (GKθx,xx) is elim<strong>in</strong>ated from equation 2.36. The torsional moment is thus<br />

assumed to <strong>in</strong>duce entirely non uniform warp<strong>in</strong>g stresses while the part <strong>of</strong> uniform torsion is not<br />

<strong>in</strong>cluded <strong>in</strong> the equilibrium equation. This is <strong>in</strong> general theoretically <strong>in</strong>accurate s<strong>in</strong>ce when the element<br />

twists, a part <strong>of</strong> the torque is obta<strong>in</strong>ed from the theory <strong>of</strong> Sa<strong>in</strong>t Venant (equation 2.20). The error<br />

result<strong>in</strong>g from this assumption (HYPTW) depends on the cross section pr<strong>of</strong>ile, the load<strong>in</strong>g and the<br />

geometry <strong>of</strong> the structure. In analyses us<strong>in</strong>g the k<strong>in</strong>ematical hypotheses <strong>of</strong> th<strong>in</strong> walled beams<br />

(HYPTW), the results are <strong>of</strong>ten adjusted by <strong>in</strong>troduc<strong>in</strong>g the Sa<strong>in</strong>t Venant part <strong>in</strong> the equilibrium<br />

equation (GKθx,x <strong>in</strong> 2.36) or <strong>in</strong> the stra<strong>in</strong> energy (GKθx,x 2 ) <strong>in</strong> order to better describe the phenomenon<br />

[Murray, 1986, page 66; Calgaro 1988 page 80; Mohri, 2003, equation (11a); …].<br />

Kolbrunner [1970, page 195] establishes a classification for some pr<strong>of</strong>iles and bridge sections.<br />

Neglect<strong>in</strong>g Sa<strong>in</strong>t Venant term is less important for cold formed steel pr<strong>of</strong>iles and orthotropic steel<br />

deck bridges than for rolled pr<strong>of</strong>iles and concrete bridges.<br />

Stress computations<br />

When a th<strong>in</strong>-walled beam is submitted to non uniform torsion (θx,xx≠0), normal warp<strong>in</strong>g stresses σx ω<br />

arise from the elongation <strong>of</strong> longitud<strong>in</strong>al fibers. These normal stresses, non uniform along the<br />

longitud<strong>in</strong>al axis and <strong>in</strong>duc<strong>in</strong>g τxs ω , can be found from the associated deformations (by apply<strong>in</strong>g<br />

Hooke’s law to the first row <strong>of</strong> 2.35). However, it is the equilibrium <strong>of</strong> an element <strong>of</strong> a th<strong>in</strong>-walled<br />

beam that enabled Vlassov to f<strong>in</strong>d the value <strong>of</strong> warp<strong>in</strong>g shear stresses τxs ω as they equilibrate the<br />

variation <strong>of</strong> σx ω . Their distribution shape over the contour is found to be parabolic along straight<br />

segments <strong>of</strong> a pr<strong>of</strong>ile. These shear stresses τxs ω cannot be determ<strong>in</strong>ed at mid walls directly from the<br />

associated shear deformations (by us<strong>in</strong>g Hooke’s stress-stra<strong>in</strong> relation <strong>with</strong> the second and third rows<br />

<strong>of</strong> 2.35) because if done so, they would be equal to zero (2.39).<br />

The shear stra<strong>in</strong>s εxs and εxe , evaluated by us<strong>in</strong>g the complete warp<strong>in</strong>g function (2.32), are found to<br />

vanish at the mid wall so that:<br />

2εxy = 0<br />

2εxz = 0 (2.39)<br />

The equalities (2.39) are expected s<strong>in</strong>ce they constitute the hypotheses HYPV2 and HYPV1<br />

respectively. In (2.35), normal stra<strong>in</strong>s (εx) are due to torsional warp<strong>in</strong>g while shear stra<strong>in</strong>s are those <strong>of</strong><br />

Sa<strong>in</strong>t Venant uniform torsion k<strong>in</strong>ematics. By us<strong>in</strong>g (2.32) as warp<strong>in</strong>g function, the Sa<strong>in</strong>t Venant<br />

stra<strong>in</strong>s vanish at the midwall. This is compatible <strong>with</strong> the second assumption <strong>of</strong> Vlassov (HYPV2) and<br />

shows that the warp<strong>in</strong>g function (2.35) is not exact s<strong>in</strong>ce it does not <strong>in</strong>clude the entire warp<strong>in</strong>g effects<br />

(the result<strong>in</strong>g shear wrongly vanishes at the midwall).<br />

Once aga<strong>in</strong>, the application <strong>of</strong> the assumption HYPV2 is shown to be restricted for the torsion <strong>of</strong> open<br />

cross sections. It cannot be kept for contours composed <strong>of</strong> closed cells because both Sa<strong>in</strong>t Venant<br />

shear stresses (nearly uniformly distributed across the wall <strong>of</strong> a cell) and warp<strong>in</strong>g shear stresses do not<br />

vanish through the thickness and their associated shear stra<strong>in</strong>s cannot be ignored.<br />

General equilibrium equations are needed to calculate the shear stresses while the normal stresses can<br />

be directly derived from Hooke’s law. <strong>Shear</strong> stresses (found equal to zero if computed from 2.35) can<br />

be deduced from the equilibrium equation <strong>in</strong> the longitud<strong>in</strong>al equation where the longitud<strong>in</strong>al stresses<br />

are calculated from the k<strong>in</strong>ematic formulae.<br />

2-16


Analogy between Vlassov non uniform torsion and Bernoulli beam theory<br />

The theories <strong>of</strong> bend<strong>in</strong>g and torsion are <strong>of</strong>ten compared <strong>in</strong> the literature by po<strong>in</strong>t<strong>in</strong>g out an analogy<br />

between Bernoulli bend<strong>in</strong>g theory and Vlassov torsional theory for open cross sections([Kollbruner<br />

1970 chapter 5]; [De Ville 1989 page 3.54] by referr<strong>in</strong>g to the work <strong>of</strong> Massonet and Cescotto…).. De<br />

Ville established an orig<strong>in</strong>al analogy between Timoshenko and Benscoter theories for closed cross<br />

sections. Van Impe (2001) <strong>in</strong>spected another one between the differential equations for flexural<br />

buckl<strong>in</strong>g and torsional buckl<strong>in</strong>g <strong>in</strong> order to solve the torsional buckl<strong>in</strong>g problem by us<strong>in</strong>g the flexural<br />

buckl<strong>in</strong>g solutions available <strong>in</strong> the literature.<br />

Hereafter, this <strong>in</strong>terest<strong>in</strong>g similitude is highlighted by show<strong>in</strong>g the analogy between the non uniform<br />

torsional part <strong>of</strong> Vlassov theory and Bernoulli simple beam theory (The comparison between<br />

Benscoter and Timoshenko theories is developed <strong>in</strong> the follow<strong>in</strong>g paragraph):<br />

Non uniform part <strong>of</strong> Vlassov Torsion theory �� Bernoulli beam theory<br />

(bimoment) B �� My (bend<strong>in</strong>g moment)<br />

(non uniform torsional moment) M ω x �� Tz (shear force)<br />

(twist<strong>in</strong>g angle) θx �� w (bend<strong>in</strong>g displacement)<br />

(rate <strong>of</strong> twist as warp<strong>in</strong>g variation along x) θx,x �� w,x (tangent taken as the slope)<br />

(warp<strong>in</strong>g function) ω �� z (bend<strong>in</strong>g distribution over the pr<strong>of</strong>ile)<br />

B −EI<br />

θ<br />

M = −EIw<br />

= ω x,<br />

xx �� , xx<br />

ω<br />

x<br />

B M =<br />

, x<br />

T = M<br />

�� , x<br />

Analogy between the non uniform part <strong>of</strong> Vlassov torsion theory and Bernoulli beam theory<br />

- Bernoulli assumed zero bend<strong>in</strong>g shear stra<strong>in</strong>s (and thus zero bend<strong>in</strong>g shear stresses) s<strong>in</strong>ce his theory<br />

is based on the normality hypothesis: the cross section rema<strong>in</strong>s planar and normal to the longitud<strong>in</strong>al<br />

beam axis. Similarly, Vlassov assumption (HYPV2) neglects warp<strong>in</strong>g shear stra<strong>in</strong>s (and thus<br />

warp<strong>in</strong>g shear stresses). He described the warp<strong>in</strong>g <strong>of</strong> th<strong>in</strong> walled structures by a longitud<strong>in</strong>al<br />

elongation (accord<strong>in</strong>g to x) <strong>of</strong> the midwall <strong>of</strong> a th<strong>in</strong> shell <strong>with</strong> a rigid undeformable section <strong>with</strong>out<br />

allow<strong>in</strong>g any deformation <strong>of</strong> this midwall <strong>in</strong> the (xs) plane. Thus, both bend<strong>in</strong>g shear stresses and<br />

stra<strong>in</strong>s are neglected <strong>in</strong> Bernoulli theory (equation 2.3) and both shear warp<strong>in</strong>g stresses and stra<strong>in</strong>s<br />

(2.35) are not <strong>in</strong>cluded <strong>in</strong> Vlassov theory.<br />

- S<strong>in</strong>ce Bernoulli theory does not allow for shear calculations, shear stresses must be deduced from<br />

equilibrium <strong>in</strong> the longitud<strong>in</strong>al direction <strong>of</strong> the element accord<strong>in</strong>g to the Jourawsky ‘eng<strong>in</strong>eer<strong>in</strong>g’<br />

approach. Hooke’s law cannot be used <strong>with</strong> k<strong>in</strong>ematic formula (2.2) to derive shear stresses due to<br />

the shear force because if done so, they would be equal to zero. Similarly, determ<strong>in</strong><strong>in</strong>g torsional<br />

warp<strong>in</strong>g resultants by us<strong>in</strong>g Hooke’s law <strong>with</strong> (2.35) leads to <strong>in</strong>correct results. The equilibrium <strong>in</strong> the<br />

longitud<strong>in</strong>al direction <strong>of</strong> the element must be considered as <strong>in</strong> most works based on Vlassov warp<strong>in</strong>g<br />

function [Batoz, 1990, page 215; De Ville, 1989, page 3.56; …].<br />

- For the same reason, the torsional moment (2.24) cannot be calculated directly from (2.35) as a stress<br />

resultant by us<strong>in</strong>g shear-stra<strong>in</strong> Hooke’s law because if done so, the warp<strong>in</strong>g contribution is wrongly<br />

considered to vanish at the mid wall and the torsional moment is wrongly reduced to the uniform<br />

torsional moment. To solve this problem, equilibrium equations are used to determ<strong>in</strong>e shear warp<strong>in</strong>g<br />

<strong>in</strong>ternal forces as <strong>in</strong> simple Bernoulli beam theory where shear forces Ty and Tz are calculated from<br />

the equilibrium equations and not as stress resultants because if so, they would be found to be equal<br />

to zero.<br />

2-17


The equilibrium <strong>of</strong> on an element (ds dx) <strong>in</strong> the longitud<strong>in</strong>al axis x (figure 2.8) must be considered <strong>in</strong><br />

order to evaluate the tangential stresses and the correspond<strong>in</strong>g resultants:<br />

Figure 2.8 Internal stresses act<strong>in</strong>g on the edges <strong>of</strong> an element (ds dx)<br />

ω<br />

∂τ ( xs t) ∂σ ( xt)<br />

=− −tf<br />

∂s ∂x<br />

So that:<br />

∂τ ( t)<br />

∂(t σ )<br />

σ +<br />

∂x<br />

ω<br />

s<br />

ω<br />

xs<br />

∂s<br />

ds =− ωσx,xdA −mxω<br />

A<br />

vx<br />

(2.40)<br />

∫ ∫ (2.40’)<br />

By <strong>in</strong>tegrat<strong>in</strong>g by parts (2.40’) and tak<strong>in</strong>g <strong>in</strong>to account that shear stresses at the extremities <strong>of</strong> the<br />

contour are zero,<br />

M = ∫ τ hds= B + m<br />

(2.41)<br />

ω ω<br />

x xs ,x xω<br />

s<br />

or <strong>in</strong> term <strong>of</strong> displacements:<br />

M =−EI θ + m ω<br />

(2.41’)<br />

ω<br />

x ω x,xxx x<br />

By <strong>in</strong>sert<strong>in</strong>g (2.41) <strong>in</strong>to (2.36) and then by us<strong>in</strong>g equation (2.20), the follow<strong>in</strong>g equations are found :<br />

ω<br />

M + M + m = 0 so that Mx,x + mx= 0<br />

(2.42)<br />

x,x<br />

s<br />

x,x x<br />

t<br />

x [t x dx]ds<br />

∂(t τ )<br />

τ +<br />

∂x<br />

xs [t xs dx]ds<br />

tτsxdx x<br />

s<br />

tτxsds ∂(t τ )<br />

∂s<br />

sx [tτ sx + ds]dx<br />

2.2.3.2 Benscoter theory<br />

Warp<strong>in</strong>g function for closed cross sections<br />

The non uniform torsional analysis <strong>of</strong> closed cross sections is complicated by the fact that torsional<br />

shear stra<strong>in</strong>s (2εxs) are not negligible at the mid wall and must be <strong>in</strong>cluded. As stated before, even <strong>in</strong><br />

the case <strong>of</strong> uniform torsion, shear stresses vanish on the mid wall <strong>of</strong> an open cross section but flow<br />

dx<br />

tσds x<br />

ds<br />

2-18


along the mid wall <strong>of</strong> a cell <strong>in</strong> a closed cross section (eq 2.30). The assumption <strong>of</strong> Vlassov theory<br />

HYPV2 is no longer acceptable and the calculations presented <strong>in</strong> the previous paragraph are no longer<br />

valid. For Benscoter theory, the warp<strong>in</strong>g function is calculated by an approximate theory assum<strong>in</strong>g<br />

that only Sa<strong>in</strong>t Venant shear stra<strong>in</strong> (uniform torsion) is considered [Murray, 1986, page 72-73].<br />

Similarly to the case <strong>of</strong> open cross section calculations <strong>with</strong> Vlassov, non uniform shear stresses<br />

(which are considered to be <strong>of</strong> secondary nature) are neglected and Sa<strong>in</strong>t Venant shear stresses are<br />

taken <strong>in</strong>to account. However, s<strong>in</strong>ce the behavior <strong>of</strong> closed cross sections is different from that <strong>of</strong> open<br />

cross sections, the developments are more complex. The warp<strong>in</strong>g function is found to be different for<br />

each case. For closed cross sections, after chang<strong>in</strong>g and adapt<strong>in</strong>g the notations <strong>of</strong> [Murray, 1986], the<br />

warp<strong>in</strong>g function is found to vary along the contour as:<br />

s<br />

λi<br />

ω = ∫ ( h − ) ds<br />

(2.43)<br />

e<br />

0<br />

λi are the unknowns that result from the geometry <strong>of</strong> the closed cross section and determ<strong>in</strong>e the Sa<strong>in</strong>t<br />

Venant torsion constant <strong>of</strong> multi-celled pr<strong>of</strong>ile ([Murray, 1986], [Kollbrunner, 1970],…). The second<br />

order warp<strong>in</strong>g is neglected <strong>in</strong> (2.43).<br />

K<strong>in</strong>ematics <strong>of</strong> Benscoter theory<br />

Benscoter [1954] presented a theory for contours which are composed <strong>of</strong> closed cells where the out <strong>of</strong><br />

plane displacement <strong>of</strong> the cross section is assumed to be proportional to the warp<strong>in</strong>g function ω(y,z)<br />

and to the rate <strong>of</strong> a deformation parameter χ(x) that is found to be a function <strong>of</strong> the angle <strong>of</strong> rotation<br />

θx:<br />

u = - ω (y,z) χ,x(x) (2.44)<br />

The axial displacement is no longer assumed to be proportional to the gradient <strong>of</strong> the torsional angle as<br />

<strong>in</strong> Vlassov theory, but to χ,x.<br />

The k<strong>in</strong>ematic description <strong>of</strong> the displacement field can be formulated as follows:<br />

⎧u<br />

⎫ ⎧<br />

⎫<br />

q − ωχ,<br />

x<br />

⎪ ⎪<br />

⎪ ⎪ ⎪<br />

⎪<br />

⎨v<br />

q ⎬ = ⎨−<br />

( z − zC<br />

) θx<br />

⎬<br />

⎪ ⎪ ⎪<br />

⎪<br />

⎪w<br />

⎪ ⎪ ( y − yC<br />

) θx<br />

⎩ q ⎭ ⎩<br />

⎪⎭<br />

(2.45)<br />

The stra<strong>in</strong> displacement relations (2.46) are deduced from the displacement field (2.45) <strong>in</strong> case <strong>of</strong><br />

l<strong>in</strong>ear analysis:<br />

⎧εx<br />

⎪<br />

⎨2ε<br />

⎪<br />

⎪⎩<br />

2ε<br />

xy<br />

xz<br />

⎫ ⎧−<br />

ωχ,<br />

xx<br />

⎪<br />

⎪<br />

⎬ = ⎨−<br />

ω,<br />

yχ,<br />

⎪ ⎪<br />

⎪⎭<br />

⎪⎩<br />

− ω,<br />

zχ,<br />

x<br />

x<br />

− ( z − z ) θ<br />

c<br />

+ ( y − y ) θ<br />

c<br />

x,<br />

x<br />

x,<br />

x<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎪⎭<br />

(2.46)<br />

This theory is more general than the previous one s<strong>in</strong>ce it takes <strong>in</strong>to account the effects <strong>of</strong> non uniform<br />

warp<strong>in</strong>g <strong>in</strong> shear stra<strong>in</strong>s, contrary to Vlassov formulation. If χ,x is taken equal to θx,x, the stra<strong>in</strong>-<br />

2-19


displacement relations (2.46) are reduced to those <strong>of</strong> Vlassov or Sa<strong>in</strong>t Venant transverse shear stra<strong>in</strong><br />

(2.35). So that for the same cross section (the shape <strong>of</strong> warp<strong>in</strong>g function along the contour ω is the<br />

same), Benscoter degenerates <strong>in</strong>to Vlassov theory. These two theories degenerate <strong>in</strong>to Sa<strong>in</strong>t Venant<br />

theory if χ,xx and θx,xx are assumed to be equal to zero. Indeed, <strong>in</strong> (2.46), normal stra<strong>in</strong>s (εx) and shear<br />

stra<strong>in</strong>s (εxy and εxz) are found to <strong>in</strong>clude warp<strong>in</strong>g effects. De Ville [1989] transformed (equation 2.46)<br />

to (equation 2.47) so that the Sa<strong>in</strong>t Venant part can be explicitly found. The additional warp<strong>in</strong>g effects<br />

can be found from the difference between twist<strong>in</strong>g angle gradient θx,x and warp<strong>in</strong>g degree <strong>of</strong> freedom<br />

χ,x.<br />

⎧εx<br />

⎪<br />

⎨2ε<br />

⎪<br />

⎪⎩<br />

2ε<br />

xy<br />

xz<br />

⎫ ⎧−<br />

ωχ,<br />

⎪<br />

⎪<br />

⎬ = ⎨ω,<br />

y ( θ<br />

⎪ ⎪<br />

⎪⎭<br />

⎪⎩<br />

ω,<br />

z ( θ<br />

xx<br />

x,<br />

x<br />

x,<br />

x<br />

− χ<br />

− χ<br />

, x<br />

, x<br />

) − ( ω<br />

, y<br />

) + ( −ω<br />

+ z − z ) θ<br />

, z<br />

c<br />

+ y − y ) θ<br />

c<br />

x,<br />

x<br />

x,<br />

x<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎪⎭<br />

(2.47)<br />

Equilibrium equations<br />

The simplest way to solve the torsional problem is to evaluate χ as a function <strong>of</strong> the twist θx. The<br />

pr<strong>in</strong>ciple <strong>of</strong> virtual displacements (χ * , θx * ) is used and the result<strong>in</strong>g equations can be written <strong>in</strong> terms<br />

<strong>of</strong> displacements and transformed (as <strong>in</strong> [Murray, 1986, page 132]) to (2.49) or (2.50).<br />

The equation relat<strong>in</strong>g χ to θx is found to be:<br />

2<br />

1 − η mxω<br />

θx, x = χ,<br />

x − χ<br />

2 , xxx +<br />

(2.48)<br />

2<br />

α GI η<br />

2 K 2 2 GK<br />

where η = 1 − , α = η .<br />

Ic<br />

EIω<br />

K is the constant torsion, Ic is the polar constant.<br />

c<br />

Therefore, one equilibrium equation can be written either <strong>with</strong> respect to χ (2.49) or to θx (2.50).<br />

Ic<br />

− K<br />

− EIω<br />

χx<br />

, xxxx + GK χx,<br />

xx + mxω,<br />

x + mx<br />

Ic<br />

or<br />

Ic<br />

− K<br />

= 0<br />

Ic<br />

(2.49)<br />

EIω<br />

Ic<br />

EIω<br />

− θx,<br />

xxxx + GKθx,<br />

xx + mxω,<br />

x + mx<br />

− mx,<br />

xx = 0<br />

(2.50)<br />

I − K<br />

G(<br />

I − K)<br />

c<br />

The <strong>in</strong>ternal forces are also computed as <strong>in</strong> equations (2.40 and 2.41) :<br />

s x<br />

M = GKθ<br />

x,<br />

x<br />

ω<br />

x = mxω<br />

− EIω<br />

M χ<br />

, xx<br />

, xxx<br />

B = −EIω<br />

χ<br />

(2.51)<br />

It is important to note that the torsional moment (2.52), calculated from k<strong>in</strong>ematics (2.43) as a stress<br />

resultant (from 2.24), does not <strong>in</strong>clude second order warp<strong>in</strong>g effects.<br />

c<br />

2-20


GI θ − G( Ic<br />

− K)<br />

χ,<br />

x<br />

(2.52)<br />

Mx = c x,<br />

x<br />

If second order warp<strong>in</strong>g effects are taken <strong>in</strong>to account, the equilibrium equation can be written <strong>with</strong><br />

respect to θx as follows:<br />

EIω<br />

( Ic<br />

+ Ko<br />

)<br />

−<br />

θx,<br />

xxxx<br />

Ic<br />

− K<br />

EIω<br />

+ G(<br />

K + Ko<br />

) θx,<br />

xx + mxω,<br />

x + mx<br />

− mx,<br />

xx = 0<br />

G(<br />

Ic<br />

− K)<br />

(2.53)<br />

Ko is the local rigidity specific to each element <strong>of</strong> the section and calculated by (2.27).<br />

Limitations <strong>of</strong> Benscoter theory and bend<strong>in</strong>g – torsion analogy<br />

It is important to note that the formulation (2.45) is not exact s<strong>in</strong>ce the approximate warp<strong>in</strong>g function<br />

(ω) (2.43) is calculated by assum<strong>in</strong>g that the shear stresses are those <strong>of</strong> uniform torsion. The<br />

k<strong>in</strong>ematics, more general than <strong>in</strong> Vlassov analysis, takes <strong>in</strong>to account more non uniform warp<strong>in</strong>g<br />

effects but they still approximate the real torsional state. As shown below, the associated warp<strong>in</strong>g<br />

shear stra<strong>in</strong>s (2.46) and stresses result from an approximate analysis <strong>of</strong> a very complex stress state.<br />

More developments are required for more accurate theories.<br />

As stated <strong>in</strong> paragraph 2.3.1, an analogy between Timoshenko bend<strong>in</strong>g beam theory and Benscoter<br />

torsional theory is highlighted by DeVille (1989, page 3.54) and is developed hereafter:<br />

Non uniform part <strong>of</strong> Benscoter Torsion theory �� Timoshenko beam theory<br />

(bimoment) B �� M (bend<strong>in</strong>g moment)<br />

(non uniform torsional moment) M ω x �� T (shear force)<br />

(twist<strong>in</strong>g angle) θx �� w (bend<strong>in</strong>g displacement)<br />

(warp<strong>in</strong>g parameter variation along x) χ,x �� -θy (tangent different from the slope)<br />

(warp<strong>in</strong>g function) ω �� z (pr<strong>of</strong>ile bend<strong>in</strong>g distribution )<br />

B −EI<br />

χ<br />

M = −EIw<br />

ω<br />

x<br />

= ω , xx �� , xx<br />

M = −G(<br />

I − K)<br />

χ<br />

c<br />

, x<br />

�� GA(<br />

w ) θ =<br />

T y , x +<br />

Analogy between the non uniform part <strong>of</strong> Benscoter torsion theory and Timoshenko beam theory<br />

- The normality assumption <strong>of</strong> Bernoulli is relaxed <strong>in</strong> Timoshenko beam bend<strong>in</strong>g theory so that shear<br />

effects and a constant state <strong>of</strong> transverse shear stra<strong>in</strong> is <strong>in</strong>cluded. Similarly, Vlassov assumption<br />

HYPV2 is relaxed <strong>in</strong> Benscoter formulation. The shear stra<strong>in</strong>s εxs <strong>in</strong> the mid wall are not neglected.<br />

- In bend<strong>in</strong>g, constant shear stresses and stra<strong>in</strong>s <strong>with</strong> respect to the cross section are computed <strong>with</strong><br />

Timoshenko k<strong>in</strong>ematics. They violate boundary conditions and require shear correction factors to<br />

compensate for this <strong>in</strong>exactitude. In torsion, shear stra<strong>in</strong>s and stresses computed from approximate<br />

Benscoter k<strong>in</strong>ematics are found to be constant along a prismatic wall. By us<strong>in</strong>g Hooke’s law and (2.46<br />

or 2.47), an approximate distribution for torsional warp<strong>in</strong>g shear stresses is found to be constant along<br />

a straight part <strong>of</strong> a contour (ω is l<strong>in</strong>ear <strong>with</strong> respect to s for prismatic th<strong>in</strong> walled cross sections).<br />

Besides, the k<strong>in</strong>ematics gives non zero constant shear stra<strong>in</strong> εxe across the thickness:<br />

2 xe n x,<br />

x x,<br />

x<br />

ε = h ( θ − χ )<br />

(2.54)<br />

2-21


This constant non zero value (2.54) <strong>of</strong> εxe across the thickness violates the boundary condition and is<br />

not taken <strong>in</strong>to account <strong>in</strong> the developments that lead to (2.50 – 2.51). Both (τxs and τxe) stress states<br />

violate the zero boundary condition s<strong>in</strong>ce, as expla<strong>in</strong>ed <strong>in</strong> paragraph 2.2.3.1 (HYPV1), the component<br />

<strong>of</strong> shear stresses which is normal to the outer contours should vanish <strong>in</strong> case <strong>of</strong> absence <strong>of</strong> surface<br />

load<strong>in</strong>g.<br />

- For bend<strong>in</strong>g, Jourawsky eng<strong>in</strong>eer<strong>in</strong>g approach is needed to calculate the shear stresses and force by<br />

consider<strong>in</strong>g an equilibrium equations. Similarly, the exact parabolic shaped distribution <strong>of</strong> torsional<br />

stresses should be deduced from the equilibrium equation (2.55) <strong>in</strong> the longitud<strong>in</strong>al direction.<br />

∂φ<br />

∂σ<br />

= −e<br />

− p(<br />

x,<br />

s)<br />

(2.55)<br />

∂s<br />

∂x<br />

where φ is the flow <strong>of</strong> the shear stresses through the thickness and p(x,s) is a distributed surface load<br />

act<strong>in</strong>g along the longitud<strong>in</strong>al axis x.<br />

2.2.3.3 Application: Non uniform torsion <strong>of</strong> open and closed pr<strong>of</strong>iles<br />

In this application, Vlassov and Benscoter theories (developed <strong>in</strong> paragraphs 2.2.3.1 and 2.2.3.2) are<br />

applied to the case <strong>of</strong> non uniform torsion <strong>of</strong> asymmetrical closed and open cross sections and the<br />

effects <strong>of</strong> second order warp<strong>in</strong>g on Vlassov and Benscoter formulations are computed. In Vlassov<br />

formulation, the warp<strong>in</strong>g is proportional to the gradient <strong>of</strong> the twist<strong>in</strong>g angle (equation 2.31) while <strong>in</strong><br />

Benscoter formulation, the warp<strong>in</strong>g is proportional to a new parameter (2.45).<br />

Two cross sections, open (figure 2.9b) and closed (figure 2.9c), are submitted to a non uniform<br />

torsional load<strong>in</strong>g (figure 2.9a). The closed cross section is <strong>in</strong>troduced by Kolbrunner [1972, page 195].<br />

A uniform distribution <strong>of</strong> torque mx = 500kN/m is applied along the entire length <strong>of</strong> the beam.<br />

L = 20m, t0 = 0.01m. (E = 206GPa, G = 82.4GPa). The cross sections at both ends are prevented from<br />

twist<strong>in</strong>g but are free to warp.<br />

C<br />

L<br />

1.6m<br />

(a) (b) (c)<br />

0.8m<br />

to<br />

4to<br />

Figure 2.9 Open (b) and closed (c) asymmetrical cross sections submitted to non uniform torsion<br />

4to<br />

to<br />

Analysis <strong>of</strong> Open pr<strong>of</strong>ile<br />

Warp<strong>in</strong>g function<br />

The open cross section <strong>in</strong> figure 2.9b is analyzed by us<strong>in</strong>g the k<strong>in</strong>ematics based on Vlassov<br />

assumption (eq. 2.31 and 2.32). For the th<strong>in</strong>-walled open cross section (0.01m


-0.54<br />

Figure 2.10 Pr<strong>in</strong>cipal warp<strong>in</strong>g function [m 2 ] <strong>of</strong> open cross section figure 2.9b<br />

6.E+06<br />

5.E+06<br />

4.E+06<br />

3.E+06<br />

2.E+06<br />

1.E+06<br />

3.E+07<br />

3.E+07<br />

2.E+07<br />

2.E+07<br />

1.E+07<br />

5.E+06<br />

-1.71<br />

0.23<br />

3.09<br />

0.28<br />

Mx Mxst<br />

0.E+00<br />

0 2 4 6 8 10<br />

0.E+00<br />

0 2 4 6 8 10<br />

B<br />

4.E+04<br />

3.E+04<br />

2.E+04<br />

1.E+04<br />

(a) (b)<br />

0.E+00<br />

0 2 4 6 8 10<br />

6.E-02<br />

5.E-02<br />

4.E-02<br />

3.E-02<br />

2.E-02<br />

(c) 1.E-02<br />

(d)<br />

0.E+00<br />

0 2 4 6 8 10<br />

Figure 2.11 Torsional moment Mx = Mx st + Mx ω [Nm], bimoment B [Nm 2 ] and twist<strong>in</strong>g angle teta [rad]<br />

<strong>of</strong> an open asymmetrical th<strong>in</strong> walled beam for x vary<strong>in</strong>g from 0 (left support) till 10m (midspan)<br />

Torsional calculations based on Vlassov theory<br />

The torsional computations are governed by equation (2.36) where the <strong>in</strong>fluence <strong>of</strong> second order<br />

warp<strong>in</strong>g (across the thickness: term GKθx,x) is <strong>in</strong>cluded. The twist<strong>in</strong>g moments, bimoments and<br />

twist<strong>in</strong>g angle are plotted (figure 2.11) for x vary<strong>in</strong>g from zero to L/2 s<strong>in</strong>ce the load<strong>in</strong>g and the<br />

geometry are symmetrical <strong>with</strong> respect to the mid span. Figures (2.11a) and (2.11b) show the variation<br />

<strong>of</strong> Mx and Mx st <strong>with</strong> respect to the longitud<strong>in</strong>al axis part (Mx = Mx st + Mx ω ). The non uniform part (Mx ω )<br />

<strong>of</strong> the twist<strong>in</strong>g moment varies between 99.24% for x = 0 (rema<strong>in</strong><strong>in</strong>g 0.76% is for Sa<strong>in</strong>t Venant part<br />

Mx st ) and 98.86% for x = 9.99m (rema<strong>in</strong><strong>in</strong>g 1.14% is for Sa<strong>in</strong>t Venant part). Figure (2.11d) shows the<br />

variation <strong>of</strong> the twist<strong>in</strong>g angle by solv<strong>in</strong>g equation (2.36). If the part <strong>of</strong> Sa<strong>in</strong>t Venant (GKθx,x) is<br />

neglected, the solution gives an error <strong>of</strong> 0.934% for the maximal twist<strong>in</strong>g angle. Thus, this pr<strong>of</strong>ile can<br />

be analyzed accord<strong>in</strong>g to the theory <strong>of</strong> non uniform torsional theory. The Sa<strong>in</strong>t Venant part can be<br />

neglected. However, apply<strong>in</strong>g the Sa<strong>in</strong>t Venant theory which is strictly restricted to uniform torsion, as<br />

it is done <strong>in</strong> elementary torsional analysis, is not appropriate <strong>in</strong> this case.<br />

Mxst<br />

teta<br />

2-23


Comparison between Vlassov and Benscoter theories<br />

It is <strong>in</strong>terest<strong>in</strong>g to see that Benscoter formulation does not give additional accuracy on the previous<br />

results for which the thickness is very th<strong>in</strong> (0.01m


(2.51) has the major importance. If this part is neglected, the solution gives an error <strong>of</strong> 13268% while<br />

it was 0.934% for the maximal twist<strong>in</strong>g angle <strong>of</strong> the open cross section!<br />

By us<strong>in</strong>g second order warp<strong>in</strong>g effects (2.53), the maximal twist<strong>in</strong>g angle is 0.0007% larger; the<br />

maximal bimoment is 0.109% smaller; the maximal warp<strong>in</strong>g part <strong>of</strong> the torsional moment is 0.08%<br />

smaller and the maximal Sa<strong>in</strong>t Venant part <strong>of</strong> the tosional moment is 0.0034% larger. These small<br />

differences were expected s<strong>in</strong>ce the local rigidity for a closed cross section is very small compared to<br />

the global rigidity (0.108% <strong>in</strong> this case).<br />

6.E+06<br />

5.E+06<br />

4.E+06<br />

3.E+06<br />

2.E+06<br />

1.E+06<br />

Figure 2.13 Rotat<strong>in</strong>g angle teta [rad], torsional moment Mx = Mx st + Mx ω [Nm], and bimoment B<br />

[Nm 2 ] <strong>of</strong> closed asymmetrical th<strong>in</strong> walled beam for x vary<strong>in</strong>g from 0 (left support) till 10m (midspan)<br />

2.2.3.4 Prokić warp<strong>in</strong>g function<br />

Prokić [1990, 1993, 1994 and 1996] kept the assumption that the thickness warp<strong>in</strong>g ut (second order<br />

warp<strong>in</strong>g) varies l<strong>in</strong>early across the thickness and vanishes along the mid-l<strong>in</strong>e. In his work, the<br />

thickness warp<strong>in</strong>g ut is proportional to the derivative <strong>of</strong> the torsional rotation angle θx,x, to the distance<br />

to the midl<strong>in</strong>e e, and to the perpendicular distance hn to the normal issued from the centroïd.<br />

ut = -ωθx,x<br />

7.E-03<br />

6.E-03<br />

4.E-03<br />

3.E-03<br />

1.E-03<br />

teta Bsc teta VL<br />

(2.57)<br />

The first order warp<strong>in</strong>g uc is also considered <strong>in</strong> his work as vary<strong>in</strong>g l<strong>in</strong>early along each polygonal<br />

segment <strong>of</strong> the contour. However, he used a different approach than that <strong>of</strong> Vlassov and Benscoter by<br />

tak<strong>in</strong>g longitud<strong>in</strong>al displacements (ui) at selected po<strong>in</strong>ts <strong>of</strong> the contour called hereafter “transversal<br />

nodes” as additional parameters. The comb<strong>in</strong>ation <strong>of</strong> l<strong>in</strong>ear functions Ω i (vary<strong>in</strong>g along the pr<strong>of</strong>ile<br />

contour between adjacent transversal nodes) <strong>with</strong> these additional parameters describes the contour<br />

warp<strong>in</strong>g <strong>of</strong> the cross section. Ω i is a l<strong>in</strong>ear function along walls hav<strong>in</strong>g a unity value at the transversal<br />

node (i).<br />

(a)<br />

-5.E-04 0 2 4 6 8 10<br />

Mxst VL<br />

Mx<br />

Mxst Bsc<br />

0.E+00<br />

0 2 4 6 8 10<br />

2.E+05<br />

2.E+05<br />

1.E+05<br />

5.E+04<br />

(b) (c)<br />

0.E+00<br />

0 2 4 6 8 10<br />

B<br />

2-25


uc = ∑Ω i ui<br />

(2.58)<br />

This warp<strong>in</strong>g function u = uc +ut has been applied by Prokić to arbitrary shapes <strong>of</strong> th<strong>in</strong>-walled cross<br />

sections, <strong>with</strong>out any dist<strong>in</strong>ction between open and closed pr<strong>of</strong>iles. In his thesis [1990] and papers<br />

[1990, 1993, 1994 and 1996], Prokić stated that the shear center notion is not necessary even <strong>in</strong><br />

study<strong>in</strong>g asymmetrical pr<strong>of</strong>iles.<br />

However, a deep exam<strong>in</strong>ation <strong>of</strong> the work <strong>of</strong> Prokić shows that the proposed k<strong>in</strong>ematics is very<br />

general and not restricted to torsional warp<strong>in</strong>g as it was stated <strong>in</strong> the scope and conclusions <strong>of</strong> his<br />

publications. The warp<strong>in</strong>g function represents a longitud<strong>in</strong>al displacement which is supposed to be<br />

piecewise l<strong>in</strong>ear along the contour. This general formulation, as presented by Prokić, is not<br />

specifically associated <strong>with</strong> the torsional behavior and produces non zero warp<strong>in</strong>g when normal forces,<br />

bend<strong>in</strong>g moments or shear forces are applied. Besides, the k<strong>in</strong>ematic formulation assumes def<strong>in</strong>itely<br />

that the cross section rotates around the centroid. With<strong>in</strong> these limitations, his theory is limited to pure<br />

uncoupled torsional problems for bi-symmetrical cross sections where the centroid and the shear<br />

center co<strong>in</strong>cide. His calculations are for <strong>in</strong>stance not valid for beams <strong>with</strong> asymmetrical cross sections<br />

submitted to a transversal load act<strong>in</strong>g along the centroidal axis, s<strong>in</strong>ce this load <strong>in</strong>duces torsion coupled<br />

<strong>with</strong> bend<strong>in</strong>g. In his published articles and thesis, numerical results are <strong>in</strong>deed limited to uncoupled<br />

l<strong>in</strong>ear torsional problems.<br />

The purpose <strong>of</strong> the present work is to contribute to the validation <strong>of</strong> this new approach <strong>of</strong> model<strong>in</strong>g the<br />

torsional behavior <strong>of</strong> th<strong>in</strong> walled beams by enhancement <strong>of</strong> Prokić k<strong>in</strong>ematic formulation and by<br />

illustration <strong>of</strong> its application to practical problems not considered by Prokić. In order to def<strong>in</strong>e,<br />

characterize and uncouple warp<strong>in</strong>g effects due to shear forces, torsion and distortion, additional<br />

equations are required to adapt this general formulation (2.58) to each specific problem. Detailed<br />

analyses and results are given <strong>in</strong> the follow<strong>in</strong>g chapters for arbitrary cross sections by discretiz<strong>in</strong>g the<br />

pr<strong>of</strong>ile (warp<strong>in</strong>g parameters ui). The second assumption <strong>of</strong> Vlassov HYPV2 is relaxed so that normal<br />

and shear stra<strong>in</strong>s <strong>in</strong>clude the effects <strong>of</strong> non uniform warp<strong>in</strong>g. They <strong>in</strong>clude uniform and non uniform<br />

torsional effects. As <strong>in</strong> Vlassov or Benscoter theories, the exact distribution <strong>of</strong> normal stresses, which<br />

is l<strong>in</strong>ear along straight segments <strong>of</strong> the contour, is found by us<strong>in</strong>g Hooke law. In addition, the<br />

distribution <strong>of</strong> shear stresses which is parabolic along straight segments <strong>of</strong> the contour, is also found<br />

by us<strong>in</strong>g Hooke law. It is hereby assumed to be constant between two transversal nodes. Therefore, the<br />

shape <strong>of</strong> this distribution is obta<strong>in</strong>ed more accurately when the number <strong>of</strong> transversal nodes <strong>in</strong>creases.<br />

This formulation is applied and validated for the complicated behavior <strong>of</strong> th<strong>in</strong> walled beams.<br />

2-26


2.3 Distortion<br />

2.3.1 General overview<br />

A s<strong>in</strong>gle th<strong>in</strong> rectangular plate is very flexible when loaded perpendicularly to its plane and behaves<br />

very stiffly if bended <strong>in</strong> its plane. However, when connected to other th<strong>in</strong> plates <strong>with</strong> different<br />

orientations (e.g. assembl<strong>in</strong>g plates at 90° as shown <strong>in</strong> figure 2.15), advantageous effects make this<br />

assembly an optimal way for carry<strong>in</strong>g transverse load<strong>in</strong>g. An assembly <strong>of</strong> th<strong>in</strong> “walls” or plates along<br />

their longitud<strong>in</strong>al axes constitutes a th<strong>in</strong> walled beam for which local and global deformations can be<br />

dist<strong>in</strong>guished as follows:<br />

- A deformation is noted ‘global’ when the whole member length is <strong>in</strong>volved and when the cross<br />

section is assumed to ma<strong>in</strong>ta<strong>in</strong> its shape <strong>with</strong>out any distortion (e.g. figure 2.14a). The accuracy <strong>of</strong> this<br />

assumption depends on the stiffness <strong>of</strong> the transverse frame constitut<strong>in</strong>g the shape <strong>of</strong> the beam pr<strong>of</strong>ile<br />

contour and on the beam load<strong>in</strong>g act<strong>in</strong>g along the longitud<strong>in</strong>al axis and <strong>with</strong><strong>in</strong> the cross sectional<br />

plane. A high stiffness result<strong>in</strong>g from the assembly <strong>of</strong> all the <strong>in</strong>dividual plates is required <strong>in</strong> order to<br />

resist to a load<strong>in</strong>g by tension/compression, bend<strong>in</strong>g and/or torsion global beam behaviors.<br />

(a) (b)<br />

(c)<br />

Figure 2.14 (a) A global behavior: bend<strong>in</strong>g <strong>of</strong> an I beam; (b); a local behavior that <strong>in</strong>volves one plate<br />

<strong>of</strong> a Z beam; (c) a distortional behavior<br />

- A ‘local’ deformation <strong>in</strong>duces ‘plate’ displacements which are localized on a small area <strong>of</strong> one th<strong>in</strong><br />

wall <strong>with</strong>out be<strong>in</strong>g extended to other walls or plates (e.g. figure 2.14b). It <strong>in</strong>volves the out-<strong>of</strong>-plane<br />

flexibility <strong>of</strong> the correspond<strong>in</strong>g plate element and does not <strong>in</strong>clude the cross-sectional stiffness.<br />

- A distortional behavior is associated <strong>with</strong> a change <strong>in</strong> the shape <strong>of</strong> the cross section that concerns<br />

usually the entire cross section geometry (figure 2.14c). The effects <strong>of</strong> this deformation vary relatively<br />

slowly along the member length. It is classified between the previous deformation types (‘global’ and<br />

2-27


‘local’) considered as two limit cases: the first limit case prevents entirely the distortion and describes<br />

the deformation <strong>of</strong> a rigid cross section that ma<strong>in</strong>ta<strong>in</strong>s its shape. The second limit case assumes that<br />

the beam plates are h<strong>in</strong>ged along their longitud<strong>in</strong>al edges so that the cross section is no longer forced<br />

to ma<strong>in</strong>ta<strong>in</strong> its shape and its stiffness is entirely neglected. In the second case, the walls must be loaded<br />

<strong>in</strong> their planes as isolated members.<br />

For <strong>in</strong>stance, a load (figure 2.15a) act<strong>in</strong>g <strong>in</strong> the cross section plane as shown <strong>in</strong> figure 2.15 <strong>in</strong>duces not<br />

only bend<strong>in</strong>g and torsion (2.15b) but also distortion (2.15c). Similarly to the torsional behavior<br />

overviewed <strong>in</strong> section 2.2, the distortion depends to a large extent on the cross sectional geometry and<br />

specifically, whether the section is open or closed. A ‘non uniform’ distortion <strong>of</strong> the cross section,<br />

accompanied by an out-<strong>of</strong>-plane plate bend<strong>in</strong>g, <strong>in</strong>duces non uniform shear and axial stresses together<br />

<strong>with</strong> a non uniform warp<strong>in</strong>g <strong>of</strong> the cross section.<br />

= +<br />

(a) (b) (c)<br />

Figure 2.15 A transversal load (a) separated <strong>in</strong>to: flexural & torsional load<strong>in</strong>g (b) and distortional<br />

load<strong>in</strong>g (c) (after Takahashi 1978)<br />

The effects <strong>of</strong> such a distortion, usually significant for very th<strong>in</strong> walled open sections (and for th<strong>in</strong><br />

walled closed sections <strong>with</strong> high distortional load<strong>in</strong>gs), have to be analyzed <strong>in</strong> order to optimize the<br />

design <strong>of</strong> beams and columns and to determ<strong>in</strong>e an economical use <strong>of</strong> diaphragms and brac<strong>in</strong>g <strong>in</strong> real<br />

life structures. Recent experiments ([Serrette 1997]; [Kesti 1999]…) as well as theoretical<br />

<strong>in</strong>vestigations ([Takahashi 1978]; [Hancock 1978]; [Bradford 1992]; [Hancock 1998]; [Gonçalves<br />

2004]; [Silvestre 2004]…) have shown the <strong>in</strong>fluence <strong>of</strong> the contour distortion on the behavior <strong>of</strong> th<strong>in</strong><br />

walled beams (depend<strong>in</strong>g on the wall thickness, pr<strong>of</strong>ile shape …). Because <strong>of</strong> the general tendency to<br />

<strong>in</strong>crease the slenderness and to optimize the shape, further research is still required for simple, safe<br />

and economical calculations.<br />

2.3.2 Problem def<strong>in</strong>ition<br />

In this research work, the mechanical type <strong>of</strong> distortion is ma<strong>in</strong>ly derived from the work <strong>of</strong> Takahashi<br />

et al. [1978; 1980; 1982; 1987; 2001; 2003]. Takahashi developed analytical formulations [1978,<br />

1980, 1982, 1987] for open pr<strong>of</strong>iles <strong>with</strong> a warp<strong>in</strong>g function based on the well known Vlassov<br />

assumptions (HYPV1, HYPV2). Furthermore, he studied the distortion <strong>of</strong> closed pr<strong>of</strong>iles (2001) <strong>in</strong> a<br />

similar approach to that done by Vlassov (1961, chapter IV).<br />

The distortion <strong>of</strong> a pr<strong>of</strong>ile <strong>in</strong>duces relative rotations <strong>of</strong> transversal segments separated by transversal<br />

nodes behav<strong>in</strong>g as jo<strong>in</strong>ts or h<strong>in</strong>ges (figures 2.17, 2.18a…). By tak<strong>in</strong>g an arbitrary transversal node as a<br />

reference <strong>in</strong> the cross sectional plane, it is clear that the relative position <strong>of</strong> the other nodes changes<br />

dur<strong>in</strong>g this type <strong>of</strong> deformation. In addition, these <strong>in</strong>ner segments, <strong>in</strong>itially straight before load<strong>in</strong>g,<br />

bend and become curved (figure 2.17).<br />

A cross sectional distortion results therefore <strong>in</strong>:<br />

-relative rotations <strong>of</strong> contour parts <strong>in</strong> the cross sectional plane,<br />

2-28


-local bend<strong>in</strong>g <strong>of</strong> <strong>in</strong>ner transversal segments,<br />

-non uniform warp<strong>in</strong>g (beam longitud<strong>in</strong>al displacement or an out-<strong>of</strong>-cross-sectional-plane<br />

displacement).<br />

In case <strong>of</strong> pure distortion (neither stretch<strong>in</strong>g, nor bend<strong>in</strong>g or torsion), the specific po<strong>in</strong>t around which<br />

each contour part rotates is called the associated distortional center.<br />

Figure 2.16 ‘yz’ beam axes and ‘se’ local axes<br />

Figure 2.17 Distortional modes<br />

The beam, considered as an assembly <strong>of</strong> th<strong>in</strong> plates connected by longitud<strong>in</strong>al axes, resists to the<br />

transverse load<strong>in</strong>g that results from distortion (i.e. load<strong>in</strong>g <strong>in</strong> figure 2.15) by membrane stiffen<strong>in</strong>g at<br />

the connect<strong>in</strong>g axes. Each <strong>in</strong>ner plate bends <strong>in</strong> the se or yz plane (i.e. �� <strong>in</strong> figure 2.16) s<strong>in</strong>ce it is<br />

located between two ‘rigidify<strong>in</strong>g’ connections. This plate bend<strong>in</strong>g accompanies the relative rotation <strong>of</strong><br />

<strong>in</strong>ner plates (�� and �� <strong>in</strong> figure 2.16) <strong>in</strong> the (yz) plane around the longitud<strong>in</strong>al axis (�)<br />

considered to be partially ‘h<strong>in</strong>ged’. However, an outer plate is submitted to the restra<strong>in</strong><strong>in</strong>g effects at<br />

only one connection axis and resists to these effects by rotat<strong>in</strong>g ‘freely’ s<strong>in</strong>ce it has a free edge.<br />

Cright<br />

Jo<strong>in</strong>t �<br />

Cleft<br />

� � � � � �<br />

(a) (b)<br />

� �<br />

Figure 2.18 (a): Two cross section blocks (1-2-3 & 3-4-5) associated <strong>with</strong> the distortional jo<strong>in</strong>t 3; (b)<br />

cross section <strong>with</strong> no distortional modes<br />

Thus, the bend<strong>in</strong>g <strong>of</strong> transversal edge segments (1/2 & n-1/n <strong>of</strong> an open pr<strong>of</strong>ile <strong>with</strong>out ramifications<br />

where n is the number <strong>of</strong> transverse nodes separat<strong>in</strong>g straight segments <strong>of</strong> a pr<strong>of</strong>ile) is considered to be<br />

2-29


a local phenomenon and is not taken <strong>in</strong>to account <strong>in</strong> the cross sectional distortion studied afterwards.<br />

For the same reason, the distortion <strong>of</strong> particular pr<strong>of</strong>iles such as (⊥, ∠, +, z , I…) will not be analyzed<br />

<strong>with</strong><strong>in</strong> this beam theory s<strong>in</strong>ce the associated cross sectional deformation is classified to be ‘local’. A<br />

classified ‘local’ out-<strong>of</strong>-plane bend<strong>in</strong>g <strong>of</strong> a s<strong>in</strong>gle plate (plate �� <strong>in</strong> figure 2.18b) occurs <strong>with</strong>out any<br />

significant relative plate rotations around an associate transversal node (such as that <strong>in</strong> 2.18a for<br />

example). Consequently, the distortional contour warp<strong>in</strong>g function <strong>of</strong> similar pr<strong>of</strong>iles is assumed to be<br />

zero <strong>in</strong> this study.<br />

In order to formulate mathematically the distortional behavior, a superposition <strong>of</strong> m (m = n-3 for open<br />

pr<strong>of</strong>iles <strong>with</strong>out ramifications) distortional modes is considered. Each distortional mode “I” is related<br />

to a transversal node or jo<strong>in</strong>t which divides the cross section <strong>in</strong>to rigid blocks <strong>of</strong> two or more<br />

transversal segments (blocks 1-2-3 & 3-4-5 <strong>in</strong> figure 2.18a). Each distortional mode is characterized<br />

by the relative rotation <strong>of</strong> these blocks around the correspond<strong>in</strong>g distortional centers (two distortional<br />

centers <strong>in</strong> figure 2.18a). Similarly to torsion, the geometrical location <strong>of</strong> the distortional centers is<br />

determ<strong>in</strong>ed by ensur<strong>in</strong>g the decoupl<strong>in</strong>g <strong>of</strong> the stretch<strong>in</strong>g/bend<strong>in</strong>g/torsion/distortion effects. The<br />

distortional centers, related to a specific distortional mode “I”, are def<strong>in</strong>ed by sett<strong>in</strong>g that the rotations<br />

<strong>of</strong> the associated rigid parts do not <strong>in</strong>duce any axial, bend<strong>in</strong>g, torsional or other distortional (except<br />

“I”) behaviors. For the clarity <strong>of</strong> the dissertation, these centers are presumed to be designated. Their<br />

determ<strong>in</strong>ation is developed <strong>in</strong> §4.4.3 (analytically) and §5.4.3 (numerically).<br />

A transversal node that belongs to an edge transversal segment (1, 2, 4 & 5 <strong>in</strong> figure 2.18a; 1, 2, 3 & 4<br />

<strong>in</strong> figure 2.18b) cannot be selected to be a distortional jo<strong>in</strong>t. The selection <strong>of</strong> an edge node (1 & 5 <strong>in</strong><br />

figure 2.18a; 1 & 4 <strong>in</strong> figure 2.18b) corresponds to a torsional behavior s<strong>in</strong>ce there is a one-rigidcross-sectional<br />

rotation. The <strong>in</strong>ner transversal nodes <strong>of</strong> edge segments are not considered hereby as<br />

distortional jo<strong>in</strong>ts s<strong>in</strong>ce the associate deformation deals <strong>with</strong> a classified local phenomenon as<br />

expla<strong>in</strong>ed upwards. A relative rotation <strong>of</strong> rigid blocks separated by an <strong>in</strong>ner node <strong>of</strong> edge segments<br />

(nodes 2 and 3 <strong>in</strong> figure 2.18b, 2 and 4 <strong>in</strong> figure 2.18a) is neglected s<strong>in</strong>ce it is considered to be<br />

<strong>in</strong>significant and lead<strong>in</strong>g to local out-<strong>of</strong>-plane bend<strong>in</strong>g <strong>of</strong> <strong>in</strong>dividual plates.<br />

2.3.3 Assumptions for Takahashi model<br />

The distortion analyzed by Takahashi [e.g. 1980] is based on the follow<strong>in</strong>g assumptions:<br />

HYPT1- εxe. Similarly to Vlassov assumption <strong>in</strong> the case <strong>of</strong> torsion (cf. HYPV1 <strong>in</strong> §2.2.3), the change<br />

<strong>of</strong> angle between longitud<strong>in</strong>al (x) and thickness (e) coord<strong>in</strong>ate l<strong>in</strong>es is considered to be equal to zero.<br />

The no-shear boundary condition implies zero shear stresses at the exterior fibers <strong>in</strong> case <strong>of</strong> absence <strong>of</strong><br />

surface load<strong>in</strong>g. Due to the geometry <strong>of</strong> very th<strong>in</strong> pr<strong>of</strong>iles, shear stresses (and thus stra<strong>in</strong>s) <strong>in</strong>side a<br />

th<strong>in</strong>-walled member are nearly parallel to the contour.<br />

HYPT2- εxs at the mid wall <strong>of</strong> open pr<strong>of</strong>iles. Similarly to HYPV2 <strong>in</strong> §2.2.3, the change <strong>of</strong> angle<br />

between longitud<strong>in</strong>al (x) and contour (s) coord<strong>in</strong>ate l<strong>in</strong>es is neglected at the midwall <strong>of</strong> an open pr<strong>of</strong>ile<br />

or branch. Two coord<strong>in</strong>ate l<strong>in</strong>es along x and s on a mid wall, <strong>in</strong>itially perpendicular before load<strong>in</strong>g, are<br />

supposed to rema<strong>in</strong> perpendicular after deformation. Similarly to torsional calculations (equation 2.33<br />

<strong>in</strong> §2.2.3), the warp<strong>in</strong>g function used by Takahashi is calculated by an approximate theory consider<strong>in</strong>g<br />

only uniform distortional shear stra<strong>in</strong>.<br />

In addition, other assumptions are considered below:<br />

HYPT3- The present distortional computations <strong>in</strong>clude the local plate bend<strong>in</strong>g <strong>of</strong> the <strong>in</strong>ner plates <strong>in</strong><br />

the (se) plane. Due to the dimensions <strong>of</strong> each th<strong>in</strong> plate constitut<strong>in</strong>g the beam (Lx >> Ls), the other<br />

plate bend<strong>in</strong>g (xe plane) is classified as a local phenomenon and is not taken <strong>in</strong>to account <strong>in</strong> this study.<br />

2-30


HYPT4- The Poisson effects are neglected s<strong>in</strong>ce normal stresses σs, associated <strong>with</strong> a local bend<strong>in</strong>g<br />

phenomenon vanish<strong>in</strong>g at the mid wall, have small effects compared to those <strong>of</strong> σx. So that for an<br />

elastic material:<br />

σx = E εx<br />

(2.59)<br />

σs = E εs<br />

(2.60)<br />

HYPT5- The out-<strong>of</strong>-plane local bend<strong>in</strong>g <strong>of</strong> th<strong>in</strong> plates is governed by the normality assumption. A<br />

local surface (xe) is assumed to rema<strong>in</strong> planar after deformation and perpendicular to the material<br />

po<strong>in</strong>ts located on the axis (s) before deformation.<br />

2.3.4 K<strong>in</strong>ematics<br />

Global displacement field<br />

Takahashi [1978, 1980, 1982, 1987] studied the distortion <strong>of</strong> an open pr<strong>of</strong>ile <strong>with</strong>out ramifications<br />

(e.g. figure 2.19). The ‘global’ displacement field at any po<strong>in</strong>t q(x,y,z) <strong>of</strong> the cross section associated<br />

<strong>with</strong> the distorsional modes (I = 1…m) is given by:<br />

⎫ ⎧<br />

q ⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

q =<br />

m<br />

⎫<br />

∑ω<br />

Iµθ I xI,x ⎪<br />

I= 1<br />

⎪<br />

m<br />

⎪<br />

∑ − − CI µ IθxI I= 1<br />

q<br />

m<br />

∑<br />

I= 1<br />

− CI µ IθxI ⎧<br />

⎪ u<br />

⎪<br />

⎪<br />

⎨ v ⎬ ⎨ (z z ) ⎬<br />

⎪ ⎪ ⎪ ⎪<br />

⎪ ⎪ ⎪ ⎪<br />

⎪ w ⎪ ⎪ (y y ) ⎪<br />

⎩ ⎭ ⎩ ⎭<br />

� �<br />

Figure 2.19 Open cross section <strong>with</strong>out ramifications<br />

�<br />

�<br />

�<br />

�<br />

� �<br />

(2.61)<br />

Each distortional degree <strong>of</strong> freedom θxI is associated <strong>with</strong> a distortional jo<strong>in</strong>t I (I = 1…m) and is taken<br />

as the rotation <strong>of</strong> the right part <strong>of</strong> the contour (I-I+1-…-n) around the right distortional rotation center<br />

CIR. The rotation <strong>of</strong> the left part <strong>of</strong> the contour (1-2-…I) around the left distortional rotation center CIL<br />

is measured by µθxI. µ is the specific rotat<strong>in</strong>g ratio between right and left sectional parts. For a<br />

monosymmetrical pr<strong>of</strong>ile (i.e. pr<strong>of</strong>ile <strong>in</strong> figures 2.18), µ is equal to -1. ω I , depend<strong>in</strong>g on s, is the<br />

distortional warp<strong>in</strong>g function calculated from (HYPT1 and HYPT2) and found to be:<br />

2-31


s<br />

ω I = ∫ hds<br />

(2.62)<br />

0<br />

For an arbitrary po<strong>in</strong>t q, the function h (s) is calculated as the distance from the associated distortional<br />

center (right or left part distortional center) to the tangent to the mid wall at q.<br />

For each distortional mode I, I µ , y CI and z CI are functions <strong>of</strong> the contour length (s).<br />

At the right part (I - I+1 - … - n) <strong>of</strong> the contour <strong>of</strong> an open pr<strong>of</strong>ile <strong>with</strong>out ramifications (e.g. figure<br />

2.19), I µ is equal to 1, y CI is equal to the y ord<strong>in</strong>ate <strong>of</strong> the right distortional rotation center and z CI is<br />

equal to the z ord<strong>in</strong>ate <strong>of</strong> the right distortional rotation center. At the left part (1 - 2 - … - I) <strong>of</strong> the<br />

contour, I µ is equal to the specific rotat<strong>in</strong>g ratio µ, y CI is equal to the y ord<strong>in</strong>ate <strong>of</strong> the left<br />

distortional rotation center and z CI is equal to the z ord<strong>in</strong>ate <strong>of</strong> the left distortional rotation center.<br />

Additional ‘local’ displacement field<br />

In addition, for each <strong>of</strong> the (m = n-3) distortional modes, the relative rotation <strong>of</strong> the associated cross<br />

sectional blocks (mathematically formulated by 2.61) <strong>in</strong>duces a local “out-<strong>of</strong>-plane” bend<strong>in</strong>g <strong>of</strong> the<br />

<strong>in</strong>ner plates. The associated displacement field is localized <strong>in</strong> the (se) plane. S<strong>in</strong>ce the plate bend<strong>in</strong>g <strong>in</strong><br />

the other transversal direction (xe plane) is neglected (HYPT3), it is possible to isolate a unit length<br />

strip (figure 2.20a). The local contour system (x,s,e) shown <strong>in</strong> figure 2.16 is used and the transversal<br />

(s,e) displacements associated <strong>with</strong> a (se) plate bend<strong>in</strong>g are:<br />

ξ (x,s) = ΓI(s) θ xI(x)e<br />

(2.63)<br />

η (x,s) =η (x,s)<br />

(2.64)<br />

I<br />

Γ I , a function <strong>of</strong> (s), depends <strong>in</strong> general on the pr<strong>of</strong>ile geometry and on the material behavior and<br />

results from the membrane stiffen<strong>in</strong>g <strong>of</strong> the assembled plates for each distortional mode I associated<br />

<strong>with</strong> block rotations.<br />

The normality assumption through the thickness <strong>of</strong> the wall is kept (HYPT5) for this local bend<strong>in</strong>g, so<br />

that the material po<strong>in</strong>ts, located on a normal to a surface (xe) rema<strong>in</strong> on a l<strong>in</strong>e normal to the deformed<br />

middle surface. The change <strong>in</strong> angle between (s) direction and (e) direction is assumed to vanish:<br />

ε se =ΓI(s) θ xI(x) +η I,s(x,s)<br />

= 0<br />

so that:<br />

(2.65)<br />

−η (x,s) = Γ (s) θ (x)<br />

(2.66)<br />

I,s I xI<br />

If the material is assumed to be elastic and the Poisson effects are neglected (HYPT4), the stra<strong>in</strong> and<br />

stress εss and σss are thus related by Hooke law:<br />

ss ,ss I,s xIe ε =ξ = Γ θ (2.67)<br />

σ ss = Eε ss = EΓI,sθ xIe<br />

(2.68)<br />

The correspond<strong>in</strong>g bend<strong>in</strong>g moment is calculated by us<strong>in</strong>g a variable separation (s and x dependent<br />

variables) as a resultant <strong>of</strong> the above stresses:<br />

3<br />

s<br />

t<br />

xI θ xI = σ ss = ΓI,sθxI M (s) (x) ∫ e de E (2.69)<br />

12<br />

2-32


so that<br />

s<br />

MxIθxI<br />

ss 3<br />

σ = 12 e<br />

(2.70)<br />

t<br />

θxI(x) measures the amount <strong>of</strong> twist. Similarly to I Γ , MsxI(s) (=Et 3<br />

Γ I,s /12) results from the membrane<br />

stiffen<strong>in</strong>g that rigidifies the <strong>in</strong>ternal transversal segments dur<strong>in</strong>g a relative ‘unit’ twist <strong>of</strong> the blocks<br />

around the associated jo<strong>in</strong>t. This function vanishes at the outer edge segments <strong>of</strong> an open pr<strong>of</strong>ile.<br />

M s xI(s) (e.g. figure 2.20c) is calculated by tak<strong>in</strong>g the pr<strong>of</strong>ile shape (figure 2.20b) as a frame <strong>with</strong><br />

simple supports at <strong>in</strong>ner transversal nodes and free boundary conditions at the edges. A ‘unit’ relative<br />

rotation (1-µ) is applied at the rigid jo<strong>in</strong>t I as an imposed relative rotation. The distribution <strong>of</strong> M s xI(s)<br />

along the pr<strong>of</strong>ile contour is determ<strong>in</strong>ed by any standard force or displacement method for determ<strong>in</strong><strong>in</strong>g<br />

the bend<strong>in</strong>g moment distribution <strong>in</strong> statically <strong>in</strong>determ<strong>in</strong>ate frames.<br />

-µ<br />

(a)<br />

1<br />

(b) (c)<br />

Figure 2.20 (a) An isolated unit length strip; stiffen<strong>in</strong>g effects represented by the distribution <strong>of</strong> Ms xI<br />

along the pr<strong>of</strong>ile contour (c) depend<strong>in</strong>g on the pr<strong>of</strong>ile geometry (b)<br />

1<br />

E(1 −µ )<br />

L<br />

4(<br />

t<br />

L<br />

t<br />

)<br />

I<br />

I + I+ 1<br />

3 3<br />

I I+ 1<br />

tI<br />

LI+1<br />

tI+1<br />

LI<br />

2-33


Distortional centers and jo<strong>in</strong>t dependency:<br />

For each distortional mode, the associated jo<strong>in</strong>t and rotation centers are geometrically dependent. A<br />

jo<strong>in</strong>t I divides the cross section <strong>in</strong>to kI rigid parts. The jo<strong>in</strong>t I is the <strong>in</strong>tersection po<strong>in</strong>t that belongs to all<br />

<strong>of</strong> these parts. The rotation <strong>of</strong> a po<strong>in</strong>t q <strong>of</strong> a specific rigid part (kI) around its own rotational center<br />

(y ,z ) is measured by µ θ so that:<br />

CkI CkI<br />

q CkI kI xI<br />

kIxI v =−(z− z ) µ θ (2.72)<br />

w = (y− y ) µ θ (2.73)<br />

q CkI kI xI<br />

S<strong>in</strong>ce the po<strong>in</strong>t I belongs to all <strong>of</strong> these parts, the two follow<strong>in</strong>g equations are valid for all values <strong>of</strong> kI:<br />

v =−(z − z ) µ θ (2.74)<br />

I I CkI kI xI<br />

w = (y − y ) µ θ (2.75)<br />

I I Ck k xI<br />

I I<br />

z − z =µ (z − z )<br />

(2.76)<br />

I CLI k I CkI<br />

y − y =µ (y − y )<br />

(2.77)<br />

I CLI k I CkI<br />

From equations (2.76 and 2.77), it is concluded that:<br />

- the distortional centers CkI and jo<strong>in</strong>t I are aligned;<br />

- the ratio ICkI /ICI (distances between distortional jo<strong>in</strong>t and distortional centers, one distortional<br />

part is taken as reference) is equal to µk.<br />

2.4 Buckl<strong>in</strong>g <strong>of</strong> elastic th<strong>in</strong> walled columns<br />

In a l<strong>in</strong>ear analysis (paragraphs 2.1, 2.2 and 2.3), beams and columns deflect accord<strong>in</strong>g to their applied<br />

load<strong>in</strong>g. A beam-column loaded longitud<strong>in</strong>ally through its centroidal axis is supposed to be submitted<br />

to pure tension or pure compression <strong>with</strong>out any bend<strong>in</strong>g or torsion. However, s<strong>in</strong>ce th<strong>in</strong>-walled<br />

structures may have low lateral bend<strong>in</strong>g and/or torsional stiffnesses, elements may fail <strong>in</strong> a flexural or<br />

flexural-torsional buckl<strong>in</strong>g mode. When the load <strong>in</strong>creases, the response <strong>of</strong> the beam or column<br />

rema<strong>in</strong>s theoretically l<strong>in</strong>ear until the value <strong>of</strong> the critical load is reached. The element suddenly<br />

deflects laterally or/and twists out <strong>of</strong> the plane <strong>of</strong> load<strong>in</strong>g. This buckl<strong>in</strong>g occurs when the second-order<br />

moments caused by the product <strong>of</strong> the applied axial compression P <strong>with</strong> the transvesal displacements<br />

are equal to the <strong>in</strong>ternal bend<strong>in</strong>g or torsional resistances (2.78, 2.79 and 2.80). The criterion to<br />

determ<strong>in</strong>e the buckl<strong>in</strong>g state is the s<strong>in</strong>gularity <strong>of</strong> the system <strong>of</strong> structure equilibrium equations [De<br />

Ville 1989 page 4.12; Waszczyszyn 1994 page 45; …].<br />

In this paragraph, the <strong>in</strong>stability analysis <strong>of</strong> elastic structures orig<strong>in</strong>ated by the <strong>in</strong>teraction <strong>of</strong> buckl<strong>in</strong>g<br />

modes is presented <strong>with</strong> two different warp<strong>in</strong>g functions. Distortion is not considered.<br />

2.4.1 Us<strong>in</strong>g Vlassov warp<strong>in</strong>g function<br />

For small deflections <strong>of</strong> arbitrary cross sections, the general govern<strong>in</strong>g equations may be obta<strong>in</strong>ed <strong>in</strong> a<br />

simple manner by study<strong>in</strong>g the static load-deflection behavior equations (e.g. [Murray, 1986, page<br />

172]):<br />

EIz v,xxxx + P(v ,xx + z Cθ x,xx ) = 0<br />

(2.78)<br />

2-34


EIy w,xxxx + P(w,xx −y C θ x,xx ) = 0<br />

(2.79)<br />

For open cross sections, the third equation (2.80) may be obta<strong>in</strong>ed by us<strong>in</strong>g Vlassov warp<strong>in</strong>g function<br />

[Murray, 1986, page 175]:<br />

2<br />

ω x,xxxx C x,xx C ,xx C ,xx<br />

EI θ −(GK−Pi ) θ + Pz v − Py w = 0<br />

(2.80)<br />

where i0 2 = (Iy+Iz)/A, ic 2 =io 2 +yC 2 +zC 2 , Iz and Iy are the pr<strong>in</strong>cipal moments <strong>of</strong> <strong>in</strong>ertia <strong>of</strong> the cross section<br />

about the axes <strong>of</strong> bend<strong>in</strong>g, GK is the torsional rigidity, and Iω is the warp<strong>in</strong>g rigidity computed by<br />

us<strong>in</strong>g Vlassov theory.<br />

It can be easily seen that, for doubly symmetrical cross sections whose centroid and shear center<br />

co<strong>in</strong>cide (yC = zC = 0), equations (2.78, 2.79 and 2.80) are uncoupled. Buckl<strong>in</strong>g occurs either <strong>in</strong> a<br />

flexural or <strong>in</strong> a torsional mode. Only the transversal displacement v (or w) is <strong>in</strong>volved <strong>in</strong> the flexural<br />

buckl<strong>in</strong>g <strong>of</strong> equation 2.78 when zC = 0 (or equation 2.79 when yC = 0). The torsional buckl<strong>in</strong>g <strong>in</strong>volves<br />

the twist<strong>in</strong>g rotation θx <strong>of</strong> the cross-section <strong>in</strong> equation 2.80 when yC = zC = 0. For monosymmetrical<br />

cross sections, torsion <strong>in</strong>teracts <strong>with</strong> bend<strong>in</strong>g <strong>in</strong> the symmetric plane to <strong>in</strong>itiate a flexural-torsional<br />

buckl<strong>in</strong>g while the other flexure is uncoupled and <strong>in</strong>itiates a pure flexure buckl<strong>in</strong>g. In general, for<br />

asymmetrical cross sections, the centroid and the shear center do not co<strong>in</strong>cide and the three<br />

equilibrium equations are coupled: the column buckles <strong>in</strong> a flexural-torsional mode. It twists and<br />

bends simultaneously and the correspond<strong>in</strong>g buckl<strong>in</strong>g mode <strong>in</strong>volves both lateral displacements (v,w)<br />

out <strong>of</strong> the plane <strong>of</strong> load<strong>in</strong>g and twist<strong>in</strong>g rotation θx; buckl<strong>in</strong>g is therefore resisted by a comb<strong>in</strong>ation <strong>of</strong><br />

bend<strong>in</strong>g and torsional resistances.<br />

The system <strong>of</strong> three equations (2.78), (2.79) and (2.80) represents an eigenvalue problem. The solution<br />

<strong>of</strong> the system is given by solv<strong>in</strong>g the previous set <strong>of</strong> equations and by giv<strong>in</strong>g buckl<strong>in</strong>g shapes<br />

satisfy<strong>in</strong>g the boundary conditions. Three sets <strong>of</strong> discrete values <strong>of</strong> buckl<strong>in</strong>g loads are obta<strong>in</strong>ed. Only<br />

the lowest critical load is <strong>of</strong> practical <strong>in</strong>terest.<br />

2.4.2 Us<strong>in</strong>g Benscoter warp<strong>in</strong>g function<br />

Usually, <strong>in</strong> the literature, flexural torsional buckl<strong>in</strong>g is restricted to the case <strong>of</strong> beams or columns <strong>with</strong><br />

open cross sections. Due to its high torsional and bend<strong>in</strong>g stiffnesses, a column <strong>with</strong> a closed cross<br />

section will generally not collapse by global <strong>in</strong>stability but rather by local buckl<strong>in</strong>g or yield<strong>in</strong>g.<br />

Therefore, to study the flexural torsional buckl<strong>in</strong>g <strong>of</strong> a structural element <strong>with</strong> the k<strong>in</strong>d <strong>of</strong> cross section<br />

represented <strong>in</strong> figure 2.21 which is neither totally open, nor fully closed, the follow<strong>in</strong>g govern<strong>in</strong>g<br />

equations <strong>of</strong> flexural torsional buckl<strong>in</strong>g are developed hereby by us<strong>in</strong>g Benscoter torsional theory.<br />

Figure 2.21 Cross sections conta<strong>in</strong><strong>in</strong>g one or more than one cell<br />

2-35


The govern<strong>in</strong>g equation for torsion <strong>of</strong> a beam about the x-axis by us<strong>in</strong>g Benscoter warp<strong>in</strong>g function<br />

[Benscoter, 1954] is given by:<br />

EC<br />

−ECθ + GKθ + m − m = 0<br />

(2.81)<br />

x,xxxx x,xx x x,x<br />

GIC<br />

I<br />

where C =<br />

2<br />

η<br />

ω 2 K<br />

2<br />

, η = 1− , Ic<br />

= ∫ r eds<br />

Ic<br />

Ic is the polar constant where r is the distance from the shear center to the tangent to the midl<strong>in</strong>e <strong>of</strong> the<br />

pr<strong>of</strong>ile. Iω is the warp<strong>in</strong>g rigidity.<br />

By consider<strong>in</strong>g the twist<strong>in</strong>g effect <strong>of</strong> the elementary loads dur<strong>in</strong>g the buckl<strong>in</strong>g <strong>of</strong> a cross section and<br />

by <strong>in</strong>tegrat<strong>in</strong>g over the whole cross-section [Murray, 1986, page 175], the second-order torque caused<br />

by the applied compression P is expressed as:<br />

2<br />

x ,xx C ,xx C ,xx C<br />

m = P( − v z + w y −θ i )<br />

(2.82)<br />

By substitut<strong>in</strong>g (2.82) <strong>in</strong>to (2.81), the govern<strong>in</strong>g equation for torsional buckl<strong>in</strong>g based on Benscoter<br />

theory is found:<br />

EC 2 2<br />

(EC −Pi C ) θx,xxxx −(GK−Pi C) θ x,xx + Pzc v,xx + Pzc v,xxxx −Pyc w,xx − Pyc w,xxxx = 0 (2.83)<br />

GI<br />

c<br />

2.5 Lateral buckl<strong>in</strong>g <strong>of</strong> elastic th<strong>in</strong> walled beams<br />

When beams are designed to carry very large loads <strong>in</strong> their ma<strong>in</strong> plane (e.g. vertical plane <strong>of</strong> an I<br />

beam), small lateral or twist<strong>in</strong>g disturbances can cause buckl<strong>in</strong>g out <strong>of</strong> the ma<strong>in</strong> plane <strong>of</strong> load<strong>in</strong>g. The<br />

lateral torsional buckl<strong>in</strong>g mode comb<strong>in</strong>es torsion and m<strong>in</strong>or axis bend<strong>in</strong>g. The torsion is accompanied<br />

by an important warp<strong>in</strong>g that <strong>in</strong>fluences the overall analysis. In the literature, the govern<strong>in</strong>g equations<br />

are elaborated by us<strong>in</strong>g Vlassov warp<strong>in</strong>g function [Murray, 1986, De Ville 1989, Trahair and Bradford<br />

1995…]. In this paragraph, the lateral buckl<strong>in</strong>g is analyzed by us<strong>in</strong>g Benscoter warp<strong>in</strong>g function.<br />

A simply supported beam loaded by equal but opposite end moments Mz is considered; y and z are the<br />

pr<strong>in</strong>ciple axes <strong>of</strong> the pr<strong>of</strong>ile. In the case <strong>of</strong> small deformations and arbitrary cross section, Mx1, My1<br />

and Mz1 are the resolved components <strong>of</strong> the twist<strong>in</strong>g and bend<strong>in</strong>g moment act<strong>in</strong>g about the deformed<br />

axes x1, y1 and z1 (figure 2.22):<br />

Mz1 = Mz cos (w ,x ) � Mz<br />

(2.84)<br />

M =−M s<strong>in</strong>(θ ) � −M<br />

θ<br />

(2.85)<br />

y1 z x z x<br />

I<br />

M =− M w + M ( −2y ) θ (2.86)<br />

x1 z ,x z<br />

2<br />

yr<br />

Iz<br />

C x,x<br />

I 2<br />

yr<br />

=<br />

2<br />

y(<br />

y<br />

2<br />

z ) dA<br />

A<br />

where ∫ +<br />

EIy w,xx =− M y1<br />

(2.87)<br />

2-36


EIz v,xx =− Mz1<br />

(2.88)<br />

Figure 2.22 Lateral torsional buckl<strong>in</strong>g <strong>of</strong> a beam<br />

The govern<strong>in</strong>g equation for twist<strong>in</strong>g is deduced from (2.51) after sett<strong>in</strong>g mxω equal to zero:<br />

EC<br />

−ECθ + GKθ = M − M<br />

(2.89)<br />

x,xxx x,x x1 x1,xx<br />

GIc<br />

I<br />

where C =<br />

2<br />

η<br />

ω 2 K<br />

2<br />

, η = 1 − . K is the torsional constant, Ic<br />

= ∫ r eds is the polar constant.<br />

Ic<br />

By substitut<strong>in</strong>g (2.84), (2.85) and (2.86) <strong>in</strong> (2.87), (2.88) and (2.89), the follow<strong>in</strong>g equations are<br />

obta<strong>in</strong>ed:<br />

EIz v,xx =− Mz<br />

EI w = M θ<br />

y ,xx z x<br />

I I<br />

EC<br />

( − EC+ M ( − 2y ))θ + (GK −M ( − 2y ))θ + Mw − M w = 0 (2.90)<br />

2<br />

yr<br />

2<br />

yr<br />

z<br />

Iz C x,xxx z<br />

Iz C x,x z ,x z<br />

GIC<br />

,xxx<br />

The critical elastic moment is given by the solution <strong>of</strong> (2.91) deduced from the set <strong>of</strong> equation (2.90):<br />

I 2<br />

2<br />

EC M I 2<br />

2<br />

yr<br />

z yr<br />

M z<br />

− EC + M z(<br />

− 2yC))θx,xxxx<br />

+ (GK − − M z(<br />

− 2yC))θx,xx<br />

+ θ = 0 (2.91)<br />

I<br />

GI EI I<br />

EI<br />

( x<br />

z<br />

C y<br />

z<br />

y<br />

Equation (2.91) has a general form similar to that obta<strong>in</strong>ed classically for open cross sections [Murray<br />

1986, page 184] and its solution is thus given by:<br />

x<br />

1<br />

Mz Mz<br />

y<br />

z<br />

z1<br />

2<br />

x1<br />

3<br />

nx<br />

x<br />

x<br />

−nx<br />

4e<br />

θ = A s<strong>in</strong>( mx)<br />

+ A cos( mx)<br />

+ A e + A<br />

(2.92)<br />

y1<br />

w<br />

z1<br />

θx<br />

y<br />

v<br />

z<br />

2-37


2 +<br />

where m = − a + a b and n = a + a b<br />

1<br />

<strong>with</strong> a =<br />

I 2<br />

yr<br />

2(EC<br />

− Mz(<br />

I<br />

2<br />

EC M I 2<br />

z yr<br />

(GK − − Mz(<br />

GIC<br />

EIy<br />

Iz<br />

− 2yC))<br />

− 2yC))<br />

z<br />

2<br />

z<br />

M<br />

b =<br />

I 2<br />

yr<br />

(EC − M z(<br />

− 2y<br />

I<br />

z<br />

C<br />

))EI<br />

y<br />

The constants A1…A4 are determ<strong>in</strong>ed by sett<strong>in</strong>g that (2.92) must satisfy the boundary conditions. For a<br />

simply supported beam, each end is free to warp (θx = 0, θx,xx = 0) and the follow<strong>in</strong>g equations are<br />

obta<strong>in</strong>ed:<br />

A2 = 0<br />

A3 = -A4<br />

s<strong>in</strong>( mL)<br />

− 2A<br />

s<strong>in</strong>h( nL)<br />

= 0<br />

− 2A<br />

2<br />

n s<strong>in</strong>h( nL)<br />

= 0<br />

(2.93)<br />

A1 4<br />

2<br />

A1<br />

m s<strong>in</strong>( mL)<br />

+<br />

4<br />

In order to obta<strong>in</strong> a non trivial solution, the determ<strong>in</strong>ant <strong>of</strong> the system <strong>of</strong> equations (2.93) should be<br />

zero and the solution is:<br />

θ s<strong>in</strong>( mx)<br />

(2.94)<br />

x = A1 The lowest buckl<strong>in</strong>g mode occurs for:<br />

m<br />

L<br />

π<br />

= (2.95)<br />

and the lowest buckl<strong>in</strong>g moment is then solution <strong>of</strong>:<br />

I 2<br />

yr π 4 EC<br />

( EC − M z ( − 2yC<br />

))( ) + ( GK −<br />

I L GI<br />

2 I<br />

2<br />

M<br />

2<br />

z yr π 2 M z<br />

− M z ( − 2yC<br />

))( ) =<br />

EI I L EI<br />

(2.96)<br />

z<br />

C<br />

y<br />

2 +<br />

z<br />

y<br />

2-38


PART II. THEORETICAL DEVELOPMENTS


CHAPTER 3. KINEMATICS OF THE PRESENT ANALYSIS OF<br />

THIN WALLED BEAMS<br />

3.1 Geometric description and assumptions<br />

A fixed right-handed cartesian coord<strong>in</strong>ate system (X,Y,Z) is used for the analysis <strong>of</strong> three dimensional<br />

structures <strong>with</strong> beam elements composed <strong>of</strong> th<strong>in</strong> plates. The thickness is smaller than the other<br />

dimensions. Each beam element is prismatic and has a local x axis parallel to its longitud<strong>in</strong>al direction.<br />

The <strong>in</strong>tersection <strong>of</strong> a plane normal to the x axis <strong>with</strong> the middle surface is a polygonal l<strong>in</strong>e called<br />

“contour” <strong>of</strong> the cross section. The vertices <strong>of</strong> the polygonal contour are called hereafter “transversal<br />

nodes”. Let G be the centroid, C the shear center and y and z the pr<strong>in</strong>cipal axes <strong>of</strong> the cross section. A<br />

right handed local curvil<strong>in</strong>ear coord<strong>in</strong>ate system (e,s,x) is placed <strong>in</strong> the middle surface <strong>with</strong> (e) normal<br />

to and (s) follow<strong>in</strong>g the contour (figure 3.1).<br />

z<br />

h *<br />

G<br />

q hn<br />

Contour A<br />

Figure 3.1 General form <strong>of</strong> a cross section<br />

s<br />

C<br />

A<br />

(+)<br />

e<br />

Transversal<br />

nodes<br />

y<br />

The theory <strong>of</strong> torsion and flexure <strong>of</strong> th<strong>in</strong> walled beams is based on the follow<strong>in</strong>g k<strong>in</strong>ematic<br />

assumptions:<br />

HYP1. In the analysis <strong>of</strong> torsion and bend<strong>in</strong>g <strong>of</strong> th<strong>in</strong> walled beams and columns, the contour <strong>of</strong> a cross<br />

section is considered as undeformed <strong>in</strong> its own plane. The local distortion, flexure or plate buckl<strong>in</strong>g<br />

are not taken <strong>in</strong>to account. This assumption, which is critical <strong>in</strong> the case <strong>of</strong> very th<strong>in</strong> cross sections,<br />

requires <strong>in</strong> practice rigid diaphragms placed at short distances along the length <strong>of</strong> the beam. This<br />

assumption is relaxed when the distortion is studied (paragraph 3.4).<br />

HYP2. The cross section rema<strong>in</strong>s plane when subjected to pure tension/compression or pure bend<strong>in</strong>g;<br />

warp<strong>in</strong>g due to torsion is analyzed <strong>in</strong> paragraph 3.2, warp<strong>in</strong>g due to shear bend<strong>in</strong>g is analyzed <strong>in</strong> §3.3<br />

and warp<strong>in</strong>g due to distortion is analyzed <strong>in</strong> paragraph 3.4.<br />

HYP3. The warp<strong>in</strong>g is assumed to vary l<strong>in</strong>early along each branch <strong>of</strong> the contour between two<br />

transversal nodes (contour warp<strong>in</strong>g).<br />

HYP4. The material po<strong>in</strong>ts, located before deformation on a normal to the surface (xs), are assumed to<br />

rema<strong>in</strong> on a l<strong>in</strong>e normal to the deformed middle surface. This normality assumption allows the<br />

determ<strong>in</strong>ation <strong>of</strong> the second order warp<strong>in</strong>g (through the thickness <strong>of</strong> the th<strong>in</strong> wall) <strong>of</strong> the th<strong>in</strong> ‘plates’.<br />

3-1


3.2 Torsional warp<strong>in</strong>g <strong>of</strong> the cross section<br />

As <strong>in</strong>troduced at the end <strong>of</strong> §2.2.3, Prokić warp<strong>in</strong>g function is modified <strong>in</strong> this chapter <strong>in</strong> order to<br />

study the behavior <strong>of</strong> arbitrary th<strong>in</strong> walled cross sections. The torsional warp<strong>in</strong>g <strong>of</strong> an arbitrary po<strong>in</strong>t q<br />

<strong>of</strong> the cross section (figure 3.1) is equal to the sum <strong>of</strong> a contour warp<strong>in</strong>g uc and a thickness warp<strong>in</strong>g ut.<br />

uq T = uc + ut<br />

3.2.1 Contour warp<strong>in</strong>g function<br />

If the cross section is composed <strong>of</strong> polygonal segments, the contour torsional warp<strong>in</strong>g uc is l<strong>in</strong>ear<br />

along each branch. At mid wall, this axial displacement (uc) due to torsional warp<strong>in</strong>g is computed as a<br />

sum <strong>of</strong> comb<strong>in</strong>ations <strong>of</strong> l<strong>in</strong>ear contour functions and displacement parameters (ui) at transversal nodes<br />

(figure 3.2).<br />

uc = ∑Ω i ui<br />

The unknowns ui are the longitud<strong>in</strong>al displacements <strong>of</strong> the transversal nodes (i=1,…n) due to the<br />

torsional warp<strong>in</strong>g. The functions Ω i (i=1,…n) represent the shape <strong>of</strong> the distribution <strong>of</strong> the contour<br />

warp<strong>in</strong>g along the branches <strong>of</strong> the contour between transversal nodes (i=1,…n). S<strong>in</strong>ce the contour<br />

warp<strong>in</strong>g is assumed to be l<strong>in</strong>ear between two longitud<strong>in</strong>al nodes (HYP3), a function Ω i describes a<br />

l<strong>in</strong>ear variation between node (i) and its adjacent transversal nodes. Ω i varies l<strong>in</strong>early along the<br />

branches between the transversal node i where Ω i = 1 and the adjacent nodes where Ω i = 0 and<br />

vanishes along the other segments (figure 3.2 b & c ).<br />

Figure 3.2 (a): Warp<strong>in</strong>g along the contour <strong>of</strong> the pr<strong>of</strong>ile; (b) & (c): functions Ω 1 and Ω 2<br />

3.2.2 Thickness warp<strong>in</strong>g function<br />

function<br />

Ω 1<br />

The thickness torsional warp<strong>in</strong>g ut varies l<strong>in</strong>early through the thickness and vanishes along the mid<br />

wall (figure 3.3). It is proportional to the derivative <strong>of</strong> the torsional rotation angle θx,x, to the distance<br />

to the midl<strong>in</strong>e e, and to the perpendicular distance hn to the normal issued from the shear center.<br />

ut = -ωθx,x<br />

(3.3)<br />

where ω(y,z) = hn(s).e, figure 3.1. hn is positive when the normal to the midl<strong>in</strong>e rotates<br />

counterclockwise around the shear center (hn is negative <strong>in</strong> the case <strong>of</strong> figure 3.1).<br />

1<br />

� � � � � �<br />

Ω 2<br />

� � � � � �<br />

(a) (b) (c)<br />

1<br />

(3.1)<br />

(3.2)<br />

3-2


It is shown hereafter that equation (3.3) results directly from hypothesis HYP4. The local contour<br />

system (e, s, x) shown <strong>in</strong> figure (3.1) is used. The torsional displacements <strong>of</strong> a po<strong>in</strong>t q are described<br />

<strong>with</strong> respect to this contour coord<strong>in</strong>ate system by ( uq T (x,s,e), ξq T (x,s,e) , ηq T (x,s,e)).<br />

Figure 3.3 Thickness warp<strong>in</strong>g function, cut A-A <strong>of</strong> figure 3.1<br />

When the cross section is submitted to torsion, it twists <strong>with</strong> respect to the shear center axis. For small<br />

values <strong>of</strong> torsional rotation θx, the transversal displacements are found by simple geometrical<br />

descriptions as be<strong>in</strong>g proportional to the distance to the shear center. In the pr<strong>in</strong>cipal axes system (y,z),<br />

the expressions <strong>of</strong> vq T and wq T are given <strong>in</strong> equation (2.22). By us<strong>in</strong>g the local system axis (e,s), the<br />

transversal displacements ηq T and ξq T are found to be:<br />

T<br />

η q(x,s) = hnθ<br />

x<br />

T *<br />

q(x,s) h x<br />

ξ = θ (3.4)<br />

Accord<strong>in</strong>g to the normality assumption (HYP4) through the thickness <strong>of</strong> the wall, the normal to the<br />

surface (xs) rema<strong>in</strong>s normal dur<strong>in</strong>g deformation. The shear deformation εxe (3.5) is neglected. A<br />

straight l<strong>in</strong>e through the thickness (e) normal to the surface (xs) is assumed to rema<strong>in</strong> straight and<br />

normal so that the rotation is equal to the slope (3.6).<br />

T T T<br />

2ε =η + u<br />

(3.5)<br />

xe q ,x q ,e<br />

T T T<br />

xe q ,e q ,x<br />

A-A<br />

2ε = 0⇒ u =−η (3.6)<br />

By substitut<strong>in</strong>g the transversal component <strong>of</strong> displacement ηq T by its expression (3.4) <strong>in</strong> equation<br />

(3.6), the derivative <strong>of</strong> the longitud<strong>in</strong>al displacement <strong>with</strong> respect to the thickness coord<strong>in</strong>ate is given<br />

<strong>in</strong> (3.7).<br />

T<br />

uq,e =−hnθ x,x<br />

(3.7)<br />

The displacement u T <strong>of</strong> any po<strong>in</strong>t q is thus given by:<br />

T<br />

T T ∂ηq<br />

(x,s) T<br />

u (x,s,e) = u (x,s) + e = u (x,s) −eh θ<br />

∂x<br />

q n x,x<br />

The first term u T (x,s) <strong>in</strong> (3.8) describes the variation <strong>of</strong> the longitud<strong>in</strong>al displacement along the mid<br />

wall. By compar<strong>in</strong>g (3.8) to (3.1), this term represents the contour warp<strong>in</strong>g (uc) given <strong>in</strong> equation (3.2).<br />

The second term is the thickness warp<strong>in</strong>g (ut) <strong>in</strong> equation (3.3).<br />

Once aga<strong>in</strong>, an analogy between Bernoulli bend<strong>in</strong>g beam k<strong>in</strong>ematics or Kirchh<strong>of</strong>f bend<strong>in</strong>g plate<br />

k<strong>in</strong>ematics and torsional k<strong>in</strong>ematics is highlighted through the normality assumption HYP4. The<br />

theory <strong>of</strong> Kirchh<strong>of</strong>f for th<strong>in</strong> plates is based on the assumption that straight l<strong>in</strong>es normal to the mid<br />

plane before deformation rema<strong>in</strong> normal after deformation. This implies that shear transversal<br />

deformations are negligible; the slope and the tangent co<strong>in</strong>cide.<br />

(3.8)<br />

3-3


3.2.3 Torsional warp<strong>in</strong>g function and decoupl<strong>in</strong>g equations:<br />

Complete k<strong>in</strong>ematic formulation<br />

As stated before, Prokić warp<strong>in</strong>g function is very general but must be restra<strong>in</strong>ed adequately <strong>in</strong> order to<br />

study a specific problem. In this paragraph, the theory is developed <strong>in</strong> order to study the torsional<br />

behavior <strong>of</strong> a 3D beam structure. In a general load<strong>in</strong>g <strong>with</strong> tension-compression, biaxial bend<strong>in</strong>g and<br />

torsion, equation (3.9) gives the displacement <strong>of</strong> any po<strong>in</strong>t q(x,y,z) <strong>of</strong> the cross section for each <strong>of</strong><br />

these load<strong>in</strong>g effects:<br />

⎧<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

⎨<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

⎩<br />

u<br />

v<br />

q<br />

w<br />

q<br />

⎫ ⎧<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎬ = ⎨<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎭ ⎩<br />

q<br />

Total = axial<br />

⎫ ⎧<br />

u ⎪ ⎪ 0<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

0 ⎬ + ⎨<br />

⎪ ⎪<br />

⎪ ⎪<br />

0<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎭ ⎩<br />

⎫ ⎧<br />

zθy<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

0 ⎬ + ⎨<br />

⎪ ⎪<br />

⎪ ⎪<br />

w<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎭ ⎩<br />

−<br />

⎫ ⎧<br />

yθz<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

v ⎬ + ⎨<br />

⎪ ⎪<br />

⎪ ⎪<br />

0<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎭ ⎩<br />

− ωθ<br />

x,<br />

x<br />

n<br />

⎫<br />

i<br />

+ ∑ Ω ( y,<br />

z)<br />

ui<br />

( x)<br />

⎪<br />

i=<br />

1<br />

⎪<br />

⎪<br />

⎪<br />

− ( z − zC<br />

) θx<br />

⎬<br />

⎪<br />

⎪<br />

( y − yC<br />

) θx<br />

⎪<br />

⎪<br />

⎭<br />

+ bend<strong>in</strong>g(xz)<br />

+ bend<strong>in</strong>g(xy)<br />

+ torsion.<br />

On the right hand side <strong>of</strong> equation (3.9), the first bracket {u0,0,0} denotes the <strong>in</strong>-plane compression or<br />

tension, the second bracket {zθy,0,w} refers to <strong>in</strong>-plane (xz) bend<strong>in</strong>g by us<strong>in</strong>g Timoshenko beam<br />

theory for shear effects, and the third bracket {-yθz,v,0} refers to (xy) bend<strong>in</strong>g. The fourth bracket <strong>of</strong><br />

(3.9) gives the warp<strong>in</strong>g u T = -ωθx,x +∑Ω i ui and the transverse displacements {-(z-zC)θx , (y-yC)θx}<br />

related to the torsion. θx,x is the rate <strong>of</strong> twist<strong>in</strong>g angle and u1…un are n unknowns, where n is the<br />

number <strong>of</strong> transversal nodes. These parameters are additional axial displacements that <strong>in</strong>troduce for<br />

each transversal node the quantity <strong>of</strong> the warp<strong>in</strong>g displacement (ui) to that <strong>in</strong>duced by<br />

tension/compression (u0) and bend<strong>in</strong>g (zθy-yθz) and represented by the centroidal degrees <strong>of</strong> freedom.<br />

As presented <strong>in</strong> (3.9), the k<strong>in</strong>ematic expression <strong>of</strong> u T is more general than the usual torsional warp<strong>in</strong>g<br />

theory <strong>of</strong> th<strong>in</strong> walled beams: it is not limited to the torsional warp<strong>in</strong>g and can describe any general<br />

displacement <strong>of</strong> the cross section constituted by l<strong>in</strong>ear comb<strong>in</strong>ation <strong>of</strong> ui. Thus, to satisfy HYP2<br />

(paragraph 3.1), it is necessary to prescribe additional constra<strong>in</strong>ts <strong>in</strong> order to restra<strong>in</strong> the parameters ui<br />

to the model<strong>in</strong>g <strong>of</strong> torsional warp<strong>in</strong>g. This separates warp<strong>in</strong>g from tension-compression and bend<strong>in</strong>g<br />

effects and ensures the uncoupled axial/bend<strong>in</strong>g/torsional warp<strong>in</strong>g: when subject to pure<br />

tension/compression or flexure, the cross section does not warp (HYP 2).<br />

Uncoupl<strong>in</strong>g <strong>of</strong> tension/compression and bend<strong>in</strong>g effects<br />

The dissociation <strong>of</strong> the axial displacement <strong>in</strong>to three parts (a constant mean value u0 and l<strong>in</strong>ear values<br />

zθy et yθz ) corresponds to the separation <strong>of</strong> tension/compression and (xy & xz) bend<strong>in</strong>g effects. It is<br />

well known that these three effects are uncoupled if the centroid (G) <strong>of</strong> the cross section is used as<br />

orig<strong>in</strong> and if the pr<strong>in</strong>cipal axes are used as reference axes.<br />

Uncoupl<strong>in</strong>g <strong>of</strong> pure torsion and bend<strong>in</strong>g<br />

It is also well known that pure torsion and pure bend<strong>in</strong>g are def<strong>in</strong>ed by <strong>in</strong>troduc<strong>in</strong>g the shear center<br />

and the torsional center as particular po<strong>in</strong>ts <strong>of</strong> a pr<strong>of</strong>ile. A transversal load P pass<strong>in</strong>g through the shear<br />

(3.9)<br />

3-4


center does not <strong>in</strong>duce a torsional torque. However, if this transversal load P acts <strong>with</strong><strong>in</strong> a non zero<br />

distance rC from C, a torsional torque Cx = P rC is <strong>in</strong>duced. Alternatively, if a torque twists the cross<br />

section <strong>with</strong> respect to the torsional center axis, a pure torsion occurs about this “natural” axis <strong>of</strong><br />

rotation <strong>with</strong>out <strong>in</strong>volv<strong>in</strong>g bend<strong>in</strong>g displacements. The torsional center is found ([Kollbrunner, 1970,<br />

page 112],…) to be identical to the shear center.<br />

Uncoupl<strong>in</strong>g <strong>of</strong> torsional warp<strong>in</strong>g and tension/compression<br />

The average axial displacement <strong>of</strong> the cross section must be reduced to the term (u0): a tension or<br />

compression <strong>of</strong> the whole cross section must only derive from the centroidal degree <strong>of</strong> freedom (u0).<br />

With<strong>in</strong> the present beam theory, a cross section resists to stretch<strong>in</strong>g (figure 3.4a) by a “rigid” extension<br />

(figure 3.4b) and rema<strong>in</strong>s planar and perpendicular to the longitud<strong>in</strong>al axis. The configuration<br />

represented <strong>in</strong> figure 3.4c <strong>with</strong> non zero values <strong>of</strong> ui (relative longitud<strong>in</strong>al displacement <strong>with</strong> respect to<br />

the displacement <strong>of</strong> the centroid u0) is undesirable s<strong>in</strong>ce warp<strong>in</strong>g degrees <strong>of</strong> freedom (ui) are related to<br />

torsion.<br />

∫<br />

A u average =<br />

uqdA<br />

A<br />

= u<br />

0<br />

(3.10)<br />

Figure 3.4 (a) Tension <strong>of</strong> an I beam; (b) extension u0 <strong>of</strong> the beam <strong>with</strong> ui vanish<strong>in</strong>g; (c): possible<br />

configuration when uncoupl<strong>in</strong>g is not satisfied: warp<strong>in</strong>g (-ui) related to tension.<br />

The numerator <strong>of</strong> (3.10) is found to be:<br />

∫<br />

A<br />

n<br />

∑<br />

u dA = u A + S i u<br />

(3.11)<br />

q<br />

0<br />

= Ω<br />

i 1<br />

i<br />

The first equation that ensures the uncoupled tension-compression and torsional warp<strong>in</strong>g effects is<br />

thus deduced from (3.10):<br />

A<br />

T<br />

warp<strong>in</strong>g<br />

L<br />

(a)<br />

(b) (c)<br />

∫ u dA= 0<br />

(3.12)<br />

P<br />

L<br />

u0<br />

ui<br />

3-5


or<br />

n<br />

∑ S i u<br />

Ω<br />

=<br />

i<br />

1<br />

i<br />

= 0<br />

(3.13)<br />

Uncoupl<strong>in</strong>g <strong>of</strong> torsional warp<strong>in</strong>g and pure bend<strong>in</strong>g<br />

The average bend<strong>in</strong>g displacement must also be reduced to the flexural terms (zθy) and (-yθz). The<br />

rotation along the axis Oz (or Oy) must be limited to θz (or θy) and the displacements associated <strong>with</strong><br />

this rotation are only represented by the term -yθz or (zθy) (figure 3.5).<br />

In the case <strong>of</strong> (xy) plane flexure, Timoshenko bend<strong>in</strong>g equilibrium equation <strong>in</strong>cludes a term θz which<br />

is the mean angle <strong>of</strong> rotation <strong>of</strong> each cross section about the neutral axis. As <strong>in</strong> equation (2.5),<br />

Timoshenko k<strong>in</strong>ematics gives the expression <strong>of</strong> the longitud<strong>in</strong>al displacement:<br />

F<br />

q z<br />

u =−yθ (3.14)<br />

Figure 3.5 Pure bend<strong>in</strong>g <strong>of</strong> an I beam<br />

θz has been given various def<strong>in</strong>itions and <strong>in</strong>terpretations (after [Cowper, 1966]). If the cross section<br />

rema<strong>in</strong>s planar as the beam bends, θz is exactly equal to the angle <strong>of</strong> rotation <strong>of</strong> the whole cross<br />

section. However, if a cross section warps <strong>in</strong> addition to rotat<strong>in</strong>g, θz is then the angle <strong>of</strong> <strong>in</strong>cl<strong>in</strong>ation <strong>of</strong><br />

the plane that most nearly co<strong>in</strong>cides <strong>with</strong> the position <strong>of</strong> the warped cross section. Cowper [1966]<br />

def<strong>in</strong>ed the quantity θz by the follow<strong>in</strong>g relation:<br />

1<br />

θ =− ∫ yu dA<br />

(3.14’)<br />

z q<br />

Iz<br />

A<br />

Equation (3.14’) is found by mutliply<strong>in</strong>g Timoshenko k<strong>in</strong>ematics (3.14) by y and by <strong>in</strong>tegrat<strong>in</strong>g over<br />

the cross section.<br />

To uncouple the torsional warp<strong>in</strong>g from bend<strong>in</strong>g effects, the first l<strong>in</strong>e <strong>of</strong> the fourth bracket <strong>of</strong> (3.9),<br />

related <strong>in</strong> this paragraph to torsional warp<strong>in</strong>g effects, must be separated from bend<strong>in</strong>g warp<strong>in</strong>g which<br />

is not taken <strong>in</strong>to account hereby. The flexural mean rotation θz must be related to the flexural degrees<br />

<strong>of</strong> freedom and not to the warp<strong>in</strong>g degrees <strong>of</strong> freedom ui.<br />

A<br />

y<br />

T<br />

q<br />

L<br />

Mz<br />

∫ yu dA = 0<br />

(3.15)<br />

(3.15) gives the second transformation equation to satisfy:<br />

x<br />

L<br />

uq=-yθz<br />

3-6


n<br />

− ∑<br />

i=<br />

1<br />

Iyω<br />

θx,<br />

x + I i ui<br />

= 0<br />

(3.16)<br />

yΩ<br />

In the case <strong>of</strong> plane flexure (xz), a similar transformation equation is found by the same method by<br />

sett<strong>in</strong>g that the warp<strong>in</strong>g result<strong>in</strong>g from bend<strong>in</strong>g (xz) is not taken <strong>in</strong>to account.<br />

∫<br />

A<br />

T<br />

q<br />

zu dA = 0<br />

− ∑ zΩ<br />

i=<br />

1<br />

n<br />

Izω<br />

θx,<br />

x + I i ui<br />

= 0<br />

(3.17)<br />

Illustration <strong>of</strong> torsional warp<strong>in</strong>g uncoupl<strong>in</strong>g<br />

Equations (3.12, 3.15 and 3.17) represent respectively the separation <strong>of</strong> warp<strong>in</strong>g effects from<br />

tension/compression, (xy) bend<strong>in</strong>g and (xz) bend<strong>in</strong>g. This separation is alternatively illustrated by<br />

plott<strong>in</strong>g the axial displacement over the cross section. When a plot shows a strong relationship<br />

between two variables (y,f), the regression l<strong>in</strong>e is a l<strong>in</strong>e drawn through a plot so that it comes as close<br />

to the po<strong>in</strong>ts (y,f) as possible. The regression l<strong>in</strong>e (f’ <strong>in</strong> figure 3.6a) is the best fitt<strong>in</strong>g straight l<strong>in</strong>e for a<br />

given set <strong>of</strong> po<strong>in</strong>ts <strong>in</strong> a plot and is def<strong>in</strong>ed by a f-<strong>in</strong>tercept (f(y=0)) and a slope. More technically, the<br />

regression l<strong>in</strong>e is obta<strong>in</strong>ed by m<strong>in</strong>imiz<strong>in</strong>g, for a function f(y), the sum <strong>of</strong> the squared differences<br />

between (f’) and (f). The slope and the f-<strong>in</strong>tercept may be thus determ<strong>in</strong>ed by sett<strong>in</strong>g that the sum <strong>of</strong><br />

these squared differences ∑⏐f-f’⏐ 2 is smaller than it would be for any other straight l<strong>in</strong>e through the<br />

data.<br />

y<br />

5<br />

4<br />

3<br />

f-f’ = 0.6<br />

f = 6<br />

f’ = 6.6<br />

5 6 7 8 9 10<br />

f<br />

Figure 3.6 Regression l<strong>in</strong>es <strong>of</strong> plots (a): (y,f) and (b): (y,u)<br />

y<br />

(a) (b)<br />

In the case <strong>of</strong> bend<strong>in</strong>g (xy), the axial displacement <strong>of</strong> a po<strong>in</strong>t q (uq = u T + u F ) varies <strong>with</strong> (y) and is<br />

plotted aga<strong>in</strong>st this cross section co-ord<strong>in</strong>ate. The plane u F = yθz is a straight plane (a l<strong>in</strong>e <strong>in</strong> figure<br />

3.6b) associated <strong>with</strong> the rotation <strong>of</strong> the whole cross section around the z axis (θz) that most nearly<br />

co<strong>in</strong>cides <strong>with</strong> the position <strong>of</strong> the warped cross section (uq). The additional displacement function u T<br />

represents the torsional warp<strong>in</strong>g and is not related to the flexural bend<strong>in</strong>g <strong>of</strong> the cross section. Even if<br />

the statistical notion <strong>of</strong> regression l<strong>in</strong>e does not give an exact demonstration as it was done <strong>in</strong> the<br />

θz<br />

u F + u T = uq<br />

u<br />

3-7


previous paragraph (equations 3.14-3.16), it is presented hereby to illustrate physically the nature and<br />

the importance <strong>of</strong> the uncoupl<strong>in</strong>g phenomenon. The axial displacement <strong>of</strong> the po<strong>in</strong>ts q <strong>of</strong> the cross<br />

section ( uq = -yθz +u T ) is separated <strong>in</strong>to an arbitrary straight distribution l<strong>in</strong>e (yθ) and a function u.<br />

The regression l<strong>in</strong>e m<strong>in</strong>imizes the function g(θ) constituted <strong>of</strong> squared differences, when the slope θ<br />

varies.<br />

∫<br />

2<br />

q (3.18)<br />

g(<br />

θ) = ( u − θy)<br />

dA<br />

Mathematically, to limit the average rotation <strong>of</strong> the cross section to θz, g(θ) must be a m<strong>in</strong>imum when<br />

θ equals -θz:<br />

∫<br />

g(<br />

θ) = ( u − θy)<br />

dA<br />

∫<br />

q<br />

2<br />

T 2<br />

q z<br />

T 2 2 2 T<br />

q z z q<br />

g( θ ) = (u −( θ+θ )y) dA<br />

∫ ∫ ∫<br />

g( θ ) = (u ) dA + ( θ+θ ) y dA−2( θ+θ ) yu dA<br />

dg( θ )<br />

2 T<br />

= 2( θ+θz) y dA −2yuqdA<br />

dθ<br />

∫ ∫ (3.19)<br />

By sett<strong>in</strong>g g’(θ) zero for θ=-θz, the second expression to ensure the uncoupled bend<strong>in</strong>g (xy) and<br />

warp<strong>in</strong>g effects is found to be (3.15). Equation (3.17) can be obta<strong>in</strong>ed similarly by consider<strong>in</strong>g the<br />

case <strong>of</strong> bend<strong>in</strong>g (xz).<br />

The transformation equation (3.12) can be illustrated by the same method by sett<strong>in</strong>g that, s<strong>in</strong>ce the<br />

warp<strong>in</strong>g result<strong>in</strong>g from axial effects is neglected and not <strong>in</strong>cluded hereby, the x-<strong>in</strong>tercept (y=0, z=0) <strong>of</strong><br />

the regression plane (uq = u0 + zθy - yθz - ωθx,x + ∑Ω i ui) must be prescribed to u0 (centroid axial<br />

displacement).<br />

Torsional transformation equations<br />

Thus, as the additional parameters (ui) should only describe the torsional warp<strong>in</strong>g <strong>of</strong> the cross section<br />

associated <strong>with</strong> torsion and should not <strong>in</strong>duce global elongation or bend<strong>in</strong>g <strong>of</strong> the whole cross section,<br />

these n degrees <strong>of</strong> freedoms (ui) must therefore satisfy the three equations (3.20).<br />

∫<br />

A<br />

T<br />

u dA= 0,<br />

∫<br />

A<br />

T<br />

yu dA = 0 ,<br />

A<br />

T<br />

∫ zu dA = 0<br />

(3.20)<br />

where A denotes the area <strong>of</strong> a cross section.<br />

If n is the number <strong>of</strong> transversal nodes <strong>of</strong> a cross section, from the 6+n degrees <strong>of</strong> freedom, only 3+n<br />

degrees <strong>of</strong> freedom are thus <strong>in</strong>dependent: three translations (u,v,w), three rotations (θx,θy,θz) and n-3<br />

relative longitud<strong>in</strong>al displacements.<br />

This step (equations 3.20), that supplements the use <strong>of</strong> centroïd, shear center and pr<strong>in</strong>cipal axes,<br />

transforms arbitrary coord<strong>in</strong>ate system (1, x, y, ∑Ωiui/θx,x,…) to a particular one that ensures the<br />

uncoupl<strong>in</strong>g between ∑Ωi ui/θx,x and the others. It is similar to the well-known selection <strong>of</strong> the pr<strong>in</strong>cipal<br />

sectorial warp<strong>in</strong>g function (ω, ψ) when us<strong>in</strong>g the models <strong>of</strong> Vlassov and Benscoter respectively to<br />

study the non uniform torsion. The pr<strong>in</strong>cipal sectorial pole is found to be the shear center and the<br />

sectorial orig<strong>in</strong> is a particular po<strong>in</strong>t obta<strong>in</strong>ed by satisfy<strong>in</strong>g the follow<strong>in</strong>g equations ([Gjelsvik,1981,<br />

page 49], [Murray, 1986, page 86-87]…):<br />

3-8


∫<br />

A<br />

∫<br />

ω dA = 0 , 0 dA yω<br />

= , 0 dA zω<br />

= for open pr<strong>of</strong>iles, Vlassov theory (3.21)<br />

A<br />

∫<br />

A<br />

∫ ψ dA = 0 , ∫ yψ dA = 0 , ∫ zψ dA = 0 for closed pr<strong>of</strong>iles, Benscoter theory (3.22)<br />

A<br />

A<br />

A<br />

Note that the equations listed above (3.21-3.22) are needed to determ<strong>in</strong>e the location <strong>of</strong> the tortional or<br />

shear center accord<strong>in</strong>g to Vlassov and Benscoter theory. Equations (3.21-3.22) are found <strong>in</strong> the<br />

literature by sett<strong>in</strong>g that Vlassov and Benscoter torsional k<strong>in</strong>ematics must not produce any axial force<br />

or bend<strong>in</strong>g moment.<br />

3.3 Warp<strong>in</strong>g associated <strong>with</strong> bend<strong>in</strong>g shear effects<br />

3.3.1 Problem presentation<br />

When a beam is submitted to bend<strong>in</strong>g, a vary<strong>in</strong>g bend<strong>in</strong>g moment is necessarily accompanied by a<br />

shear force result<strong>in</strong>g from the equilibrium <strong>of</strong> rotation. An accurate study <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> the shear<br />

force is very complicated. Similarly to the case <strong>of</strong> shear effects <strong>in</strong>duced by a torsional load<strong>in</strong>g, the<br />

cross section does not rema<strong>in</strong> plane when submitted to a shear force. <strong>Shear</strong> stresses result<strong>in</strong>g from a<br />

shear force act<strong>in</strong>g along a pr<strong>in</strong>cipal axis (eg. z) <strong>of</strong> the beam cannot be uniformly distributed over the<br />

cross section. It is not possible to f<strong>in</strong>d a simple k<strong>in</strong>ematic description allow<strong>in</strong>g their calculation (see<br />

also Frey 2000).<br />

The configuration (a b’ c’ d) assum<strong>in</strong>g uniform slid<strong>in</strong>g <strong>of</strong> the pr<strong>of</strong>ile is impossible (the change <strong>in</strong><br />

angles (ab,ab’) and (dc,dc’) must vanish <strong>in</strong> figure 3.7) s<strong>in</strong>ce the equilibrium condition <strong>of</strong> a solid<br />

requires the vanish<strong>in</strong>g <strong>of</strong> transverse shear stress (and hence shear stra<strong>in</strong>) on the free edges <strong>of</strong> the beam<br />

(ab and cd <strong>in</strong> figure 3.7).<br />

Tz<br />

b<br />

c<br />

b’<br />

c’<br />

Figure 3.7 A beam submitted to a shear force<br />

y<br />

a<br />

d<br />

z<br />

The variation <strong>of</strong> the angle (2ε xz) (figure 3.8c) is thus not uniform across the cross section. The cross<br />

section does not rema<strong>in</strong> plane but warps. In figure 3.8, 2ε xz is maximal at the neutral axis <strong>of</strong> the<br />

rectangular pr<strong>of</strong>ile and vanishes at the extreme fibers.<br />

When the distribution <strong>of</strong> the shear force is uniform along the x axis and <strong>with</strong>out restra<strong>in</strong><strong>in</strong>g conditions,<br />

the shear warp<strong>in</strong>g is also uniform along the longitud<strong>in</strong>al axis (fig. 3.8c). In a general case, warp<strong>in</strong>g is<br />

3-9


not free or uniform and the mean slid<strong>in</strong>g angle (θy) is the angle <strong>of</strong> <strong>in</strong>cl<strong>in</strong>ation <strong>of</strong> the plane that best<br />

co<strong>in</strong>cides <strong>with</strong> the warped cross section.<br />

1<br />

2<br />

3<br />

z<br />

Figure 3.8 (a): Beam cross section; (b): shear stresses; (c): warp<strong>in</strong>g <strong>of</strong> the cross section <strong>with</strong> a constant<br />

shear force (after Frey 2000)<br />

3.3.2 Warp<strong>in</strong>g function <strong>with</strong> shear bend<strong>in</strong>g effects<br />

Advanced k<strong>in</strong>ematics is presented <strong>in</strong> this paragraph <strong>in</strong> order to adequately describe shear deformations<br />

and to improve the results obta<strong>in</strong>ed from approximate Timoshenko k<strong>in</strong>ematics violates the ‘no shear’<br />

boundary conditions at the edges <strong>of</strong> open pr<strong>of</strong>iles by assum<strong>in</strong>g a constant state <strong>of</strong> transverse shear<br />

stra<strong>in</strong> through the cross section. The planar assumption <strong>of</strong> Bernoulli and Timoshenko theories is<br />

removed and the formulation is based on an enriched description <strong>of</strong> the shear bend<strong>in</strong>g warp<strong>in</strong>g by<br />

discretiz<strong>in</strong>g the contour <strong>of</strong> the th<strong>in</strong> walled pr<strong>of</strong>ile. The bend<strong>in</strong>g warp<strong>in</strong>g is presented hereby <strong>in</strong> the case<br />

<strong>of</strong> (xz) flexure and is based on the follow<strong>in</strong>g displacement field:<br />

⎧ ⎫ ⎧ i<br />

u ⎫<br />

q zθy<br />

+<br />

⎪ ∑Ω<br />

ui<br />

⎪ ⎪<br />

⎪<br />

⎪ ⎪ ⎪<br />

⎪<br />

⎨v<br />

q ⎬ = ⎨ 0 ⎬<br />

⎪ ⎪ ⎪<br />

⎪<br />

⎪w<br />

⎩ q ⎪⎭<br />

⎪ w<br />

⎩<br />

⎪<br />

⎭<br />

τ xz = 0<br />

τ xz max<br />

(3.23)<br />

Similarly to the case <strong>of</strong> torsional warp<strong>in</strong>g, the parameters ui at transversal nodes are the longitud<strong>in</strong>al<br />

displacements at selected transversal nodes (i=1,2,…n). The functions Ωi (i=1,…n) represent the shape<br />

<strong>of</strong> the distribution <strong>of</strong> the contour warp<strong>in</strong>g along the branches <strong>of</strong> the contour between transversal nodes<br />

(i=1,…n).<br />

By us<strong>in</strong>g the additional term ∑Ωi ui, the warp<strong>in</strong>g <strong>in</strong>duced by shear deformation is <strong>in</strong>cluded and the<br />

cross section does not rema<strong>in</strong> plane after deformation. θy does not represent any longer the rotation <strong>of</strong><br />

a plane cross section but rather the slope at particular po<strong>in</strong>ts <strong>of</strong> the cross section where the warp<strong>in</strong>g<br />

vanishes (for a rectangular cross section, θy is the slope at z=0). θy and ui (i=1,n) capture together the<br />

non planarity nature <strong>of</strong> the deformed cross section.<br />

The expression <strong>of</strong> stra<strong>in</strong>s is written as follows:<br />

2ε xz = 0<br />

2ε xz max<br />

(a) (b) (c)<br />

θy<br />

3-10


⎧<br />

⎫<br />

i<br />

⎪zθy,<br />

x + ∑Ω<br />

ui,<br />

x ⎪<br />

⎧ε<br />

⎫ ⎪<br />

⎪<br />

x<br />

⎪ ⎪ ⎪<br />

⎪<br />

i<br />

⎨2<br />

εxy<br />

⎬ = ⎨∑Ω<br />

, yu<br />

i ⎬<br />

(3.24)<br />

⎪ ⎪ ⎪<br />

⎪<br />

⎩2εxz<br />

⎭ ⎪<br />

i ⎪<br />

⎪w,<br />

x + θy<br />

+ ∑Ω<br />

, zu<br />

i ⎪<br />

⎪⎩<br />

⎪⎭<br />

w,x+θy is considered to be an approximate average deformation <strong>of</strong> the cross section as <strong>in</strong> Timoshenko<br />

beam theory and the additional terms ∑Ωi,y ui and ∑Ωi,z ui are given to improve this approximation by<br />

<strong>in</strong>clud<strong>in</strong>g local deformation due to the warp<strong>in</strong>g.<br />

3.3.3 Additional equations<br />

In order to achieve the k<strong>in</strong>ematic description <strong>of</strong> the displacement field and to adapt the general<br />

formula uwarp<strong>in</strong>g = ∑Ω i ui <strong>in</strong> (3.23) to describe bend<strong>in</strong>g shear effects <strong>of</strong> a th<strong>in</strong> walled-cross section,<br />

additional equations are required to satisfy the boundary conditions sett<strong>in</strong>g that the transverse shear<br />

stresses (and therefore stra<strong>in</strong>s) must vanish at free edges <strong>of</strong> open pr<strong>of</strong>iles and to restra<strong>in</strong> the additional<br />

degrees <strong>of</strong> freedom to the above described phenomenon.<br />

Similarly to developments <strong>of</strong> the k<strong>in</strong>ematics <strong>of</strong> torsional warp<strong>in</strong>g (§3.2.3), additional k<strong>in</strong>ematic<br />

conditions must be satisfied <strong>in</strong> order to uncouple the (xz) warp<strong>in</strong>g bend<strong>in</strong>g effects from axial, (xy)<br />

bend<strong>in</strong>g and torsional effects. The condition (3.17) is relaxed <strong>in</strong> order to relate the n degrees <strong>of</strong><br />

freedom (ui) to the (xz) warp<strong>in</strong>g bend<strong>in</strong>g effects. Regard<strong>in</strong>g axial and (xy) bend<strong>in</strong>g effects, the<br />

follow<strong>in</strong>g k<strong>in</strong>ematical equations must be satisfied:<br />

∫ uwarp<strong>in</strong>g<br />

dA = 0 => S i ui<br />

= 0<br />

A<br />

n<br />

∑ Ω<br />

i=<br />

1<br />

∫ yuwarp<strong>in</strong>g<br />

dA = 0 => I ui<br />

0<br />

y i =<br />

Ω<br />

A<br />

n<br />

∑<br />

i=<br />

1<br />

(3.25)<br />

(3.26)<br />

For closed pr<strong>of</strong>iles, no boundary conditions are required. For an open pr<strong>of</strong>ile, the zero shear boundary<br />

conditions give additional constra<strong>in</strong>ts on the parameters ui by prescrib<strong>in</strong>g that at the edge, εxs vanishes<br />

and thus:<br />

εxs = 0 (3.27)<br />

S<strong>in</strong>ce the variation <strong>of</strong> transverse shear stra<strong>in</strong> is not l<strong>in</strong>ear but quadratic, non l<strong>in</strong>ear functions Ω i are<br />

necessary to accommodate exactly a quadratic variation <strong>of</strong> the transverse shear stra<strong>in</strong> <strong>with</strong> a m<strong>in</strong>imum<br />

pr<strong>of</strong>ile discretization. However, for simplicity, the functions Ω i are hereby considered as l<strong>in</strong>ear and the<br />

discretization <strong>of</strong> the pr<strong>of</strong>ile is ref<strong>in</strong>ed.<br />

(3.27) is developed by us<strong>in</strong>g (3.24) and is reduced to the follow<strong>in</strong>g condition:<br />

-ue+ud=0 (3.28)<br />

3-11


where e is the edge transversal node (it represents all nodes related to only one segment <strong>of</strong> the pr<strong>of</strong>ile;<br />

e.g. nodes 1 and 3 <strong>in</strong> figure 3.8) and d is the adjacent node (node 2 <strong>in</strong> figure 3.8). ue and ud are the<br />

correspond<strong>in</strong>g degrees <strong>of</strong> freedom.<br />

Furthermore, to uncouple the (xz) warp<strong>in</strong>g effects considered <strong>in</strong> this paragraph from the (xy) bend<strong>in</strong>g,<br />

an additional equilibrium condition is required sett<strong>in</strong>g that ui do not represent a warp<strong>in</strong>g result<strong>in</strong>g from<br />

shear forces along the perpendicular direction (y). For an elastic behavior and a homogeneous pr<strong>of</strong>ile:<br />

G∫<br />

εxy<br />

dA = 0<br />

=> S i ui<br />

= 0<br />

, y<br />

A<br />

3.4 Distortional warp<strong>in</strong>g<br />

n<br />

∑ Ω<br />

i=<br />

1<br />

(3.29)<br />

3.4.1. Introduction<br />

The warp<strong>in</strong>g function presented <strong>in</strong> §3.2 is adapted <strong>in</strong> order to adequately describe the distortional<br />

behavior <strong>in</strong>troduced <strong>in</strong> §2.3. Depend<strong>in</strong>g on the beam geometry, m distortional modes are associated<br />

<strong>with</strong> m jo<strong>in</strong>ts separat<strong>in</strong>g the cross section <strong>in</strong>to two or more parts. Each distortional mode is<br />

characterized by the rotation <strong>of</strong> each part around its own specific center and by an out <strong>of</strong> plane<br />

bend<strong>in</strong>g <strong>of</strong> the <strong>in</strong>ner plates constitut<strong>in</strong>g the beam. Each part is assumed to rema<strong>in</strong> rigid and<br />

undeformable regard<strong>in</strong>g the associated distortional mode.<br />

3.4.2 Warp<strong>in</strong>g function and displacement field<br />

Similarly to the developments presented <strong>in</strong> §3.2, the distortional warp<strong>in</strong>g function is divided <strong>in</strong>to two<br />

terms: the contour warp<strong>in</strong>g function uc and the thickness warp<strong>in</strong>g function ut. The general Prokić<br />

warp<strong>in</strong>g function, for which the warp<strong>in</strong>g is assumed to vary l<strong>in</strong>early along straight branches <strong>of</strong> the<br />

contour, is adapted <strong>in</strong> order to determ<strong>in</strong>e uc. The thickness distortional warp<strong>in</strong>g (or second order<br />

distortional warp<strong>in</strong>g) ut is considered to vary l<strong>in</strong>early through the thickness and to vanish along the<br />

midwall. For each distortional mode I (I = 1…m), ut is proportional to θxI,x the derivative <strong>of</strong> the<br />

distortional rotation angle, to the distance to the midl<strong>in</strong>e e, and to the perpendicular distance hnI to the<br />

normal issued from the associated distortional center.<br />

A distortional degree <strong>of</strong> freedom θxI is associated <strong>with</strong> a distortional jo<strong>in</strong>t I (I = 1…m) and is taken as<br />

the rotation <strong>of</strong> a specific part <strong>of</strong> the contour (I-I+1-…-n) around the associated distortional rotation<br />

center. For open pr<strong>of</strong>iles <strong>with</strong>out ramifications, the rotation <strong>of</strong> the left part <strong>of</strong> the contour (1-2-…j)<br />

around the left distortional rotation center CIg is measured by µIθxI. µ I is the specific rotat<strong>in</strong>g ratio<br />

between the right and the left sectional parts. For a monosymmetrical pr<strong>of</strong>ile <strong>with</strong> one distortional<br />

mode, µ is found to be equal to -1. For arbitrary pr<strong>of</strong>iles, I µ , y CI and z CI are functions <strong>of</strong> the contour<br />

length (s) for a distortional mode I. y CI (s) and z CI (s) represent, for each value <strong>of</strong> s, the coord<strong>in</strong>ates <strong>of</strong><br />

the distortional rotation center <strong>of</strong> the associated part. At the reference part, θxI is the distortional<br />

rotational angle and I µ is equal to 1. For the other parts <strong>of</strong> the contour, µ I represents the rotat<strong>in</strong>g ratio.<br />

utI = - I ω µ I<br />

θxI,x<br />

(3.30)<br />

where ωI(y,z) = hnI(s).e. hnI is positive when the normal to the mid l<strong>in</strong>e rotates counterclockwise<br />

around the distortional center.<br />

3-12


The displacement <strong>of</strong> any po<strong>in</strong>t q(x,y,z) <strong>of</strong> the cross section associated <strong>with</strong> the distortional mode I (I =<br />

1…m) is given by:<br />

n<br />

D ⎫ ⎧ i ⎫<br />

q ⎪ ⎪ −ωµ I Iθ xI,x + ∑Ω<br />

ui⎪<br />

⎪ ⎪ i= 1 ⎪<br />

D ⎪ ⎪ ⎪<br />

q = − − CI µ IθxI ⎧<br />

⎪ u<br />

⎪<br />

⎪<br />

⎨ v ⎬ ⎨ (z z ) ⎬<br />

⎪ ⎪ ⎪ ⎪<br />

⎪ D ⎪ ⎪ ⎪<br />

⎪ w q ⎪ ⎪ (y− y CI) µ IθxI ⎪<br />

⎩ ⎭ ⎩ ⎭<br />

3.4.3 K<strong>in</strong>ematics decoupl<strong>in</strong>g<br />

(3.31)<br />

In this section, similarly to the work developed <strong>in</strong> §3.3 and §3.4.3, the distortion is separated from<br />

axial, bend<strong>in</strong>g and tortional effects. The general function (equation 3.2) must be adapted <strong>in</strong> order to<br />

associate the additional longitud<strong>in</strong>al displacements ui (i = 1,n) <strong>of</strong> the transversal nodes <strong>with</strong> the<br />

distortional behavior. K<strong>in</strong>ematic conditions that must be satisfied <strong>in</strong> order to uncouple the distortional<br />

warp<strong>in</strong>g (u D = uc +ut) from axial, bend<strong>in</strong>g, torsional effects (u T computed <strong>in</strong> §3.2) are:<br />

A<br />

D<br />

∫ u dA= 0<br />

(3.32)<br />

A<br />

D<br />

∫ yu dA = 0<br />

(3.33)<br />

A<br />

D<br />

∫ zu dA = 0<br />

(3.34)<br />

A<br />

T D<br />

∫ u u dA= 0<br />

(3.35)<br />

This step (equations 3.32-3.35), that ensures the uncoupl<strong>in</strong>g between the distortional degrees <strong>of</strong><br />

freedom and the others, is similar to the selection <strong>of</strong> the pr<strong>in</strong>cipal distortional sectorial warp<strong>in</strong>g<br />

function ωI when us<strong>in</strong>g the models <strong>of</strong> Takahashi [1978, 1980…]. The pr<strong>in</strong>cipal sectorial poles are<br />

found to be the distortional centers and the sectorial orig<strong>in</strong> is a particular po<strong>in</strong>t obta<strong>in</strong>ed by satisfy<strong>in</strong>g<br />

the follow<strong>in</strong>g equations:<br />

∫ ω IdA<br />

= 0<br />

(3.36)<br />

A<br />

∫ yω IdA=<br />

0<br />

(3.37)<br />

A<br />

∫ zω IdA<br />

= 0<br />

(3.38)<br />

A<br />

∫ ω 0ωIdA = 0<br />

(3.39)<br />

A<br />

where ω0 is the torsional warp<strong>in</strong>g function.<br />

Note that the four equations listed above (3.36-3.39) contribute to the determ<strong>in</strong>ation <strong>of</strong> the distortional<br />

centers and the rotat<strong>in</strong>g ratio accord<strong>in</strong>g to Takahashi theory. These equations were found by Takahashi<br />

by sett<strong>in</strong>g that the distortional degree <strong>of</strong> freedom θxI must not be associated to any axial force, bend<strong>in</strong>g<br />

moment or torsional bimoment [Takahashi 1978].<br />

3-13


4.1 Introduction<br />

CHAPTER 4. ANALYTICAL DEVELOPMENTS<br />

The analysis <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g structures requires the formulation <strong>of</strong> theoretical models. Due to the<br />

complexity <strong>of</strong> the physical problem, many assumptions are elaborated and the mathematical model has<br />

to be formulated carefully <strong>in</strong> order to provide an acceptable description <strong>of</strong> the structural behavior<br />

dur<strong>in</strong>g the load<strong>in</strong>g process. A structural analysis problem consists <strong>of</strong> solv<strong>in</strong>g a set <strong>of</strong> equations <strong>with</strong><br />

boundary conditions and prescribed constra<strong>in</strong>ts. When available, analytical solutions are the most<br />

convenient for model<strong>in</strong>g a structure. They enable clear analyses, physical <strong>in</strong>terpretations and<br />

illustrated applications <strong>of</strong> an <strong>in</strong>tricate theory on a simple structure. However, it is obvious that they do<br />

not respond to all complex requirements <strong>of</strong> a designer: simply supported beams are seldom found <strong>in</strong><br />

practice.<br />

In structural mechanics problems, it is thus usually preferred to formulate an approximate approach:<br />

<strong>in</strong>stead <strong>of</strong> analyz<strong>in</strong>g the whole structure as a cont<strong>in</strong>uous model, a correspond<strong>in</strong>g discrete system <strong>with</strong> a<br />

f<strong>in</strong>ite number <strong>of</strong> parameters is used. This transition is required when the complexity <strong>of</strong> the structure<br />

necessitates the use <strong>of</strong> computer techniques.<br />

Analytical developments for a l<strong>in</strong>ear elastic behavior <strong>of</strong> a structure are presented <strong>in</strong> paragraphs 4.2, 4.3<br />

and 4.4 <strong>in</strong> order to take <strong>in</strong>to account separately the warp<strong>in</strong>g due to torsion, bend<strong>in</strong>g and distortion<br />

respectively. In paragraph 4.5, a structural stability analysis is developed <strong>with</strong> torsional warp<strong>in</strong>g<br />

effects. These analytical analyses <strong>in</strong>troduce and contribute to validate the numerical methods that will<br />

be presented <strong>in</strong> Chapter 5.<br />

4.2 L<strong>in</strong>ear elastic analysis <strong>with</strong> torsional warp<strong>in</strong>g effects<br />

4.2.1 Deformations<br />

The expression <strong>of</strong> l<strong>in</strong>ear stra<strong>in</strong>s can be written <strong>in</strong> a matrix notation as:<br />

⎧ε⎫⎧ x u ⎫<br />

q,x<br />

⎪ ⎪ ⎪ ⎪<br />

⎨2ε xy ⎬= ⎨uq,y+ vq,x⎬<br />

⎪ ⎪ ⎪<br />

2 u xz q,z w<br />

⎪<br />

⎩ ε ⎭ ⎩ + q,x ⎭<br />

In order to study the torsional warp<strong>in</strong>g problem, equations (3.9) develop<strong>in</strong>g uq, vq and wq are<br />

substituted <strong>in</strong> (4.1).<br />

⎧ n<br />

i<br />

⎫<br />

⎪−ωθ x,xx + ∑Ω<br />

ui,x<br />

⎪<br />

⎧ε ⎫<br />

z,x<br />

i 1<br />

x ⎧u⎫ ⎧<br />

0,x z ⎫ ⎧−yθ ⎫<br />

⎪ =<br />

⎪<br />

⎪<br />

θy,x ⎪ ⎪<br />

n<br />

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ i ⎪<br />

⎨2ε xy ⎬= ⎨0 ⎬+ ⎨0 ⎬+ ⎨v ,x −θ z ⎬+ ⎨−( ω ,y + z−z c) θ x,x + ∑Ω<br />

,yui⎬ (4.2)<br />

⎪ ⎪ ⎪0⎪ ⎪ i= 1<br />

2<br />

w<br />

⎪ ⎪0 ⎪ ⎪ ⎪<br />

⎪ xz ,x +θy<br />

n<br />

⎩<br />

ε ⎪⎭⎩ ⎭ ⎪⎩ ⎪⎭<br />

⎪⎩ ⎪⎭ ⎪ i ⎪<br />

⎪( −ω ,z + y−y c) θ x,x + ∑Ω<br />

,zui⎪ ⎩ i= 1 ⎭<br />

total = axial + bend<strong>in</strong>g (xz) + bend<strong>in</strong>g (xy) + torsion & warp<strong>in</strong>g<br />

4.2.2 Hooke law<br />

If a l<strong>in</strong>ear elastic behavior is assumed, the stra<strong>in</strong>s are related to the stresses by:<br />

(4.1)<br />

4-1


σ ( x,<br />

y,<br />

z)<br />

= Eεx<br />

τ x,<br />

y,<br />

z)<br />

= G2ε<br />

x<br />

xy(<br />

xy<br />

xz ( x,<br />

y,<br />

z)<br />

= G2εxz<br />

( x,<br />

y,<br />

z)<br />

( x,<br />

y,<br />

z)<br />

τ ( x,<br />

y,<br />

z)<br />

(4.3)<br />

4.2.3 Pr<strong>in</strong>ciple <strong>of</strong> virtual work<br />

The equilibrium is considered for a th<strong>in</strong>-walled member <strong>with</strong> volume V. Virtual functions are denoted<br />

by the superscript *.<br />

The pr<strong>in</strong>ciple <strong>of</strong> virtual work expression is:<br />

W=W<strong>in</strong>t-Wext=0 ∀ * 0<br />

*<br />

*<br />

u , v , w , * x<br />

The <strong>in</strong>ternal virtual work is:<br />

θ , * y<br />

* * *<br />

W<strong>in</strong>t= ( εxσ<br />

x + 2εxyτ<br />

xy + 2εxzτ<br />

xz ) dV<br />

V<br />

θ , * z θ , * θ x,<br />

x , * u i (i=1,..n). (4.4)<br />

∫ (4.5)<br />

By consider<strong>in</strong>g virtual k<strong>in</strong>ematics that has the same form <strong>of</strong> (3.9) and by substitut<strong>in</strong>g the<br />

correspond<strong>in</strong>g stra<strong>in</strong>-displacement relations (4.2) <strong>in</strong>to (4.5), the virtual <strong>in</strong>ternal work becomes:<br />

n<br />

* * * * i *<br />

W<strong>in</strong>t= ∫[<br />

x ( u0,<br />

x + zθy,<br />

x − yθz,<br />

x − ωθx,<br />

xx + ∑Ω<br />

u )<br />

i,<br />

x<br />

V<br />

i=<br />

1<br />

n<br />

F*<br />

* i *<br />

τxz<br />

( γ xz + ( −ω,<br />

z + y − yc<br />

) θx,<br />

x + ∑ Ω , zu<br />

)]<br />

i<br />

i=<br />

1<br />

n<br />

F*<br />

* i *<br />

xy xy , y c x,<br />

x ∑ , y<br />

i<br />

i=<br />

1<br />

σ + τ ( γ − ( ω + z − z ) θ + Ω u )<br />

+ dV<br />

(4.6)<br />

The external virtual work is:<br />

Wext=<br />

V<br />

* * *<br />

q vx+ q vy+ q vz<br />

∫ (u f v f w f )dV<br />

(4.7)<br />

where fvx, fvy and fvz are the components <strong>of</strong> applied volume forces.<br />

n<br />

* * * * i *<br />

Wext= ∫{<br />

fvx[<br />

u0<br />

zθy<br />

− yθz<br />

− ωθx,<br />

x + ∑Ω<br />

u ]<br />

i<br />

V<br />

i=<br />

1<br />

*<br />

+ + f [ v − ( z − z ) θ ] + f [ w + ( y − y ) θ ]} dV<br />

vy<br />

(4.8)<br />

Let A be the cross section area and L the length <strong>of</strong> the th<strong>in</strong> walled member. By substitut<strong>in</strong>g (4.6) and<br />

(4.8) <strong>in</strong>to (4.4) and after <strong>in</strong>tegrat<strong>in</strong>g by parts and isolat<strong>in</strong>g coefficients <strong>of</strong> virtual displacements, the<br />

pr<strong>in</strong>ciple <strong>of</strong> virtual work can be expressed as:<br />

* * L<br />

∫u [<br />

0 ∫σ x,xdA + f x]dx −[u 0∫σxdA]<br />

0<br />

L A A<br />

*<br />

∫w [ ∫ xz,xdA f z ]dx<br />

*<br />

[w ∫<br />

L<br />

xzdA] 0<br />

L A A<br />

*<br />

θ [<br />

x<br />

( −(<br />

ω,<br />

y + z − zc<br />

) τxy,<br />

x + ( −ω,<br />

z + y<br />

L A<br />

+ τ + − τ<br />

+<br />

*<br />

∫v [ ∫ xy,xdA f y]dx *<br />

[v ∫<br />

L<br />

xy,xdA] 0<br />

L A A<br />

+ τ + − τ<br />

∫ ∫ − yc<br />

) τxz,<br />

x + ωσx,<br />

xx ) dA + mx<br />

+ mxω,<br />

C<br />

* x<br />

vz<br />

*<br />

x<br />

C<br />

] dx<br />

* x<br />

4-2


( )<br />

* L * L * L<br />

x ∫ ,y c xy ,z c xz 0 x,x ∫ x 0 x ∫ vx 0<br />

A A A<br />

+θ [ ( ω + z −z ) τ + ( ω − y + y ) τ dA] + [ θ ωσdA] −[ θ ωf<br />

dA]<br />

* L<br />

x x,x 0<br />

A<br />

∫ + ∫θ∫( σ −τ ) + − θ∫( σ )<br />

−θ [ ωσ dA]<br />

* * L<br />

[ z<br />

y x,x xz dA m y]dx [ z<br />

y x dA] 0<br />

L A A<br />

∫ ∫ ∫(<br />

)<br />

* * L<br />

[ ( y<br />

z x,x xy)dA m z]dx [ y<br />

z x dA] 0<br />

L A A<br />

+ θ − σ +τ + + θ σ<br />

( ) i ( )<br />

n<br />

* i i i * i L<br />

i x,x ,y xy ,z xz Ω<br />

i x 0<br />

i= 1 L A A<br />

∑ ∫ ∫ ∫ (4.9)<br />

+ { u [ Ω σ −Ω τ −Ω τ dA+ f ]dx −[u Ω σ dA] } = 0<br />

The expressions <strong>of</strong> applied body loads by unit length <strong>of</strong> the beam are given by (4.10):<br />

f<br />

f<br />

f<br />

x<br />

y<br />

z<br />

m<br />

m<br />

m<br />

x<br />

y<br />

z<br />

f i<br />

Ω<br />

=<br />

=<br />

=<br />

∫<br />

A<br />

∫<br />

A<br />

∫<br />

A<br />

=<br />

=<br />

f<br />

f<br />

f<br />

∫<br />

A<br />

∫<br />

A<br />

= −<br />

vx<br />

vy<br />

vz<br />

dA<br />

dA<br />

dA<br />

(( y − y ) f<br />

( zf<br />

∫<br />

A<br />

vx<br />

( yf<br />

∫ Ω =<br />

i<br />

( f<br />

A<br />

c<br />

) dA<br />

vx<br />

vx<br />

vz<br />

) dA<br />

) dA<br />

− ( z − z ) f<br />

c<br />

vy<br />

) dA<br />

∫ ω = m xω<br />

fvxdA<br />

(4.10)<br />

A<br />

4.2.4 Stress resultants<br />

To cont<strong>in</strong>ue the developments <strong>of</strong> the beam theory, the follow<strong>in</strong>g stress resultants act<strong>in</strong>g on the<br />

complete cross section are <strong>in</strong>troduced:<br />

Axial force:<br />

∫ σ = N xdA<br />

A<br />

<strong>Shear</strong> forces:<br />

T<br />

y<br />

∫ τ =<br />

A<br />

∫ τ = T<br />

z<br />

A<br />

xy<br />

xz<br />

dA<br />

dA<br />

4-3


Torsional stress resultants:<br />

∫ ωσ = ω xdA M (second order bimoment)<br />

A<br />

= ∫ ( − ( ω + z − z ) τ + ( −ω<br />

+ y − y ) τ )dA (moment)<br />

1<br />

Mx , y c xy , z c xz<br />

A<br />

i<br />

i = ∫ Ω σxdA<br />

A<br />

i<br />

i<br />

ϕi<br />

= ∫ Ω,<br />

y τxy<br />

+ Ω,<br />

z τxz<br />

) dA<br />

A<br />

B (i=1,2,…n) (biforces)<br />

( (i=1,2,…n) (biflows)<br />

Bend<strong>in</strong>g moments:<br />

M<br />

y<br />

∫ σ = z xdA<br />

A<br />

∫ σ − = M z y xdA<br />

(4.11)<br />

A<br />

It is important to note that the def<strong>in</strong>ition <strong>of</strong> the biforces is related <strong>in</strong> this case to the usual def<strong>in</strong>ition <strong>of</strong><br />

the bimoment <strong>in</strong> Vlassov or Benscoter theory (moment multiplied by a distance). Hereby, the biforces<br />

are <strong>in</strong>ternal forces applied on transversal nodes and associated <strong>with</strong> the ui. The usual bimoment –as<br />

def<strong>in</strong>ed <strong>in</strong> Vlassov or Benscoter theories– can be computed as a resultant <strong>of</strong> these warp<strong>in</strong>g forces.<br />

By substitut<strong>in</strong>g (4.2) <strong>in</strong>to (4.3) and by <strong>in</strong>tegrat<strong>in</strong>g the stresses over the whole cross section, the stress<br />

resultants (4.11) are expressed as function <strong>of</strong> the k<strong>in</strong>ematics:<br />

n<br />

∑ S<br />

Ω<br />

i=<br />

1<br />

N = EAu + i u<br />

T<br />

T<br />

y<br />

z<br />

M<br />

M<br />

y<br />

z<br />

=<br />

=<br />

0,<br />

x<br />

G(<br />

Av<br />

G(<br />

Aw<br />

=<br />

=<br />

E(<br />

I<br />

E(<br />

I<br />

y<br />

z<br />

, x<br />

, x<br />

θ<br />

θ<br />

− Aθ<br />

z<br />

+ Aθ<br />

y,<br />

x<br />

z,<br />

x<br />

− I<br />

+ I<br />

y<br />

zω<br />

yω<br />

i,<br />

x<br />

− ( S<br />

ω<br />

− ( S<br />

θ<br />

θ<br />

− z<br />

C<br />

A)<br />

θ<br />

x,<br />

x<br />

+<br />

n<br />

i 1<br />

n<br />

S<br />

i<br />

, y ∑ Ω,<br />

y<br />

=<br />

ω<br />

x,<br />

xx<br />

x,<br />

xx<br />

+ y A)<br />

θ<br />

C<br />

x,<br />

x<br />

+<br />

i<br />

1<br />

S<br />

i<br />

, z ∑ Ω,<br />

z<br />

=<br />

+<br />

−<br />

n<br />

∑ I i<br />

zΩ<br />

i=<br />

1<br />

n<br />

∑ I i<br />

yΩ<br />

i=<br />

1<br />

u<br />

u<br />

i,<br />

x<br />

i,<br />

x<br />

)<br />

)<br />

1<br />

x , z<br />

, y<br />

n<br />

∑<br />

i= 1<br />

Ω C Ω,y C Ω,z<br />

i<br />

+ (Iz + Iy + 2Iω+ Iω,y ω + I<br />

,y ω,z ω,z 2 2<br />

+ 2yCSω − 2z<br />

,z CSω + y<br />

,y C A + zC A) θ x,x]<br />

M = G[(<br />

−Sω<br />

− yCA)(<br />

w,<br />

x + θy<br />

) + ( −Sω<br />

+ zCA)(<br />

v,<br />

x − θz<br />

) + ( − I i + z S i −y<br />

S i )u<br />

M xx<br />

u )<br />

i<br />

u )<br />

ω = E(<br />

Izωθy,<br />

x − Iyωθz,<br />

x − Iωωθx,<br />

)<br />

i=1,2,3,……n<br />

B = E(I θ −I θ +∑<br />

I u )<br />

i i y,x i z,x i j<br />

zΩ yΩ<br />

Ω Ω j,x<br />

j1 =<br />

n<br />

i<br />

4-4


ϕ = G[(S (v −θ ) + S (w +θ ) + ( − I + I + z S −y S ) θ + (I i k + I i k )u )]<br />

i i i i i i i<br />

Ω ,x z<br />

,y Ω ,x y<br />

,z zΩ C C x,x<br />

,y yΩ,z<br />

Ω,y Ω,z<br />

∑<br />

k<br />

Ω,y Ω,y Ω,z Ω,z<br />

i=1,2,3,……n (4.12)<br />

S<strong>in</strong>ce the additional equations (3.20) are not yet considered, the resultant forces <strong>in</strong> (4.12) are not<br />

written <strong>in</strong> their uncoupled form. In order to restra<strong>in</strong> the warp<strong>in</strong>g degrees <strong>of</strong> freedom to the description<br />

<strong>of</strong> the torsional behavior and to reduce (4.12) to its most useful form, each resultant forces (axial and<br />

shear forces, bend<strong>in</strong>g moments, torque and biforces) have to be only associated <strong>with</strong> the correspond<strong>in</strong>g<br />

degrees <strong>of</strong> freedom. The axial force N must depend on the axial stra<strong>in</strong> u0,x. My and Tz must depend on<br />

the curvature θy,x, on the rotation angle θy and on the derivative <strong>of</strong> w. Similarly, Mz and Ty must<br />

depend on the curvature θz,x, on the rotation angle θz and on the derivative <strong>of</strong> v. Torsional <strong>in</strong>ternal<br />

forces Mx 1 , Mω, Bi and φi must derive from θx and ui.<br />

It could be easily demonstrated that, if the k<strong>in</strong>ematic equations (3.13, 3.16 and 3.17) are satisfied, the<br />

axial force and bend<strong>in</strong>g moments are therefore written <strong>in</strong> their uncoupled form (4.13). Indeed, if a<br />

function (equations 3.13, 3.16, 3.17) vanishes for any value <strong>of</strong> x, its derivative is also equal to zero. As<br />

expected, N, My and Mz are reduced therefore to their usual form:<br />

N = EAu0,<br />

x<br />

EI M θ =<br />

y<br />

z<br />

y<br />

z<br />

y,<br />

x<br />

EI M = θ<br />

(4.13)<br />

z,<br />

x<br />

Besides, the expressions <strong>of</strong> Ty and Tz <strong>in</strong> (4.12) are transformed to (4.16) by <strong>in</strong>troduc<strong>in</strong>g additional<br />

constra<strong>in</strong>ts:<br />

n<br />

( Sω<br />

− z A)<br />

θ + S u = 0<br />

(4.14)<br />

− , y C x,<br />

x ∑<br />

i=<br />

1<br />

Ω<br />

− ( S<br />

n<br />

, z + yCA)<br />

θx,<br />

x + ∑ S<br />

Ω,<br />

i=<br />

1<br />

i<br />

, y<br />

i<br />

ω u = 0<br />

(4.15)<br />

i z<br />

i<br />

Equations (4.14) and (4.15) are used to calculate the co-ord<strong>in</strong>ates (yC,zC) <strong>of</strong> the shear center. The usual<br />

uncoupled form <strong>of</strong> Ty and Tz is then given by (4.16):<br />

Ty z<br />

Tz , x y<br />

= G(<br />

Av,<br />

x − Aθ<br />

)<br />

= G(<br />

Aw + Aθ<br />

)<br />

(4.16)<br />

Equations (3.13, 3.16, 3.17, 4.14 and 4.15) are also prescribed for the virtual displacements <strong>in</strong>troduced<br />

<strong>in</strong> (4.4) so that the pr<strong>in</strong>ciple <strong>of</strong> virtual work (4.9) can be developed <strong>in</strong> an uncoupled form. If done so,<br />

Mx 1 , Mω, Bi and φi are written <strong>in</strong> their uncoupled form (4.17). The torsional biforces, biflows and<br />

moments are thus associated only <strong>with</strong> the torsional degrees <strong>of</strong> freedom.<br />

M<br />

1 x<br />

=<br />

G[(<br />

I<br />

z<br />

+ I<br />

M −EI<br />

θ<br />

ω = ωω<br />

y<br />

x,<br />

xx<br />

+ 2I<br />

ω<br />

+ I<br />

ω,<br />

yω,<br />

y<br />

+ I<br />

ω,<br />

zω,<br />

z<br />

n<br />

Bi = E∑<br />

I i j u<br />

Ω Ω j,<br />

x i=1,2,3,……n<br />

j=<br />

1<br />

+ y<br />

C<br />

S<br />

ω,<br />

z<br />

− z<br />

C<br />

S<br />

ω,<br />

y<br />

) θ<br />

x,<br />

x<br />

+<br />

n<br />

∑<br />

i=<br />

1<br />

( −I<br />

i<br />

Ω<br />

) u<br />

i<br />

]<br />

k<br />

4-5


ϕ<br />

i<br />

=<br />

G[( −I<br />

i + I i + z<br />

z y CS<br />

i − yCS<br />

i<br />

Ω,<br />

y Ω,<br />

z Ω,<br />

y Ω,<br />

z<br />

4.2.5 Equilibrium equations<br />

) θ<br />

x,<br />

x<br />

∑ i k i<br />

Ω,<br />

yΩ,<br />

y Ω,<br />

zΩ<br />

,<br />

k<br />

+ ( I + I ) u ] i=1,2,3,……n (4.17)<br />

S<strong>in</strong>ce (4.9) must be satisfied for any admissible set <strong>of</strong> virtual displacements * u 0 ,<br />

* z<br />

θ , * θ x,<br />

x and * u i (i=1,..n) per unit length (L = 1), the expressions <strong>in</strong>to brackets ([…]) associated <strong>with</strong><br />

each <strong>of</strong> these arbitrary variables should be set to zero. The follow<strong>in</strong>g equilibrium equations are then<br />

obta<strong>in</strong>ed:<br />

N,x + fx = 0<br />

Ty,x + fy= 0<br />

Tz,x + fz = 0<br />

M 1 x,x + Mω,xx + mx + mxω,x = 0<br />

My,x - Tz + my = 0<br />

Mz,x + Ty + mz = 0<br />

B − ϕ + f i = 0<br />

i , x<br />

i<br />

Ω<br />

In term <strong>of</strong> displacements, (4.18) can be written as:<br />

EAu0 , xx + fx<br />

= 0<br />

G( Av,<br />

xx − Aθz,<br />

x ) + f y = 0<br />

G( Aw,<br />

xx + Aθy,<br />

x ) + fz<br />

= 0<br />

− EIωωθx<br />

, xxxx + G[(<br />

Iz<br />

+ Iy<br />

+ 2Iω<br />

+ Iω<br />

ω + Iω<br />

ω + yCSω<br />

− zCSω<br />

n<br />

∑<br />

, y , y<br />

+ ( −I<br />

i ) u ] + mx<br />

+ mxω<br />

= 0<br />

i=<br />

1<br />

Ω<br />

i,<br />

x<br />

EI y θ y,<br />

xx − G(<br />

Aw,<br />

x + Aθy<br />

) + my<br />

= 0<br />

EIz θ z,<br />

xx + G(<br />

Av,<br />

x − Aθz<br />

) + mz<br />

= 0<br />

n<br />

∑ I<br />

Ω Ω<br />

j=<br />

1<br />

, z , z<br />

E i j u j,<br />

xx − G[( −I<br />

i + I i + z<br />

z y CS<br />

i − yCS<br />

i ) θ<br />

Ω<br />

x,<br />

x<br />

, y Ω,<br />

z Ω,<br />

y Ω,<br />

z<br />

, z<br />

k<br />

k z<br />

, y<br />

k<br />

) θ<br />

x,<br />

xx<br />

*<br />

v ,<br />

*<br />

w ,<br />

( I + I ) u ] + f i = 0<br />

i k<br />

, yΩ,<br />

y<br />

i<br />

, z<br />

k<br />

, z<br />

k<br />

*<br />

θ x ,<br />

(4.18)<br />

i=1,2,3,……n (4.18’)<br />

−<br />

∑<br />

Ω<br />

Ω<br />

Ω<br />

Ω<br />

*<br />

θ y ,<br />

4-6


The form <strong>of</strong> the boundary conditions for x=0 and x=L is:<br />

x F N = or u 0 = u0<br />

T = F<br />

or v 0 = v0<br />

y<br />

y<br />

T = F<br />

or w 0 = w0<br />

M + M + m = m or θ x = θx<br />

z z<br />

1<br />

x ω,x xω x<br />

M ω = mxω<br />

or θ x,<br />

x = θx,<br />

x<br />

= θ<br />

y y m M = or y y<br />

M z = mz<br />

or θ z = θz<br />

f<br />

u = u i=1,2,…n (4.19)<br />

B i<br />

= i<br />

or i i<br />

Ω<br />

The prescribed displacements (uo , v…) are the k<strong>in</strong>ematic or geometric boundary conditions and the<br />

prescribed forces (Fx, Fy,…) are the statical or force boundary conditions.<br />

4.3 L<strong>in</strong>ear elastic analyses <strong>with</strong> bend<strong>in</strong>g shear effects<br />

4.3.1 Displacement field and stra<strong>in</strong>s<br />

The advanced shear deformation theory, <strong>in</strong>troduced <strong>in</strong> paragraph 3.3, is developed hereby to<br />

adequately describe adequately the (xz) shear bend<strong>in</strong>g beam deformation. The developments for (xy)<br />

shear bend<strong>in</strong>g effects are not reproduced hereby s<strong>in</strong>ce they are exactly identical to these (xz)<br />

calculations. Besides, s<strong>in</strong>ce the complete effects <strong>in</strong>clud<strong>in</strong>g non uniform torsion have been analyzed <strong>in</strong><br />

the previous paragraph and s<strong>in</strong>ce the uncoupl<strong>in</strong>g <strong>of</strong> the different effects has been described <strong>in</strong><br />

paragraph (3.2.3), the displacement field considered hereby does only take <strong>in</strong>to account (xz) shear<br />

bend<strong>in</strong>g effects.<br />

⎧<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

⎨<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

⎩<br />

u<br />

v<br />

q<br />

w<br />

q<br />

⎫ ⎧<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎬ = ⎨<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎪ ⎪<br />

⎭ ⎩<br />

q<br />

zθ<br />

y<br />

+<br />

n<br />

∑<br />

i=<br />

1<br />

0<br />

w<br />

i<br />

Ω u<br />

⎫<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

i<br />

⎬<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

⎭<br />

θ<br />

(4.20)<br />

The stra<strong>in</strong>-displacements relations are derived by us<strong>in</strong>g the expression <strong>of</strong> the displacement field (4.20):<br />

⎧ n ⎫<br />

i<br />

⎪zθy,<br />

x + ∑Ω<br />

ui,<br />

x ⎪<br />

⎧ ⎫ ⎪ i=<br />

1<br />

ε<br />

⎪<br />

x<br />

⎪ ⎪<br />

⎪<br />

⎪ n<br />

⎪ i<br />

⎪<br />

⎨2<br />

εxy<br />

⎬ = ⎨∑Ω<br />

, yu<br />

i<br />

⎬<br />

(4.21)<br />

⎪ ⎪ ⎪i<br />

= 1<br />

⎪<br />

⎪⎩<br />

2εxz<br />

⎪⎭<br />

⎪<br />

n ⎪<br />

⎪<br />

i<br />

w + θ + Ω ⎪<br />

0,<br />

x y<br />

⎪ ∑ , zu<br />

i<br />

⎩<br />

⎪<br />

i=<br />

1 ⎭<br />

4-7


As expla<strong>in</strong>ed <strong>in</strong> detail <strong>in</strong> paragraph (3.2) for torsional warp<strong>in</strong>g effects and <strong>in</strong> (3.3) for beam shear<br />

effects, additional equations must be satisfied <strong>in</strong> order to solve the problem. These equations can be<br />

written as:<br />

n<br />

∑ S i u<br />

Ω<br />

=<br />

= 0<br />

i<br />

i 1<br />

n<br />

∑ S i u<br />

Ω , y i<br />

i=<br />

1<br />

n<br />

I u<br />

y i<br />

i 1<br />

i ∑ =<br />

Ω<br />

=<br />

= 0<br />

0<br />

ue-ud=0 (4.22)<br />

The fourth series <strong>of</strong> equations (4.22) is related to the free edges <strong>of</strong> a pr<strong>of</strong>ile <strong>with</strong> open branches. e is an<br />

edge node and d is the adjacent one.<br />

4.3.2 Pr<strong>in</strong>ciple <strong>of</strong> virtual work<br />

The govern<strong>in</strong>g equations are derived from the pr<strong>in</strong>ciple <strong>of</strong> virtual work <strong>of</strong> the beam (4.23). Similarly<br />

to paragraph 4.2.3, a th<strong>in</strong>-walled beam is considered <strong>with</strong> V as volume. Virtual parameters are denoted<br />

by the superscript *.<br />

W=W<strong>in</strong>t-Wext=0 ∀ *<br />

w , * θ y and * u i (i=1,..n). (4.23)<br />

The <strong>in</strong>ternal virtual work is:<br />

∫ (4.24)<br />

* * *<br />

W<strong>in</strong>t= ( εxσ<br />

x + 2εxyτxy<br />

+ 2εxzτ<br />

xz ) dV<br />

V<br />

By consider<strong>in</strong>g virtual k<strong>in</strong>ematics that has the same form <strong>of</strong> (4.20) and by substitut<strong>in</strong>g the<br />

correspond<strong>in</strong>g stra<strong>in</strong>-displacement relations (4.21) <strong>in</strong>to (4.24), the virtual <strong>in</strong>ternal work becomes:<br />

n<br />

* i *<br />

W<strong>in</strong>t= ∫ [ x ( zθy,<br />

x + ∑Ω<br />

u )<br />

i,<br />

x<br />

V<br />

i=<br />

1<br />

n<br />

i *<br />

xy ∑ , y<br />

i<br />

i=<br />

1<br />

n<br />

* * i *<br />

xz , x y ∑ , z<br />

i<br />

i=<br />

1<br />

σ + τ ( Ω u ) + τ ( w + θ + Ω u )] dV<br />

(4.25)<br />

By assum<strong>in</strong>g that there is only a transverse load on the beam, the external virtual work <strong>of</strong> the element<br />

is:<br />

Wext=<br />

V<br />

* *<br />

q vx+ q vz<br />

∫ (u f w f )dV<br />

(4.26)<br />

where fvx and fvz are the components <strong>of</strong> external volume forces.<br />

n<br />

* i *<br />

Wext= ∫{<br />

fvx[<br />

z y + ∑Ω<br />

u ]<br />

i<br />

V<br />

i=<br />

1<br />

*<br />

θ + f [ w ]} dV<br />

(4.27)<br />

vz<br />

Let A and L be the cross section area and the length <strong>of</strong> the th<strong>in</strong> walled member. By substitut<strong>in</strong>g (4.25)<br />

and (4.27) <strong>in</strong>to (4.23) and after <strong>in</strong>tegrat<strong>in</strong>g, the pr<strong>in</strong>ciple <strong>of</strong> virtual work can be expressed as:<br />

4-8


* * L<br />

w { τ xz,xdA + f z}dx −[wτxzdA] 0<br />

L A A<br />

*<br />

+ ∫θ { ∫ zσ y x,x −τ xz<br />

L A<br />

*<br />

dA + m y}dx −[ θ∫ y<br />

A<br />

zσx L<br />

dA] 0<br />

n<br />

* i i i * i L<br />

+ { u { ( Ω σ ) i<br />

i x,x −Ω ,yτxy −Ω ,zτ xz dA+ f }dx −[u i ( Ω σ x ) dA] 0}<br />

= 0<br />

Ω<br />

i= 1 L A A<br />

∫ ∫ ∫ ( ) ( )<br />

<strong>with</strong><br />

f =<br />

z<br />

m<br />

y<br />

∫<br />

A<br />

=<br />

f<br />

∫<br />

A<br />

∑ ∫ ∫ ∫ (4.28)<br />

vz<br />

dA<br />

( zf<br />

vx<br />

) dA<br />

∫ Ω =<br />

i<br />

f i ( f<br />

Ω<br />

vx ) dA<br />

(4.29)<br />

A<br />

4.3.3 Stress resultants<br />

The required stress resultants are def<strong>in</strong>ed hereafter:<br />

T<br />

z<br />

M<br />

∫ τ =<br />

y<br />

A<br />

A<br />

xz<br />

dA<br />

∫ σ = z xdA<br />

i<br />

B i = ∫ Ω σxdA<br />

, i=1,2,…n<br />

ϕ<br />

i<br />

=<br />

A<br />

∫<br />

A<br />

i<br />

, y<br />

i<br />

, z<br />

( Ω τ + Ω τ ) dA , i=1,2,…n (4.30)<br />

xy<br />

xz<br />

The displacement-dependant <strong>in</strong>ternal forces are given by:<br />

T<br />

z<br />

M<br />

y<br />

=<br />

G(<br />

Aw<br />

=<br />

E(<br />

I<br />

y<br />

, x<br />

θ<br />

y,<br />

x<br />

+ Aθ<br />

+<br />

n<br />

+ ∑ S<br />

Ω<br />

=<br />

y<br />

i 1<br />

n<br />

∑ I i<br />

zΩ<br />

i=<br />

1<br />

n<br />

u<br />

i,<br />

x<br />

i z<br />

,<br />

)<br />

u )<br />

B = E(<br />

I θ + I u ) , i=1,2,3,……n<br />

ϕ<br />

i<br />

i<br />

=<br />

i<br />

zΩ<br />

y,<br />

x ∑<br />

j=<br />

1<br />

i j<br />

Ω Ω j,<br />

x<br />

i ( w<br />

Ω , x + θy<br />

) + G∑(<br />

I i k + I i<br />

, z<br />

Ω,<br />

yΩ,<br />

y Ω,<br />

zΩ,<br />

k<br />

GS k z<br />

(4.25 and 4.26) can then be written <strong>with</strong> the follow<strong>in</strong>g form:<br />

L<br />

i<br />

) u<br />

W<strong>in</strong>t= ∫ M θ + T w * + T θ + ∑( B u + ϕ<br />

0<br />

*<br />

y y,<br />

x<br />

z<br />

, x<br />

z<br />

* y<br />

n<br />

i=<br />

1<br />

i<br />

k<br />

*<br />

i,<br />

x<br />

i<br />

* i<br />

i=1,2,3,……n (4.31)<br />

[ u )] dx<br />

(4.32)<br />

4-9


L<br />

Wext= ∫{ m θ + ∑ f u +<br />

0<br />

y<br />

* y<br />

= Ω<br />

n<br />

i 1<br />

i<br />

*<br />

i<br />

*<br />

fz<br />

w } dx<br />

(4.33)<br />

4.3.4 Equilibrium equations<br />

* *<br />

S<strong>in</strong>ce (4.32) must be equal to (4.33) for any value <strong>of</strong> w , θ y , * u i (i=1,..n), the expressions per unit<br />

length L = 1, associated <strong>with</strong> each <strong>of</strong> these arbitrary variables is set to zero. The follow<strong>in</strong>g equilibrium<br />

equations are obta<strong>in</strong>ed:<br />

Tz,x + fz = 0<br />

My,x - Tz = 0<br />

B − ϕ + F i = 0<br />

i , x<br />

i<br />

Ω<br />

The form <strong>of</strong> the boundary conditions for x=0 and x=L is:<br />

w = w<br />

T z = Fz<br />

or 0 0<br />

y y m M = or θ y = θy<br />

B i<br />

i<br />

Ω<br />

(4.34)<br />

= f<br />

or u i = ui<br />

i=1,2,…n (4.35)<br />

The prescribed displacements (ui , w…) are the k<strong>in</strong>ematic or geometric boundary conditions and the<br />

prescribed forces (Fz, my,…) are the statical or force boundary conditions.<br />

Case <strong>of</strong> a simply supported beam<br />

For a beam under a distributed load (q0), the equilibrium equations (4.34) are expressed <strong>in</strong> terms <strong>of</strong><br />

displacements as:<br />

G( Aw,<br />

xx Aθy,<br />

x + S uk,<br />

x ) + q0<br />

= 0<br />

+ ∑ k<br />

Ω,<br />

z<br />

k=<br />

1<br />

n<br />

− GAw,<br />

x − GAθy<br />

+ EIyθ<br />

y,<br />

xx + E∑<br />

I i ui,<br />

xx − G S<br />

zΩ<br />

∑<br />

GS<br />

Ω<br />

i<br />

, z<br />

( w<br />

, x<br />

n<br />

i=<br />

1<br />

n<br />

k<br />

, z<br />

k=<br />

1<br />

Ω<br />

u<br />

k<br />

= 0<br />

+ θy<br />

) − EI i θy,<br />

xx + G ( I + I ) uk<br />

− E I<br />

zΩ<br />

∑ Ω Ω Ω Ω ∑<br />

k<br />

i<br />

, y<br />

k<br />

, y<br />

i<br />

, z<br />

k<br />

, z<br />

n<br />

Ω Ω<br />

j=<br />

1<br />

i<br />

j<br />

u<br />

j,<br />

xx<br />

= 0<br />

(4.36)<br />

The solution <strong>of</strong> (4.36), which must also satisfy (4.22), depends on the boundary conditions (4.35) that<br />

can be written for a simply supported beam for example as:<br />

- 2 k<strong>in</strong>ematic conditions :<br />

- 2+2n statical conditions:<br />

w(x = 0) = 0<br />

w(x = L) = 0<br />

M y ( x<br />

Bi ( x<br />

= 0)<br />

= 0<br />

( x = L)<br />

= 0<br />

M y<br />

= 0)<br />

= 0<br />

( x = L)<br />

= 0 i=1,2,…n (4.37)<br />

B i<br />

4-10


or, <strong>in</strong> terms <strong>of</strong> displacements:<br />

w (0) = 0 w (L) = 0<br />

n<br />

( I yθ y,<br />

x + ∑ I i ui,<br />

x ) | x 0 = 0<br />

zΩ<br />

=<br />

n<br />

( I yθ y,<br />

x + ∑ I i ui,<br />

x ) | x L = 0<br />

zΩ<br />

=<br />

i=<br />

1<br />

( I<br />

z<br />

i θ y,<br />

x +<br />

n<br />

I i j u j,<br />

x ) |<br />

Ω Ω x=<br />

0<br />

j=<br />

1<br />

i=<br />

1<br />

( I<br />

z<br />

i θ y,<br />

x +<br />

n<br />

I i j u j,<br />

x ) |<br />

Ω Ω x=<br />

L<br />

j=<br />

1<br />

= 0<br />

Ω ∑ = 0<br />

Ω ∑ (4.38)<br />

4.3.5 An application: simply supported beam <strong>with</strong> uniformly distributed load<br />

In this paragraph, the present l<strong>in</strong>ear elastic analysis is used <strong>with</strong> bend<strong>in</strong>g shear warp<strong>in</strong>g effects (PBT).<br />

The results are compared to other beam theories <strong>in</strong>troduced <strong>in</strong> paragraph 2.1: Bernoulli beam theory<br />

(BBT), Timoshenko beam theory (TBT), modified Timoshenko beam theories (TBTM), high order<br />

theories as Reddy-Bickford beam theory (RBT) [Wang, 2000, page 14].<br />

A simply supported beam is considered under uniformly distributed load <strong>of</strong> <strong>in</strong>tensity q0=10kN/m. The<br />

cross section is a th<strong>in</strong> rectangle (b = 0.02m) x (h = 0.2m). E = 210 MPa, G=84MPa.<br />

10kN/m<br />

L<br />

Figure 4.1 Simply supported beam <strong>with</strong> rectangular cross section (bxh) under uniformly distributed<br />

load<br />

The equilibrium equations (4.36) and boundary conditions <strong>in</strong> (4.38) are implemented <strong>in</strong> Maple® code<br />

and solved. For the numerical application given above (L=10m), the deflection <strong>of</strong> the beam is found to<br />

be :<br />

(4.39)<br />

The values <strong>of</strong> maximal deflection are given for (BBT) by (2.12), for (TBTM) <strong>with</strong> k = 5/6 by (2.13),<br />

and for (RBT) by (2.14).<br />

From table 4.1, it is clear that, for rectangular cross-sections, (RBT) and (PBT) are not justified s<strong>in</strong>ce<br />

the ga<strong>in</strong> <strong>in</strong> accuracy <strong>with</strong> respect to (TBT) is not significant. For L/h = 50, Bernoulli beam theory<br />

gives a deflection <strong>with</strong> a difference <strong>of</strong> 0.1%. The (RBT) (same for (PBT)) solution is very close <strong>in</strong> that<br />

case (0.02%) to the Timoshenko theory solution (TBT). The results co<strong>in</strong>cide <strong>with</strong> those <strong>of</strong><br />

Timoshenko modified theory (TBTM) <strong>with</strong> k=5/6. For L/h = 10, the differences between the theories<br />

are larger than above (BBT - TBTM : 2.34%, RBT - TBTM : 0.4%).<br />

b<br />

h<br />

4-11


Table 4.1 Analytical values <strong>of</strong> maximal deflection [m] <strong>of</strong> beam (Figure 4.1)<br />

L/h=50 L/h=10<br />

Bernoulli beam theory (BBT) 4.65030E-01 7.44048E-04<br />

Timoshenko beam theory (TBT) 4.65402E-01 7.58929E-04<br />

Modified TBT <strong>with</strong> k (TBTM) 4.65476E-01 7.61905E-04<br />

Reddy beam theory (RBT) 4.65476E-01 7.61901E-04<br />

Present beam theory (PBT) <strong>with</strong> nn=5 4.65454E-01 7.61017E-04<br />

The correction factor <strong>of</strong> (TBTM) (eq. 2.9) is usually deduced from the geometry <strong>of</strong> the cross section<br />

by approximat<strong>in</strong>g the complex phenomenon. However, <strong>in</strong> real applications, it depends not only on the<br />

material (Poisson ratio) and geometric parameters, but also on the load<strong>in</strong>g and boundary conditions.<br />

A close exam<strong>in</strong>ation shows that although the RBT does not <strong>in</strong>clude explicit correction factors, the<br />

k<strong>in</strong>ematic relation (2.11) are characterized by two coefficients α and β that must be evaluated<br />

accord<strong>in</strong>g to the cross section geometry. The <strong>in</strong>fluence <strong>of</strong> the load<strong>in</strong>g and boundary conditions is<br />

<strong>in</strong>cluded <strong>in</strong> the formulation. The solution given <strong>in</strong> (2.14 and 2.15) is only valid for rectangular cross<br />

sections. For other shapes, similar developments should be accomplished <strong>with</strong> different values <strong>of</strong> α<br />

and β deduced from the geometry and the no shear boundary conditions for open pr<strong>of</strong>iles. The (PBT)<br />

has the advantage <strong>of</strong> be<strong>in</strong>g applicable to arbitrary pr<strong>of</strong>iles <strong>with</strong>out any restrictions or additional<br />

formulations. The automatic discretization <strong>of</strong> the pr<strong>of</strong>ile does not require coefficient calculations.<br />

The validation and the performance <strong>of</strong> (PBT) is shown <strong>in</strong> Chapter 5 by compar<strong>in</strong>g numerical results<br />

us<strong>in</strong>g the proposed theory <strong>with</strong> those <strong>of</strong> other theories. The effect <strong>of</strong> shear deformation is evaluated for<br />

different types <strong>of</strong> cross sections <strong>with</strong> the length <strong>of</strong> the beam as vary<strong>in</strong>g parameter.<br />

4.4 L<strong>in</strong>ear elastic analysis <strong>with</strong> distortional warp<strong>in</strong>g effects<br />

As <strong>in</strong>troduced <strong>in</strong> paragraph 3.4, an advanced theory is presented hereby to describe the distortional<br />

behavior. The uncoupl<strong>in</strong>g <strong>of</strong> the different effects (tension-compression / bend<strong>in</strong>g / torsion / distortion)<br />

has been described previously and the displacement field considered hereby is associated to one<br />

distortional mode I (the sum on m distortional modes is omitted for presentation simplification).<br />

4.4.1 Deformations<br />

The expression <strong>of</strong> l<strong>in</strong>ear stra<strong>in</strong>s is deduced from the displacement field (3.31) and from (2.63):<br />

n<br />

⎧ ⎫ ⎧ i ⎫<br />

⎪ εxx ⎪ ⎪ −ωµ I Iθ xI,xx + ∑Ω<br />

ui,x<br />

⎪<br />

⎪ ⎪ ⎪ i= 1 ⎪<br />

⎪ ⎪ ⎪ ⎪<br />

εss ΓI,sθxIe ⎪ ⎪ ⎪ ⎪<br />

⎨ ⎬= ⎨ n ⎬<br />

(4.40)<br />

⎪ i<br />

2 ε ⎪ ⎪<br />

xy −(z− z CI +ω I,y ) µ Iθ xI,x + ∑Ω,yu<br />

⎪<br />

i<br />

⎪ ⎪ ⎪ i= 1 ⎪<br />

⎪ ⎪ ⎪ n ⎪<br />

⎪ i<br />

2 ε ⎪ ⎪<br />

xz (y −y CI −ω I,z ) µ Iθ xI,x + ∑Ω,zu⎪<br />

i<br />

⎪⎩ ⎪⎭ ⎪⎩ i= 1 ⎪⎭<br />

4.4.2 Pr<strong>in</strong>ciple <strong>of</strong> virtual work<br />

The equilibrium is studied for a th<strong>in</strong>-walled member <strong>with</strong> volume V. Virtual functions are denoted by<br />

the superscript *.<br />

The pr<strong>in</strong>ciple <strong>of</strong> virtual work expression is:<br />

4-12


W=W<strong>in</strong>t-Wext=0 ∀<br />

θ ,<br />

*<br />

xI<br />

*<br />

θ xI,x , * i<br />

u (i=1,..n). (4.41)<br />

By consider<strong>in</strong>g virtual k<strong>in</strong>ematics that has the same form <strong>of</strong> (3.31 and 2.63) and by substitut<strong>in</strong>g the<br />

correspond<strong>in</strong>g stra<strong>in</strong>-displacement relations (4.40) <strong>in</strong>to (4.5), the virtual <strong>in</strong>ternal work becomes:<br />

W<strong>in</strong>t=<br />

∫<br />

V<br />

x I I<br />

*<br />

xI,xx<br />

n<br />

∑<br />

i= 1<br />

i *<br />

i,x s I,s<br />

*<br />

xIe n<br />

* i *<br />

xz CI I,z I xI,x ,z i<br />

i= 1<br />

[ σ ( −ωµ θ + Ω u ) +σ Γ θ<br />

xy CI I,y I<br />

*<br />

xI,x<br />

n<br />

∑<br />

i= 1<br />

i<br />

,y<br />

*<br />

i<br />

+τ ( −(z− z + ω ) µ θ + Ω u )<br />

+τ ((y − y − ω ) µ θ + ∑ Ω u )]dV<br />

(4.42)<br />

The external virtual work is the product <strong>of</strong> forces and displacements (equation 4.7):<br />

Wext=<br />

∫<br />

V<br />

vx<br />

n<br />

* i<br />

−ω Iµ Iθ xI + ∑Ω<br />

i= 1<br />

*<br />

i<br />

*<br />

*<br />

f [ u ] + f [ −(z− z ) µ θ ] + f [(y− y ) µ θ ]}dV (4.43)<br />

vy CI I xI<br />

vz CI I xI<br />

Let A and L be the cross section area and the length <strong>of</strong> the th<strong>in</strong> walled member. By substitut<strong>in</strong>g (4.42)<br />

and (4.43) <strong>in</strong>to (4.41) and after <strong>in</strong>tegrat<strong>in</strong>g by parts and isolat<strong>in</strong>g coefficients <strong>of</strong> virtual displacements,<br />

the pr<strong>in</strong>ciple <strong>of</strong> virtual work can be expressed by (4.44).<br />

∫ ∫<br />

θ [ ( −σ Γ e −( ω + z− z ) µ τ + ( −ω + y− y ) µ τ +ωµ σ )dA<br />

*<br />

xI s I,s I,y CI I xy,x I,z CI I xz,x I I x,xx<br />

L A<br />

* L<br />

+ mxI + m xωI,x ]dx +θ ( )<br />

xI ∫ ( ω I,y + z− z cI) µ Iτ xy + ( ωI,z − y+ y cI) µ Iτxz dA 0<br />

A<br />

* L<br />

−θ [ m<br />

xI xωI] 0<br />

* L<br />

+θ [<br />

xI,x ∫ ωµσ I I xdA] 0<br />

* L<br />

−θ [<br />

xI ∫ ωµσ I I x,xdA] 0<br />

A<br />

A<br />

n<br />

* i i i * i L<br />

∑{ ( ) i<br />

∫u [ ( )<br />

i ∫ x,x ,y xy ,z xz dA f ]dx [u<br />

i x dA] 0}<br />

0<br />

Ω ∫ (4.44)<br />

+ Ωσ −Ω τ −Ω τ + − Ωσ =<br />

i= 1 L A A<br />

The expressions <strong>of</strong> applied body loads by unit <strong>of</strong> length <strong>of</strong> the beam are:<br />

∫<br />

m = ((y− y ) µ f −(z− z ) µ f )dA<br />

f i<br />

Ω<br />

xI CI I vz CI I vy<br />

A<br />

∫ Ω =<br />

i<br />

( f<br />

A<br />

vx<br />

) dA<br />

m = ∫ ωµ f dA<br />

(4.45)<br />

xω I I I vx<br />

A<br />

4.4.3 Stress resultants<br />

The distortional stress resultants act<strong>in</strong>g on the complete cross section are:<br />

M = ∫ ωµ σ dA<br />

(second order bimoment)<br />

ω I I I x<br />

A<br />

4-13


( )<br />

M = ∫ −( ω + z− z ) µ τ + ( −ω + y− y ) µ τ dA (moment)<br />

1<br />

xI I,y CI I xy I,z CI I xz<br />

A<br />

i<br />

B i = ∫ Ω σxdA<br />

(i=1,2,…n) (biforces)<br />

A<br />

i i<br />

i ,y xy ,z xz<br />

A<br />

ϕ = ∫ ( Ω τ +Ω τ )dA<br />

(i=1,2,…n) (biflows)<br />

M = ∫ σ Γ edA<br />

(4.46)<br />

sI s I,s<br />

A<br />

It is important to note that the biforces are applied on transversal nodes and are associated to the<br />

degrees <strong>of</strong> freedom ui. The usual distortional bimoment can be computed as a resultant <strong>of</strong> these<br />

warp<strong>in</strong>g forces.<br />

By substitut<strong>in</strong>g (4.40) <strong>in</strong>to (4.3) and by <strong>in</strong>tegrat<strong>in</strong>g the stresses over the whole cross section, the stress<br />

resultants (4.46) are found to be:<br />

1<br />

xI =<br />

m<br />

∑<br />

J= 1<br />

zµµω −<br />

I J I,y yµµω −<br />

I J I,z zCJµµω +<br />

I J I,y yCJµµω<br />

+<br />

I J I,z µµω I J I,yω +<br />

J,y µµω I J I,zωJ,z µµ I Jzz µµ I Jyy µµ I JzCJz µµ I JyCJy zµµω I J J,y yµµω<br />

I J J,z<br />

M G (I I S S I I<br />

+ I + I −S − S + I −I<br />

−S − S + A + A −S<br />

+ S ) θ<br />

µµ I JzCIz µµ I JyCIy µµ I JzCIzCJ µµ I JyCIyCJ µµ I JzCIωJ,y µµ I JyCIωJ,zxJ,x n<br />

∑G(<br />

I i<br />

zµΩ i= 1<br />

I ,y<br />

S i<br />

µ IzCI Ω ,y<br />

I i<br />

yµΩ I ,z<br />

S i )u<br />

µ i<br />

IyCJ Ω,z<br />

+ − + + −<br />

m<br />

∑<br />

M =−E I θ<br />

ω I<br />

J= 1<br />

µ Jµ IωJωI xJ,xx<br />

sI =<br />

2<br />

θxI∫ ΓI,s<br />

A<br />

2<br />

M E e dA<br />

n<br />

B = E∑ I u<br />

i=1,2,3,……n<br />

i i j<br />

ΩΩ j,x<br />

j1 =<br />

m<br />

i G[ ∑(( I i I i S i S i ) xI,x + i k + i k<br />

zµΩ I ,y yµΩ I ,z µ IzCI Ω ,y µ IyCI Ω,z<br />

Ω,y Ω,y Ω,z Ω,z<br />

I= 1<br />

k<br />

ϕ = − + + − θ<br />

∑ (I I )u k )] i=1,2,3,……n (4.47)<br />

In order to uncouple the distortional modes from torsion, stretch<strong>in</strong>g and bend<strong>in</strong>g, the distortional<br />

degrees <strong>of</strong> freedom θxI and ui must <strong>in</strong>duce zero axial resultant, zero shear forces, zero bend<strong>in</strong>g<br />

moments and zero torsional resultants.<br />

(Izµω −I J T,y yµω − S<br />

J T,z zCJµω + S<br />

J T,y yCJµω<br />

+ I<br />

J T,z µω J J,yω + I<br />

T,y µω J J,zωT,z + Iµ Jzz + Iµ Jyy−Sµ JzCJz− Sµ JyCJy+ Izµω −I<br />

J J,y yµω<br />

J J,z<br />

−S − S + A + A − S + S ) θ<br />

µ JzCTz µ JyCTy µ JzCJzCT µ JyCJyCT µ JzCTω J,y µ JyCTωJ,z xJ,x<br />

n<br />

∑G(<br />

I i<br />

zΩ i= 1<br />

,y<br />

zCTS i<br />

Ω,y I i − y<br />

yΩ<br />

CTS )ui= 0<br />

,z Ω,z<br />

+ − + + i<br />

(4.48)<br />

4-14


µ i<br />

Jz µ JzCJ µ JωJ,y xJ,x Ω i<br />

i= 1 ,y<br />

n<br />

−(S − A + S ) θ + ∑ S u = 0<br />

(4.49)<br />

µ i<br />

Jy µ JyCJ µ JωJ,z xJ,x Ω i<br />

i= 1 ,z<br />

n<br />

(S −A−S ) θ + ∑ S u = 0<br />

(4.50)<br />

In addition, it could be easily seen that, if the k<strong>in</strong>ematic equations (3.32, 3.33, 3.34 and 3.35) are<br />

satisfied, no axial force, bend<strong>in</strong>g moments or torsional bimoment derive from (4.40). However, for<br />

each distortional mode I, additional equations (4.48), (4.49) and (4.50) are required <strong>in</strong> order to<br />

uncouple torsional moment resultant M 1 x and bend<strong>in</strong>g shear resultants Ty and Tz respectively from<br />

distortion.<br />

Equations (4.48), (4.49) and (4.50) are used to calculate or condensate µI, yCI and zCI. For an open<br />

pr<strong>of</strong>ile <strong>with</strong>out ramifications, the unknowns are:<br />

- m unknowns: µI; I =1,…m<br />

- 4m unknowns: m x (yCI , zCI); I =1,…m<br />

The equations correspond<strong>in</strong>g to the resolution <strong>of</strong> the 5m unknowns are:<br />

- 2m equations: dependency <strong>of</strong> distortional centers and correspond<strong>in</strong>g jo<strong>in</strong>t (equations 2.76 and<br />

2.77)<br />

- 3m equations: (4.48), (4.49) and (4.50).<br />

Note that torsion can be considered as a particular distortional mode I by tak<strong>in</strong>g:<br />

I = T (torsion) <strong>with</strong> µT=1, yCI = yCT, zCI = zCT<br />

(4.51)<br />

yCT and zCT denote the coord<strong>in</strong>ates <strong>of</strong> the torsional or shear center.<br />

For <strong>in</strong>stance, equation (4.48) can be obta<strong>in</strong>ed from (4.47) by sett<strong>in</strong>g that the torsional moment M 1 xT<br />

(equation 4.47 where I = T) must not derive from degrees <strong>of</strong> freedom related to a distortional mode J.<br />

4.4.4 Equilibrium equations<br />

S<strong>in</strong>ce (4.44) must be satisfied for any admissible set <strong>of</strong> virtual displacements * θ xI ( I = 1,..m) and * i u<br />

(i = 1,..n) per unit length, the expressions <strong>in</strong>to brackets ([…]) associated <strong>with</strong> each <strong>of</strong> these arbitrary<br />

variables is set to zero. The follow<strong>in</strong>g equilibrium equations are obta<strong>in</strong>ed <strong>in</strong> case <strong>of</strong> one ‘I’ distortional<br />

mode:<br />

M 1 xI,x + MωI,xx - MsI + mxI + mxωI,x = 0 (4.52)<br />

B − ϕ + f i = 0<br />

i , x<br />

i<br />

Ω<br />

The form <strong>of</strong> the boundary conditions for x=0 and x=L is:<br />

1<br />

xI ωI,xxωIxI M + M + m = m<br />

or θ xI =θ xI I=1,2,…m<br />

M = m<br />

or θ x,xI =θ x,xI I=1,2,…m<br />

ωI xωI Bi = f i<br />

or i ui<br />

Ω<br />

(4.53)<br />

u = i=1,2,…n (4.54)<br />

The prescribed displacements ( θxI …) are the k<strong>in</strong>ematic or geometric boundary conditions and the<br />

prescribed forces ( mxI …) are the statical or force boundary conditions.<br />

4-15


4.5 Basic equations for l<strong>in</strong>earized structural stability analysis<br />

4.5.1 Introduction<br />

In this paragraph, analytical developments (similar to those presented <strong>in</strong> paragraphs 4.2, 4.3 and 4.4)<br />

deal <strong>with</strong> bifurcation and l<strong>in</strong>ear stability <strong>in</strong> order to determ<strong>in</strong>e the buckl<strong>in</strong>g loads at which a structure<br />

becomes unstable. The characteristic shapes associated <strong>with</strong> the response <strong>of</strong> a buckled structure are the<br />

buckled mode shapes. When an equilibrium position is critical, the second variation <strong>of</strong> the total<br />

potential energy vanishes [Trahair 1993 page 30; Waszczyszyn 1994 page 35…]. Critical loads are<br />

calculated by tak<strong>in</strong>g <strong>in</strong>to consideration that a structure reaches <strong>in</strong>stability if there is more than one<br />

equilibrium position for the same load level [De Ville 1989 page 4.12…]. Mathematically, <strong>in</strong>stability<br />

occurs when the determ<strong>in</strong>ant <strong>of</strong> the equilibrium equations is zero [Waszczyszyn 1994 page 45 …].<br />

4.5.2 Displacement field and stresses<br />

The displacement vector at any po<strong>in</strong>t has three coord<strong>in</strong>ates {uq ,vq, wq}. In case <strong>of</strong> large displacements,<br />

the Green stra<strong>in</strong> vector has components related to the gradients <strong>of</strong> displacement by means <strong>of</strong> a nonl<strong>in</strong>ear<br />

k<strong>in</strong>ematic relation detailed <strong>in</strong> appendix A8 (equation A8.8).<br />

To simplify the presentation <strong>of</strong> analytical calculations <strong>in</strong> this paragraph, Bernoulli bend<strong>in</strong>g model is<br />

adopted and stra<strong>in</strong>s are assumed to be small enough to neglect uq,x when compared <strong>with</strong> unity [De<br />

Ville 1989, page 4.3; Shakourzadeh 1996].<br />

uq,x


The longitud<strong>in</strong>al displacement is divided <strong>in</strong>to three parts (uq = u0 + uF + uT). u0 is a constant<br />

tension/compression term, uF is the flexural term that derives from Bernoulli hypothesis neglect<strong>in</strong>g<br />

shear deformation <strong>in</strong> the mean surface <strong>of</strong> the section and uT is the torsional warp<strong>in</strong>g.<br />

2Exy = 2Exy|F + 2Exy|T<br />

2Exy|F = 2Exz|F = 0 or 2Exy - 2Exy|T = 2Exz - 2Exz|T = 0 (4.59)<br />

By substitut<strong>in</strong>g (4.58) <strong>in</strong>to (4.59), (4.60) is obta<strong>in</strong>ed:<br />

uF,y + v’cosθ + w’s<strong>in</strong>θ = 0<br />

uF,z - v’s<strong>in</strong>θ + w’cosθ = 0 (4.60)<br />

and the expression <strong>of</strong> uF is deduced:<br />

uF = - y {v’ cosθ + w’ s<strong>in</strong>θ} - z{ w’ cosθ - v’ s<strong>in</strong>θ} (4.61)<br />

uT is the torsional warp<strong>in</strong>g term:<br />

uT = -ωθ’ +∑Ω i ui<br />

by us<strong>in</strong>g (4.62) and (4.61) the longitud<strong>in</strong>al displacement is thus found to be equal to:<br />

uq = u0 - y {v’ cosθ + w’ s<strong>in</strong>θ} - z{ w’ cosθ - v’ s<strong>in</strong>θ} - ωθ’ + ∑Ω i ui<br />

and the complete stra<strong>in</strong> vector is then:<br />

⎧ i<br />

u0 '−y(v"cosθ+ w"s<strong>in</strong> θ) −z(w"cosθ−v"s<strong>in</strong> θ) −ωθ " + ∑Ω<br />

ui ' ⎫<br />

⎪ ⎪<br />

⎪ 1 2 2 2 2<br />

E<br />

(v' w' r<br />

xx<br />

C ' ) 'v'(yCs<strong>in</strong>zCcos ) 'w'(zCs<strong>in</strong>yCcos ) ⎪<br />

⎧ ⎫ + + + θ +θ θ+ θ +θ θ− θ<br />

⎪ 2<br />

⎪<br />

⎪ ⎪ ⎪ ⎪<br />

⎨2Exy ⎬= ⎨ i<br />

⎬<br />

⎪ (z z C ,y ) ' ,yu 2E ⎪ ⎪ − − +ω θ + ∑Ω<br />

i<br />

⎪<br />

⎩ xz ⎭ ⎪ ⎪<br />

⎪ i<br />

(y −y C −ω,z ) θ '+ ∑Ω,zu<br />

⎪<br />

i<br />

⎪⎩ ⎪⎭<br />

where<br />

2<br />

C<br />

r = ( y − y ) + ( z − z<br />

C<br />

2<br />

C<br />

)<br />

2<br />

(4.62)<br />

(4.63)<br />

(4.64)<br />

Assum<strong>in</strong>g that rotations and displacements are moderate, the higher order terms can be neglected<br />

(v’θ’θ and w’θθ’) and the rotational angle can be considered to be small:<br />

s<strong>in</strong> θ ≈ θ cos θ ≈ 1<br />

Thus (4.57), (4.63) and (4.64) can be expressed as:<br />

(4.65)<br />

4-17


⎫ ⎧<br />

i<br />

⎧u ⎫<br />

q u0<br />

− y(<br />

v'+<br />

w'<br />

θ)<br />

− z(<br />

w'−v'<br />

θ)<br />

− ωθ'+<br />

∑Ω<br />

ui<br />

⎪ ⎪ ⎪<br />

⎪<br />

⎨v<br />

q ⎬ = ⎨<br />

v − ( z − zC<br />

) θ<br />

⎬<br />

⎪ ⎪ ⎪<br />

⎪<br />

⎪ ⎪<br />

w + ( y − y ) θ<br />

⎩<br />

wq<br />

C<br />

⎭ ⎩<br />

⎪⎭<br />

⎧ i<br />

u0'− y(v" + w" θ) −z(w" −v" θ) −ωθ " + ∑Ω<br />

ui'⎫ ⎪ ⎪<br />

⎪ 1 2 2 2 2<br />

E<br />

(v' w' r<br />

xx<br />

C ' ) zC 'v' yC 'w' ⎪<br />

⎧ ⎫ + + + θ + θ − θ<br />

⎪ 2<br />

⎪<br />

⎪ ⎪ ⎪ ⎪<br />

⎨2Exy ⎬= ⎨ i<br />

⎬<br />

⎪ (z z C ,y ) ' ,yu 2E ⎪ ⎪ − − +ω θ + ∑Ω<br />

i ⎪<br />

⎩ xz ⎭ ⎪ ⎪<br />

⎪ i<br />

(y −y C −ω,z ) θ '+ ∑Ω,zu<br />

⎪<br />

i<br />

⎪⎩ ⎪⎭<br />

4.5.3 Pr<strong>in</strong>ciple <strong>of</strong> virtual work<br />

The pr<strong>in</strong>ciple <strong>of</strong> virtual work can be written as:<br />

W=W<strong>in</strong>t-Wext=0 ∀ * 0<br />

*<br />

u , v ,<br />

or ijδ ij = δ i i<br />

v v<br />

*<br />

w , *<br />

θ , '<br />

*<br />

θ , * i<br />

(4.66)<br />

(4.67)<br />

u (i=1,..n). (4.68)<br />

∫(S E )dV ∫ u df dV<br />

(4.69)<br />

where V is the volume <strong>in</strong> the reference configuration. Eij is the Green-Lagrange stra<strong>in</strong> tensor; Sij is the<br />

Piola Kirchh<strong>of</strong>f stress tensor; fi is the external force vector. The material is assumed to be<br />

homogeneous, isotropic, l<strong>in</strong>ear and elastic so that the relationship between stresses and stra<strong>in</strong>s is given<br />

by Hooke’s law.<br />

W<strong>in</strong>t=<br />

∫<br />

V<br />

n<br />

* * * * * * * * i *<br />

x 0 − +θ + θ − −θ − θ −ωθ + ∑Ω<br />

i<br />

i= 1<br />

[S {u ' y(v " w " w " ) z(w " v " w " ) " u '<br />

+<br />

v'<br />

v<br />

*<br />

*<br />

2<br />

C<br />

*<br />

C<br />

*<br />

'+<br />

w'<br />

w '+<br />

r θ'<br />

θ '+<br />

z ( v'<br />

θ '+<br />

v ' θ'<br />

) − y ( w'<br />

θ '+<br />

w ' θ'<br />

)}<br />

n<br />

n<br />

* i *<br />

* i *<br />

xy ,y c ∑ ,y +<br />

i xz −ω ,z + − c θ + Ω ,z i<br />

i= 1<br />

i= 1<br />

+ S { −( ω + z−z ) θ '+ Ω u }<br />

*<br />

C<br />

*<br />

*<br />

S {( y y ) ' ∑ u }]dV (4.70)<br />

n<br />

* * * * * * * * i *<br />

Wext= ∫{<br />

fvx[<br />

u0<br />

− y(<br />

v '+<br />

w'θ<br />

+ θw<br />

')<br />

− z(<br />

w '−v'<br />

θ − θv<br />

')<br />

− ωθ '+<br />

∑Ω<br />

u ( x)<br />

]<br />

i<br />

V<br />

i=<br />

1<br />

*<br />

* *<br />

* *<br />

*<br />

+ fvy[<br />

v − ( z − zC<br />

) θx<br />

] + fvz[<br />

w + ( y − yC<br />

) θx<br />

]} dV fsy[<br />

v − ( z − zC<br />

) θx<br />

]<br />

+ (4.71)<br />

4.5.4 Govern<strong>in</strong>g equations<br />

(4.70) and (4.71) are substituted <strong>in</strong>to (4.68) and the result is <strong>in</strong>tegrated <strong>in</strong> order to obta<strong>in</strong> expressions<br />

associated <strong>with</strong> arbitrary values for * * *<br />

u 0 , v , w , *<br />

θ , '<br />

*<br />

θ , * u i (i=1,..n). These expressions must be set to<br />

zero.<br />

The follow<strong>in</strong>g equilibrium equations are obta<strong>in</strong>ed:<br />

N’ + fx = 0<br />

My” - (Mz θ)” + (w’N)’ - yC(θ’N)’ – (mzθ)’+ fz + my’ = 0<br />

4-18


Mz” + (My θ)” - (v’N)’ - zC(θ’N)’ + (myθ)’ - fy + mz’ = 0<br />

Mω” + M 1 x’ – Mzw” – Myv”+ (Mtr θ’)’+zC(Nv’)’ -yC(Nw’)’+mx + mxω,x +mzw’+myv’= 0<br />

− ϕ + f = 0<br />

Bi , x i i<br />

Ω<br />

<strong>with</strong><br />

N = ∫ SxdA A<br />

=−∫ ω = ∫ ω<br />

A<br />

x<br />

My = ∫ zSxdA Mz ySxdA A<br />

A<br />

1 ⎡<br />

M x = ⎢∫ ⎣A ⎤<br />

( −( ω ,y + z− z c)S xy + ( −ω ,z + y−y c)Sxz) dA⎥<br />

⎦<br />

tr = ∫<br />

A<br />

2<br />

C x<br />

i =<br />

i<br />

Ω x<br />

A<br />

M rSdA<br />

B ∫ S dA,<br />

i=1,2,…n<br />

F<br />

x<br />

m<br />

x<br />

=<br />

=<br />

∫<br />

A<br />

∫<br />

f<br />

A<br />

x<br />

dA<br />

( y − y ) f − ( z − z ) f ) dA<br />

c<br />

z<br />

m y = ∫(<br />

zfx<br />

) dA<br />

∫ − = m z<br />

A<br />

∫ Ω =<br />

i<br />

( f<br />

c<br />

y<br />

A<br />

( yf<br />

f i<br />

Ω<br />

vx ) dA<br />

∫<br />

A<br />

ω = m xω<br />

fvx<br />

A<br />

vx<br />

) dA<br />

dA<br />

M S dA<br />

(4.72)<br />

The <strong>in</strong>ternal forces are calculated <strong>in</strong> terms <strong>of</strong> displacements. By limit<strong>in</strong>g the follow<strong>in</strong>g developments<br />

to a l<strong>in</strong>earized stability, the first order terms are considered:<br />

N = EAu0' = −EI<br />

M y yw<br />

Mz = EIz<br />

v''<br />

Mω EIωω<br />

''<br />

=− θ<br />

n<br />

Bi = E∑<br />

I i j<br />

Ω Ω<br />

j=<br />

1<br />

x,xx<br />

u<br />

j,<br />

x<br />

2 2<br />

tr = y + z + C + C 0 − 2 − C z − 2 −<br />

yr zr C y<br />

M E{(I I y A z A)u ' (I 2y I )v" (I 2z I )w"<br />

( I 2yCI<br />

y 2zCI<br />

z ) "<br />

r 2<br />

2 2<br />

− ω − θ + ( I I 2y<br />

I 2z<br />

I y S z S ) u '<br />

ω<br />

∑ 2 i + 2 i −<br />

y z C i −<br />

y C i +<br />

z C i + C i<br />

Ω Ω<br />

Ω<br />

Ω Ω Ω i<br />

− ω<br />

1<br />

x<br />

M = G[(<br />

Iz<br />

+ Iy<br />

+ Iω<br />

, yω,<br />

y + Iω,<br />

zω,<br />

z + 2yCS<br />

ω − 2zCSω<br />

+ yC<br />

A + zC<br />

A − 2I<br />

yω<br />

+ 2Izω<br />

) θx,<br />

x<br />

+<br />

n<br />

∑<br />

i=<br />

1<br />

( −I<br />

i<br />

Ω<br />

+ z<br />

C<br />

S<br />

i<br />

Ω,<br />

y<br />

− y<br />

C<br />

S<br />

i<br />

Ω,<br />

z<br />

) u<br />

i<br />

]<br />

, z<br />

, y<br />

2<br />

2<br />

, z<br />

, y<br />

4-19


ϕ<br />

i<br />

=<br />

G{( −I<br />

i + I i + z<br />

z y CS<br />

i − yCS<br />

i<br />

Ω,<br />

y Ω,<br />

z Ω,<br />

y Ω,<br />

z<br />

) θ<br />

x,<br />

x<br />

∑ i k i<br />

Ω,<br />

yΩ<br />

, y Ω,<br />

zΩ<br />

k<br />

+ ( I + I ) u )}<br />

(4.73)<br />

The analytical analysis <strong>of</strong> <strong>in</strong>stability <strong>of</strong> elastic structures orig<strong>in</strong>ated by the <strong>in</strong>teraction <strong>of</strong> buckl<strong>in</strong>g<br />

modes is deduced from these equations. The criterion to determ<strong>in</strong>e the buckl<strong>in</strong>g state is the s<strong>in</strong>gularity<br />

<strong>of</strong> the system <strong>of</strong> the structure equilibrium equations. When the critical load is reached, the structure<br />

has at least two equilibrium positions. So, equations (4.72) and (4.73) are comb<strong>in</strong>ed, differentiated by<br />

keep<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d that the external loads are not <strong>in</strong>cremented.<br />

EAdu'' = 0<br />

−EIydw ''''−Mzd θ " + Ndw ''−yCNdθ''−mzdθ ' = 0<br />

EIzdv ''''+ Myd θ" −Ndv ''−zCNdθ ''+ mydθ ' = 0<br />

−EIωωdθ''''− Mzdw" - M ydv''+ zCNdv'' - yCNdw'' + mzdw+ mydv + ( I<br />

y<br />

+ I<br />

z<br />

+ y<br />

2<br />

C<br />

A + z<br />

2<br />

C<br />

r 2 −<br />

ω ω ω<br />

+<br />

N<br />

A)<br />

dθ''−(<br />

I<br />

A<br />

( I − 2yCI<br />

y − 2zCI<br />

z ) θ"<br />

dθ"<br />

∑<br />

2<br />

yr<br />

− 2y<br />

C<br />

k<br />

, z<br />

Mz<br />

Iz<br />

) dθ''+<br />

( I<br />

I<br />

z<br />

k<br />

2<br />

zr<br />

− 2z<br />

( I 2 i + I 2 i − 2yCI<br />

i − 2zCI<br />

i + yC<br />

S i + zC<br />

S i ) ui<br />

'dθ"<br />

y Ω<br />

z Ω<br />

yΩ<br />

zΩ<br />

2<br />

Ω<br />

2<br />

Ω<br />

C<br />

I<br />

y<br />

M<br />

)<br />

I<br />

y<br />

y<br />

dθ''<br />

+ G(<br />

Iz<br />

+ Iy<br />

+ 2Iω<br />

+ Iω,<br />

yω,<br />

y + Iω,<br />

zω,<br />

z + 2yCS<br />

ω − 2zCSω<br />

+ yC<br />

A + zC<br />

A − 2I<br />

yω<br />

+ 2Izω<br />

n<br />

∑<br />

i=<br />

1<br />

+ G ( −I<br />

+ z S − y S ) du ' =0<br />

i<br />

Ω<br />

C<br />

i<br />

Ω,<br />

y<br />

C<br />

i<br />

Ω,<br />

z<br />

n<br />

E<br />

j 1<br />

Ω Ω<br />

i<br />

, y<br />

i<br />

, z<br />

i<br />

, y<br />

i<br />

, z<br />

∑I i j du j"<br />

−G(<br />

−I<br />

+ I + zCS<br />

− yCS<br />

) dθ'<br />

−<br />

zΩ<br />

yΩ<br />

Ω Ω ∑( I + I<br />

Ω Ω Ω Ω<br />

=<br />

4.5.5 Buckl<strong>in</strong>g <strong>of</strong> simply supported columns<br />

i<br />

, z<br />

, y<br />

2<br />

G i k i k<br />

, y , y , z , z<br />

k<br />

2<br />

) duk<br />

, z<br />

=0<br />

, y<br />

) dθ"<br />

(4.74)<br />

General equations (4.72) us<strong>in</strong>g the adapted Prokić warp<strong>in</strong>g function are applied <strong>in</strong> the case <strong>of</strong> th<strong>in</strong><br />

walled structure buckl<strong>in</strong>g analysis. The result<strong>in</strong>g govern<strong>in</strong>g equations, <strong>in</strong>clud<strong>in</strong>g torsional effects, are<br />

valid for any type <strong>of</strong> th<strong>in</strong> walled cross sections. If a simply supported column is submitted to an axial<br />

force P pass<strong>in</strong>g through any po<strong>in</strong>t p <strong>of</strong> the cross section, the <strong>in</strong>ternal forces are found to be:<br />

N −P<br />

= ; M y −Pzp<br />

= ; M z = Pyp<br />

; M 0<br />

1 x = ; M ω = 0 ; Bi = 0 ; (4.75)<br />

The secondary warp<strong>in</strong>g effects are completely taken <strong>in</strong>to consideration <strong>with</strong><strong>in</strong> these calculations and<br />

the last 3 + n equations that are deduced from (4.72) can be written as follows:<br />

a)1 torsional buckl<strong>in</strong>g equation <strong>with</strong> respect to derivatives <strong>of</strong> θx and ui (i=1,2,… n):<br />

4-20


EI<br />

ωω<br />

d<br />

4<br />

θx<br />

4<br />

dx<br />

− G(<br />

I + I + I<br />

y<br />

z<br />

ω,<br />

yω,<br />

y<br />

+ I<br />

ω,<br />

zω,<br />

z<br />

− 2I<br />

2<br />

θx<br />

2<br />

yω,<br />

z<br />

+ 2I<br />

zω,<br />

y<br />

+ y<br />

C<br />

2<br />

S<br />

ω,<br />

y<br />

− z<br />

C<br />

S<br />

ω,<br />

z<br />

2<br />

θx<br />

2<br />

d<br />

)<br />

dx<br />

n<br />

+ ∑ G( −I<br />

i<br />

yΩ,<br />

z<br />

i=<br />

1<br />

dui<br />

2 d<br />

+ I i ) + Pi<br />

zΩ<br />

C<br />

, y dx dx<br />

d w<br />

d v<br />

− P(<br />

yC<br />

− yp<br />

) + P(<br />

z<br />

2 C − z p )<br />

2<br />

dx<br />

dx<br />

I 2<br />

2 I<br />

2<br />

yr d θ<br />

2<br />

x zr d θx<br />

+ Pyp<br />

( − 2yC<br />

) + Pzp<br />

( − 2zC<br />

) = 0<br />

I<br />

2<br />

dx I<br />

2<br />

dx<br />

(4.76)<br />

z<br />

b) 2 flexural buckl<strong>in</strong>g equations <strong>with</strong> respect to derivatives <strong>of</strong> v, w and θx:<br />

EIz x<br />

EIy C p x<br />

y<br />

v"<br />

" + Pv"<br />

+ P(<br />

zC<br />

− zp<br />

) θ " = 0<br />

(4.77)<br />

w"<br />

" + Pw"<br />

−P(<br />

y − y ) θ " = 0<br />

(4.78)<br />

c) n equations (i=1,2,….n) which relate uk ( k=1,2,….n) to θx:<br />

− EI<br />

i k<br />

Ω Ω<br />

d<br />

2<br />

u k<br />

2<br />

dx<br />

+<br />

G(<br />

I<br />

i k<br />

Ω,<br />

yΩ,<br />

y<br />

+ I<br />

i k<br />

Ω,<br />

zΩ,<br />

z<br />

duk<br />

) +<br />

dx<br />

G(<br />

I<br />

i<br />

yΩ,<br />

z<br />

− I<br />

i<br />

zΩ,<br />

y<br />

+ z<br />

C<br />

S<br />

i<br />

Ω,<br />

y<br />

− y<br />

C<br />

S<br />

i<br />

Ω,<br />

z<br />

2<br />

dθx<br />

) = 0<br />

dx<br />

(4.79)<br />

4.5.6 Buckl<strong>in</strong>g <strong>of</strong> simply supported beams <strong>with</strong> equal end moments<br />

The lateral buckl<strong>in</strong>g is analytically calculated hereby by us<strong>in</strong>g the equilibrium equations obta<strong>in</strong>ed<br />

from equation (4.72). The second torsional warp<strong>in</strong>g effects are taken <strong>in</strong>to account and the <strong>in</strong>ternal<br />

forces are found as:<br />

N = 0, My ≠ 0, Mz = 0, Mx 1 = 0, Mω = 0, Bi = 0 (4.80)<br />

In this case, the set <strong>of</strong> equations (4.74) is reduced to:<br />

− EIydw'''' = 0<br />

EIzdv''''+ M yd<br />

θ " = 0<br />

M y<br />

−EIωωdθ''" -M<br />

ydv<br />

'' ( I 2z<br />

I ) d ''<br />

zr C y<br />

I<br />

2 + −<br />

θ G ( I z S y S ) du '<br />

n<br />

+ − i + C i − C i<br />

Ω Ω<br />

i<br />

, y Ω,<br />

z<br />

n<br />

y<br />

+ G(<br />

Iz<br />

+ I y + 2Iω<br />

+ Iω,<br />

yω,<br />

y + Iω,<br />

zω,<br />

z + 2yCS<br />

ω − 2zCS<br />

ω + yC<br />

A + zC<br />

A − 2I<br />

yω<br />

+ 2I<br />

zω<br />

∑ ∑ ( I + I<br />

Ω Ω Ω Ω<br />

i j i i i i<br />

ΩΩ j zΩ C C<br />

,y yΩ<br />

j1<br />

,z Ω,y Ω<br />

=<br />

,z<br />

∑<br />

i=<br />

1<br />

E I du " − G( − I + I + z S −y S )dθ' −<br />

, z<br />

, y<br />

2<br />

G i k i k<br />

, y , y , z , z<br />

k<br />

2<br />

, z<br />

) duk<br />

, y<br />

) dθ"<br />

= 0<br />

=0 (4.81)<br />

Different methods are used <strong>in</strong> the literature to solve analytically similar problems (Galerk<strong>in</strong>, Ritz,…)<br />

[Galéa 2002; Villette 2002; Mohri 2003…]. Appropriate displacement modes must be chosen <strong>in</strong> order<br />

to solve the system <strong>of</strong> (n+3) equations (4.81). One s<strong>in</strong>uzoidal function for dv, dw and dθ and one<br />

cos<strong>in</strong>e function for each dui (eq. 4.82) are usually suitable for beams <strong>with</strong> bisymmetrical pr<strong>of</strong>iles<br />

submitted to equal end moments. In this case, (4.81) is developed <strong>in</strong>to (4.83).<br />

4-21


⎛ πx<br />

⎞<br />

⎛ πx<br />

⎞<br />

⎛ πx<br />

⎞<br />

⎛ πx<br />

⎞<br />

dv = A1<br />

s<strong>in</strong>⎜<br />

⎟ , dw = A2<br />

s<strong>in</strong>⎜<br />

⎟ , dθ = A3<br />

s<strong>in</strong>⎜<br />

⎟ , du = ai<br />

cos⎜<br />

⎟<br />

⎝ L ⎠<br />

⎝ L ⎠<br />

⎝ L ⎠<br />

⎝ L ⎠<br />

A2 = 0<br />

4<br />

⎛ π ⎞ ⎛ π ⎞<br />

EIz<br />

A1⎜<br />

⎟ − M yA<br />

3⎜<br />

⎟ = 0<br />

⎝ L ⎠ ⎝ L ⎠<br />

4<br />

2<br />

⎛ π ⎞ ⎛ π ⎞<br />

− EIωω A3⎜<br />

⎟ + M yA1⎜<br />

⎟<br />

⎝ L ⎠ L ⎠<br />

−<br />

⎝<br />

2<br />

M ⎛ π ⎞<br />

− ( I 2 ⎟<br />

⎠<br />

y<br />

− 2z<br />

zr CI<br />

y ) A3⎜<br />

I y ⎝ L<br />

2<br />

i (4.82)<br />

2 2<br />

− G(<br />

Iz<br />

+ Iy<br />

+ 2Iω<br />

+ Iω,<br />

yω,<br />

y + Iω,<br />

zω,<br />

z + 2yCSω<br />

− 2zCS<br />

+ yC<br />

A + zC<br />

A − 2I<br />

y + 2I<br />

, z ω,<br />

y<br />

ω,<br />

z zω,<br />

y<br />

− G∑ ( −I<br />

Ω<br />

=<br />

⎛ π ⎞<br />

+ z S − y S ) a<br />

Ω Ω ⎜ ⎟<br />

⎝ L ⎠<br />

n<br />

i<br />

i 1<br />

C i C i i =0<br />

, y<br />

, z<br />

n<br />

2<br />

⎛ π ⎞<br />

E ∑ I i k a<br />

Ω Ω k ⎜ ⎟<br />

k=<br />

1 ⎝ L ⎠<br />

⎛ π ⎞<br />

− G( −I<br />

i + I i + z<br />

z y CS<br />

i − yCS<br />

i ) ⎜ ⎟A3<br />

− G<br />

Ω, y Ω,<br />

z Ω,<br />

y Ω ∑( I i k<br />

, z ⎝ L<br />

Ω,<br />

yΩ<br />

, y<br />

⎠ k<br />

+ I i k<br />

Ω,<br />

zΩ<br />

, z<br />

) A<br />

) a k<br />

3<br />

⎛ π ⎞<br />

⎜ ⎟<br />

⎝ L ⎠<br />

=0<br />

(4.83)<br />

The critical moment is calculated by tak<strong>in</strong>g the determ<strong>in</strong>ant <strong>of</strong> the system <strong>of</strong> equilibrium equations<br />

(4.83) equal to zero. Practically the last n equations <strong>in</strong> (4.83) are resolved to evaluate each constant ak<br />

<strong>in</strong> function <strong>of</strong> A3. The result<strong>in</strong>g expressions are then <strong>in</strong>serted <strong>in</strong> the two previous equations <strong>in</strong> order to<br />

evaluate the determ<strong>in</strong>ant which must be equal to zero. The value <strong>of</strong> My is thus found to be the solution<br />

<strong>of</strong> (4.83’).<br />

4 2<br />

n<br />

2<br />

⎛ π⎞ ⎛ π⎞ My My<br />

⎛ π⎞<br />

ωω ⎜ ⎟ ∑ i C i C i i 2 C y<br />

L Ω Ω,y Ω ⎜ ⎟<br />

,z<br />

zr<br />

⎜ ⎟<br />

⎝ ⎠ i= 1 ⎝L⎠ EIz Iy ⎝L⎠ −EI −G ( − I + z S − y S )f + −(I−2zI )<br />

G(<br />

I<br />

+ I<br />

⎛ π ⎞<br />

+ 2Izω<br />

− 2I<br />

y I , y , y I , z , z 2I<br />

y 2Iz<br />

) ⎟ = 0<br />

, y ω +<br />

⎜<br />

, z ω ω + ω ω − ω +<br />

(4.83’)<br />

, z<br />

,<br />

⎝ L ⎠<br />

− z y<br />

ω y<br />

By solv<strong>in</strong>g equations (4.74) for a uniform moment distribution Mz on a simply supported beam (N = 0,<br />

My = 0, Mz ≠ 0, Mx 1 = 0, Mω = 0, Bi = 0), the lowest buckl<strong>in</strong>g moments, based on Prokić warp<strong>in</strong>g<br />

function leads to the equation (4.84). One s<strong>in</strong>usoidal function is used for transversal displacements and<br />

rotations while one cos<strong>in</strong>e function approximates the warp<strong>in</strong>g displacement modes.<br />

4 n<br />

2<br />

2<br />

⎛ π⎞ ⎛ π⎞ Mz Mz<br />

⎛ π⎞<br />

ωω ⎜ i C i C i i 2 C z<br />

L<br />

⎟ ∑ Ω Ω,y Ω ⎜<br />

,z<br />

yr<br />

i= 1 L<br />

⎟<br />

EIy I<br />

⎜<br />

z L<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

−EI −G ( − I + z S − y S )f + + (I −2yI<br />

)<br />

⎛ π ⎞<br />

− G(<br />

Iz<br />

+ I y + 2I<br />

zω<br />

− 2I<br />

y I , y , y I , z , z 2I<br />

y 2Iz<br />

) ⎟ = 0<br />

, y ω + + − + ⎜<br />

, z ω ω ω ω ω,<br />

z ω<br />

(4.84)<br />

, y<br />

⎝ L ⎠<br />

I<br />

ω,y ω ,y<br />

= ∫ ω,y ω,ydA,<br />

I<br />

ω,<br />

zω,<br />

z<br />

A<br />

= ∫ ω,<br />

zω,<br />

z<br />

A<br />

i i<br />

I i = ∫ ( −yΩ<br />

+ Ω<br />

Ω<br />

, z z , y ) dA ,<br />

A<br />

∫ Ω = S i<br />

Ω,<br />

y<br />

i<br />

, ydA<br />

,<br />

A<br />

∫ Ω = S i<br />

Ω,<br />

z<br />

i<br />

, zdA<br />

A<br />

where Iωω = ∫ ωωdA ,<br />

2<br />

2<br />

dA , ∫ ω = y<br />

Iyω , z , z<br />

dA , ∫ ω = z<br />

Izω, y , y<br />

The fi terms are found by solv<strong>in</strong>g the set <strong>of</strong> equations associated <strong>with</strong> the n warp<strong>in</strong>g degrees <strong>of</strong><br />

freedom. They relate the warp<strong>in</strong>g variables ui to the twist<strong>in</strong>g angle θx.<br />

dA ,<br />

4-22<br />

2


4.5.7 Analytical analyses <strong>of</strong> th<strong>in</strong> walled structure buckl<strong>in</strong>g<br />

The present calculations, based on one s<strong>in</strong>gle warp<strong>in</strong>g function, are shown hereby to give excellent<br />

results for arbitrary asymmetrical (closed or/and open) pr<strong>of</strong>iles. They are compared to other analytical<br />

computations <strong>with</strong> different warp<strong>in</strong>g functions for flexural-torsional and lateral torsional buckl<strong>in</strong>g <strong>of</strong><br />

columns and beams.<br />

- In the first example, the <strong>in</strong>fluence <strong>of</strong> second order torsional warp<strong>in</strong>g is evaluated while comput<strong>in</strong>g<br />

the torsional, flexural, flexural torsional and lateral torsional buckl<strong>in</strong>g <strong>of</strong> rectangular, cruciform, I<br />

shaped, U shaped and L shaped columns.<br />

- In the second example, the flexural torsional and lateral torsional buckl<strong>in</strong>g are analyzed for<br />

asymmetric pr<strong>of</strong>iles compris<strong>in</strong>g one closed cell.<br />

- In the third example, the lateral torsional buckl<strong>in</strong>g <strong>of</strong> a monosymmetrical I beam is analyzed while<br />

vary<strong>in</strong>g the l<strong>in</strong>ear bend<strong>in</strong>g moment distribution along a simply supported beam.<br />

- The fourth example compares the lateral torsional buckl<strong>in</strong>g behavior <strong>of</strong> five pr<strong>of</strong>iles for a simply<br />

supported beam submitted to a uniform load.<br />

The application <strong>of</strong> several analytical methods is illustrated <strong>in</strong> the third and fourth examples. The<br />

Maple ® s<strong>of</strong>tware is used <strong>in</strong> order to solve the differential equations by us<strong>in</strong>g Galerk<strong>in</strong> method <strong>with</strong><br />

series <strong>of</strong> s<strong>in</strong>e and cos<strong>in</strong>e functions. “EC3” denotes the analytical calculations deduced from the<br />

European Code for the Design <strong>of</strong> Steel Structures. “VL1” represents another analytical solution<br />

adopt<strong>in</strong>g either a Vlassov or a Benscoter warp<strong>in</strong>g function depend<strong>in</strong>g on the pr<strong>of</strong>ile (open or closed<br />

respectively). Galerk<strong>in</strong> method is used <strong>with</strong> one s<strong>in</strong>uzoidal function as displacement mode. For<br />

“VL5”, the displacement modes are described by a series <strong>of</strong> s<strong>in</strong>usoidal functions <strong>with</strong> five terms. A<br />

similar analytical method “PR1” <strong>with</strong> a s<strong>in</strong>gle s<strong>in</strong>uzoidal function as displacement mode is developed<br />

<strong>with</strong> Prokić warp<strong>in</strong>g function <strong>in</strong>stead <strong>of</strong> Vlassov warp<strong>in</strong>g function.<br />

Example 1: Secondary warp<strong>in</strong>g effects<br />

In this example, a column <strong>with</strong> a cruciform cross section is submitted to an axial load pass<strong>in</strong>g through<br />

the centroid (Fig. 4.2.). The thickness <strong>of</strong> the walls is t = 8mm. G = 80GPa, E = 200GPa.<br />

L<br />

P<br />

8cm<br />

Figure 4.2 Column <strong>with</strong> cruciform cross section<br />

8mm<br />

The first-order theory gives three homogeneous equations and represents an eigenvalue problem. The<br />

cross section is symmetric, the shear center (C) and the centroid (G) co<strong>in</strong>cide and the second moment<br />

<strong>of</strong> area is the same <strong>with</strong> respect to any axis <strong>in</strong> the plane <strong>of</strong> the cross section and pass<strong>in</strong>g through the<br />

centroid. Thus, the equations are uncoupled and the solutions <strong>of</strong> (2.78, 2.79 and 2.80) give two<br />

discrete sets <strong>of</strong> buckl<strong>in</strong>g modes: one associated <strong>with</strong> the flexural mode and the other associated <strong>with</strong><br />

8cm<br />

8cm<br />

8cm<br />

4-23


the torsional mode. For the flexural buckl<strong>in</strong>g set, the critical loads are <strong>in</strong>versely proportional to the<br />

square <strong>of</strong> the length <strong>of</strong> the column; and for each flexural mode, the critical load is proportional to the<br />

square <strong>of</strong> the number <strong>of</strong> waves n.<br />

The torsional warp<strong>in</strong>g <strong>of</strong> this k<strong>in</strong>d <strong>of</strong> cross section reduces to second order warp<strong>in</strong>g. The particular<br />

geometry <strong>of</strong> the pr<strong>of</strong>ile allows a warp<strong>in</strong>g along the thickness <strong>of</strong> each wall while the entire midl<strong>in</strong>e<br />

rema<strong>in</strong>s <strong>in</strong> the same plane.<br />

Accord<strong>in</strong>g to standard buckl<strong>in</strong>g analyses <strong>with</strong> Vlassov theory, the torsional critical load does not<br />

depend on the length L <strong>of</strong> the column s<strong>in</strong>ce it depends only on the Sa<strong>in</strong>t Venant constant. Equation<br />

(2.80) is reduced to (4.85) and the torsional critical load is <strong>in</strong> this case equal to 1.363MN.<br />

( GK<br />

2<br />

2 d θx<br />

− PiG<br />

) = 0<br />

(4.85)<br />

2<br />

dx<br />

The torsional critical load and the first critical load <strong>of</strong> the flexural buckl<strong>in</strong>g set are represented <strong>in</strong><br />

figure 4.3 <strong>with</strong> vary<strong>in</strong>g values for the length L <strong>of</strong> the column.<br />

Figure 4.3 Critical loads for flexural and torsional buckl<strong>in</strong>g <strong>of</strong> a column<br />

By us<strong>in</strong>g the adapted Prokić warp<strong>in</strong>g function, the set <strong>of</strong> equations (4.76 and 4.79) is reduced <strong>in</strong> this<br />

particular case to a s<strong>in</strong>gle equation:<br />

4<br />

2.0E+07<br />

1.5E+07<br />

1.0E+07<br />

5.0E+06<br />

Critical load [N]<br />

0.0E+00<br />

0 5 10<br />

L [m]<br />

15 20<br />

d θx<br />

d θx<br />

2 d θx<br />

EIωω<br />

− G(<br />

Iy<br />

+ Iz<br />

+ I I 2I<br />

y 2Iz<br />

) PiG<br />

0<br />

4<br />

ω,<br />

yω<br />

+<br />

, y ω<br />

=<br />

, zω<br />

− +<br />

+<br />

, z ω,<br />

z ω<br />

(4.86)<br />

, y 2<br />

2<br />

dx<br />

dx dx<br />

Unlike the developments done by us<strong>in</strong>g equation (4.85), the torsional critical loads are found to be a<br />

function <strong>of</strong> the length L. This is due to the fact that, <strong>with</strong><strong>in</strong> this k<strong>in</strong>ematic formulation, the effects <strong>of</strong><br />

second order torsional warp<strong>in</strong>g are taken <strong>in</strong>to account as def<strong>in</strong>ed <strong>in</strong> paragraph 3.2. The difference<br />

between the first value <strong>of</strong> this set and Vlassov critical torsional load is given <strong>in</strong> figure 4.4. As<br />

expected, the <strong>in</strong>fluence <strong>of</strong> the second order torsion is negligible for slender beams but is not negligible<br />

for small values <strong>of</strong> length L (3% for L=1m). If second order warp<strong>in</strong>g effects are neglected, equation<br />

(4.86) degenerates <strong>in</strong>to (4.85) and the difference between analytical calculations based on Prokić and<br />

Vlassov formulations vanishes.<br />

2<br />

Flexure<br />

torsion<br />

2<br />

4-24


Figure 4.4 Difference between analytical calculations <strong>of</strong> torsional critical loads by us<strong>in</strong>g Vlassov and<br />

adapted Prokić k<strong>in</strong>ematic formulations<br />

The same phenomenon is shown for other types <strong>of</strong> cross sections (table 4.2) and the difference<br />

between the analytical calculations <strong>of</strong> critical loads based on the adapted Prokić formulation and those<br />

based on Vlassov theory is shown to be important for small values <strong>of</strong> L.<br />

Table 4.2: Data for pr<strong>of</strong>ile geometries<br />

Pr<strong>of</strong>ile I Rectangular pr<strong>of</strong>ile Pr<strong>of</strong>ile L<br />

0.0119m<br />

Pr<strong>of</strong>ile U Cruciform pr<strong>of</strong>ile<br />

1m<br />

0.229m<br />

0.612m<br />

0.0196m<br />

t=0.1m<br />

1m<br />

3.5%<br />

3.0%<br />

2.5%<br />

2.0%<br />

1.5%<br />

1.0%<br />

0.5%<br />

0.0%<br />

0 5 10 15 20 25<br />

L<br />

t =0.01m<br />

12cm 12cm<br />

8mm<br />

Figures 4.5 and 4.6 show this phenomenon for columns submitted to axial force and for beams<br />

submitted to uniform bend<strong>in</strong>g respectively. Second order warp<strong>in</strong>g is more important for the L,<br />

cruciform and rectangular cross sections than for the I and U shaped pr<strong>of</strong>iles. Indeed, <strong>in</strong> the first three<br />

cases, the torsional axial deformations are l<strong>in</strong>ear functions <strong>with</strong> respect to the thickness coord<strong>in</strong>ate<br />

0.1m<br />

12cm<br />

12cm<br />

0.1m<br />

0.001m<br />

0.001m<br />

0.1m<br />

4-25


s<strong>in</strong>ce the first order warp<strong>in</strong>g vanishes along the entire midl<strong>in</strong>e. This remark is also stated <strong>in</strong> [Batoz and<br />

Dhatt, 1990, page 195] by mak<strong>in</strong>g reference to previously published work.<br />

6%<br />

4%<br />

2%<br />

0%<br />

-2%<br />

-4%<br />

0 20 40 60 80 100<br />

L/h<br />

rectangular<br />

cruciform<br />

I section<br />

U section<br />

L section<br />

Figure 4.5 Difference between analytical calculations (Vlassov and adapted Prokić k<strong>in</strong>ematic<br />

formulations) <strong>of</strong> torsional critical loads for columns <strong>with</strong> rectangular, cruciform and I sections and <strong>of</strong><br />

coupled flexural torsional loads for columns <strong>with</strong> channel (U) and angle (L) cross sections<br />

3%<br />

2%<br />

1%<br />

0%<br />

-1%<br />

-2%<br />

0 20 40 60 80 100<br />

L/h<br />

rectangular<br />

cruciform<br />

I section<br />

U section<br />

L section<br />

Figure 4.6 Difference between analytical calculations (Vlassov and Prokić k<strong>in</strong>ematic formulations) <strong>of</strong><br />

lateral torsional critical moments for beams <strong>with</strong> rectangular, cruciform, I, U and L cross sections<br />

4-26


Example 2: Buckl<strong>in</strong>g <strong>of</strong> celled-pr<strong>of</strong>ile beams<br />

A column (a) is submitted to an axial load and a beam (b) is submitted to uniform bend<strong>in</strong>g (figure 4.7).<br />

Two cross-sections are considered (1 consists <strong>of</strong> one cell and two walls, and 2 is a closed crosssection).<br />

Note that this close pr<strong>of</strong>ile was <strong>in</strong>troduced by Kollbrunner [1972, page 195]. L= 20m,<br />

E=206GPa, G=82.4GPa.<br />

Firstly, the column (a) is submitted to an axial load. In case (1-a), a mono-symmetrical cross-section<br />

is considered. The lowest critical load (161kN) corresponds to a coupl<strong>in</strong>g between flexural and<br />

torsional buckl<strong>in</strong>g. The other critical load (111 MN) associated <strong>with</strong> the coupl<strong>in</strong>g <strong>of</strong> flexural and<br />

torsional buckl<strong>in</strong>g is very large. The <strong>in</strong>termediate critical load (923kN) is associated <strong>with</strong> a pure<br />

bend<strong>in</strong>g mode and is given exactly by the two theories (Benscoter and the proposed theory) s<strong>in</strong>ce it<br />

depends on the flexural characteristics <strong>of</strong> the beam and not on the warp<strong>in</strong>g shape and characteristics.<br />

The same column (a) is studied <strong>with</strong> the closed cross-section (case 2-a). In practice, a column <strong>with</strong><br />

this k<strong>in</strong>d <strong>of</strong> closed cross-section 2 will not collapse by global <strong>in</strong>stability because <strong>of</strong> its high torsional<br />

and bend<strong>in</strong>g stiffnesses but rather by local buckl<strong>in</strong>g or yield<strong>in</strong>g. This may be the reason why torsional<br />

buckl<strong>in</strong>g analysis <strong>of</strong> columns <strong>with</strong> closed cross-section is not found <strong>in</strong> the literature. However, this<br />

cross-section is analyzed here for test<strong>in</strong>g the model and the critical loads obta<strong>in</strong>ed are <strong>in</strong>deed very<br />

large. These computations are rather important for the buckl<strong>in</strong>g analysis <strong>of</strong> beams or columns <strong>with</strong><br />

cross sections such as 1 that are neither totally open, nor fully closed.<br />

L<br />

P<br />

L<br />

M<br />

M<br />

tf=0.02m<br />

tf=0.014m<br />

tw=0.01m<br />

Figure 4.7 Flexural, flexural-torsional and lateral-torsional buckl<strong>in</strong>g <strong>of</strong> beams and columns<br />

0.1m<br />

0.125m 0.125m<br />

Table 4.3: Difference between critical loads or bend<strong>in</strong>g moments calculated by us<strong>in</strong>g Benscoter and<br />

adapted Prokić warp<strong>in</strong>g functions<br />

First critical load second critical load Third critical load<br />

case 1-a (Pcr [MN]) (0.161) 0.001% (0.923) 0.001% (111) 0.530%<br />

case 1-b (Mcr MNm]) (+0.528) 0.006% (-0.538) 0.006%<br />

case 2-a (Pcr [MN]) (148.4) 0.005% (549) 0.002% (4044) 0.250%<br />

case 2-b (Mcr MNm]) (–831) 0.052% (721) 0.055%<br />

Secondly, the beam (b) is subjected to uniform plane bend<strong>in</strong>g by apply<strong>in</strong>g at its ends two couples<br />

act<strong>in</strong>g along the ma<strong>in</strong> pr<strong>in</strong>cipal axis. The critical bend<strong>in</strong>g moments (+528 /-538 kN.m) <strong>of</strong> the first<br />

cross-section correspond to the lateral-torsional buckl<strong>in</strong>g. The sign <strong>of</strong> the bend<strong>in</strong>g moment is very<br />

important. In the second case (2-b for the mono-cellular cross-section), the first critical moment<br />

calculated by us<strong>in</strong>g Benscoter warp<strong>in</strong>g function is –831MN.m for one orientation and 721MN.m for<br />

0.1m<br />

0.2m<br />

(a) (b) 1 2<br />

to<br />

1.6m<br />

4to<br />

4to<br />

to<br />

0.8m<br />

2m<br />

4-27


the other. The analytical values <strong>of</strong> critical loads and bend<strong>in</strong>g moments are calculated by us<strong>in</strong>g<br />

Benscoter warp<strong>in</strong>g function and the above described warp<strong>in</strong>g function. The difference is given is table<br />

4.3.<br />

Example 3: A monosymmetrical I beam <strong>with</strong> l<strong>in</strong>ear bend<strong>in</strong>g moment distribution<br />

A simply supported beam <strong>with</strong> an open monosymmetric cross section (Figure 4.8b) is submitted to<br />

unequal end moments as shown <strong>in</strong> Figure 4.8a. Five load<strong>in</strong>g cases are considered: “C1”, “C5”, “C0”,<br />

“C-5”, “C-1”, for different values <strong>of</strong> end moment ratio k = 1 (uniform moment distribution), 0.5, 0, -<br />

0.5 and –1 respectively. Six different values <strong>of</strong> beam length are considered: L = 3, 5, 8, 10, 15 and 20<br />

meters. E = 210GPa, G = 80 GPa.<br />

Figure 4.8 A monosymmetrical I beam<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

M<br />

L<br />

(a)<br />

Difference for Mcr (EC3 - VL5)/VL5<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

k<br />

Figure 4.9 Lateral torsional buckl<strong>in</strong>g <strong>of</strong> monosymmetrical I beam<br />

kM<br />

tfs=0.02m<br />

tw=0.01m<br />

tfi=0.014m<br />

L=3<br />

L=5<br />

L=8<br />

L=10<br />

L=15<br />

L=20<br />

The follow<strong>in</strong>g comparisons are made:<br />

-firstly, the European Code for the design <strong>of</strong> Steel Structures EC3 is compared <strong>with</strong> the present<br />

analytical calculations VL1. The difference for Mcr between EC3 and VL1 (0.00%, 0.04%, 0.07%,<br />

0.1m<br />

G<br />

C<br />

(b)<br />

0.125m 0.125m<br />

0.2m<br />

4-28


0.25% and 0.51% for C1, C5, C0, C-5 and C-1 respectively) is small and does not vary <strong>with</strong> the length<br />

<strong>of</strong> the beam.<br />

-secondly, the present warp<strong>in</strong>g function is compared to that <strong>of</strong> Vlassov. The difference for Mcr<br />

between PR1 and VL1 is found to be similar for the five load<strong>in</strong>g cases. However it varies <strong>with</strong> the<br />

length <strong>of</strong> the beam: 0.088%, 0.049%, 0.021%, 0.013%, 0.006% and 0.003% for L = 3, 5, 8, 10, 15 and<br />

20 meters respectively (case C1). As expected, the <strong>in</strong>fluence <strong>of</strong> the thickness warp<strong>in</strong>g is negligible <strong>in</strong><br />

the case <strong>of</strong> very th<strong>in</strong> walled structures and decreases <strong>with</strong> <strong>in</strong>creas<strong>in</strong>g values <strong>of</strong> the length L.<br />

-thirdly, the <strong>in</strong>fluence <strong>of</strong> the choice <strong>of</strong> displacement functions <strong>in</strong> analytical calculations is analyzed.<br />

VL5 is used <strong>with</strong> five terms <strong>of</strong> s<strong>in</strong>usoidal functions <strong>in</strong> order to ref<strong>in</strong>e the modell<strong>in</strong>g <strong>of</strong> the<br />

displacement modes. The difference for Mcr between EC3 and VL5 is shown <strong>in</strong> Figure 4.9. The<br />

difference is very large for the case C-1 (75% for L = 3m) where each flange <strong>of</strong> the I beam changes<br />

from compression to tension along the length <strong>of</strong> the beam. EC3 critical moments are found to be very<br />

high compared to VL5. This result co<strong>in</strong>cides <strong>with</strong> the conclusions <strong>of</strong> previous works [Mohri (2000),<br />

Braham (2001)…]. However, it should be noted that the risk <strong>of</strong> buckl<strong>in</strong>g is relatively reduced <strong>in</strong> this<br />

case (C-1) s<strong>in</strong>ce the critical moment is larger than that <strong>of</strong> the other load<strong>in</strong>g cases.<br />

The non co<strong>in</strong>cidence <strong>of</strong> the centroid (G) <strong>with</strong> the shear center (C) <strong>of</strong> the monosymetrical cross section<br />

(Figure 4.8b) leads to two different buckl<strong>in</strong>g moments (M + and M - ) depend<strong>in</strong>g on which side (upper<br />

or lower) <strong>of</strong> the pr<strong>of</strong>ile is submitted to compression. The difference between the two buckl<strong>in</strong>g<br />

moments (M + and M - ) reaches 67.3% for C1 where a whole flange is under compression along the<br />

entire length <strong>of</strong> the beam (uniform moment distribution).<br />

Example 4: A simply supported beam <strong>with</strong> uniformly distributed load<br />

Table 4.4: Data for pr<strong>of</strong>ile geometries under uniformly distributed load<br />

Pr<strong>of</strong>ile I Pr<strong>of</strong>ile II Pr<strong>of</strong>ile III<br />

0.0119m<br />

Pr<strong>of</strong>ile IV Pr<strong>of</strong>ile V<br />

1m<br />

0.229m<br />

0.612m<br />

0.0196m<br />

t=0.1m<br />

1m<br />

t fs=0.02<br />

t f=0.02m<br />

t w=0.01m<br />

T fi=0.014m<br />

t w=0.01m<br />

t f=0.014m<br />

0.1m<br />

0.25m<br />

0.1m<br />

0.25m<br />

0.2m<br />

0.1m<br />

0.2m<br />

0.0107m<br />

0.0071m<br />

0.15m<br />

0.3m<br />

4-29


A simply supported beam (<strong>with</strong> length L) is submitted to a uniformly distributed load q. Five cross<br />

sections are considered (Table 4.4). E = 210GPa, G = 80 GPa.<br />

10%<br />

0%<br />

-10%<br />

-20%<br />

-30%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Difference for qcr (PR1 - VL1) / VL1<br />

0.0 0.2 0.4 0.6 0.8<br />

kb<br />

1.0 1.2 1.4<br />

Difference for qcr (VL1 - VL5) / VL5<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4<br />

kb<br />

Pr<strong>of</strong>ile<br />

Figure 4.10: Lateral torsional buckl<strong>in</strong>g <strong>of</strong> simply supported beam <strong>with</strong> different pr<strong>of</strong>iles (Table 4.4)<br />

under uniformly distributed load<br />

Figure 4.10a shows the <strong>in</strong>fluence <strong>of</strong> the choice <strong>of</strong> the warp<strong>in</strong>g functions for the five pr<strong>of</strong>iles and for a<br />

vary<strong>in</strong>g beam length on the critical value <strong>of</strong> the load q. Vlassov warp<strong>in</strong>g function is used for all<br />

pr<strong>of</strong>iles except for the s<strong>in</strong>gle celled pr<strong>of</strong>ile V for which Vlassov warp<strong>in</strong>g function is not applicable.<br />

(a)<br />

(b)<br />

Pr<strong>of</strong>ile<br />

I<br />

II<br />

III<br />

IV<br />

V<br />

I<br />

II<br />

III<br />

IV<br />

V<br />

4-30


Benscoter warp<strong>in</strong>g function is thus used for this pr<strong>of</strong>ile <strong>with</strong> a s<strong>in</strong>gle s<strong>in</strong>usoidal function as<br />

displacement mode for VL1 and <strong>with</strong> a series <strong>of</strong> five s<strong>in</strong>usoidal functions for VL5. The critical load<br />

for this pr<strong>of</strong>ile cannot be computed by us<strong>in</strong>g the formulae <strong>of</strong> the Eurocode (EC3). Figure 4.10b shows<br />

the difference for the critical load qcr between VL1 (a s<strong>in</strong>gle s<strong>in</strong>usoidal function for displacement<br />

modes) and VL5 (a series <strong>of</strong> five terms). The data variation is represented on the horizontal axis <strong>of</strong><br />

Figure 4.10a and 4.10b by the beam parameter kb used by Conci (1992) and def<strong>in</strong>ed by (4.87).<br />

2<br />

k b =<br />

πEIh<br />

2<br />

4L<br />

GK<br />

(4.87)<br />

h is the total depth <strong>of</strong> the beam and I is the second moment <strong>of</strong> area about the vertical bend<strong>in</strong>g axis.<br />

The follow<strong>in</strong>g conclusions can be drawn from the parametric study:<br />

- the results <strong>of</strong> the European Steel code EC3 are found to closely match those <strong>of</strong> present analytical<br />

calculations VL1 (0.043%, 0.027%, 0.044% and 0.017% for pr<strong>of</strong>iles I, II, III and IV).<br />

- the difference between the present warp<strong>in</strong>g function (PR1) and Vlassov or Benscoter warp<strong>in</strong>g<br />

function (VL1) <strong>in</strong>creases <strong>in</strong> general <strong>with</strong> small values <strong>of</strong> beam length (Figure 4.10a). This is due to the<br />

<strong>in</strong>fluence <strong>of</strong> the thickness warp<strong>in</strong>g (second warp<strong>in</strong>g function -ωθx,x <strong>in</strong> equation 3.9) which is important<br />

for short th<strong>in</strong> walled beams. The second order torsional warp<strong>in</strong>g is not <strong>in</strong>cluded <strong>in</strong> Vlassov and<br />

Benscoter warp<strong>in</strong>g function <strong>in</strong> the present VL analytical calculations and <strong>in</strong> the European Code EC3.<br />

The pr<strong>of</strong>ile II exhibits the largest deviation.<br />

- the importance <strong>of</strong> the choice <strong>of</strong> displacement mode functions depends on the pr<strong>of</strong>ile asymmetry. For<br />

the bisymmetrical I pr<strong>of</strong>ile (Pr<strong>of</strong>ile I), the difference between VL5 and VL1 is 1% (kb = 0.15). For the<br />

other monosymmetrical cross sections (Pr<strong>of</strong>ile II, III, IV and V), the difference is larger (Figure<br />

4.10b). The T cross section (pr<strong>of</strong>ile III) exhibits the largest deviation.<br />

4-31


PART III. DISCRETE MODELS


5.1 Introduction<br />

CHAPTER 5. FINITE ELEMENT DISCRETIZATION<br />

The analysis <strong>of</strong> complex behavior <strong>of</strong> solid mechanics as a cont<strong>in</strong>uous problem cannot be always<br />

solved analytically s<strong>in</strong>ce the available techniques limit the possibilities to simplified situations.<br />

Eng<strong>in</strong>eers use adequate numerical models <strong>with</strong> a f<strong>in</strong>ite number <strong>of</strong> well-def<strong>in</strong>ed components and<br />

approximations <strong>in</strong> order to converge to the exact cont<strong>in</strong>uum solution when the number <strong>of</strong> discrete<br />

variables <strong>in</strong>creases. Among these discretization procedures, the f<strong>in</strong>ite element method <strong>of</strong>fers a very<br />

well-known methodology for the analysis <strong>of</strong> the structural behavior. The cont<strong>in</strong>uum is divided <strong>in</strong>to a<br />

f<strong>in</strong>ite number <strong>of</strong> parts called elements <strong>with</strong> a f<strong>in</strong>ite number <strong>of</strong> parameters. For each element <strong>of</strong> the<br />

structure, a force-displacement relationship is established. The elements <strong>of</strong> the entire structure are then<br />

assembled and the resolution <strong>of</strong> the equilibrium equations yields the unknown displacements. In this<br />

chapter, different elements are developed to illustrate the application <strong>of</strong> the k<strong>in</strong>ematics presented <strong>in</strong><br />

paragraphs 2.1.1, 2.1.2 and <strong>in</strong> Chapter 3.<br />

5.2 <strong>F<strong>in</strong>ite</strong> elements <strong>with</strong> torsional warp<strong>in</strong>g<br />

5.2.1 A 2-node beam model “FEM1”<br />

Displacement field<br />

The f<strong>in</strong>ite element ‘FEM1’ described hereafter is based on the flexural and torsional k<strong>in</strong>ematics<br />

previously described <strong>in</strong> §2.1.1 and §3.2. The simplest bend<strong>in</strong>g beam k<strong>in</strong>ematics is the Bernoulli beam<br />

theory based on the hypothesis that a plane cross section normal to the beam axis rema<strong>in</strong>s plane and<br />

normal dur<strong>in</strong>g bend<strong>in</strong>g. This assumption is based on neglect<strong>in</strong>g transverse shear stra<strong>in</strong>s. The<br />

displacements are small and the rotation angle <strong>of</strong> the cross section is assimilated to the slope <strong>of</strong> the<br />

deflected l<strong>in</strong>e shape. The torsional theory <strong>in</strong>cludes a thickness and a contour warp<strong>in</strong>g. The first is<br />

assumed to be proportional to the gradient <strong>of</strong> the torsional angle and the second is evaluated as a l<strong>in</strong>ear<br />

comb<strong>in</strong>ation <strong>of</strong> warp<strong>in</strong>g displacements <strong>of</strong> transversal nodes selected from a geometrical discretization<br />

<strong>of</strong> the pr<strong>of</strong>ile.<br />

In a general load<strong>in</strong>g <strong>with</strong> tension-compression, biaxial bend<strong>in</strong>g and torsion, the displacement vector at<br />

any po<strong>in</strong>t q is:<br />

⎧ n<br />

i ⎫<br />

−ωθ x,x + Ω ui<br />

u q u ⎧ zw ⎫ ⎧−yv ⎫ ⎪ ∑ ⎪<br />

⎧ ⎫ ⎧ ⎫ − ,x<br />

,x<br />

0<br />

⎪ i= 1 ⎪<br />

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪<br />

⎪ ⎪ ⎪ ⎪<br />

⎨vq ⎬= ⎨0 ⎬+ ⎨0 ⎬+ ⎨v ⎬+ ⎨−(z−z c) θx<br />

⎬<br />

(5.1)<br />

⎪w ⎪ ⎪0 ⎪ ⎪w ⎪ ⎪0 ⎪ ⎪ ⎪<br />

⎩ q ⎭ ⎩ ⎭ ⎩ ⎭ ⎪ ⎪ ⎪(y −y c) θx<br />

⎩ ⎭ ⎪<br />

⎪⎩ ⎪⎭<br />

As developed <strong>in</strong> §3.2.3, the torsional warp<strong>in</strong>g problem requires additional k<strong>in</strong>ematical equations<br />

(equations 3.12, 3.15 and 3.17).<br />

<strong>F<strong>in</strong>ite</strong> element def<strong>in</strong>ition<br />

The f<strong>in</strong>ite element is def<strong>in</strong>ed by two end nodes; each one is characterized by 6+n degrees <strong>of</strong> freedom<br />

(u0, v, w, v,x, w,x, θx, ui,…) (figure 5.1). The beam displacements at any po<strong>in</strong>t <strong>with</strong><strong>in</strong> the element is<br />

approximated by expressions (5.2) <strong>in</strong> which the components <strong>of</strong> N are chosen functions <strong>of</strong> position.<br />

5-1


L<strong>in</strong>ear shape functions are used for tension / compression and torsion and cubic shape functions give<br />

exact bend<strong>in</strong>g solutions at nodes.<br />

The degrees <strong>of</strong> freedom (u0, v, w, θx, ui,…) are related to the f<strong>in</strong>ite element nodal displacements (5.2)<br />

by us<strong>in</strong>g the <strong>in</strong>terpolation functions (5.3).<br />

u0={qu0}<br />

v={qv} w= {qw}<br />

θx = {qθx} ui = {qui}; i=1,2,…n (5.2)<br />

<strong>with</strong><br />

{qu0} t = <br />

{qv} t = {qw} t = < w1 , w1,x , w2 , w2,x ><br />

{qui} t = {qθx} t = < θx1 , θx2 ><br />

The components <strong>of</strong> Nu, Nv and Nw are given by:<br />

x<br />

Nu1 = 1 − ( )<br />

L<br />

x<br />

N u2 = ( )<br />

L<br />

x 2 x 3<br />

Nv1 = Nw1= 1− 3( ) + 2( )<br />

L L<br />

x x 2 x 3<br />

Nv2 =− N w2 = [( ) − 2( ) + ( ) ]L<br />

L L L<br />

x 2 x 3<br />

Nv3 = Nw3= 3( ) − 2( )<br />

L L<br />

x 2 x 3<br />

Nv4 =− Nw4= 4[ − ( ) + ( ) ]L<br />

L L<br />

(5.3)<br />

Node 1<br />

O,C<br />

Figure 5.1 Beam f<strong>in</strong>ite element <strong>with</strong>out shear effects<br />

Stiffness matrix<br />

The displacements at any po<strong>in</strong>t q <strong>with</strong><strong>in</strong> an element are deduced from (5.1), (5.2) and (5.3), <strong>in</strong> a matrix<br />

expression :<br />

⎧u⎫ q<br />

⎪ ⎪<br />

⎨v ⎬=<br />

η q<br />

q<br />

⎪w⎪ ⎩ q ⎭<br />

u01<br />

z,w<br />

[ ]{}<br />

θx1<br />

v1 v1,x<br />

w1 w1,x<br />

u11 u21 ... un1<br />

L<br />

y,v<br />

u02<br />

Node 2<br />

θx2<br />

v2 v2,x<br />

w2 w2,x<br />

u12 u22 ... un2<br />

x,u<br />

(5.4)<br />

5-2


where {q} is the (12+2n) nodal displacement vector (5.5) and [ η ] the (12+2n x 12+2n) matrix given<br />

below <strong>in</strong> (5.6):<br />

t<br />

{q} = q = q q q q q ... q ... q<br />

(5.5)<br />

u0 v w θ<br />

1 i n<br />

x u u u<br />

⎡ 1 i n<br />

Nu −y N′ v −z N′ w −ω N′ u Ω N u ... Ω N u ... Ω N ⎤<br />

⎢ u ⎥<br />

[ η= ] ⎢ N −(z−z ) N<br />

⎥<br />

⎢ v c u<br />

⎥<br />

⎢ Nw y−y c) Nu<br />

⎥<br />

⎢⎣ ⎥⎦<br />

The generalized stra<strong>in</strong> vector is also presented <strong>in</strong> a matrix formulation:<br />

⎧εx<br />

⎪<br />

⎨ ε<br />

⎪<br />

⎪⎩<br />

2ε<br />

[ B ]{} q<br />

2 xy ⎬ = L<br />

xz<br />

where<br />

⎫<br />

⎪<br />

⎪<br />

⎪⎭<br />

⎡ ∂<br />

⎢<br />

∂x<br />

⎢<br />

∂<br />

⎢∂y<br />

⎢ ∂<br />

⎢<br />

⎣ ∂z<br />

∂<br />

∂x<br />

⎤<br />

⎥<br />

⎥<br />

[ ] = ⎢<br />

⎥[<br />

η]<br />

B L<br />

⎥<br />

∂ ⎥<br />

∂x<br />

⎥<br />

⎦<br />

⎡ i<br />

N′ u −y N′′ v −z N′′ w Ω N′<br />

⎤<br />

⎢ u ⎥<br />

⎢ i ⎥<br />

⎡⎣B L⎤⎦ = ⎢ −(z− z c +ω,y) N′ u Ω ,y Nu<br />

⎥<br />

⎢ i ⎥<br />

⎢ (y −y c −ω,z) N′ u Ω ,z Nu<br />

⎥<br />

⎣ ⎦<br />

By us<strong>in</strong>g the pr<strong>in</strong>ciple <strong>of</strong> m<strong>in</strong>imum potential energy, the govern<strong>in</strong>g equilibrium equations are<br />

presented for an element as:<br />

[kel] {q} = {F} (5.9)<br />

The element stiffness matrix is:<br />

[ ]<br />

el<br />

L<br />

0A<br />

t<br />

L L<br />

k = ∫∫ [B ] [H][B ]dAdx<br />

(5.10)<br />

where [H] is the Hooke matrix.<br />

⎡E<br />

[ H<br />

] =<br />

⎢<br />

⎢<br />

⎢⎣<br />

G<br />

⎤<br />

⎥<br />

⎥<br />

G⎥⎦<br />

(5.6)<br />

(5.7)<br />

(5.8)<br />

5-3


5.2.2 A 3-node beam model “FEM2”<br />

Displacement field<br />

The f<strong>in</strong>ite element described hereafter ‘FEM2’ is based on the flexural and torsional k<strong>in</strong>ematics that<br />

was previously described <strong>in</strong> §2.1.2 and §3.2. The normality assumption <strong>of</strong> the Bernoulli beam theory<br />

is relaxed and transverse shear stra<strong>in</strong> is supposed to be constant <strong>in</strong> each cross section. The shear<br />

stresses computed from the constitutive equations are also assumed to be constant and a shear<br />

correction factor is thus applied (§2.1.2).<br />

In a general load<strong>in</strong>g <strong>with</strong> tension-compression, biaxial bend<strong>in</strong>g and torsion, the displacement vector at<br />

any po<strong>in</strong>t q is expressed as:<br />

⎧ n<br />

i ⎫<br />

−ωθ x,x + Ω ui<br />

uq u<br />

⎧z ⎫ ⎧ y ⎫ ⎪ ∑ ⎪<br />

⎧ ⎫ ⎧ ⎫ θ − θ<br />

0 y<br />

z ⎪ i= 1 ⎪<br />

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪<br />

⎨vq ⎬= ⎨0 ⎬+ ⎨0 ⎬+ ⎨v ⎬+ ⎨−(z−z c) θx<br />

⎬<br />

(5.11)<br />

⎪w ⎪ ⎪0 ⎪ ⎪w ⎪ ⎪0 ⎪ ⎪ ⎪<br />

⎩ q ⎭ ⎩ ⎭ ⎪⎩ ⎪⎭<br />

⎪ ⎪ ⎪(y −y c) θ<br />

⎩ ⎭ x ⎪<br />

⎪⎩ ⎪⎭<br />

In addition, k<strong>in</strong>ematical equations (equations 3.12, 3.15 and 3.17) must be satisfied.<br />

<strong>F<strong>in</strong>ite</strong> element def<strong>in</strong>ition<br />

The beam f<strong>in</strong>ite element is def<strong>in</strong>ed by three longitud<strong>in</strong>al nodes. For each end node, there are 6+n<br />

degrees <strong>of</strong> freedom (u0,v,w,θx,θy,θz,ui,…). The central node is characterized by 5 degrees <strong>of</strong> freedom<br />

(v,w,θx,θy,θz). The beam displacements at any po<strong>in</strong>t <strong>with</strong><strong>in</strong> the element are approximated <strong>in</strong> terms <strong>of</strong><br />

nodal displacements by us<strong>in</strong>g two prescribed functions. The transverse displacements (v,w) and the<br />

rotations (θx, θy, θz) are <strong>in</strong>terpolated by a quadratic shape function N. For the longitud<strong>in</strong>al<br />

displacements, a l<strong>in</strong>ear <strong>in</strong>terpolation function Nu is used.<br />

N<br />

T<br />

⎧1<br />

− 3ξ<br />

+ 2ξ<br />

⎪<br />

= ⎨4ξ(<br />

1−<br />

ξ)<br />

⎪−<br />

ξ(<br />

1−<br />

2ξ)<br />

⎩<br />

z,w<br />

θz<br />

u01 θx1<br />

v1 θy1<br />

w1 θz1<br />

u11 u21 ... un1<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎭<br />

2<br />

N<br />

u<br />

T<br />

⎧1 − ξ⎫<br />

= ⎨<br />

ξ<br />

⎬<br />

⎩ ⎭ <strong>with</strong><br />

Node 1 Node 2 Node 3<br />

O,C<br />

y,v<br />

Figure 5.2 Beam f<strong>in</strong>ite element <strong>with</strong> shear effects<br />

θy<br />

L/2 L/2<br />

θx2<br />

v2<br />

w2<br />

θy2<br />

θz2<br />

x<br />

ξ = (5.12)<br />

L<br />

u03 θx3<br />

v3 θy3<br />

w3 θz3<br />

u13 u23 ... un3<br />

θx<br />

x,u<br />

5-4


The displacements (u0,v,w,θx,θy,θz,ui,…) are related to the f<strong>in</strong>ite nodal displacements by us<strong>in</strong>g the<br />

<strong>in</strong>terpolation functions as follows:<br />

u0={qu0}<br />

v={qv}<br />

w= {qw}<br />

θx = {qθx}<br />

θy = {qθy}<br />

θz ={qθz}<br />

ui = {qui}; i=1,2,…n (5.13)<br />

<strong>with</strong><br />

{qu0} t = < u01 , u02 ><br />

{qv} t = < v1 , v2 , v3 ><br />

{qw} t = < w1 , w2 , w3 ><br />

{qui} t = < ui1 , ui2 ><br />

{qθx} t = < θx1 , θx2, θx3 ><br />

{qθy} t = < θy1 , θy2, θy3 ><br />

{qθz} t = < θz1 , θz2, θz3 ><br />

Stiffness matrix<br />

The displacements at any po<strong>in</strong>t q <strong>with</strong><strong>in</strong> an element are deduced from (5.11), (5.12) and (5.13) by<br />

us<strong>in</strong>g the follow<strong>in</strong>g matrix notation :<br />

⎧u⎫ q<br />

⎪ ⎪<br />

⎨v ⎬=<br />

η q<br />

q<br />

⎪w⎪ ⎩ q ⎭<br />

[ ]{}<br />

(5.14)<br />

where<br />

⎡ Nu ⎢<br />

[ η= ] ⎢<br />

⎢<br />

⎢⎣ and<br />

N<br />

N<br />

−ω N′ −(z−z c)<br />

N<br />

(y−y c)<br />

N<br />

z N −y N ...<br />

i<br />

Ω N u ... ⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥⎦<br />

(5.15)<br />

t<br />

q = q q q q q q q ... q ... q<br />

(5.16)<br />

{} u v w θx θy θz<br />

u1 ui un<br />

The generalized stra<strong>in</strong> vector is also presented <strong>in</strong> a matrix formulation:<br />

⎧ε<br />

⎫<br />

x<br />

⎪ ⎪<br />

⎨ ε<br />

⎪ ⎪<br />

⎪⎩<br />

2εxz<br />

⎪⎭<br />

where<br />

[ B ]{} q<br />

2 xy ⎬ = L<br />

(5.17)<br />

5-5


⎡ ∂ ⎤<br />

⎢<br />

∂x<br />

⎥<br />

⎢<br />

∂ ∂<br />

⎥<br />

BL (5.18)<br />

⎢∂y<br />

∂x<br />

⎥<br />

⎢ ∂ ∂ ⎥<br />

⎢<br />

⎥<br />

⎣ ∂z<br />

∂x<br />

⎦<br />

[ ] = ⎢<br />

⎥[<br />

η]<br />

⎡ i<br />

N′ u −ω N′′ z N′ −y N′ Ω N′<br />

⎤<br />

⎢ u ⎥<br />

⎢ i ⎥<br />

⎡⎣BL⎤⎦ = ⎢ N ′ −(z− z c +ω,y ) N′ − N Ω ,y Nu⎥<br />

⎢ i ⎥<br />

⎢ N ′ (y−y c −ω,z ) N′ N Ω ,z Nu<br />

⎥<br />

⎣ ⎦<br />

And the element stiffness matrix is:<br />

[ ]<br />

el<br />

L<br />

0A<br />

t<br />

L L<br />

(5.19)<br />

k = ∫∫ [B ] [H][B ]dAdx<br />

(5.20)<br />

The above quadratic Timoshenko element is modified <strong>in</strong> order to take <strong>in</strong>to account a reduced selective<br />

<strong>in</strong>tegration. For the element stiffness matrix (Appendix A3), this affects only the matrix [K1]. For the<br />

result<strong>in</strong>g f<strong>in</strong>ite element, called hereafter ‘FEM2’, the shear lock<strong>in</strong>g problem is elim<strong>in</strong>ated and the<br />

f<strong>in</strong>ite element solution is ameliorated. Jirousek 1984 shows that the quadratic isoparametric beam<br />

element <strong>in</strong>tegrated <strong>with</strong> two Gauss po<strong>in</strong>ts solves exactly a beam segment <strong>with</strong> a parabolic distribution<br />

<strong>of</strong> bend<strong>in</strong>g moment.<br />

Properties <strong>of</strong> the Timoshenko beam f<strong>in</strong>ite element<br />

In the literature, various choices <strong>of</strong> <strong>in</strong>terpolation functions for bend<strong>in</strong>g degrees <strong>of</strong> freedom have<br />

resulted <strong>in</strong> different Timoshenko beam f<strong>in</strong>ite elements. Some elements present numerical problems<br />

like shear lock<strong>in</strong>g s<strong>in</strong>ce they are unable to represent bend<strong>in</strong>g deformations for which transverse shear<br />

must vanish. For deformations <strong>in</strong> which the normal to the midl<strong>in</strong>e rema<strong>in</strong>s straight and normal, these<br />

elements exhibit a spurious penaliz<strong>in</strong>g stiffness that leads to the appearance <strong>of</strong> erroneous transversal<br />

shear. This penalty term becomes <strong>in</strong> some cases more important than the stiffness <strong>of</strong> the correct<br />

deformation and the <strong>in</strong>appropriate transversal shear absorbs a large part <strong>of</strong> the energy due to the<br />

external forces lead<strong>in</strong>g to <strong>in</strong>accurate deflections and stra<strong>in</strong>s. In particular, when identical l<strong>in</strong>ear<br />

<strong>in</strong>terpolations <strong>of</strong> transversal displacements and section rotations are used <strong>with</strong> exact <strong>in</strong>tegrations to<br />

calculate the stiffness matrix [Batoz 1990 page 83; Belytschko 2000 page 556; …], an <strong>in</strong>consistency<br />

<strong>of</strong> the formulation results <strong>in</strong> its <strong>in</strong>ability to capture a zero state <strong>of</strong> transverse shear stra<strong>in</strong>. The lock<strong>in</strong>g<br />

phenomenon appears by display<strong>in</strong>g a strong over-stiffen<strong>in</strong>g and <strong>in</strong>duc<strong>in</strong>g significant errors. The<br />

convergence deteriorates as the thickness (or ratio height/length) <strong>of</strong> the Timoshenko beam model tends<br />

to zero. A large number <strong>of</strong> references [Batoz 1990 page 86, Reddy 1997, Yunhua 1998, B<strong>in</strong>kevich<br />

1998, Wang 2000, Mukherjee 2001… ] have elaborated and developed diverse beam f<strong>in</strong>ite element<br />

models and have shown many techniques to avoid the problem <strong>of</strong> shear lock<strong>in</strong>g so that the application<br />

to th<strong>in</strong> walled structures becomes feasible.<br />

In this work, the quadratic Timoshenko element (‘FEM2’) is used <strong>with</strong> a reduced selective <strong>in</strong>tegration<br />

s<strong>in</strong>ce this technique was found to suppress, for beam elements, the lock<strong>in</strong>g <strong>with</strong>out requir<strong>in</strong>g<br />

additional comput<strong>in</strong>g costs.<br />

5-6


For the proposed quadratic element, the shear stra<strong>in</strong> (γxz = w0,x+θy) and the curvature (χ = θy,x) can be<br />

expressed as functions <strong>of</strong> the bend<strong>in</strong>g nodal displacements (transverse displacements w and cross<br />

sectional rotations θy) by us<strong>in</strong>g (5.12) and (5.13):<br />

F ⎧ 3 4 1 ⎫ x ⎧ 4 8 4 ⎫<br />

γ xz = ⎨− w1+ w2− w3+θy1⎬<br />

+ ⎨−3θ y1 + 4θy2−θ y3 + w1− w2+ w3⎬<br />

⎩ L L L ⎭ L⎩ L L L ⎭<br />

2<br />

{ 2 y1 4 y22 y3}<br />

x<br />

+ θ − θ + θ (5.21)<br />

2<br />

L<br />

⎧ 3 4 1 ⎫ x ⎧4 8 4 ⎫<br />

χ= ⎨−θ y1 + θy2 − θy3⎬<br />

+ ⎨ θy1 − θ y2 + θy3⎬<br />

⎩ L L L ⎭ L⎩L L L ⎭ (5.22)<br />

An absence <strong>of</strong> shear stra<strong>in</strong>s (γxz = 0) along the beam element <strong>in</strong>duces three equations (5.23):<br />

⎧ 3 4 1 ⎫<br />

⎨− w1+ w2 − w3+θ y1⎬=<br />

0<br />

⎩ L L L ⎭<br />

⎧ 4 8 4 ⎫<br />

⎨−θ 3 y1 + 4θy2−θ y3 + w1− w2+ w3⎬= 0<br />

⎩ L L L ⎭<br />

θ − 4θy<br />

+ 2θ<br />

=<br />

(5.23)<br />

{ } 0<br />

2 y 1 2 y3<br />

It could be shown that if the third equation <strong>of</strong> (5.23) is satisfied, the curvature (5.24) is found to be<br />

constant along the element:<br />

⎧ 3 4 1 ⎫<br />

χ= − θ + θ − θ<br />

⎨ y1 y2 y3 ⎬<br />

⎩ L L L ⎭ (5.24)<br />

Thus, by us<strong>in</strong>g a three-node beam element <strong>with</strong> quadratic <strong>in</strong>terpolations, the shear lock<strong>in</strong>g is not<br />

present as <strong>in</strong> simple l<strong>in</strong>ear Timoshenko element (Appendix A3) s<strong>in</strong>ce the curvature does not vanish.<br />

The follow<strong>in</strong>g bend<strong>in</strong>g cases and the numerical examples <strong>in</strong> §5.3.4 show detailed results.<br />

Pure bend<strong>in</strong>g case<br />

If a state <strong>of</strong> pure bend<strong>in</strong>g is considered,<br />

w1 = w3 = 0, w2 = αL/4, -θy1 = θy3 = α, θy2 = 0 (5.25)<br />

Substitut<strong>in</strong>g (5.25) <strong>in</strong>to (5.21) shows that the transverse shear vanishes through the element. Thus,<br />

shear lock<strong>in</strong>g is not expected <strong>in</strong> this case.<br />

Second bend<strong>in</strong>g case <strong>with</strong> zero shear<br />

However, it is not the case if another state correspond<strong>in</strong>g to a situation where normals rema<strong>in</strong> normal<br />

is considered. For <strong>in</strong>stance, the variation <strong>of</strong> the displacement along the length <strong>of</strong> the beam is<br />

considered to be cubic:<br />

w = α(-1+2ξ) 3 , θy = -w,x = -6α (-1+2ξ) 2 /L<br />

5-7


so that<br />

-w1 = w3 = α, w2 = 0, θy1 = θy3 = -6α/L, θy2 = 0 (5.26)<br />

By substitut<strong>in</strong>g (5.26) <strong>in</strong>to (5.21), the transverse shear is given by:<br />

F 1 α α α 2<br />

γ xz = 8[ − + 3 x − 3 x ]<br />

(5.27)<br />

2 3<br />

2L L L<br />

(5.27) represents a parasitic shear stra<strong>in</strong> s<strong>in</strong>ce, by us<strong>in</strong>g the k<strong>in</strong>ematic hypothesis <strong>of</strong> Timoshenko, this<br />

shear stra<strong>in</strong> should be zero for (5.26). The transverse shear given by (5.27) gives nonzero shear<br />

everywhere except at:<br />

l 3<br />

x = ( 1 ± )<br />

(5.28)<br />

2 3<br />

These two po<strong>in</strong>ts are precisely the locations for the two Gauss po<strong>in</strong>t <strong>in</strong>tegration rule. It is already<br />

shown <strong>in</strong> the literature that, for the quadratic element, the po<strong>in</strong>ts for which the transverse shear<br />

deformation tends to zero co<strong>in</strong>cide <strong>with</strong> the nodes <strong>of</strong> the Gauss <strong>in</strong>tegration <strong>of</strong> second order [Jirousek<br />

1984; B<strong>in</strong>kevich 1998; Belytschko 2000].<br />

Thus, to avoid shear lock<strong>in</strong>g phenomenon and to ameliorate the f<strong>in</strong>ite element solution [Jirousek<br />

1984], a selective reduced <strong>in</strong>tegration is used <strong>with</strong> two po<strong>in</strong>t (5.28) <strong>in</strong>tegration rule for the stiffness<br />

matrix terms associated <strong>with</strong> the transverse shear stra<strong>in</strong> and an exact <strong>in</strong>tegration is used for the other<br />

terms (matrix [K1] <strong>in</strong> appendix A3).<br />

5.2.3 Adapt<strong>in</strong>g ‘FEM1’ and ‘FEM2’ to the torsional theory <strong>of</strong> th<strong>in</strong>-walled beams<br />

Neglect<strong>in</strong>g second order warp<strong>in</strong>g effects<br />

For th<strong>in</strong>-walled structures, the thickness warp<strong>in</strong>g (or so-called second order warp<strong>in</strong>g) is usually<br />

neglected [Batoz (1990) page 195, Murray (1986), Benscoter (1954), De Ville (1989), …] <strong>in</strong> l<strong>in</strong>ear<br />

analysis s<strong>in</strong>ce it <strong>in</strong>duces small effects <strong>in</strong> comparison <strong>with</strong> those <strong>of</strong> the contour warp<strong>in</strong>g. The second<br />

order warp<strong>in</strong>g has <strong>in</strong>deed a small <strong>in</strong>fluence and is neglected <strong>in</strong> most analyses. In this work, when the<br />

thickness is considered to be small compared to the mid-wall length, terms such as Izω, Iyω and Iωω are<br />

neglected when <strong>in</strong>tegrat<strong>in</strong>g (5.20) s<strong>in</strong>ce it can be postulated that:<br />

2<br />

⎛ e ⎞<br />


⎛ e ⎞<br />

⎜<br />

L<br />

⎟<br />

⎝ ⎠<br />

⎛ e ⎞<br />

⎜<br />

L<br />

⎟<br />

⎝ ⎠<br />

2<br />

∫ ∫<br />

h cosα dA z { } i u { u }<br />

ω θ zΩ<br />

i= 1<br />

i<br />

− I N' q + ∑ I N q = 0<br />

(5.32)<br />

x i<br />

n<br />

(3.17) => y { } i u { u }<br />

− I N' q + ∑ I N q = 0<br />

(5.33)<br />

ω θ yΩ<br />

i= 1<br />

x i<br />

n<br />

(4.14) => c { } i u { u }<br />

−G(S − z A) N' q + ∑ GS N q = 0<br />

(5.34)<br />

ω θ Ω<br />

i= 1<br />

,y x<br />

,y<br />

i<br />

n<br />

(4.15) => c { } i u { u }<br />

− G(S + y A) N' q + ∑ GS N q = 0<br />

(5.35)<br />

ω θ Ω<br />

i= 1<br />

,z x<br />

,z<br />

i<br />

Expressions (5.31) to (5.35) must be verified for any value <strong>of</strong> x, which implies that:<br />

n<br />

(5.31) => ∑ S i (u i1)<br />

= 0<br />

(5.36)<br />

Ω<br />

i= 1<br />

n<br />

(5.31) => ∑ S i (u i3)<br />

= 0<br />

(5.36’)<br />

Ω<br />

i= 1<br />

1<br />

ω x1<br />

x2<br />

x3<br />

i1<br />

(5.37)<br />

l<br />

zΩ<br />

(5.32) => I { 3 − 4θ<br />

+ θ } + I { u } 0<br />

θ ∑<br />

i=<br />

1<br />

n<br />

− θx1<br />

+ 4θx2<br />

− 3θx3<br />

+ ∑<br />

i=<br />

1<br />

z i =<br />

(5.32) => { } I { u } 0<br />

n<br />

1<br />

Izω<br />

i i3<br />

=<br />

(5.37’)<br />

l<br />

zΩ<br />

1<br />

yω x1<br />

x2<br />

x3<br />

i i1<br />

=<br />

(5.38)<br />

l<br />

yΩ<br />

(5.33) => I { 3 − 4θ<br />

+ θ } + I { u } 0<br />

θ ∑<br />

i=<br />

1<br />

n<br />

5-9


1<br />

ω x1<br />

x2<br />

x3<br />

i3<br />

(5.38’)<br />

l<br />

yΩ<br />

(5.33) => I { θ + 4θ<br />

− 3θ<br />

} + I { u } 0<br />

− ∑<br />

i=<br />

1<br />

y i =<br />

(5.34) => ( S z A)<br />

{ 3θ<br />

− 4θ<br />

+ θ } + S { u } = 0<br />

n<br />

n<br />

1<br />

ω − c x1<br />

x2<br />

x3<br />

∑ i<br />

, y<br />

i1<br />

(5.39)<br />

l<br />

Ω , y<br />

=<br />

i 1<br />

n<br />

1<br />

ω − c x1<br />

x2<br />

x3<br />

∑ i<br />

, y<br />

i3<br />

(5.39’)<br />

l<br />

Ω , y<br />

=<br />

(5.34) => ( S z A)<br />

{ − θ + 4θ<br />

− 3θ<br />

} + S { u } = 0<br />

(5.35) => ( S y A)<br />

{ 3θ<br />

− 4θ<br />

+ θ } + S { u } = 0<br />

n<br />

i<br />

1<br />

1<br />

ω + c x1<br />

x2<br />

x3<br />

∑ i<br />

, z<br />

, z i1<br />

(5.40)<br />

l<br />

Ω<br />

=<br />

(5.35) => { − θ + 4θ<br />

− 3θ<br />

} + S { u } = 0<br />

i<br />

1<br />

n<br />

1<br />

( Sω<br />

+ ycA)<br />

x1<br />

x2<br />

x3<br />

∑ i<br />

, z<br />

i3<br />

(5.40’)<br />

l<br />

Ω , z<br />

=<br />

Elim<strong>in</strong>ation <strong>of</strong> the coupled terms <strong>in</strong> the stiffness matrix<br />

It is found that equations (5.36 and 5.36’) elim<strong>in</strong>ate the warp<strong>in</strong>g/tension-compression coupled terms,<br />

that (5.38, 5.38’, 5.39 & 5.39’) elim<strong>in</strong>ate the warp<strong>in</strong>g/bend<strong>in</strong>g (xy) coupled terms and that equations<br />

(5.37, 5.37’, 5.40 & 5.40’) elim<strong>in</strong>ate the warp<strong>in</strong>g/bend<strong>in</strong>g (xz) coupled terms <strong>in</strong> the stiffness matrix.<br />

This numerical approach is equivalent to the analytical work done <strong>in</strong> paragraph 4.2.4 sett<strong>in</strong>g that the<br />

warp<strong>in</strong>g degrees <strong>of</strong> freedom should not <strong>in</strong>duce normal forces, shear forces or bend<strong>in</strong>g moments. And<br />

<strong>in</strong>versely, the tension-compression and bend<strong>in</strong>g generalized forces should not be related to the<br />

torsional warp<strong>in</strong>g terms ui. This elim<strong>in</strong>ates the symmetrical coupled terms <strong>in</strong> the stiffness matrix. The<br />

non zero terms <strong>of</strong> k el (computed from equations 5.10 & 5.20) obta<strong>in</strong>ed after elim<strong>in</strong>at<strong>in</strong>g the coupled<br />

terms (5.36-5.40’ for FEM2) and after neglect<strong>in</strong>g the second warp<strong>in</strong>g effects (tak<strong>in</strong>g <strong>in</strong>to account<br />

5.30) are given <strong>in</strong> Appendices 2 & 3 respectively.<br />

Relat<strong>in</strong>g ui to torsional warp<strong>in</strong>g<br />

The orthogonality equations (5.36 to 5.40’) that simplify the system <strong>of</strong> equilibrium equations<br />

(previous paragraph) must aga<strong>in</strong> be used to relate the degrees <strong>of</strong> freedom. Therefore, there are (n-3)<br />

<strong>in</strong>dependent degrees <strong>of</strong> freedom among the (6+n) <strong>of</strong> each longitud<strong>in</strong>al end node <strong>of</strong> the f<strong>in</strong>ite element.<br />

For one f<strong>in</strong>ite element, six dependent axial displacements ui must be separated from the other<br />

<strong>in</strong>dependent ones. The displacement vector {q} is thus divided <strong>in</strong>to two parts: dependent degrees <strong>of</strong><br />

freedom {qd} and <strong>in</strong>dependent ones {qi}. K<strong>in</strong>ematic equations obta<strong>in</strong>ed by neglect<strong>in</strong>g second torsional<br />

warp<strong>in</strong>g (as stated <strong>in</strong> equation 5.30) <strong>in</strong>to (3.13, 3.16, 3.17) give the relationships that can be written <strong>in</strong><br />

the follow<strong>in</strong>g forms :<br />

[C]{q}=0<br />

or<br />

{qd}= [D] {qi} (5.41)<br />

The entire set <strong>of</strong> equilibrium equations can be solved by us<strong>in</strong>g the Lagrange multipliers (5.42) or by<br />

condens<strong>in</strong>g the stiffness matrix.<br />

⎡[<br />

K]<br />

⎢<br />

⎣[<br />

C]<br />

t<br />

[ C]<br />

⎤⎧{<br />

q}<br />

⎫ ⎧{<br />

F}<br />

⎫<br />

⎥⎨<br />

⎬ = ⎨ ⎬<br />

0 ⎦⎩{<br />

λ}<br />

⎭ ⎩{<br />

b}<br />

⎭<br />

i<br />

1<br />

(5.42)<br />

5-10


For the condensation method, the set <strong>of</strong> equilibrium equations is transformed <strong>in</strong>to:<br />

⎡<br />

⎢<br />

⎣<br />

[ Kii<br />

] [ Kid<br />

]<br />

[ K ] [ K ]<br />

di<br />

dd<br />

⎤⎧<br />

⎥⎨<br />

⎦⎩<br />

{ qi<br />

}<br />

{ q }<br />

d<br />

⎫ ⎧<br />

⎬ = ⎨<br />

⎭ ⎩<br />

{ }<br />

⎬<br />

{ } ⎭ ⎫ Fi<br />

F<br />

d<br />

By comb<strong>in</strong><strong>in</strong>g (5.41) and (5.43), the f<strong>in</strong>al system to be solved is then reduced to:<br />

(5.43)<br />

[[Kii]+[Kid][D]+[D] t [Kid] +[D] t [Kdd] [D]] {qi}={Fi}+[D] t {Fd} (5.44)<br />

The (6,2n) C matrix is constituted by two sets <strong>of</strong> three equations. Each set is related to a longitud<strong>in</strong>al<br />

end node and is deduced from equations (5.36-5.38) by neglect<strong>in</strong>g second order torsional warp<strong>in</strong>g<br />

(tak<strong>in</strong>g <strong>in</strong>to account 5.30).<br />

n<br />

∑ S iuij<br />

= 0 j=1,2<br />

Ω<br />

i= 1<br />

n<br />

∑<br />

i= 1<br />

n<br />

∑<br />

i= 1<br />

[ C]<br />

I u = 0<br />

i<br />

yΩ<br />

i<br />

zΩ<br />

ij<br />

I u = 0<br />

ij<br />

⎡... S k ... 0 0 0⎤<br />

Ω<br />

⎢<br />

... I k ... 0 0 0<br />

⎥<br />

⎢ yΩ<br />

⎥<br />

⎢... I k ... 0 0 0⎥<br />

zΩ<br />

= ⎢ ⎥<br />

⎢000 ... S m ... Ω ⎥<br />

⎢000 ... I m ... ⎥<br />

⎢ yΩ<br />

⎥<br />

⎢000 ... I ... ⎥<br />

m<br />

⎣ zΩ<br />

⎦<br />

(5.45)<br />

Equations (5.34 & 5.35) are used to calculate the coord<strong>in</strong>ates <strong>of</strong> the shear center yC and zC: the full<br />

system <strong>of</strong> equations is solved after a static condensation that uses (5.39 - 5.40’) <strong>in</strong> order to elim<strong>in</strong>ate<br />

yC and zC.<br />

Static condensation <strong>of</strong> mid node degrees <strong>of</strong> freedom<br />

This f<strong>in</strong>al step is not mandatory but is done <strong>in</strong> order to reduce the total number <strong>of</strong> degrees <strong>of</strong> freedom<br />

<strong>of</strong> a structure. The local unknowns <strong>of</strong> the central node 2 <strong>of</strong> each element are statically condensed<br />

before assembl<strong>in</strong>g the entire structure so that the total number <strong>of</strong> degrees <strong>of</strong> freedom is reduced. The<br />

columns and l<strong>in</strong>es <strong>of</strong> the stiffness matrix associated <strong>with</strong> the degrees <strong>of</strong> freedom <strong>of</strong> the central node are<br />

elim<strong>in</strong>ated: the terms associated <strong>with</strong> i th (varies from 7+n till 11+n) degree <strong>of</strong> freedom are elim<strong>in</strong>ated<br />

by modify<strong>in</strong>g all the terms (m, j vary<strong>in</strong>g from 1 till 17+2n) <strong>of</strong> the stiffness matrix as follows:<br />

k<br />

k = k − k<br />

(5.46)<br />

' mi<br />

mj mj ij<br />

kii<br />

The condensed matrix is computed numerically and is not developed hereafter analytically.<br />

5-11


5.2.4 Nodal forces equivalent to distributed loads<br />

In the f<strong>in</strong>ite element method, distributed forces (5.47) along the element <strong>in</strong> the direction <strong>of</strong> the (x,y,z)<br />

axes are transformed <strong>in</strong>to nodal forces.<br />

f = ax + b (5.47)<br />

The result<strong>in</strong>g nodal forces {F}, statically equivalent to the forces distributed along the element, are<br />

calculated for any (virtual) nodal displacements {q} (17+2n) by equat<strong>in</strong>g the external and the <strong>in</strong>ternal<br />

work done by the various forces.<br />

L<br />

t h<br />

T<br />

{}{} { } {}<br />

q F = ∫ u f dx<br />

(5.48)<br />

0<br />

{u h } is the (6+n) displacement vector (u0, v, w, θx, θy, θz, ui) <strong>of</strong> any po<strong>in</strong>t <strong>with</strong><strong>in</strong> the element. {u h } is<br />

computed by multiply<strong>in</strong>g a matrix [M] (6+n,12+2n for FEM1; 6+n,17+2n for FEM2) constituted from<br />

the <strong>in</strong>terpolation functions by the nodal displacement vector {q}.<br />

S<strong>in</strong>ce (5.48) is valid for any value <strong>of</strong> virtual displacements {q}, the contribution <strong>of</strong> the distributed<br />

forces to those <strong>of</strong> each node is calculated by:<br />

{ }<br />

L<br />

[<br />

0<br />

T<br />

] {}<br />

F = ∫ M f dx<br />

(5.49)<br />

For an axial distributed force fx:<br />

fx = ax+b<br />

1<br />

⎧Fx1 ⎫ T<br />

⎨ Nu fxLd F<br />

⎬=<br />

∫ ξ<br />

⎩ x2⎭ 0<br />

⎡1 2 bL⎤<br />

⎢<br />

al +<br />

6 2 ⎥<br />

= ⎢ 2 ⎥<br />

⎢ al bL<br />

+<br />

⎥<br />

⎢⎣ 3 2 ⎥⎦<br />

For a lateral distributed force fy (and identically for fz) and <strong>in</strong> the case <strong>of</strong> FEM2:<br />

fy = ax+b<br />

⎧ bL ⎫<br />

⎧F⎫ ⎪ 6 ⎪<br />

y1 1<br />

⎪ ⎪<br />

⎪<br />

T l<br />

⎪<br />

⎪ ⎪<br />

⎨Fy2⎬= ∫ N fyLdξ = ⎨ ( aL + 2b)<br />

⎬<br />

⎪ 0 F ⎪<br />

⎪3 ⎪<br />

⎩ y3⎭<br />

⎪ l<br />

(aL + 2b) ⎪<br />

⎪⎩6⎭⎪ For a torsional distributed torque mx and <strong>in</strong> the case <strong>of</strong> FEM2 (and identically for my and mz):<br />

mx=ax+b<br />

(5.50)<br />

(5.51)<br />

5-12


⎧ aL ⎫<br />

⎪<br />

⎧mx1 ⎫<br />

6 ⎪<br />

1<br />

⎪<br />

⎪ ⎪ T l<br />

⎪<br />

⎪ ⎪<br />

⎨mx2⎬= ∫ N mxLdξ = ⎨ ( aL + 2b)<br />

⎬<br />

⎪m⎪ 0<br />

⎪3⎪ ⎩ x3⎭<br />

⎪ l<br />

(aL + b) ⎪<br />

⎪⎩ 6 ⎪⎭<br />

(5.52)<br />

The condensation <strong>of</strong> Fy2, Fz2, mx2, my2 or mx2 gives the equivalent nodal vector <strong>with</strong> components<br />

associated <strong>with</strong> the end nodes <strong>of</strong> each element. If i is associated <strong>with</strong> the term to be elim<strong>in</strong>ated (one <strong>of</strong><br />

the 5 degrees <strong>of</strong> freedom <strong>of</strong> the central node), a j term (one <strong>of</strong> the rema<strong>in</strong><strong>in</strong>g 12+2n degrees <strong>of</strong><br />

freedom) is affected as follows:<br />

f<br />

f = f − k<br />

(5.53)<br />

' i<br />

j j ij<br />

kii<br />

The condensed (12+2n) vector {F} is developed numerically.<br />

It is <strong>in</strong>terest<strong>in</strong>g to note that, for a uniformly distributed lateral force fy = q, the correspond<strong>in</strong>g<br />

condensed vector {F} (us<strong>in</strong>g ‘FEM2’) is found to be the same as that <strong>of</strong> the Hermitian cubic element<br />

based on the Euler-Bernoulli beam theory (‘FEM1’). By us<strong>in</strong>g (5.53) to condensate (5.51) (<strong>with</strong> a = 0<br />

and b = q), the nodal vector is found to be {qL/2, -qL 2 /12, qL/2, -qL 2 /12}.<br />

5.2.5 Assembly <strong>of</strong> beam elements<br />

The behavior <strong>of</strong> a general three dimensional structure composed <strong>of</strong> th<strong>in</strong> walled beams <strong>with</strong> different<br />

pr<strong>of</strong>ile geometries is significantly <strong>in</strong>fluenced by assembly details. In practice, the carry<strong>in</strong>g capacity<br />

and the stability <strong>of</strong> beams <strong>with</strong> uniform cross sections may be <strong>in</strong>creased by bolt<strong>in</strong>g or weld<strong>in</strong>g<br />

additional plates <strong>in</strong> highly stressed parts so that the cross section changes abruptly.<br />

The <strong>in</strong>fluence <strong>of</strong> a connection and the assembly <strong>of</strong> different beam structures are not easily taken <strong>in</strong>to<br />

account <strong>in</strong> beam analyses. Beam forces and displacements are transferred from one f<strong>in</strong>ite element to<br />

another through nodal components on particular po<strong>in</strong>ts <strong>of</strong> each element. This can be done rout<strong>in</strong>ely if<br />

all the components refer to the same physical po<strong>in</strong>t. However, assembled beams and columns may not<br />

have their centroid G or torsional center C (Fig. 5.3) situated on the same axis. This k<strong>in</strong>d <strong>of</strong> assembly<br />

necessitates a particular treatment. The handl<strong>in</strong>g <strong>of</strong> the torsional axial displacement is particularly<br />

complex s<strong>in</strong>ce the assembled cross sections do not necessarily fit together after deformation, but may<br />

have some parts <strong>of</strong> the contour <strong>in</strong> common. <strong>Model<strong>in</strong>g</strong> the real compatibility <strong>of</strong> the connected cross<br />

sections is a complicated task.<br />

The <strong>in</strong>fluence <strong>of</strong> an assembly is hereby analyzed for each uncoupled load<strong>in</strong>g effect: tensioncompression,<br />

flexure, torsion and warp<strong>in</strong>g. Regard<strong>in</strong>g tension-compression, bend<strong>in</strong>g or uniform<br />

torsion, the transmission is considered to be either ensured (rigid connection) or not. The assembly <strong>of</strong><br />

general three dimensional th<strong>in</strong> walled beams and columns is limited to the usual beam study as done<br />

by Gunnlaugsson (1982), Pedersen (1991) or Shakourzadeh (1999). The displacements (u, v, w, θx, θy,<br />

θz) <strong>of</strong> the connected nodes refer to a common assembl<strong>in</strong>g po<strong>in</strong>t A. This assembl<strong>in</strong>g po<strong>in</strong>t A, def<strong>in</strong>ed as<br />

the po<strong>in</strong>t where the cont<strong>in</strong>uity is ensured, is assumed to be def<strong>in</strong>ed somewhere <strong>with</strong><strong>in</strong> the common<br />

contour <strong>of</strong> the connected cross sections: for example, <strong>in</strong> Figure 5.3, po<strong>in</strong>t A is taken anywhere along<br />

the common l<strong>in</strong>e 123.<br />

The <strong>in</strong>fluence <strong>of</strong> the assembly details on the torsional warp<strong>in</strong>g <strong>of</strong> each assembled cross section is<br />

accurately described <strong>in</strong> the present work. The longitud<strong>in</strong>al displacements (ui) <strong>of</strong> selected transversal<br />

5-13


nodes (i=1,…n), chosen as additional degrees <strong>of</strong> freedom to model the torsional warp<strong>in</strong>g <strong>of</strong> th<strong>in</strong><br />

walled structures, enable the description <strong>of</strong> compatibility equations for arbitrary jo<strong>in</strong>ts. The warp<strong>in</strong>g <strong>of</strong><br />

each cross section may be described as totally <strong>in</strong>dependent, partially or fully dependent from the other<br />

connected cross sections. When warp<strong>in</strong>g is cont<strong>in</strong>uous, one f<strong>in</strong>ite element node is used to model the<br />

connection. When it is not the case, two or more longitud<strong>in</strong>al nodes are taken at the same geometrical<br />

connection po<strong>in</strong>t; each node belongs to a connected element. One is the master node, and the other<br />

slave nodes are related to it by compatibility equations.<br />

G 1,C 1<br />

Figure 5.3 A straight connection<br />

- The axial displacement due to <strong>in</strong>-plane tension or compression, usually considered at the centroid, is<br />

a mean value <strong>of</strong> the longitud<strong>in</strong>al displacement <strong>of</strong> the cross section. In particular, it could be taken at<br />

the common reference A.<br />

u0A a = u0G a = u0C a (5.54)<br />

- The constant mean value <strong>of</strong> transversal translation due to plane flexure can be taken for the same<br />

reason at the common reference A.<br />

vA F = vG F = vC F<br />

z 1<br />

(1)<br />

x 1<br />

4<br />

1<br />

y 1<br />

5<br />

2<br />

z<br />

A<br />

6<br />

3<br />

4<br />

(2)<br />

wA F = wG F = wC F (5.55)<br />

However the axial displacement, vary<strong>in</strong>g l<strong>in</strong>early along the plane <strong>of</strong> bend<strong>in</strong>g is proportional to the<br />

flexural rotation <strong>of</strong> the cross section. At an assembl<strong>in</strong>g po<strong>in</strong>t, centroids may not co<strong>in</strong>cide and the<br />

adjacent cross sections are assumed to rotate around a common po<strong>in</strong>t A depend<strong>in</strong>g on the connection.<br />

y<br />

G 2<br />

z2<br />

C 2<br />

x<br />

x 2<br />

y2<br />

5-14


uA F = u0G F - yA θz + zA θy<br />

Figure 5.4 Plane flexure<br />

(5.56)<br />

- When submitted to torsional effects, a cross section rotates around the shear center. If shear centers<br />

<strong>of</strong> adjacent cross sections do not co<strong>in</strong>cide, the correspond<strong>in</strong>g eccentricity should be taken <strong>in</strong>to account.<br />

vA T = vC T - (zA - zC) θx<br />

wA T = wC T + (yA - yC) θx<br />

(5.57)<br />

- Compatibility equations are required to model the transmission <strong>of</strong> the first order torsional warp<strong>in</strong>g.<br />

They describe exactly how the warp<strong>in</strong>g is free on some parts <strong>of</strong> the contours or partially or totally<br />

restra<strong>in</strong>ed on others. For <strong>in</strong>stance, for the straight connection represented <strong>in</strong> Figure 5.3, the<br />

compatibility conditions between the two beams (1) and (2) are:<br />

u1 (1) = u1 (2) , u2 (1) = u2 (2) , u3 (1) = u3 (2) , u4 (1) ≠ u4 (2) , u5 (1) ≠ 0, u6 (1) ≠ 0 (5.58)<br />

Some other examples are given <strong>in</strong> Figures 5.5a, 5.5b and 5.5c. fi are the <strong>in</strong>ternal forces associated <strong>with</strong><br />

the degrees <strong>of</strong> freedom ui.<br />

(1)<br />

A<br />

G<br />

z<br />

uG<br />

uA<br />

θy<br />

(2)<br />

x<br />

Figure 5.5a Rigid connection, warp<strong>in</strong>g restra<strong>in</strong>ed (after Gjelsvik 1981) (ui (1) = 0, ui (2) =0 )<br />

θz<br />

uA<br />

uG<br />

y<br />

A<br />

G<br />

x<br />

5-15


(1)<br />

Figure 5.5b Semi rigid connection, warp<strong>in</strong>g transmitted (after Gjelsvik 1981) (ui (1) = ui (2) )<br />

(1)<br />

Figure 5.5c H<strong>in</strong>ged connection, <strong>in</strong>dependent warp<strong>in</strong>g (after Gjelsvik 1981) (ui (1) ≠ ui (2) , fi (1) = fi (2) =0)<br />

The contour warp<strong>in</strong>g formulation does not depend directly on the assembl<strong>in</strong>g po<strong>in</strong>t s<strong>in</strong>ce functions Ωi<br />

describe a l<strong>in</strong>ear variation between the transversal nodes that relate the nodal displacements ui <strong>of</strong> the<br />

cross section. However, the thickness warp<strong>in</strong>g is proportional to the perpendicular distance to the<br />

normal issued from the shear center. When the cross section is rotat<strong>in</strong>g around an arbitrary po<strong>in</strong>t A,<br />

the cont<strong>in</strong>uity must be <strong>in</strong>sured.<br />

ωA = ωC + hnAC e (5.59)<br />

where hnCA is the distance between the normal issued from the shear center C to the midl<strong>in</strong>e and that<br />

issued from the assembl<strong>in</strong>g po<strong>in</strong>t A. Thus,<br />

(5.60)<br />

uA T = uC T - hnACe θx,x<br />

(2)<br />

(2)<br />

The transformation matrix (eq. 5.61) applied to the displacements and the forces <strong>of</strong> each connected<br />

node allows the assembly process (5.54, 5.55, 5.56 and 5.57) by unify<strong>in</strong>g the po<strong>in</strong>t <strong>of</strong> application <strong>of</strong><br />

the nodal unknowns and neglect<strong>in</strong>g second order warp<strong>in</strong>g cont<strong>in</strong>uity (neglect<strong>in</strong>g 5.60).<br />

5-16


⎧ u ⎫ ⎡1<br />

− zA<br />

yA<br />

⎤⎧<br />

u ⎫<br />

⎪<br />

v<br />

⎪ ⎢<br />

1 ( zA<br />

− zC<br />

)<br />

⎥⎪<br />

v<br />

⎪<br />

⎪ ⎪ ⎢<br />

⎥⎪<br />

⎪<br />

⎪ w ⎪ ⎢ 1 − ( yA<br />

− yC<br />

)<br />

⎥⎪<br />

w ⎪<br />

⎪ ⎪ ⎢<br />

⎥⎪<br />

⎪<br />

⎨θ<br />

x ⎬ =<br />

⎢<br />

1<br />

⎥⎨θx<br />

⎬<br />

(5.61)<br />

⎪θ<br />

⎪<br />

y ⎢<br />

1 ⎥⎪θ<br />

⎪<br />

⎪ ⎪<br />

⎪ y<br />

⎢<br />

⎥ ⎪<br />

⎪θz<br />

⎪ ⎢<br />

1 ⎥⎪θz<br />

⎪<br />

⎪<br />

u<br />

⎪ ⎢<br />

i<br />

1⎥⎪<br />

u<br />

⎪<br />

⎩ ⎭ ⎣<br />

⎦⎩<br />

i ⎭<br />

or<br />

% G,<br />

C<br />

{qn}%G=[A]{qn}%A<br />

% A<br />

(5.62)<br />

Hereafter, the force vector is considered. If external forces {fn}%G are applied on the centroid, the<br />

nodal force vector at the assembly po<strong>in</strong>t {fn}%A can be deduced from simple equilibrium equivalence<br />

equations.<br />

The three translation equilibrium equations can be expressed as follows:<br />

fx %G = fx %A<br />

fy %G = fy %A<br />

fz %G = fz %A<br />

The three rotat<strong>in</strong>g equilibrium equations can be expressed as follows:<br />

(5.63)<br />

Mx %A = Mx %G - fz %G (yA - yC) + fy %G (zA - zC)<br />

My %A = My %G - fx %G (zA)<br />

Mz %A = Mz %G + fx %G (yA) (5.64)<br />

Thus the force vector and the stiffness matrix are transformed as follows:<br />

{fn}%G =[A] T {fn}%A<br />

[k]%A=[A] T [k]%G[A] (5.65)<br />

5-17


5.2.6 Applications: a th<strong>in</strong> walled beam behavior <strong>in</strong>clud<strong>in</strong>g torsional warp<strong>in</strong>g<br />

Elastic f<strong>in</strong>ite elements ‘FEM1 and FEM2’ analyze the th<strong>in</strong>-walled beam behavior <strong>in</strong>clud<strong>in</strong>g the<br />

torsional warp<strong>in</strong>g <strong>of</strong> open, closed and multi-celled pr<strong>of</strong>iles <strong>with</strong> or <strong>with</strong>out branches and <strong>with</strong>out any<br />

restriction <strong>of</strong> symmetry. Their performance and convergence are shown for the follow<strong>in</strong>g examples<br />

submitted primarily to torsion. Arbitrary open (examples 1, 4, 5, 7 and 9) and closed (examples 2, 3<br />

and 6) cross sections are analyzed by us<strong>in</strong>g the same warp<strong>in</strong>g function and the same f<strong>in</strong>ite element<br />

model. If not mentioned otherwise, the calculations are done <strong>with</strong> a m<strong>in</strong>imal k<strong>in</strong>ematical pr<strong>of</strong>ile<br />

discretization (m<strong>in</strong>imum number <strong>of</strong> nodes that describe the geometry <strong>of</strong> the pr<strong>of</strong>ile).<br />

The numerical results are compared <strong>with</strong> analytical computations us<strong>in</strong>g various k<strong>in</strong>ematical models<br />

depend<strong>in</strong>g on the pr<strong>of</strong>ile geometry, the load<strong>in</strong>g case and the boundary conditions. The reference theory<br />

is selected to be the de Sa<strong>in</strong>t Venant theory when the warp<strong>in</strong>g is uniform along the beam length. This<br />

is the case when the warp<strong>in</strong>g vanishes (e.g. example 2) due to the radial symmetry <strong>of</strong> the pr<strong>of</strong>ile<br />

(circular, square tubular, particular rectangular tubular pr<strong>of</strong>iles..). For other particular shapes (L<br />

section, example 1…), the contour warp<strong>in</strong>g vanishes and the de Sa<strong>in</strong>t Venant theory is taken to be the<br />

reference if the second warp<strong>in</strong>g (thickness warp<strong>in</strong>g) is neglected. For other general forms <strong>of</strong> pr<strong>of</strong>iles,<br />

the uniform torsion is restricted to the case <strong>of</strong> a uniform distribution <strong>of</strong> torsional moment and free<br />

warp<strong>in</strong>g along the longitud<strong>in</strong>al axis <strong>of</strong> the beam (example 3a). In all these particular cases, the<br />

analytical and numerical results degenerate exactly <strong>in</strong>to Sa<strong>in</strong>t Venant theory. In other general cases,<br />

the f<strong>in</strong>ite element results converge for ref<strong>in</strong>ed meshes to:<br />

- the solution obta<strong>in</strong>ed <strong>with</strong> Vlassov theory for open cross sections (examples 4,5,7,8 and 9)<br />

- the solution obta<strong>in</strong>ed <strong>with</strong> Benscoter theory for closed cross sections (examples 3b, 6)<br />

The follow<strong>in</strong>g examples, summarized <strong>in</strong> table 5.1, show the difference between the theories <strong>in</strong> case <strong>of</strong><br />

absence or strong non uniformity <strong>of</strong> warp<strong>in</strong>g.<br />

Table 5.1 Description <strong>of</strong> examples<br />

Example 1: Sa<strong>in</strong>t Venant torsion <strong>of</strong> a th<strong>in</strong> rectangular cross section<br />

A th<strong>in</strong> rectangular cross section (figure 5.6b) is considered <strong>in</strong> order to show that, when the solution <strong>of</strong><br />

Sa<strong>in</strong>t Venant is exact, the f<strong>in</strong>ite element solution degenerates <strong>in</strong>to that one. The beam is simply<br />

supported at its two ends <strong>in</strong> such a way that the torsional rotation is prevented at the ends and that the<br />

sections are free to warp. A concentrated torque is applied at mid span (Figure 5.6a). G=80GPa;<br />

E=210GPa.<br />

The torsional moment distribution is not uniform along the entire length <strong>of</strong> the beam but the first order<br />

warp<strong>in</strong>g (contour warp<strong>in</strong>g ω1 <strong>in</strong> equation 2.33) is equal to zero. Accord<strong>in</strong>g to the theory <strong>of</strong> Vlassov,<br />

Iω = 0 and the solution degenerates <strong>in</strong>to that <strong>of</strong> Sa<strong>in</strong>t Venant: this is the case <strong>of</strong> pure uniform torsion.<br />

5-18


(a) (b)<br />

0.5m<br />

C = 1N.m<br />

Figure 5.6 Simply supported beam submitted to a concentrated torque<br />

The distribution <strong>of</strong> the torsional angle along the beam length is l<strong>in</strong>ear and thus, for both f<strong>in</strong>ite elements<br />

‘FEM1’ and ‘FEM2’ (neglect<strong>in</strong>g second order effects; equations 5.30) <strong>with</strong> l<strong>in</strong>ear and quadratic<br />

<strong>in</strong>terpolation <strong>of</strong> the torsional angle, the exact solution is obta<strong>in</strong>ed <strong>with</strong> m<strong>in</strong>imum discretization<br />

required for the geometry and the def<strong>in</strong>ition <strong>of</strong> the problem. The maximal torsional angle is found to<br />

be 7.5 10 -4 rad and the maximal tangential stresses are found numerically and analytically equal to<br />

0.6MPa.<br />

Example 2 : Sa<strong>in</strong>t Venant torsion <strong>of</strong> a square tubular cross section<br />

For the same purpose <strong>of</strong> the previous example, a square tubular cross section (figure 5.7c) beam is<br />

submitted to a uniformly distributed torque lead<strong>in</strong>g to a l<strong>in</strong>ear distribution <strong>of</strong> torsional moment. E =<br />

206GPa and G = 82.4GPa.<br />

Two boundary conditions are considered:<br />

-simply supported beam <strong>with</strong> free warp<strong>in</strong>g (figure 5.7a),<br />

-bi-fixed beam <strong>with</strong> constra<strong>in</strong>ed warp<strong>in</strong>g at the supports (figure 5.7b).<br />

In both cases, the f<strong>in</strong>ite element solution reaches, <strong>with</strong> m<strong>in</strong>imum discretization (two elements), the<br />

Sa<strong>in</strong>t Venant value for the mid span torsional rotation (θx=7.58 10 -7 rad). Indeed, the monocellular<br />

cross section has a particular shape (tubular section <strong>with</strong> specific dimensions so called Neuber) that<br />

does not warp (ω1 <strong>in</strong> equation 2.43 is equal to zero). Benscoter theory degenerates <strong>in</strong>to Sa<strong>in</strong>t Venant<br />

theory. In this example as <strong>in</strong> the previous one, there are no effects <strong>of</strong> restra<strong>in</strong>ed warp<strong>in</strong>g and the<br />

uniform torsional theory is the exact solution.<br />

1N.m/m<br />

L = 1m<br />

1N.m/m<br />

0.5m<br />

Figure 5.7 Square tubular beam <strong>with</strong> uniform density <strong>of</strong> torque<br />

(a)<br />

(b)<br />

t =0.002m<br />

0.005m<br />

S<strong>in</strong>ce the cross section does not warp, there are no warp<strong>in</strong>g shear stresses (τxs ω ). The shear flow <strong>of</strong><br />

Sa<strong>in</strong>t Venant stresses is uniform along the periphery <strong>of</strong> the cross-section. The same value is found for<br />

the mean shear stress by numerical and analytical results (τxs s = 0.125MPa at the left support). Besides,<br />

0.1m<br />

0.13<br />

0.1m<br />

0.002m<br />

0.12MPa<br />

5-19


additional shear stresses vary l<strong>in</strong>early through the thickness variation, vanish along the centerl<strong>in</strong>e and<br />

reach a maximum value on the outer sk<strong>in</strong> (∆τxs = 5kPa at the left support). The total variation <strong>of</strong> the<br />

shear stresses (τxs s + ∆τxs) along the thickness (0.002m) is given <strong>in</strong> Figure 5.7d.<br />

Example 3: torsion <strong>of</strong> a rectangular tubular cross section<br />

In this example, the <strong>in</strong>fluence <strong>of</strong> warp<strong>in</strong>g constra<strong>in</strong>t is discussed for a beam <strong>with</strong> a closed cross section<br />

(figure 5.8c) subjected to a uniform distribution <strong>of</strong> torsional moment. G=82,4GPa; E=206GPa.<br />

Two boundary conditions are considered:<br />

-simply supported beam: fixed rotation at left support; but <strong>with</strong> free warp<strong>in</strong>g at both supports (figure<br />

5.8a),<br />

-free fixed beam: fixed rotation and warp<strong>in</strong>g prevented at the left end (figure 5.8b).<br />

L = 1m<br />

C = 1kN.m<br />

(a)<br />

C = 1kN.m<br />

Figure 5.8 Torsion <strong>of</strong> a tubular cross section<br />

t =0.002m<br />

When all cross sections are free to warp, the numerical results match those <strong>of</strong> Sa<strong>in</strong>t Venant (θx=1,82<br />

10 -2 rad) which are exact <strong>in</strong> this theoretical case. If one section is prevented from warp<strong>in</strong>g, the warp<strong>in</strong>g<br />

is no longer uniform and the solution <strong>of</strong> Sa<strong>in</strong>t Venant is no longer exact. The numerical solutions<br />

approach that <strong>of</strong> Benscoter (θx=1,813 10 -2 rad) (figure 5.9).<br />

Figure 5.9 Relative difference between values <strong>of</strong> maximal torsional angle <strong>of</strong> the beam <strong>in</strong> 5.8b obta<strong>in</strong>ed<br />

by the theory <strong>of</strong> Benscoter and the f<strong>in</strong>ite elements FEM1 and FEM2<br />

In paragraph 2.2, the difference between the torsional behavior <strong>of</strong> closed and that <strong>of</strong> open cross<br />

sections has been discussed. The non uniform warp<strong>in</strong>g effects have been shown to be much more<br />

important for open cross sections than for closed ones. The approximation that results from solv<strong>in</strong>g a<br />

0,05m<br />

(b) 0.1m<br />

(c)<br />

5-20


torsional problem <strong>with</strong> the de Sa<strong>in</strong>t Venant theory is <strong>in</strong> general more acceptable for closed (0.25% <strong>in</strong><br />

this example) than for open cross sections.<br />

The torsional problem <strong>of</strong> this example is found to be mostly governed by the de St Venant torsion (for<br />

which Mx st is proportional to the first derivative <strong>of</strong> the torsional angle θx) rather than by the non<br />

uniform torsional term (for which Mx ω is proportional to the third derivative <strong>of</strong> the torsional angle θx).<br />

The distribution <strong>of</strong> the torsional angle along the beam longitud<strong>in</strong>al axis is quasi l<strong>in</strong>ear and the f<strong>in</strong>ite<br />

element discretization <strong>of</strong> FEM1 (l<strong>in</strong>ear <strong>in</strong>terpolation functions) is sufficient (figure 5.9: FEM1 and<br />

FEM2 results nearly co<strong>in</strong>cide).<br />

Example 4: non uniform torsion <strong>of</strong> an open cross section<br />

A non uniform warp<strong>in</strong>g is considered <strong>in</strong> this example along a beam <strong>with</strong> an open cross section <strong>in</strong> order<br />

to show the convergence <strong>of</strong> the f<strong>in</strong>ite element solution towards that <strong>of</strong> Vlassov. The theory <strong>of</strong> Sa<strong>in</strong>t<br />

Venant is not exact <strong>in</strong> this case. A simply supported I beam (figure 5.10a), is sollicited by a uniform<br />

density <strong>of</strong> torque C = 100Nm/m which leads to a l<strong>in</strong>ear distribution <strong>of</strong> torsional moment along the<br />

length <strong>of</strong> the beam. The torsional angle is prevented at the ends and the sections are free to warp.<br />

G=82.4GPa; E=206GPa.<br />

C = 100Nm/m<br />

L = 1m<br />

C = 100Nm/m<br />

Figure 5.10 Simply supported beam submitted to a uniform density <strong>of</strong> torque<br />

(a)<br />

(b)<br />

0.002m<br />

Figure 5.11 Relative difference between the values <strong>of</strong> mid span torsional rotation obta<strong>in</strong>ed by the<br />

theory <strong>of</strong> Vlassov and the f<strong>in</strong>ite elements FEM1 and FEM2<br />

This is the case <strong>of</strong> mixed torsion (uniform + non uniform torsion) whose results must converge to<br />

those obta<strong>in</strong>ed <strong>with</strong> Vlassov theory. Figure 5.11 shows how the numerical solution converges to that<br />

<strong>of</strong> Vlassov when vary<strong>in</strong>g the number <strong>of</strong> f<strong>in</strong>ite elements. As expected, the result obta<strong>in</strong>ed by the theory<br />

0.04m<br />

0.08m<br />

(c)<br />

5-21


<strong>of</strong> Sa<strong>in</strong>t-Venant (θx=3,56 10 -1 rad) is different from the solutions <strong>of</strong> Vlassov theory (θx=1,227 10 -1 rad)<br />

and <strong>of</strong> f<strong>in</strong>ite element FEM2. In this example, the non uniform torsion governs a large part <strong>of</strong> the<br />

torsional problem and the distribution <strong>of</strong> the torsional angle along the beam longitud<strong>in</strong>al axis is<br />

exponential and not l<strong>in</strong>ear. The f<strong>in</strong>ite element ‘FEM2’ (quadratic <strong>in</strong>terpolation functions) is shown<br />

(figure 5.11) to behave far better than ‘FEM1’ (l<strong>in</strong>ear <strong>in</strong>terpolation function). S<strong>in</strong>ce ‘FEM1’ is not<br />

suitable for important non uniform torsional effects, ‘FEM2’ is used hereafter when analyz<strong>in</strong>g the<br />

torsional behavior.<br />

Now, the same beam is considered <strong>with</strong> warp<strong>in</strong>g restra<strong>in</strong>ed at the supports (5.10b) <strong>in</strong> order to show the<br />

<strong>in</strong>fluence <strong>of</strong> constra<strong>in</strong>ed warp<strong>in</strong>g. The results obta<strong>in</strong>ed <strong>with</strong> the f<strong>in</strong>ite element model ‘FEM2’ converge<br />

to the solution <strong>of</strong> Vlassov (figure 5.12). The difference between the f<strong>in</strong>ite element FEM2 and Vlassov<br />

is 3% for 10 beam elements. The variation <strong>with</strong> the solution <strong>of</strong> Sa<strong>in</strong>t Venant is even larger than <strong>in</strong> the<br />

previous case. This is quite logical s<strong>in</strong>ce the theory <strong>of</strong> Sa<strong>in</strong>t Venant does not take <strong>in</strong>to account the<br />

effects <strong>of</strong> non uniform warp<strong>in</strong>g, and these effects are stronger when the ends <strong>of</strong> the beam itself are<br />

prevented from warp<strong>in</strong>g. The value <strong>of</strong> maximal torsional angle <strong>with</strong> Sa<strong>in</strong>t Venant theory is the same as<br />

<strong>in</strong> the previous case (3.56 10 -1 rad) and is almost ten times larger than Vlassov one (3.29 10 -2 rad). The<br />

effects <strong>of</strong> non uniform warp<strong>in</strong>g on open cross sections (981% <strong>in</strong> this example) are really large<br />

compared <strong>with</strong> those <strong>of</strong> closed cross sections (0.25% <strong>in</strong> example 3).<br />

100.00%<br />

10.00%<br />

1.00%<br />

0.10%<br />

1 10<br />

Number <strong>of</strong> f<strong>in</strong>ite elements<br />

100<br />

Figure 5.12 Relative difference between values <strong>of</strong> mid span rotat<strong>in</strong>g angle obta<strong>in</strong>ed by the theory <strong>of</strong><br />

Vlassov and the f<strong>in</strong>ite element FEM2<br />

Example 5: a channel cross section beam submitted to uniform transversal load<br />

A beam <strong>with</strong> a channel cross section is submitted to a uniform transversal load (Fig. 5.13a). The<br />

torsional angle is prevented at the ends and the sections are free to warp. E = 210GPa, G = 80GPa.<br />

Flexural analyses<br />

Firstly, the uniform transversal load <strong>in</strong>duces a bend<strong>in</strong>g <strong>in</strong> the plane <strong>of</strong> the load. The numerical<br />

solutions <strong>of</strong> both f<strong>in</strong>ite elements ‘FEM1 and FEM2’ developed <strong>in</strong> §5.2.1 and §5.2.2 respectively give<br />

the exact value <strong>of</strong> bend<strong>in</strong>g rotation at the supports (θz = 2.115 10 -3 rad) regardless <strong>of</strong> the number <strong>of</strong><br />

elements. The maximum deflection occurs at the middle <strong>of</strong> the beam. The analytical value <strong>of</strong> this<br />

deflection are obta<strong>in</strong>ed by us<strong>in</strong>g Bernoulli (<strong>with</strong>out tak<strong>in</strong>g <strong>in</strong>to account the shear effects) and modified<br />

Timoshenko (by tak<strong>in</strong>g <strong>in</strong>to account a constant shear stra<strong>in</strong> over the cross section) theories. The<br />

difference (5.175%) between these two theories measures the error <strong>in</strong>duced by neglect<strong>in</strong>g shear<br />

deformation effects on beam deflections. The f<strong>in</strong>ite element ‘FEM1’ that neglects shear bend<strong>in</strong>g<br />

effects gives <strong>with</strong> m<strong>in</strong>imum discretization (two elements) the Bernoulli analytical value <strong>of</strong> maximal<br />

5-22


deflection (v = 2.64 10 -3 m). FEM2, based on Timoshenko theory <strong>with</strong> a selective numerical reduced<br />

<strong>in</strong>tegration <strong>with</strong> two Gauss po<strong>in</strong>ts gives exactly [Jirousek 1983] Timoshenko value (v = 2.78 10 -3 m).<br />

FEM1 and FEM2 give exact results for bend<strong>in</strong>g displacements regardless the number <strong>of</strong> f<strong>in</strong>ite<br />

elements.<br />

(a)<br />

15kN/m<br />

L = 4m<br />

Figure 5.13 Channel beam submitted to non-uniform torsion<br />

0.015m<br />

Prescrib<strong>in</strong>g the location <strong>of</strong> the shear center for the torsional analyses<br />

Secondly, s<strong>in</strong>ce the load is not applied at the shear center C (Fig. 5.13b), the beam is also submitted to<br />

torsion. For Vlassov theory, taken as the reference solution for this open pr<strong>of</strong>ile, the distance between<br />

the centroid and the shear center is equal to 0.0625m. This value, computed from equations (3.21), is<br />

found to depend exclusively on the pr<strong>of</strong>ile geometry. This is a consequence <strong>of</strong> Vlassov approximation<br />

(HYPV2, §2.2.3.1) stat<strong>in</strong>g that warp<strong>in</strong>g shear stra<strong>in</strong>s are assumed to vanish <strong>in</strong> the middle surface <strong>of</strong> a<br />

th<strong>in</strong> walled beam. With the f<strong>in</strong>ite element ‘FEM2’, this distance is found to be exactly the same <strong>in</strong> the<br />

case <strong>of</strong> uniform torsion (uniform torsional moment and free warp<strong>in</strong>g); this particular case satisfies the<br />

absence <strong>of</strong> warp<strong>in</strong>g shear stresses (as assumed by Vlassov).<br />

If this location is prescribed <strong>with</strong><strong>in</strong> the present f<strong>in</strong>ite element analyses, the difference for the maximal<br />

torsional angle between FEM2 results (<strong>with</strong> 20 elements) and Vlassov analytical solution (θx = 7.7165<br />

10 -2 rad ) is 0.023%. It is <strong>in</strong>terest<strong>in</strong>g to note that comput<strong>in</strong>g analytically the maximal angle <strong>of</strong> torsion<br />

<strong>with</strong> Sa<strong>in</strong>t Venant theory and neglect<strong>in</strong>g the non uniform torsion lead to a difference <strong>of</strong> 45.8%! The<br />

theory <strong>of</strong> Sa<strong>in</strong>t Venant is <strong>in</strong>deed not applicable here because the torsional moment is not constant and<br />

the warp<strong>in</strong>g is not uniform.<br />

The distributions <strong>of</strong> normal stresses σx and contour warp<strong>in</strong>g shear stresses τxs ω caused by the non<br />

uniform distribution <strong>of</strong> torsional moments are shown <strong>in</strong> figures 5.14b and 5.14c. S<strong>in</strong>ce Vlassov theory<br />

assumes zero warp<strong>in</strong>g shear stresses at the mid wall, the analytical calculation <strong>of</strong> warp<strong>in</strong>g shear<br />

stresses τxs ω are computed from the equilibrium equations (equation 2.40’) and yield a parabolic<br />

shaped distribution (Figure 5.14c). The numerical study (between parentheses) gives values <strong>of</strong> shear<br />

stresses for each small segment <strong>of</strong> the th<strong>in</strong> wall; the number <strong>of</strong> these transversal segments result from<br />

discretiz<strong>in</strong>g the contour by a f<strong>in</strong>ite number <strong>of</strong> nodes and segments (for results <strong>in</strong> figure 5.14c, 14<br />

transversal segments are used). The variation <strong>of</strong> shear stresses along the thickness is l<strong>in</strong>ear and is<br />

given by Sa<strong>in</strong>t Venant shear stresses τxs s . They are uniform along the contour (coord<strong>in</strong>ate s), for a wall<br />

0.3m<br />

C<br />

0.01m<br />

G<br />

15kN/m<br />

0.04m<br />

0.1m<br />

(b)<br />

0.015m<br />

5-23


<strong>with</strong> constant thickness and vanish at the centerl<strong>in</strong>e. The variation <strong>of</strong> τxs s through the thickness is given<br />

<strong>in</strong> Figure 5.14a.<br />

50.8<br />

(50.79)<br />

0.01m<br />

0.015m<br />

76.2<br />

(76.51)<br />

τs for x=0m [MPa]<br />

(b) (c)<br />

Figure 5.14 Normal and shear stresses due to non-uniform torsion for a channel beam<br />

It is important to note that ref<strong>in</strong><strong>in</strong>g the k<strong>in</strong>ematical discretization (<strong>in</strong>creas<strong>in</strong>g the number <strong>of</strong> the<br />

transversal nodes that describe the geometry <strong>of</strong> the pr<strong>of</strong>ile) has a very small <strong>in</strong>cidence on the torsional<br />

angle and normal stresses distributions. In this example, the difference between Vlassov solution for<br />

the maximal torsional angle and FEM2_18 (FEM2 computations <strong>with</strong> eighteen transversal segments)<br />

is 0.003% while the difference computed <strong>with</strong> m<strong>in</strong>imum k<strong>in</strong>ematical discretisation (FEM2_3; three<br />

transversal segments for the entire pr<strong>of</strong>ile) is 0.023%.<br />

Condens<strong>in</strong>g the location <strong>of</strong> the shear center for the torsional analyses<br />

If the coord<strong>in</strong>ates <strong>of</strong> the torsional center are not prescribed but condensed accord<strong>in</strong>g to equations<br />

(4.14) & (4.15), the values <strong>of</strong> the torsional angle and the distribution <strong>of</strong> the normal stresses do not<br />

change significantly. The difference between the two f<strong>in</strong>ite elements (prescrib<strong>in</strong>g and condens<strong>in</strong>g the<br />

coord<strong>in</strong>ates <strong>of</strong> the torsional center) is found to be 0.032% for the maximal rotat<strong>in</strong>g angle and 0.532%<br />

for the normal stresses at mid span. The location <strong>of</strong> the torsional center may be then computed as a<br />

function <strong>of</strong> the f<strong>in</strong>ite element solution (equations 4.14 and 4.15). The difference between Vlassov and<br />

FEM2 computations for the distance between the torsional center and centroid (e.g. curve FEM2_3 <strong>in</strong><br />

figure 5.15a) is maximal at the ends <strong>of</strong> the beam s<strong>in</strong>ce the ratio between the non uniform effects and<br />

the uniform torsional effects is largest for x = 0m. Indeed, the torsional moment may be considered as<br />

be<strong>in</strong>g the sum <strong>of</strong> two parts (equation 2.20): the uniform torsional part Mx st and the non uniform<br />

torsional part Mx ω . For this example, the ratio Mx ω / Mx st (0.77 at the beam ends and 0.35 for x = 1m)<br />

decreases when mov<strong>in</strong>g from one end to the midspan <strong>of</strong> the beam.<br />

(a)<br />

5-24


0.25%<br />

0.20%<br />

0.15%<br />

0.10%<br />

0.05%<br />

0.00%<br />

3.00E+06<br />

2.00E+06<br />

1.00E+06<br />

0.00E+00<br />

-1.00E+06<br />

-2.00E+06<br />

-3.00E+06<br />

-4.00E+06<br />

3.00E+06<br />

2.00E+06<br />

1.00E+06<br />

0.00E+00<br />

-1.00E+06<br />

-2.00E+06<br />

-3.00E+06<br />

-4.00E+06<br />

(a)<br />

FEM2_3<br />

FEM2_9<br />

FEM2_18<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

x [m]<br />

0 0.1 0.2 s[m] 0.3 0.4 0.5<br />

(b)<br />

Vlassov<br />

FEM2_3<br />

FEM2_9<br />

FEM2_18<br />

0 0.1 0.2 s[m] 0.3 0.4 0.5<br />

(c)<br />

Vlassov<br />

FEM2_3<br />

FEM2_9<br />

FEM2_18<br />

Figure 5.15 (a) Difference between Vlassov and FEM2 calculations for the distance between the<br />

centroid and the shear center, (b) warp<strong>in</strong>g shear stresses (x = 0m) at the mid wall when prescrib<strong>in</strong>g<br />

shear center coord<strong>in</strong>ates, (c) warp<strong>in</strong>g shear stresses (x = 0m) at the mid wall when condens<strong>in</strong>g the<br />

shear center coord<strong>in</strong>ates<br />

In figures 5.15b and 5.15c, the distributions <strong>of</strong> warp<strong>in</strong>g shear stresses at the left support <strong>of</strong> the beam<br />

are plotted aga<strong>in</strong>st the contour coord<strong>in</strong>ate (s) <strong>in</strong> both above cases: prescrib<strong>in</strong>g the location <strong>of</strong> the shear<br />

center as be<strong>in</strong>g that <strong>of</strong> Vlassov (or that <strong>of</strong> uniform torsion) and condens<strong>in</strong>g the location <strong>of</strong> the shear<br />

5-25


center. These distributions are computed by us<strong>in</strong>g Hooke’s law and the present k<strong>in</strong>ematics. In the first<br />

case (figure 5.15b), shear warp<strong>in</strong>g stresses (3 transversal nodes and 4 nodes describe the geometry <strong>of</strong><br />

the monosymmetrical pr<strong>of</strong>ile for FEM2_3; 9 transversal nodes for FEM2_9 and 18 transversal nodes<br />

for FEM2_18) do not match exactly the analytical solution. The prescribed location <strong>of</strong> the shear center<br />

is not exact and gives, for these warp<strong>in</strong>g shear stresses, a vertical bend<strong>in</strong>g shear force. Figure 5.15c<br />

presents accurate computations <strong>of</strong> torsional warp<strong>in</strong>g shear stresses computed <strong>with</strong> the adequate<br />

location <strong>of</strong> shear center. This difference between the two cases is more marked <strong>in</strong> the case <strong>of</strong> an open<br />

asymmetrical pr<strong>of</strong>ile where both coord<strong>in</strong>ates <strong>of</strong> the shear center differ from those <strong>of</strong> the centroid.<br />

Hereafter, the location <strong>of</strong> the shear center is taken as be<strong>in</strong>g that <strong>of</strong> uniform torsion <strong>in</strong> order to compare<br />

the torsional rotation and longitud<strong>in</strong>al stresses to those computed <strong>with</strong> Vlassov theory. However,<br />

warp<strong>in</strong>g shear stresses will be computed by us<strong>in</strong>g the condensation technique.<br />

Example 6: non uniform torsion for a beam <strong>with</strong> a closed cross section<br />

A beam <strong>with</strong> a non-symmetric closed cross section (figure 5.16b) is submitted to a uniform<br />

distribution <strong>of</strong> torque (figure 5.16a). E = 206GPa, G = 82.4GPa, t0 = 0.01m. The torsional angle is<br />

prevented at the ends and the sections are free to warp. As <strong>in</strong> the previous example, the beam is<br />

submitted to non uniform torsion.<br />

1.6m<br />

(a)<br />

m = 500kN.m/m<br />

L = 10m<br />

(c)<br />

10.00%<br />

1.00%<br />

0.10%<br />

0.01%<br />

Difference Difference between between Benscoter's Benscoter solution solution and and numerical FEM2<br />

values for values midspan for midspan rotation rotation angle<br />

angle<br />

1 10 100<br />

Number <strong>of</strong> elements<br />

Figure 5.16 Maximum torsional rotation angle <strong>in</strong> case <strong>of</strong> non uniform torsion for a closed cross section<br />

The difference for the maximum torsional rotation angle between the f<strong>in</strong>ite element analysis ‘FEM2’<br />

and the analytical solution based on Benscoter theory (θx = 0.153 10 -2 rad) is shown <strong>in</strong> Figure 5.16c for<br />

various descritizations. The error obta<strong>in</strong>ed by us<strong>in</strong>g Sa<strong>in</strong>t Venant theory for the torsional angle is<br />

t o<br />

(b)<br />

4t o<br />

4t o<br />

0.8m<br />

t o<br />

2m<br />

5-26


2.6%. As expected (discussed <strong>in</strong> paragraph 2.2), the effects <strong>of</strong> non uniform torsion are more important<br />

for an open (47.79%, example 5) than for a closed cross section.<br />

Figure 5.17 shows normal and shear stresses caused by non uniform torsion. <strong>Shear</strong> stresses flow<br />

through the periphery <strong>of</strong> the cross section. The analytical study gives a parabolic shaped distribution <strong>of</strong><br />

these contour shear stresses by consider<strong>in</strong>g an equilibrium equation (equation 2.55) <strong>in</strong> Benscoter<br />

theory. The numerical study gives constant values for shear stresses at transversal segments, obta<strong>in</strong>ed<br />

directly from the k<strong>in</strong>ematics by us<strong>in</strong>g Hooke’s law by discretiz<strong>in</strong>g the contour by a f<strong>in</strong>ite number <strong>of</strong><br />

nodes and segments (for results <strong>in</strong> figure 5.17c, 13 transversal segment are used). All the previous<br />

computations are ensured by prescrib<strong>in</strong>g the location <strong>of</strong> the shear center as be<strong>in</strong>g that <strong>of</strong> uniform<br />

torsion (as <strong>in</strong> Benscoter theory).<br />

Figure 5.17 Normal and shear stresses <strong>in</strong> case <strong>of</strong> non uniform torsion for a closed cross section beam<br />

Example 7: non uniform torsion <strong>of</strong> cont<strong>in</strong>uous beam <strong>with</strong> three spans<br />

A cont<strong>in</strong>uous beam <strong>with</strong> three spans is analyzed <strong>in</strong> order to compare the proposed f<strong>in</strong>ite element<br />

solution <strong>with</strong> another f<strong>in</strong>ite element solution based on the theory <strong>of</strong> Vlassov [Batoz, 1990, page 211].<br />

θx(x=0)=0<br />

1Nm/m<br />

2 m 4 m<br />

2 m<br />

θx(x=2)=0 θx (x=6)=0 θx (x=8)=0<br />

0,008m<br />

Figure 5.18: Cont<strong>in</strong>uous beam <strong>with</strong> three spans submitted to a uniform density <strong>of</strong> torque at central<br />

span<br />

The beam geometry and load<strong>in</strong>g are shown <strong>in</strong> figure 5.18. The beam is simply supported at its four<br />

supports (where the torsional angle is prevented, and the end sections are free to warp). The central<br />

span is submitted to a uniform density <strong>of</strong> torque. The beam has an open I cross section. G=77GPa;<br />

E=200GPa.<br />

0,008<br />

0,005<br />

0,1m<br />

0,2m<br />

5-27


Figure 5.19 gives the distribution <strong>of</strong> rotat<strong>in</strong>g angle and bimoment along the left half <strong>of</strong> the beam. For<br />

the f<strong>in</strong>ite element solution <strong>with</strong> Prokić k<strong>in</strong>ematic formulation, the bimoment is calculated from the<br />

forces fi associated <strong>with</strong> the warp<strong>in</strong>g degrees <strong>of</strong> freedom which are the warp<strong>in</strong>g longitud<strong>in</strong>al<br />

displacements <strong>of</strong> the transversal nodes. Results obta<strong>in</strong>ed <strong>with</strong> FEM2 based on Prokić k<strong>in</strong>ematic<br />

formulation and <strong>with</strong> the f<strong>in</strong>ite element based on Vlassov theory match precisely. It is aga<strong>in</strong> shown<br />

that the maximal rotat<strong>in</strong>g angle (θx=2,6 10 -4 rad pour x=4m) would be very poorly estimated by de<br />

Sa<strong>in</strong>t Venant theory where θx = 6,12 10 -4 rad (the difference is 136%).<br />

Bimoment [Nm2]<br />

Rotation [10-4rad]<br />

0.6<br />

0.2<br />

-0.2<br />

-0.6<br />

3<br />

1<br />

-1<br />

0 1 2 3 4<br />

x[m]<br />

FEM2 Vlassov<br />

0 1 2 3 4<br />

x[m]<br />

FEM2 Vlassov<br />

Figure 5.19: Distributions <strong>of</strong> rotat<strong>in</strong>g angle and bimoment along the beam <strong>in</strong> figure 5.18<br />

Example 8: warp<strong>in</strong>g <strong>of</strong> an I beam due to a s<strong>in</strong>gle axial load P<br />

This example illustrates a particular case <strong>in</strong> which th<strong>in</strong> walled structures exhibit a torsional behavior <strong>in</strong><br />

the absence <strong>of</strong> applied torsional torques. A load P = 100kN parallel to the longitud<strong>in</strong>al axis acts at one<br />

corner at the right end <strong>of</strong> the beam (L = 10m) <strong>in</strong> figure 5.20. At both ends, the torsional angle is<br />

prevented and the end sections are free to warp.<br />

5-28


It is well known that three cases <strong>of</strong> load<strong>in</strong>g (figure 5.21a,b,c) are <strong>in</strong>duced <strong>in</strong> this case <strong>in</strong>volv<strong>in</strong>g an<br />

axial force and two bend<strong>in</strong>g moments about the y and the z axes. These <strong>in</strong>ternal loads are easily<br />

deduced from the applied load by us<strong>in</strong>g simple equilibrium equations (longitud<strong>in</strong>al force equilibrium<br />

and moment equilibrium around the transversal axes). The moment equilibrium around the<br />

longitud<strong>in</strong>al axis gives zero torsional moment. This set <strong>of</strong> loads is <strong>in</strong> a general Strength <strong>of</strong> Materials<br />

type <strong>of</strong> analysis sufficient to describe the behavior <strong>of</strong> the part <strong>of</strong> the beam some distance away from<br />

the surface load<strong>in</strong>g. However, <strong>in</strong> this load<strong>in</strong>g case, th<strong>in</strong> walled structures have a complex behavior and<br />

additional stresses, result<strong>in</strong>g from other effects, do not attenuate as quickly along the length <strong>of</strong> the<br />

beam as <strong>in</strong> beams <strong>with</strong> solid cross sections. When the cross section is an assembly <strong>of</strong> different th<strong>in</strong><br />

rectangles, the cross section does not rema<strong>in</strong> plane but warps [Murray 1986, page 6].<br />

0.0196m<br />

0.0119m<br />

0.0196m<br />

0.229m<br />

0.612m<br />

Figure 5.20 An I beam submitted to an eccentric s<strong>in</strong>gle axial load<br />

L<br />

(a) (b)<br />

(c) (d)<br />

Figure 5.21 Longitud<strong>in</strong>al stresses correspond<strong>in</strong>g to four sets <strong>of</strong> load<strong>in</strong>g result<strong>in</strong>g from a s<strong>in</strong>gle load<br />

applied <strong>in</strong> 5.20; a: compression, b &c: bend<strong>in</strong>g, d: torsional warp<strong>in</strong>g<br />

A fourth set <strong>of</strong> stress distributions is hereby considered (figure 5.21d). The correspond<strong>in</strong>g load is the<br />

torsional bimoment that is associated <strong>with</strong> the cross section warp<strong>in</strong>g. A twist<strong>in</strong>g occurs along the<br />

longitud<strong>in</strong>al axis even <strong>in</strong> absence <strong>of</strong> applied torsional torques and a torsional moment appears when<br />

the bimoment varies along the length <strong>of</strong> the beam (equation 2.38 for Vlassov theory and equation 4.18<br />

for the present analyses). The analogy between the flexure and the torsion presented <strong>in</strong> paragraph 2.2.3<br />

can be used to clearly illustrate this phenomenon. If a simply supported beam is submitted to a flexural<br />

couple at one end, the bend<strong>in</strong>g moment distribution is l<strong>in</strong>ear and the shear force distribution is uniform<br />

P<br />

P<br />

5-29


over the length <strong>in</strong>duc<strong>in</strong>g transversal stresses. Even if there are no applied forces, the couple <strong>in</strong>duces a<br />

reaction force at each end <strong>of</strong> the simply supported beam <strong>in</strong> order to ensure equilibrium.<br />

For the load<strong>in</strong>g given <strong>in</strong> figure 5.20, analytical computations are developed by us<strong>in</strong>g Vlassov warp<strong>in</strong>g<br />

function <strong>in</strong> order to qualify the present f<strong>in</strong>ite element results. The different analytical and numerical<br />

values <strong>of</strong> rotat<strong>in</strong>g angle at mid length and <strong>of</strong> warp<strong>in</strong>g at the left support <strong>of</strong> the beam are compared <strong>in</strong><br />

table 5.2. The value <strong>of</strong> the constant torsional moment along the beam has been found to be exact for<br />

all the calculations (Mx = 1401.48Nm). The distribution <strong>of</strong> the torsional rotation along the beam is<br />

given <strong>in</strong> figure 5.22.<br />

teta [rad]<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0 2 4 6 8 10<br />

x [m]<br />

Figure 5.22 Diagram <strong>of</strong> torsional rotation [rad] along the longitud<strong>in</strong>al beam <strong>in</strong> figure 5.20<br />

Table 5.2 Rotat<strong>in</strong>g angle [rad] and warp<strong>in</strong>g [m] along the longitud<strong>in</strong>al beam <strong>in</strong> Figure 5.20<br />

Analytical FEM, 1elt FEM, 2elts FEM, 10elts FEM, 20elts<br />

twist at mid length 4.3282E-02 5.0588E-02 5.0588E-02 4.3487E-02 4.3333E-02<br />

warp<strong>in</strong>g at left end 3.5198E-04 7.0951E-04 3.9734E-04 3.5398E-04 3.5248E-04<br />

Axial stresses are maximal at the right end <strong>of</strong> the beam where the load is applied (on the right lower<br />

part <strong>of</strong> the cross section: -181.94MPa). They are <strong>in</strong>duced by an axial load (N), bend<strong>in</strong>g moments (My<br />

and Mz) and a torsional bimoment (B) as follows: from N : 3.38%; from My : 18.33%; from Mz :<br />

4.82% and from B : 73.47%. Warp<strong>in</strong>g normal stresses are shown to be larger than bend<strong>in</strong>g stresses and<br />

cannot be ignored.<br />

Example 9: <strong>in</strong>fluence <strong>of</strong> warp<strong>in</strong>g boundary conditions<br />

This example analyses the effect <strong>of</strong> warp<strong>in</strong>g restra<strong>in</strong>t on the torsional behavior <strong>of</strong> a simple beam<br />

submitted to a torque (Figure 5.23). The supports are taken to be either free to warp or partially or<br />

completely prevented from warp<strong>in</strong>g. The beam is divided <strong>in</strong>to sixteen identical f<strong>in</strong>ite elements. E =<br />

200GPa and G = 80GPa. Seven types <strong>of</strong> warp<strong>in</strong>g conditions are considered:<br />

- fully restra<strong>in</strong>ed warp<strong>in</strong>g at both ends; (Case I, figure 5.23b).<br />

- partially restra<strong>in</strong>ed cross sections at both ends (�� is restra<strong>in</strong>ed); (Case II),<br />

- partially restra<strong>in</strong>ed cross sections at both ends (�� is restra<strong>in</strong>ed); (Case III),<br />

- free warp<strong>in</strong>g at left end and totally restra<strong>in</strong>ed warp<strong>in</strong>g at right end; (Case IV),<br />

- partially restra<strong>in</strong>ed cross sections at both ends (�� is restra<strong>in</strong>ed); (Case V),<br />

- free at left end and partially restra<strong>in</strong>ed (�� is restra<strong>in</strong>ed) at right end; (Case VI),<br />

5-30


- free warp<strong>in</strong>g for both ends; (Case VII).<br />

100 N.m<br />

1.25m 2.75m<br />

(a)<br />

Figure 5.23 A Beam submitted to torsion<br />

� �<br />

0.04m<br />

�<br />

� �<br />

Table 5.3 Rotat<strong>in</strong>g angle [rad] at 1.75m from left end for different types <strong>of</strong> warp<strong>in</strong>g conditions<br />

Figure 5.24 gives the distribution <strong>of</strong> rotation angle along the beam and table 5.3 gives the value <strong>of</strong> the<br />

rotation angle at 1.75m from left end. For the first and last cases, the rotat<strong>in</strong>g angle and the bimoment<br />

distributions obta<strong>in</strong>ed from the present warp<strong>in</strong>g function are <strong>in</strong> excellent agreement <strong>with</strong> analytical<br />

values obta<strong>in</strong>ed <strong>with</strong> Vlassov warp<strong>in</strong>g function. It is expected to f<strong>in</strong>d that the torsional angle is<br />

maximal <strong>in</strong> case <strong>of</strong> free warp<strong>in</strong>g and m<strong>in</strong>imal <strong>in</strong> case <strong>of</strong> totally restra<strong>in</strong>ed warp<strong>in</strong>g. The solutions for<br />

partially restra<strong>in</strong>ed warp<strong>in</strong>g are between these two extremes. The decreas<strong>in</strong>g value <strong>of</strong> torsional angle<br />

depends on the amount <strong>of</strong> restra<strong>in</strong>ed warp<strong>in</strong>g. By tak<strong>in</strong>g the free warp<strong>in</strong>g case as a reference, the<br />

torsional angle decreases <strong>of</strong> 5.27%, 74.75% and 74.87% if respectively ��, �� and �� are<br />

restra<strong>in</strong>ed. This is related to the fact that the warp<strong>in</strong>g is more important on segment �� than on ��.<br />

It could be concluded that <strong>in</strong> such structures, warp<strong>in</strong>g resistance is important. The torsional stiffness is<br />

significantly <strong>in</strong>creased when cross sections are fully or partially restra<strong>in</strong>ed aga<strong>in</strong>st warp<strong>in</strong>g.<br />

0.45m<br />

(b)<br />

0.09m<br />

t=0.0038m<br />

�<br />

5-31


0.015<br />

0.010<br />

0.005<br />

0.000<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Figure 5.24 distribution <strong>of</strong> rotat<strong>in</strong>g angle [rad] along the beam for different types <strong>of</strong> warp<strong>in</strong>g<br />

conditions at supports<br />

5.2.7 Applications <strong>in</strong>volv<strong>in</strong>g connections<br />

Two examples are presented <strong>in</strong> order to analyze the l<strong>in</strong>ear behavior <strong>of</strong> structures comb<strong>in</strong><strong>in</strong>g beams<br />

<strong>with</strong> different th<strong>in</strong>-walled cross-sections and to <strong>in</strong>vestigate the <strong>in</strong>fluence <strong>of</strong> the torsional warp<strong>in</strong>g<br />

transmission on the overall behavior. The numerical results are compared <strong>with</strong> other results obta<strong>in</strong>ed<br />

by us<strong>in</strong>g shell f<strong>in</strong>ite element analyses.<br />

Example 1 Transmission <strong>of</strong> torsional warp<strong>in</strong>g through a connection <strong>in</strong> a frame<br />

This example illustrates the <strong>in</strong>fluence <strong>of</strong> the jo<strong>in</strong>t description on the behavior <strong>of</strong> a frame.<br />

t w=0.0119m<br />

tf=0.0196m<br />

0.3m<br />

tf=0.0196m<br />

� � �<br />

� � �<br />

y 1<br />

z1<br />

0.3m<br />

0.15m<br />

t=0.0119m<br />

0.3m<br />

(1) (2)<br />

Figure 5.25 Portal frame geometry <strong>with</strong> H (1) and U (2) cross sections<br />

y 2<br />

z2<br />

� � �<br />

L<br />

C<br />

(1)<br />

y 1<br />

(2)<br />

L<br />

I<br />

II<br />

III<br />

IV<br />

V<br />

VI<br />

VII<br />

y2<br />

5-32


The frame consists <strong>of</strong> a vertical column (1) <strong>with</strong> a H-section connected to a horizontal beam (2) <strong>with</strong> a<br />

U-section (Figure 5.25). A torque C acts along the longitud<strong>in</strong>al axis <strong>of</strong> the beam (2). The two supports<br />

are clamped but keep the warp<strong>in</strong>g free: 6 degrees <strong>of</strong> freedom (u, v, w, θx, θy, θz) are set equal to zero.<br />

The torsional rotation is calculated at the connection by assum<strong>in</strong>g different warp<strong>in</strong>g transmission<br />

modes at the corner <strong>of</strong> the frame. E = 200GPa, G = 80GPa, L = 10m.<br />

If the connection at the corner allows the complete transmission <strong>of</strong> forces and moments, the value <strong>of</strong><br />

the maximal rotat<strong>in</strong>g angle obta<strong>in</strong>ed by a beam f<strong>in</strong>ite element us<strong>in</strong>g Vlassov warp<strong>in</strong>g function (Batoz,<br />

1990, page 211) is 0.028024 rad for C = 100kNm. The difference between this result and the results <strong>of</strong><br />

the beam element ‘FEM2’ by assum<strong>in</strong>g that warp<strong>in</strong>g is cont<strong>in</strong>uous as shown <strong>in</strong> Figure 5.26.<br />

1.0%<br />

0.1%<br />

0.0%<br />

0.0%<br />

Figure 5.26 Difference <strong>with</strong> Vlassov f<strong>in</strong>ite element solution for the torsional rotation at the connection<br />

and FEM2<br />

Table 5.4 gives the results <strong>of</strong> the analysis <strong>with</strong> ‘FEM2’ by assum<strong>in</strong>g different transmission modes <strong>of</strong><br />

warp<strong>in</strong>g:<br />

-<strong>in</strong>dependent warp<strong>in</strong>g for both pr<strong>of</strong>iles,<br />

-warp<strong>in</strong>g transmitted along one transversal node: � for H pr<strong>of</strong>ile (beam 1) section and � for U<br />

pr<strong>of</strong>ile (beam 2)<br />

-warp<strong>in</strong>g transmitted at a common segment: ��� for H pr<strong>of</strong>ile (beam 1) section and ��� for U<br />

pr<strong>of</strong>ile (beam 2)<br />

-restra<strong>in</strong>ed warp<strong>in</strong>g for both pr<strong>of</strong>iles.<br />

The <strong>in</strong>fluence <strong>of</strong> the transmission <strong>of</strong> warp<strong>in</strong>g varies <strong>with</strong><strong>in</strong> a range <strong>of</strong> 0.37%.<br />

Table 5.4 Rotat<strong>in</strong>g angle at the rigid jo<strong>in</strong>t<br />

transmission <strong>of</strong> warp<strong>in</strong>g [rad]<br />

<strong>in</strong>dependant warp<strong>in</strong>g 0.0279448<br />

partial (1common po<strong>in</strong>t) 0.0279243<br />

partial (1common segment) 0.0279239<br />

restra<strong>in</strong>ed warp<strong>in</strong>g 0.0279223<br />

1 10 100<br />

Number <strong>of</strong> elements<br />

If the jo<strong>in</strong>t at the corner is a simple h<strong>in</strong>ge allow<strong>in</strong>g <strong>in</strong>dependent rotations for the connected members<br />

<strong>with</strong> <strong>in</strong>dependent warp<strong>in</strong>g, the horizontal U beam is then submitted to a uniform torsion. <strong>F<strong>in</strong>ite</strong><br />

element analyses <strong>with</strong> the present warp<strong>in</strong>g function ‘FEM2’ and <strong>with</strong> Vlassov warp<strong>in</strong>g function<br />

(Batoz, 1990, page 211) give the same results for the case <strong>of</strong> <strong>in</strong>dependent warp<strong>in</strong>g <strong>of</strong> the U beam and<br />

the H column (for C = 1kNm, θx = 0.078125rad) and the numerical solutions do not depend on the<br />

5-33


number <strong>of</strong> elements. When the transmission <strong>of</strong> warp<strong>in</strong>g changes, the rotat<strong>in</strong>g angle varies <strong>with</strong><strong>in</strong> a<br />

range <strong>of</strong> 9.9%; when warp<strong>in</strong>g is restra<strong>in</strong>ed, θx = 0.07108rad.<br />

Example 2: Assembly <strong>of</strong> beam elements<br />

The second example, already solved <strong>in</strong> the literature (Gunnlaugsson & Pedersen 1982, Pedersen<br />

1991), illustrates an application <strong>in</strong>volv<strong>in</strong>g the assembly <strong>of</strong> beam elements <strong>with</strong> different cross sections<br />

<strong>with</strong><strong>in</strong> a simple beam structure. A simply supported beam (L = 2.4m) is divided <strong>in</strong> three prismatic th<strong>in</strong><br />

walled beam elements. The two end elements have a tubular th<strong>in</strong> cross section and the connect<strong>in</strong>g<br />

element has an open U shaped cross-section. The wall thickness is constant and equal to 0.003m. The<br />

beam is loaded by torques at its ends C = 1kNm (Figure 5.27). E=210 MPa, ν =0.3.<br />

1kNm<br />

0.2m<br />

node 2<br />

0.003m<br />

0.4m<br />

node 4<br />

Figure 5.27 Box girder <strong>with</strong> large open<strong>in</strong>g submitted to torsion<br />

1kNm<br />

Gunnlaugsson (1982) and Pedersen (1991) have computed the variation <strong>of</strong> the rotat<strong>in</strong>g angle along the<br />

beam. The values <strong>of</strong> the rotat<strong>in</strong>g angle and the warp<strong>in</strong>g axial stresses <strong>of</strong> Gunnlaugsson beam element<br />

are shown by the cont<strong>in</strong>uous l<strong>in</strong>e (curves a) <strong>in</strong> Figure 5.28.<br />

He compared his results <strong>with</strong> those <strong>of</strong> a plane stress f<strong>in</strong>ite element model (curves c). He also used a<br />

beam model assembled <strong>in</strong> such a way that the warp<strong>in</strong>g function is cont<strong>in</strong>uous (curves b) (Fig. 5.28).<br />

The f<strong>in</strong>ite element ‘FEM2’ is used <strong>with</strong> sixteen beam elements. Two superposed f<strong>in</strong>ite element nodes<br />

are taken at each <strong>in</strong>tersection where the cross section geometry changes abruptly <strong>in</strong> order to capture<br />

the discont<strong>in</strong>uity <strong>of</strong> the warp<strong>in</strong>g function. FEM2 results are not <strong>in</strong>fluenced significantly by the choice<br />

<strong>of</strong> the connection po<strong>in</strong>t at the contour (for the maximal rotation angle, the difference is 0.0001% if the<br />

cross sections are assembled by node 2 or node 4). For the results <strong>in</strong> figures 5.29 and 5.30, the<br />

connection po<strong>in</strong>t is taken at node 2. The torsional angle distribution is represented by the triangles <strong>in</strong><br />

Figure 5.29 along the right half <strong>of</strong> the beam. FEM2 results are compared <strong>with</strong> the results given by<br />

Pedersen (1991). The variation <strong>of</strong> the rotat<strong>in</strong>g angle along the beam is much larger <strong>in</strong> the open part<br />

than <strong>in</strong> the closed part <strong>of</strong> the beam. The present f<strong>in</strong>ite element solution <strong>with</strong> transmission <strong>of</strong> warp<strong>in</strong>g<br />

matches the results <strong>of</strong> the analysis <strong>with</strong> the plane stress f<strong>in</strong>ite element model performed by Pedersen.<br />

The variations given by the elements <strong>of</strong> Gunnlaugsson (curve a, Figure 5.28) and Pedersen (Figure<br />

5.29) are slightly lower. The torsional rotation calculated by a beam theory neglect<strong>in</strong>g the<br />

discont<strong>in</strong>uity <strong>of</strong> the warp<strong>in</strong>g function is much larger (curve b, Figure 5.28). When warp<strong>in</strong>g is<br />

restra<strong>in</strong>ed at the connection, the torsional rotation is smaller: the solution is given by the diamond<br />

shaped po<strong>in</strong>ts <strong>in</strong> Figure 5.29.<br />

5-34


__ two beam elements (curve a)<br />

- .. - .. - beams assembled <strong>in</strong> such a way that the<br />

warp<strong>in</strong>g function is cont<strong>in</strong>uous (curve b)<br />

- - - plane stress f<strong>in</strong>ite element model (720 elts)<br />

(curve c)<br />

Figure 5.28 Results from Gunnlaugsson (1982)<br />

θx [rad]<br />

3.0.E-03<br />

2.5.E-03<br />

2.0.E-03<br />

1.5.E-03<br />

1.0.E-03<br />

5.0.E-04<br />

0.0.E+00<br />

Open Closed<br />

cross section<br />

0 0.6<br />

x[m]<br />

1.2<br />

���� FEM2 solution <strong>with</strong> 16 beam elements,<br />

warp<strong>in</strong>g restra<strong>in</strong>ed at the connection<br />

���� FEM2 solution <strong>with</strong> 16 beam elements,<br />

warp<strong>in</strong>g transmitted<br />

----- Pedersen 1991 two beam f<strong>in</strong>ite elements<br />

___ Plane stress f<strong>in</strong>ite element (Pedersen 1991)<br />

Figure 5.29 Comparison <strong>of</strong> the rotation angle along the girder by us<strong>in</strong>g ‘FEM2’ (16 beam elements)<br />

and the results <strong>of</strong> Pedersen (1991)<br />

5-35


The normal stresses result from the resistance <strong>of</strong> the cross sections to the non uniform warp<strong>in</strong>g. The<br />

distribution found by the present f<strong>in</strong>ite element analysis (given <strong>in</strong> Figure 5.30) matches the distribution<br />

calculated by Gunnlaugsson (Figure 5.28, curve c). At the connection between the open and the closed<br />

cross sections (x = 0.6m), the plane stress f<strong>in</strong>ite element gives the local stress concentration. The beam<br />

theory gives a discont<strong>in</strong>uity <strong>in</strong> the distribution <strong>of</strong> the normal stresses s<strong>in</strong>ce the hypothesis <strong>of</strong> Sa<strong>in</strong>t<br />

Venant is no longer verified. This <strong>in</strong>accuracy that occurs at most junctions because <strong>of</strong> the overlap <strong>of</strong><br />

the cross sectional areas has a small effect and can be disregarded. Anywhere else, the stresses given<br />

by ‘FEM2’ are closer to the plane stress f<strong>in</strong>ite element solution than to Gunnlaugsson beam solution<br />

whose model is stiffer. However, the response given by the beam f<strong>in</strong>ite element model that does not<br />

take <strong>in</strong>to account the warp<strong>in</strong>g function discont<strong>in</strong>uity at the connection is that <strong>of</strong> a more flexible<br />

structure.<br />

σx<br />

[N/m 2 ]<br />

6.E+07<br />

5.E+07<br />

4.E+07<br />

3.E+07<br />

2.E+07<br />

1.E+07<br />

0.E+00<br />

along the<br />

open<strong>in</strong>g<br />

(node4)<br />

Open Closed<br />

cross section<br />

at the lower<br />

corner<br />

(node2)<br />

0 0.6<br />

x[m]<br />

1.2<br />

Figure 5.30 Values <strong>of</strong> axial stresses due to non uniform warp<strong>in</strong>g along the girder by us<strong>in</strong>g ‘FEM2’<br />

<strong>with</strong> 16 beam elements<br />

5-36


5.3 <strong>F<strong>in</strong>ite</strong> element <strong>with</strong> shear bend<strong>in</strong>g warp<strong>in</strong>g<br />

5.3.1 Displacement field<br />

In order to develop numerical methods for accurate shear bend<strong>in</strong>g results <strong>with</strong><strong>in</strong> the objectives fixed <strong>in</strong><br />

paragraphs 3.3 and 4.3, another beam element ‘FEM3’ is presented <strong>in</strong> this paragraph. The k<strong>in</strong>ematics<br />

is adapted by relat<strong>in</strong>g ∑Ω i ui to the warp<strong>in</strong>g due to bend<strong>in</strong>g shear forces. Prokić warp<strong>in</strong>g function is<br />

represented by a contour (or first order) warp<strong>in</strong>g assumed to vary l<strong>in</strong>early along each polygonal<br />

segment <strong>of</strong> the contour. This new approach presents the advantage <strong>of</strong> automatic data generation and<br />

unified geometric characteristic computations regardless the type <strong>of</strong> the cross section (closed, open,<br />

asymmetric…). For simplicity, the developments <strong>in</strong> this paragraph deal <strong>with</strong> bend<strong>in</strong>g <strong>in</strong> (xz) axis.<br />

Similar analyses are done for (xy) axis but are not presented hereby. Tension/compression and torsion<br />

are not taken <strong>in</strong>to account s<strong>in</strong>ce they are analyzed <strong>in</strong> previous paragraphs. The efforts required to solve<br />

a general problem by tak<strong>in</strong>g <strong>in</strong>to account not only torsional but also bend<strong>in</strong>g warp<strong>in</strong>g shear effects are<br />

not justified –<strong>in</strong> our op<strong>in</strong>ion– because the accuracy ga<strong>in</strong>ed <strong>in</strong> practical problems is not so high.<br />

However, for the f<strong>in</strong>ite element ‘FEM2’ <strong>in</strong> particular and for Timoshenko beam theory <strong>in</strong> general, the<br />

transverse shear stra<strong>in</strong> is assumed to be constant through a beam cross section and a corrective<br />

modification has to be <strong>in</strong>troduced <strong>in</strong> order to calculate the displacements and stresses result<strong>in</strong>g from a<br />

flexural load<strong>in</strong>g. The present developments will be ma<strong>in</strong>ly used <strong>in</strong> this study <strong>in</strong> order to determ<strong>in</strong>e the<br />

shear correction factor for arbitrary pr<strong>of</strong>iles. As stated <strong>in</strong> §2.1.2, the shear correction factor is mostly<br />

evaluated <strong>in</strong> the literature by an energetical approach. It is a function <strong>of</strong> the distribution <strong>of</strong> the first<br />

moment over the area <strong>of</strong> the cross section. Evaluat<strong>in</strong>g the first moment is not always simple s<strong>in</strong>ce it<br />

depends on the pr<strong>of</strong>ile geometry and specifically different methods are required for open and closed<br />

th<strong>in</strong>-walled pr<strong>of</strong>iles.<br />

The displacement field, <strong>in</strong>troduced <strong>in</strong> (3.23) <strong>in</strong> order to accommodate the warp<strong>in</strong>g <strong>of</strong> the cross section<br />

<strong>with</strong>out the need <strong>of</strong> a corrective factor, describes the displacement vector at any po<strong>in</strong>t q <strong>with</strong><strong>in</strong> the<br />

cross section (§3.3):<br />

n<br />

⎧ i ⎫<br />

z θ y + Ω (y,z)u i(x)<br />

⎧u<br />

⎫ ⎪ ∑<br />

⎪<br />

q i= 1<br />

⎪ ⎪ ⎪ ⎪<br />

⎨vq⎬= ⎨0 ⎬<br />

(5.66)<br />

⎪<br />

w<br />

⎪ ⎪w ⎪<br />

⎩ q ⎭ ⎪ ⎪<br />

⎪⎩ ⎪⎭<br />

5.3.2 <strong>F<strong>in</strong>ite</strong> element def<strong>in</strong>ition<br />

As <strong>in</strong> paragraph (5.2.1), the <strong>in</strong>terpolation functions are taken quadratic for the transversal displacement<br />

(w) and the rotation (θy) and l<strong>in</strong>ear for the warp<strong>in</strong>g longitud<strong>in</strong>al displacements (uj).<br />

N<br />

T<br />

⎧1<br />

− 3ξ<br />

+ 2ξ<br />

⎪<br />

= ⎨4ξ(<br />

1−<br />

ξ)<br />

⎪−<br />

ξ(<br />

1−<br />

2ξ)<br />

⎩<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎭<br />

2<br />

;<br />

N<br />

u<br />

T<br />

⎧1−ξ⎫ = ⎨<br />

ξ<br />

⎬<br />

⎩ ⎭ <strong>with</strong><br />

x<br />

ξ = (5.67)<br />

L<br />

The displacements (w,θy,ui,…) can be related to the nodal displacements by us<strong>in</strong>g the <strong>in</strong>terpolation<br />

functions as follows:<br />

w= {qw}<br />

θy = {qθy}<br />

5-37


ui = {qui}; i=1,2,…n (5.68)<br />

O,C<br />

z,w<br />

w1 θy1<br />

1 2 3<br />

u11 u21 un1<br />

Figure 5.31 <strong>F<strong>in</strong>ite</strong> element <strong>with</strong> (xz) bend<strong>in</strong>g shear warp<strong>in</strong>g effects<br />

5.3.3 Stiffness matrix and additional equations<br />

The f<strong>in</strong>ite element calculations are derived <strong>in</strong> the same usual manner as <strong>in</strong> the previous paragraphs<br />

(e.g. §5.2.2). It is important to note that the problem is not well def<strong>in</strong>ed <strong>with</strong>out the orthogonality<br />

relationships (5.69) and the non zero shear boundary conditions (5.70). These additional equilibrium<br />

equations are given by equations (4.22):<br />

n<br />

∑ S i u<br />

Ω i<br />

i=<br />

1<br />

n<br />

∑ S i u<br />

Ω , y i<br />

i=<br />

1<br />

n<br />

I u<br />

y i<br />

i 1<br />

i ∑ =<br />

Ω<br />

=<br />

= 0<br />

= 0<br />

0<br />

θ y<br />

L/2 L/2<br />

w2 θy2<br />

y<br />

w3 θy3<br />

u13 u23 un3<br />

(5.69)<br />

ue-ud=0, where e is an edge node and d is the adjacent one. (5.70)<br />

Similarly to the torsional warp<strong>in</strong>g, if the additional constra<strong>in</strong>ts (5.69) are satisfied, the bend<strong>in</strong>g<br />

warp<strong>in</strong>g (xz)/tension-compression coupled terms and the bend<strong>in</strong>g warp<strong>in</strong>g (xz)/bend<strong>in</strong>g (xy) coupled<br />

terms vanish <strong>in</strong> the calculation <strong>of</strong> <strong>in</strong>ternal forces and stiffness matrix terms. The warp<strong>in</strong>g degrees <strong>of</strong><br />

freedom associated <strong>with</strong> (xz) bend<strong>in</strong>g do not <strong>in</strong>duce normal forces, shear forces (Ty) or bend<strong>in</strong>g<br />

moments (Mz). Inversely, the tension-compression and (xy) bend<strong>in</strong>g generalized forces should not<br />

derive from the terms ui. This elim<strong>in</strong>ates the symmetrical coupled terms <strong>in</strong> the stiffness matrix. The<br />

non zero terms <strong>of</strong> k el obta<strong>in</strong>ed after this elim<strong>in</strong>ation are given <strong>in</strong> appendix A5.<br />

Equations (5.69) have been aga<strong>in</strong> used <strong>in</strong> order to relate the degrees <strong>of</strong> freedom ‘ui’ and to restra<strong>in</strong><br />

these general parameters to the bend<strong>in</strong>g shear warp<strong>in</strong>g (xz). Depend<strong>in</strong>g on the pr<strong>of</strong>ile geometry (more<br />

precisely the number <strong>of</strong> edges <strong>in</strong> an open pr<strong>of</strong>ile), additional relations are written <strong>in</strong> the form <strong>of</strong><br />

equation 5.41 and are added to the <strong>in</strong>itial equilibrium system written <strong>in</strong> the form given <strong>in</strong> appendix A5.<br />

The result<strong>in</strong>g set <strong>of</strong> equilibrium equations is solved by us<strong>in</strong>g the Lagrange multipliers (equation 5.42).<br />

The development <strong>of</strong> the present beam f<strong>in</strong>ite element is based on the displacement field for which the<br />

constant shear stra<strong>in</strong> hypothesis is relaxed. Numerical examples (§5.3.4) are analyzed <strong>in</strong> order to show<br />

that:<br />

x<br />

5-38


- the shear lock<strong>in</strong>g phenomenon, <strong>in</strong>duced by the <strong>in</strong>consistency <strong>of</strong> the straightness hypothesis<br />

does not occur <strong>in</strong> this ‘FEM3’ f<strong>in</strong>ite element;<br />

- ‘FEM3’ gives accurate results when analyz<strong>in</strong>g shear warp<strong>in</strong>g bend<strong>in</strong>g effects on arbitrary<br />

pr<strong>of</strong>iles.<br />

S<strong>in</strong>ce the modified Timoshenko model (<strong>in</strong>clud<strong>in</strong>g shear correction factor) gives accurate results when<br />

comput<strong>in</strong>g the deformation <strong>of</strong> a th<strong>in</strong> walled structure submitted to bend<strong>in</strong>g, it is then concluded that<br />

comb<strong>in</strong><strong>in</strong>g torsional warp<strong>in</strong>g (FEM3) and shear bend<strong>in</strong>g warp<strong>in</strong>g (FEM2) effects for a 3D th<strong>in</strong>-walled<br />

structural analysis is not justified. The number (6+2n) <strong>of</strong> degrees <strong>of</strong> freedom per node <strong>in</strong>creases<br />

significantly the computational costs while Timoshenko modified model gives accurate transverse<br />

displacement results. The present developments are thus suitable for <strong>in</strong>clusion as a ‘black box’ <strong>in</strong> the<br />

f<strong>in</strong>ite element code ‘FEM2’ <strong>in</strong> order to accurately and automatically determ<strong>in</strong>ate the shear correction<br />

factor for arbitrary pr<strong>of</strong>iles. The analysis <strong>of</strong> a 3D structure conta<strong>in</strong><strong>in</strong>g multi-shaped open and closed<br />

pr<strong>of</strong>iles, achieved by us<strong>in</strong>g modified Timoshenko model ‘FEM2’ and torsional warp<strong>in</strong>g effects<br />

(paragraph 5.2.2), will beg<strong>in</strong> by a separate rout<strong>in</strong>e that determ<strong>in</strong>es the shear correction factor:<br />

A simply supported beam is submitted to a uniformly distributed force. The maximal deflection is<br />

computed by us<strong>in</strong>g ‘FEM3’. The analytical value <strong>of</strong> this maximal deflection is taken from the<br />

modified Timoshenko model (eq 2.13), where the shear correction factor k is the unknown. Equat<strong>in</strong>g<br />

these two solutions allows the determ<strong>in</strong>ation <strong>of</strong> the shear correction factor.<br />

F<strong>in</strong>ally, it is important to note that the shear stresses computations result<strong>in</strong>g from ‘FEM3’ consist <strong>in</strong> a<br />

variable distribution <strong>of</strong> stresses over the pr<strong>of</strong>ile contour (one value for each transversal segment) while<br />

‘FEM2’ gives one approximate value (one for the entire pr<strong>of</strong>ile).<br />

5.3.4 Applications on bend<strong>in</strong>g shear warp<strong>in</strong>g<br />

In this paragraph, applications aim ma<strong>in</strong>ly at validat<strong>in</strong>g the f<strong>in</strong>ite element ‘FEM3’ which <strong>in</strong>cludes<br />

shear bend<strong>in</strong>g warp<strong>in</strong>g effects. Comparisons are done <strong>with</strong> Euler Bernoulli beam theory and<br />

Timoshenko beam theory to demonstrate the ability <strong>of</strong> the theory to enhance available solutions<br />

provided by exist<strong>in</strong>g beam theories when the aspect ratio <strong>of</strong> the beam varies.<br />

The different results are:<br />

- analytical results <strong>with</strong> Bernoulli beam theory ‘BBT’ which is based on the normality assumption and<br />

neglects shear bend<strong>in</strong>g effects;<br />

- analytical results based on Timoshenko beam theory ‘TBT’ which is based on the planar assumption<br />

and considers a constant shear stra<strong>in</strong> state <strong>with</strong>out the shear correction factor (or, more exactly, <strong>with</strong><br />

the shear correction factor set to unity);<br />

- analytical results based on the Modified Timoshenko beam theory ‘TBTM’ tak<strong>in</strong>g <strong>in</strong>to account the<br />

shear correction factor [§2.1.2]; this model is considered to be the reference for all the other theories<br />

while comput<strong>in</strong>g differences <strong>in</strong> Figures 5.32, 5.33, 5.34 and 5.35 and table 5.6. The difference is<br />

calculated as follows:<br />

ValueTBTM − Valuetheory<br />

%difference = (5.71)<br />

Value<br />

TBTM<br />

- f<strong>in</strong>ite element results ‘FEM1’ based on Bernoulli k<strong>in</strong>ematic formula (BBT) and developed <strong>in</strong><br />

paragraph 5.2.1. The stiffness matrix is given <strong>in</strong> Appendix 2.<br />

- f<strong>in</strong>ite element results ‘FEM2’ based on Timoshenko beam k<strong>in</strong>ematics shown <strong>in</strong> paragraph 5.2.2 <strong>with</strong><br />

quadratic <strong>in</strong>terpolations for the displacement w and the rotation θy and a selective reduced <strong>in</strong>tegration.<br />

The stiffness matrix is given <strong>in</strong> Appendix 3.<br />

5-39


- f<strong>in</strong>ite element results ‘FEM3’ (paragraph 5.3) which takes <strong>in</strong>to account the shear bend<strong>in</strong>g warp<strong>in</strong>g <strong>of</strong><br />

the cross section by consider<strong>in</strong>g a l<strong>in</strong>ear <strong>in</strong>terpolation <strong>of</strong> (nn) additional degrees <strong>of</strong> freedom (Appendix<br />

5). Two discretizations are required for ‘FEM3’: the usual f<strong>in</strong>ite element discretization and <strong>in</strong> addition,<br />

a k<strong>in</strong>ematic discretization. The k<strong>in</strong>ematic formulation uses l<strong>in</strong>ear functions Ωi associated to the nn<br />

degrees <strong>of</strong> freedom ui which are related to the transversal nodes <strong>of</strong> the discretized cross section. The<br />

th<strong>in</strong> pr<strong>of</strong>ile is divided <strong>in</strong>to a f<strong>in</strong>ite number <strong>of</strong> transversal segments which represent polygonal parts<br />

connected by transversal nodes. An edge transversal node <strong>in</strong> an open cross section is connected to only<br />

one transversal segment (e.g. <strong>in</strong> a T section, there are three edge nodes while <strong>in</strong> Figure 5.36a, nodes 1<br />

& 6 are the only edge nodes). The warp<strong>in</strong>g <strong>of</strong> the cross section is approximated by l<strong>in</strong>ear variations<br />

along the transversal segments. The <strong>in</strong>accuracy <strong>in</strong>duced by this approximation is maximal for the<br />

m<strong>in</strong>imum discretization required to describe the geometry <strong>of</strong> the pr<strong>of</strong>ile and is reduced for ref<strong>in</strong>ed<br />

discretizations. With <strong>in</strong>creas<strong>in</strong>g transversal nodes and segments, the l<strong>in</strong>ear warp<strong>in</strong>g between adjacent<br />

transversal nodes approaches the exact distribution <strong>of</strong> warp<strong>in</strong>g <strong>in</strong> order to <strong>in</strong>sure the convergence <strong>of</strong><br />

the k<strong>in</strong>ematic approach and to give accurate results. Higher order functions Ωi may be used to<br />

formulate exactly the problem <strong>with</strong> m<strong>in</strong>imum discretization. For the elastic isotropic cross sections<br />

studied <strong>in</strong> this work, this approach is not considered.<br />

In addition, other displacement-based f<strong>in</strong>ite elements are considered <strong>in</strong> order to evaluate <strong>in</strong> some cases<br />

the lock<strong>in</strong>g phenomenon and to detect whether the behavior <strong>of</strong> FEM2 becomes poor (an overview <strong>of</strong><br />

displacement f<strong>in</strong>ite element models <strong>of</strong> shear deformation beam theories is presented <strong>in</strong> [Reddy,<br />

1997]):<br />

- TLE is based on modified Timoshenko k<strong>in</strong>ematic formula (TBTM) <strong>with</strong> l<strong>in</strong>ear <strong>in</strong>terpolation and<br />

presents lock<strong>in</strong>g shear phenomenon (Appendix 6). The stiffness matrix and the force vector are given<br />

<strong>in</strong> (5.72) and (5.73) [Batoz, 1990, page 86].<br />

⎡ 1 1 1 1 ⎤<br />

⎢<br />

− − −<br />

2 2L<br />

2<br />

⎡0<br />

0 0 0 ⎤<br />

L<br />

L 2L<br />

⎥<br />

⎢<br />

1 1 1<br />

⎥<br />

⎢<br />

⎥<br />

GA 1 0 −1<br />

⎢<br />

⎥<br />

[ K]<br />

= ⎢<br />

⎥ + EIyL ⎢ 3 2L<br />

6 ⎥<br />

(5.72)<br />

L ⎢ 0 0 ⎥ ⎢<br />

1 1 ⎥<br />

⎢<br />

⎥ ⎢<br />

2 ⎥<br />

⎣ 1<br />

2L<br />

⎦<br />

L<br />

⎢<br />

1 ⎥<br />

⎢<br />

⎥<br />

⎣<br />

3 ⎦<br />

L L<br />

f = q 0 q 0<br />

(5.73)<br />

2 2<br />

- RIE is the reduced <strong>in</strong>tegration l<strong>in</strong>ear Timoshenko beam element and is based on a reduced<br />

<strong>in</strong>tegration for the stiffness coefficients associated <strong>with</strong> the transverse shear stra<strong>in</strong> and a full<br />

<strong>in</strong>tegration for the other terms. The shear lock<strong>in</strong>g problem is avoided for identical (and especially<br />

l<strong>in</strong>ear) <strong>in</strong>terpolations for w and θy by approximat<strong>in</strong>g the shear stra<strong>in</strong> distribution by a constant shear<br />

stra<strong>in</strong>. The shear correction factor is taken <strong>in</strong>to account.<br />

Among displacement-based f<strong>in</strong>ite elements, this approach is widely used to overcome the lock<strong>in</strong>g<br />

problem. The stiffness matrix and the force vector for RIE are given <strong>in</strong> (5.74) and (5.73).<br />

⎡4<br />

− 2L<br />

− 4 − 2L<br />

⎤<br />

⎢<br />

2<br />

2<br />

+ ϕ<br />

− ϕ<br />

⎥<br />

EI ( 1 4 ) L 2L<br />

( 1 4 ) L<br />

[ K]<br />

= ⎢<br />

⎥<br />

(5.74)<br />

3<br />

4L<br />

ϕ ⎢<br />

4 2L<br />

⎥<br />

⎢<br />

2 ⎥<br />

⎣<br />

( 1 + 4ϕ)<br />

L ⎦<br />

5-40


12EIy<br />

where ϕ =<br />

2<br />

L k yGA<br />

- CIE is a consistent <strong>in</strong>terpolation Timoshenko beam element <strong>with</strong> a quadratic <strong>in</strong>terpolation for the<br />

displacement w and a l<strong>in</strong>ear <strong>in</strong>terpolation for the rotation θy. The shear correction factor is taken <strong>in</strong>to<br />

account. The element has end nodes hav<strong>in</strong>g two degrees <strong>of</strong> freedom and the middle node has only a<br />

deflection as degree <strong>of</strong> freedom. The middle node degree <strong>of</strong> freedom can be condensed <strong>in</strong> order to<br />

reduce the matrix size. The stiffness matrix is then found to be equal to (5.74). However, the force<br />

vector for uniform load<strong>in</strong>g is found to be equal to:<br />

2<br />

2<br />

L L L L<br />

f = q − q q q<br />

(5.75)<br />

2 12 2 12<br />

Example 1<br />

A simply supported beam <strong>with</strong> span L = 10m and th<strong>in</strong> rectangular cross section (bxh) is analyzed. The<br />

beam is submitted to a uniform load q. Three longitud<strong>in</strong>al nodes (two f<strong>in</strong>ite elements), required for the<br />

description <strong>of</strong> the problem, are taken for all the f<strong>in</strong>ite elements.<br />

Difference <strong>with</strong> respect toTBTM<br />

1.E-02%<br />

1.E-03%<br />

1.E-04%<br />

1.E-05%<br />

1.E-06%<br />

1.E-07%<br />

1 10 nn<br />

L/h = 200<br />

Figure 5.32 Difference between FEM3 and TBTM for a simply supported beam submitted to uniform<br />

load<br />

Table 5.5 BBT, TBTM and PBT results [m] for maximal deflection <strong>of</strong> a simply supported rectangular<br />

beam submitted to uniform load 10N/m<br />

100<br />

50<br />

100/3<br />

25<br />

20<br />

10<br />

5-41


The values <strong>of</strong> the maximal displacement obta<strong>in</strong>ed by Bernoulli and Timoshenko beam theories and<br />

‘FEM3’ <strong>with</strong> <strong>in</strong>creas<strong>in</strong>g k<strong>in</strong>ematic discretization are compared <strong>in</strong> Table 5.5 for vary<strong>in</strong>g values <strong>of</strong> the<br />

aspect ratio (L/h). nn is the number <strong>of</strong> transversal nodes whose longitud<strong>in</strong>al displacements are taken as<br />

degrees <strong>of</strong> freedom to model the warp<strong>in</strong>g <strong>of</strong> the cross section. Figure 5.32 shows the difference<br />

between FEM3 and TBTM when the k<strong>in</strong>ematic discretization is ref<strong>in</strong>ed. The convergence is shown for<br />

different values <strong>of</strong> L/h.<br />

Table 5.6 and figures 5.32 and 5.33 present additional results from which it can be concluded:<br />

- By compar<strong>in</strong>g FEM1 results <strong>in</strong> table 5.6 to BBT results <strong>in</strong> table 5.5, the Hermite cubic element<br />

FEM1 is found to give the exact solution <strong>of</strong> Bernoulli analytical results <strong>with</strong> m<strong>in</strong>imum f<strong>in</strong>ite element<br />

discretization. However, it does not co<strong>in</strong>cide <strong>with</strong> TBTM values (the difference is 2.5% for L/h=10).<br />

Table 5.6 <strong>F<strong>in</strong>ite</strong> element maximal deflection [m] for simply supported beam L=10m, and th<strong>in</strong><br />

rectangular cross sections <strong>with</strong> b = 0.002m and vary<strong>in</strong>g values <strong>of</strong> height h<br />

Difference <strong>with</strong> respect toTBTM<br />

1.E+00%<br />

1.E-01%<br />

1.E-02%<br />

1.E-03%<br />

1.E-04%<br />

1.E-05%<br />

1.E-06%<br />

1.E-07%<br />

10 100 1000<br />

L/h<br />

FEM3, nn=2<br />

FEM3, nn=4<br />

FEM3, nn=7<br />

FEM3, nn=10<br />

FEM3, nn=20<br />

BBE<br />

TLE<br />

RIE<br />

CIE<br />

Figure 5.32 <strong>F<strong>in</strong>ite</strong> element errors for maximal deflection <strong>of</strong> simply supported beam submitted to a<br />

uniformly applied load <strong>with</strong> vary<strong>in</strong>g aspect ratio (L/h); all f<strong>in</strong>ite element analyses performed <strong>with</strong> two<br />

elements<br />

- In figure 5.32, it is shown that as for Bernoulli theory ‘BBT’, the difference between FEM3 and the<br />

analytical solution TBTM <strong>in</strong>creases <strong>with</strong> <strong>in</strong>creas<strong>in</strong>g values <strong>of</strong> h. FEM3 is shown to be lock<strong>in</strong>g free and<br />

the solution approaches the modified Timoshenko solution <strong>with</strong> f<strong>in</strong>er k<strong>in</strong>ematic discretization.<br />

5-42


- The TLE element (table 5.6 and figures 5.32 & 5.33) is excessively poor <strong>with</strong> two elements. The<br />

shear lock<strong>in</strong>g phenomenon appears clearly s<strong>in</strong>ce the error <strong>in</strong>creases <strong>with</strong> <strong>in</strong>creas<strong>in</strong>g aspect ratio<br />

(decreas<strong>in</strong>g thickness beam), the error is 99.975% for L/h=200!<br />

- In figure 5.33b, it is clear that the RIE and CIE are not completely free <strong>of</strong> lock<strong>in</strong>g. This remark<br />

co<strong>in</strong>cides <strong>with</strong> the literature analyses, e.g. Reddy [1997], where it is noted that, <strong>in</strong> addition, ref<strong>in</strong>ed<br />

mesh<strong>in</strong>g is necessary s<strong>in</strong>ce it is shown that, for CIE and RIE, two elements give unacceptable<br />

solutions.<br />

err %TBTM<br />

100%<br />

10%<br />

L/h<br />

1 10 100 1000<br />

Figure 5.33b Illustration <strong>of</strong> shear lock<strong>in</strong>g shear phenomenon; two f<strong>in</strong>ite elements (enlargement <strong>of</strong><br />

figure 5.32)<br />

Example 2<br />

The simply supported beam <strong>in</strong> the first example is now considered to be submitted to a pure bend<strong>in</strong>g.<br />

Two couples are applied at the extremeties <strong>of</strong> the beam (figure 5.34).<br />

Figure 5.34 Simply supported beam submitted to a pure bend<strong>in</strong>g<br />

L<br />

TLE<br />

RIE<br />

CIE<br />

5-43


In this theoretical case, Bernoulli solution ‘BBT’ is exact s<strong>in</strong>ce shear forces vanish along the length <strong>of</strong><br />

the beam. TLE, RIE and CIE are then compared <strong>with</strong> the f<strong>in</strong>ite element ‘FEM2’ <strong>with</strong> selective reduced<br />

<strong>in</strong>tegration. The results obta<strong>in</strong>ed here are given for two f<strong>in</strong>ite elements.<br />

err%BBT<br />

err%BBT<br />

99.0%<br />

49.0%<br />

-1.0%<br />

1 10 100 1000 10000<br />

0.010%<br />

0.005%<br />

0.000%<br />

-0.005%<br />

(a)<br />

(b)<br />

L/h<br />

FEM3<br />

CIE<br />

RIE<br />

TLE<br />

1 10 100 1000 10000<br />

L/h<br />

FEM3<br />

CIE<br />

RIE<br />

Figure 5.35 (a) Lock<strong>in</strong>g shear phenomenon for the maximal deflection <strong>of</strong> a simply supported beam<br />

submitted to a pure bend<strong>in</strong>g <strong>with</strong> vary<strong>in</strong>g aspect ratio (L/h); (b): enlargement <strong>of</strong> figure 5.35a <strong>with</strong> CIE,<br />

RIE and FEM3 values<br />

In figure 5.35a, ‘TLE’ exhibits a lock<strong>in</strong>g shear phenomenon. For <strong>in</strong>creas<strong>in</strong>g values <strong>of</strong> L/h, the error<br />

between the exact solution ‘BBT’ and ‘TLE’ becomes higher. Besides, as stated by Reddy (1997), the<br />

l<strong>in</strong>ear equal <strong>in</strong>terpolation reduced <strong>in</strong>tegration element (RIE) and the consistent <strong>in</strong>terpolation element<br />

(CIE) are not completely lock<strong>in</strong>g free. The m<strong>in</strong>imum discretization (e.g. one element per member) for<br />

both methods does not give the exact solution. Figure (5.35b) represents an enlargement <strong>of</strong> (5.35a) and<br />

shows the performance <strong>of</strong> CIE, RIE and FEM3. Between CIE, RIE and FEM3, FEM3 is the least free<br />

<strong>of</strong> lock<strong>in</strong>g element. In the case where L/h=1000, the differences between BBT and TLE, CIE, RIE and<br />

FEM3 respectively for the maximal deflection are 99.999%, 0.00821%, 0.00821%, 0.667E-9%<br />

respectively.<br />

5-44


Example 3<br />

A hollow flange beam (45090HFB38) [Avery, 2000] is studied by neglect<strong>in</strong>g the bend radius at the<br />

corners (Figure 5.36b). As stated by Avery (2000), this cross section is developed by ‘Palmer Tube<br />

Mills Pty Ltd’. It is used for its efficient structural behavior that results from torsionally rigid closed<br />

triangular flanges and its economical fabrication processes although it has complicated behavior<br />

characteristics. A second pr<strong>of</strong>ile hav<strong>in</strong>g the same overall dimensions than the two-celled pr<strong>of</strong>ile is<br />

considered as an open (Figure 5.36a).<br />

For both pr<strong>of</strong>iles, a simply supported beam <strong>with</strong> span L is submitted to a uniformly distributed load q<br />

act<strong>in</strong>g through the centroid. E = 200GPa, G = 80 GPa.<br />

The values <strong>of</strong> the maximal deflection, calculated by us<strong>in</strong>g Bernoulli and Timoshenko theories, are<br />

compared <strong>with</strong> the results obta<strong>in</strong>ed by the f<strong>in</strong>ite element FEM3 based on the k<strong>in</strong>ematics developed<br />

above. The m<strong>in</strong>imum transversal discretization that describes the pr<strong>of</strong>ile geometry consists <strong>in</strong> divid<strong>in</strong>g<br />

the th<strong>in</strong> pr<strong>of</strong>iles (Figure 5.36a & Figure 5.36b) <strong>in</strong>to five and seven transversal segments (ns = 5 & 7<br />

respectively) connected by six transversal nodes (nn = 6). This k<strong>in</strong>ematic and transversal m<strong>in</strong>imal<br />

discretization is required <strong>in</strong> order to describe the behavior <strong>of</strong> the pr<strong>of</strong>ile. Ref<strong>in</strong>ed discretizations are<br />

obta<strong>in</strong>ed by divid<strong>in</strong>g the previously described transversal segments <strong>in</strong>to equal parts and are<br />

characterized by the total number <strong>of</strong> transversal nodes (nn).<br />

Figures 5.37 and 5.38 compare, for both pr<strong>of</strong>iles, the results <strong>of</strong> the above mentioned analytical and<br />

f<strong>in</strong>ite element methods for the maximal deflection <strong>of</strong> the simply supported beam for vary<strong>in</strong>g values <strong>of</strong><br />

beam length L. In Figures 5.37a and 5.38a, the difference (eq. 5.71) between different models (BBT,<br />

TBT, FEM2 and TBTM) is plotted aga<strong>in</strong>st the length L <strong>of</strong> the beam. In Figures 5.37b and 5.38b, the<br />

difference (eq. 5.71) between the f<strong>in</strong>ite element tak<strong>in</strong>g <strong>in</strong>to account shear bend<strong>in</strong>g effects (FEM3) and<br />

‘TBTM’ is plotted for different values <strong>of</strong> beam length aga<strong>in</strong>st the total number <strong>of</strong> transversal nodes<br />

‘nn’.<br />

Transversal<br />

segment 5-6<br />

Transversal<br />

node 4<br />

Edge node 1<br />

z<br />

0.04m<br />

0.185m<br />

y<br />

0.185m<br />

0.04m<br />

t = 0.0038m<br />

0.09m 0.09m<br />

(a) (b)<br />

Figure 5.36 (a) open cross section, (b) two-celled cross sections<br />

For different values <strong>of</strong> the span L and for the open pr<strong>of</strong>ile, Figure 5.37a illustrates the difference<br />

between the analytical results <strong>of</strong> Bernoulli ‘BBT’ (and similarly Timoshenko ‘TBT’) and the modified<br />

y<br />

5-45


Timoshenko ‘TBTM’ theories; ‘TBTM’ be<strong>in</strong>g taken as reference. The f<strong>in</strong>ite element ‘FEM2’ based on<br />

Timoshenko k<strong>in</strong>ematics <strong>with</strong>out the correction factor gives exactly the same results as TBT for both<br />

pr<strong>of</strong>iles (In figure 5.37a, curves TBT & FEM2 match exactly).<br />

The effects <strong>of</strong> shear deformation on the beam deflection depend on the length L <strong>of</strong> the beam (Figure<br />

5.37a, curve BBT). Neglect<strong>in</strong>g shear deformation effects <strong>in</strong> short beams leads to an error (measured by<br />

the difference between BBT and TBTM) <strong>of</strong> 32.67% for h/L = 0.3. For a long beam (e.g. h/L = 0.0225),<br />

this error is equal to 0.272%. The shear correction factor <strong>in</strong> Timoshenko theory is also important for<br />

short beams for the same reason (Figure 5.37a, curve TBT). By <strong>in</strong>creas<strong>in</strong>g the beam length (where h/L<br />

varies from 0.3 to 0.0225), the difference between TBT and TBTM decreases from 12.95% to 0.108%.<br />

Figure 5.38a illustrates the same results for the closed cross section. The error that results from<br />

neglect<strong>in</strong>g shear deformation effects (measured by the difference between BBT and TBTM) is very<br />

important for short beams and varies from 36.28% to 0.319% for h/L decreas<strong>in</strong>g from 0.3 to 0.0255.<br />

The difference between TBT and TBTM that measures the importance <strong>of</strong> the shear correction factor <strong>in</strong><br />

Timoshenko theory varies from 16.1% to 0.142% for the same variation <strong>of</strong> h/L.<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

(a) open pr<strong>of</strong>ile BBT<br />

TBT<br />

FEM2<br />

40%<br />

(b) closed pr<strong>of</strong>ile<br />

0 5 10 15 20 25<br />

L[m]<br />

Figure 5.37 Differences between TBTM and BBT, TBT & FEM2 for maximal deflection <strong>of</strong> simply<br />

supported beam <strong>with</strong> the open pr<strong>of</strong>ile (a) and the closed pr<strong>of</strong>ile (b)<br />

Figures 5.37b and 5.38b show the application <strong>of</strong> the model when shear bend<strong>in</strong>g effects are taken <strong>in</strong>to<br />

account by model<strong>in</strong>g the warp<strong>in</strong>g due to shear forces. It is <strong>in</strong>terest<strong>in</strong>g to note that no shear correction<br />

factor is needed here s<strong>in</strong>ce this model respects the no shear boundary condition (equation 5.70). This<br />

solution, which is automatically deduced from the geometry <strong>of</strong> arbitrary cross sections, is shown to<br />

converge to the modified Timonshenko beam theory (TBTM): the difference between the ‘FEM3’<br />

f<strong>in</strong>ite element analysis and the ‘TBTM’ results decreases when ref<strong>in</strong><strong>in</strong>g the discretization. The<br />

m<strong>in</strong>imum discretization (nn = 6 for the pr<strong>of</strong>ile represented <strong>in</strong> Figure 5.36a) does not give the exact<br />

solution and ref<strong>in</strong>ed mesh<strong>in</strong>g is required to approximate the non l<strong>in</strong>ear distribution by small l<strong>in</strong>ear<br />

variations between adjacent transversal nodes <strong>in</strong> order to give more accurate results. This is due to the<br />

30%<br />

20%<br />

10%<br />

0%<br />

BBT<br />

TBT<br />

FEM2<br />

0 5 10 15 20 25<br />

L[m]<br />

5-46


k<strong>in</strong>ematics where the warp<strong>in</strong>g, represent<strong>in</strong>g the longitud<strong>in</strong>al displacement <strong>of</strong> the deformed pr<strong>of</strong>ile, is<br />

modeled as vary<strong>in</strong>g l<strong>in</strong>early along the contour (Ω i are l<strong>in</strong>ear functions).<br />

1.6%<br />

1.2%<br />

0.8%<br />

0.4%<br />

0.0%<br />

(a)open pr<strong>of</strong>ile L = 1.5m 0.6% (b)closed pr<strong>of</strong>ile<br />

5 10 15 20 25<br />

nn<br />

3<br />

5<br />

8<br />

10<br />

15<br />

20<br />

0.4%<br />

0.2%<br />

0.0%<br />

L = 1.5m<br />

5 10 15 20 25<br />

nn<br />

Figure 5.38 Compar<strong>in</strong>g beam shear theories for maximal deflection <strong>of</strong> simply supported beam <strong>with</strong> the<br />

closed pr<strong>of</strong>ile.<br />

3<br />

5<br />

8<br />

10<br />

15<br />

20<br />

5-47


5.4 <strong>F<strong>in</strong>ite</strong> element <strong>with</strong> distortional warp<strong>in</strong>g<br />

5.4.1 Displacement field<br />

In this section, a numerical method is developed <strong>in</strong> order to study pr<strong>of</strong>ile distortions <strong>with</strong><strong>in</strong> the<br />

objectives fixed <strong>in</strong> paragraphs 2.3, 3.4 and 4.4. A beam f<strong>in</strong>ite element ‘FEM4’ is developed by<br />

adapt<strong>in</strong>g Prokić warp<strong>in</strong>g function, a contour (or first order) warp<strong>in</strong>g assumed to vary l<strong>in</strong>early along<br />

each pr<strong>of</strong>ile polygonal segment, <strong>in</strong> order to take <strong>in</strong>to account the distortional warp<strong>in</strong>g. The axial,<br />

bend<strong>in</strong>g and torsional behavior, are not taken hereby <strong>in</strong>to account. The displacement field has been<br />

<strong>in</strong>troduced (3.31) at any po<strong>in</strong>t q <strong>with</strong><strong>in</strong> the cross section for one distortional mode I:<br />

⎧ n<br />

i ⎫<br />

⎪ −ωµ I Iθ xI,x + ∑Ω<br />

ui⎪<br />

i= 1<br />

⎧ ⎫<br />

⎪ uq<br />

⎪<br />

⎪ ⎪ ⎪ ⎪<br />

⎪ ⎪ ⎪ ⎪<br />

⎨ v q ⎬= ⎨ −(z− z CI) µ IθxI ⎬<br />

⎪ ⎪ ⎪ ⎪<br />

⎪ ⎪ ⎪ ⎪<br />

⎪ w q⎪ ⎪ (y− y CI) µ IθxI ⎪<br />

⎩ ⎭ ⎩ ⎭<br />

(5.89)<br />

Each distortional mode is associated <strong>with</strong> a jo<strong>in</strong>t I selected from the transversal nodes <strong>in</strong> order to<br />

separate the pr<strong>of</strong>ile <strong>in</strong>to rigid parts. y CI , z CI and µ I are functions <strong>of</strong> the pr<strong>of</strong>ile coord<strong>in</strong>ate s. For each<br />

distortional mode I and for each associated contour part, yCI and zCI are the coord<strong>in</strong>ates <strong>of</strong> the<br />

distortional centers, I µ is the specific rotation ratio <strong>with</strong> respect to a reference part. I µ θxI measures the<br />

distortional rotation. For <strong>in</strong>stance, if an open pr<strong>of</strong>ile <strong>with</strong>out ramifications is considered, and if the<br />

right part is considered to be the reference part, θxI measures the rotation <strong>of</strong> all the material po<strong>in</strong>ts<br />

located at the right <strong>of</strong> the jo<strong>in</strong>t I, while µIθxI measures the rotation <strong>of</strong> all the material po<strong>in</strong>ts located at<br />

the left part.<br />

5.4.2 <strong>F<strong>in</strong>ite</strong> element def<strong>in</strong>ition<br />

The <strong>in</strong>terpolation functions (5.90) are taken quadratic for the rotations (θxI) and l<strong>in</strong>ear for the warp<strong>in</strong>g<br />

longitud<strong>in</strong>al displacements (uj).<br />

z<br />

L/2 L/2<br />

θxI1 θxI2 θxI3<br />

1 2 3<br />

u11 u21 ... un1 u12 u22 ... un2 u13 u23 ... un3<br />

Figure 5.39 The f<strong>in</strong>ite element <strong>with</strong> distortional effects<br />

y<br />

x<br />

5-48


N<br />

T<br />

⎧1<br />

− 3ξ<br />

+ 2ξ<br />

⎪<br />

= ⎨4ξ(<br />

1−<br />

ξ)<br />

⎪−<br />

ξ(<br />

1−<br />

2ξ)<br />

⎩<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎭<br />

2<br />

;<br />

N<br />

u<br />

T<br />

⎧1−ξ⎫ = ⎨<br />

ξ<br />

⎬<br />

⎩ ⎭ <strong>with</strong><br />

x<br />

ξ = (5.90)<br />

L<br />

The displacements (θxI, ui,…) can be related to the nodal displacements by us<strong>in</strong>g the <strong>in</strong>terpolation<br />

functions as follows:<br />

θxI = {qθxI} ; I=1,2,…m<br />

ui = {qui}; i=1,2,…n (5.91)<br />

5.4.3 Stiffness matrix and additional equations<br />

The f<strong>in</strong>ite element calculations are derived <strong>in</strong> the same usual manner as <strong>in</strong> previous paragraphs (e.g.<br />

§5.2.2). The equilibrium equations must be written <strong>in</strong> their uncoupled form. The three k<strong>in</strong>ematical<br />

equations (equations 3.32, 3.33 and 3.34) have to be satisfied for each longitud<strong>in</strong>al node. (5.92 – 5.94),<br />

express<strong>in</strong>g the f<strong>in</strong>ite formulation <strong>of</strong> the previous equations and <strong>in</strong>clud<strong>in</strong>g the <strong>in</strong>terpolation functions N<br />

and Nu, have to be satisfied for arbitrary values <strong>of</strong> x.<br />

n<br />

(3.32) => i u { u }<br />

∑ S N q = 0<br />

(5.92)<br />

i= 1<br />

Ω<br />

n<br />

(3.33) => z { } i u { u }<br />

µω θ zΩ<br />

i= 1<br />

i<br />

− I N' q + ∑ I N q = 0<br />

(5.93)<br />

I I xI i<br />

n<br />

(3.34) => y { } i u { u }<br />

− I N' q + ∑ I N q = 0<br />

(5.94)<br />

µω θ yΩ<br />

i= 1<br />

I I xI i<br />

It could be easily seen that, if the k<strong>in</strong>ematic equations (5.92, 5.93 and 5.94) vanish for any value <strong>of</strong> x,<br />

the axial force and bend<strong>in</strong>g moments (N, My and Mz) are reduced to their uncoupled usual form.<br />

Equations (5.95-5.97) are derived from the elim<strong>in</strong>ation <strong>of</strong> the coupled terms when comput<strong>in</strong>g the<br />

bend<strong>in</strong>g shear forces and the torsional moment by us<strong>in</strong>g the f<strong>in</strong>ite element discretization:<br />

n<br />

(Ty) => z z { } i u { u }<br />

− (S + S − S ) N ' q + ∑ S N q = 0<br />

(5.95)<br />

µω µ µ θ Ω<br />

i= 1<br />

I I,y I CI I xI,x<br />

,y<br />

i<br />

n<br />

(Tz) => y y { } i u { u }<br />

(MxI 1 ) =><br />

( − S + S − S ) N' q + ∑ S N q = 0<br />

(5.96)<br />

µω µ µ θ Ω<br />

i= 1<br />

I I,z I CI I xI,x<br />

,y<br />

i<br />

(Izµµω −I I J I,y yµµω − S<br />

I J I,z zCJµµω + S<br />

I J I,y yCJµµω<br />

+ I<br />

I J I,z µµω I J I,yω + I<br />

J,y µµω I J I,zωJ,z + Iµµ I Jzz + Iµµ I Jyy−Sµµ I JzCJz− Sµµ I JyCJy+ Izµµω −I<br />

I J J,y yµµω<br />

I J J,z<br />

−S − S + A + A − S + S ) N′ { q }<br />

µµ I JzCIz µµ I JyCIy µµ I JzCIzCJ µµ I JyCIyCJ µµ I JzCIω J,y µµ I JyCJωJ,z θxI<br />

n<br />

i= 1<br />

i i i i<br />

zµΩ I ,y µ IzCI Ω ,y yµΩ I ,z µ IyCJ Ω,z<br />

{ }<br />

+ ∑ ( − I + S + I −S<br />

) N q<br />

(5.97)<br />

u ui<br />

The distortion/tension-compression, the distortion/bend<strong>in</strong>g and the distortion/torsion uncoupl<strong>in</strong>g have<br />

been thus ensured <strong>in</strong> the calculation <strong>of</strong> <strong>in</strong>ternal forces and stiffness matrix terms. The distortional<br />

5-49


warp<strong>in</strong>g degrees <strong>of</strong> freedom do not <strong>in</strong>duce normal forces, shear forces (Ty and Tz), bend<strong>in</strong>g moment<br />

(My and Mz) or torsional resultants (Mx 1 and Mω). The tension-compression, bend<strong>in</strong>g and torsional<br />

generalized forces do not derive from the terms ui describ<strong>in</strong>g the distortion.<br />

Expressions 5.92 to 5.97 must be satisfied for any value <strong>of</strong> x, which implies that:<br />

n<br />

∑ i<br />

Ω<br />

i=<br />

1<br />

(5.92) => S ( u ) = 0<br />

i<br />

(5.93) => { } i { }<br />

zµω I I L<br />

xI1 xI2 xI3<br />

i= 1<br />

zΩ<br />

i1<br />

1<br />

n<br />

zµω I I L<br />

xI1 xI2 xI3<br />

i= 1<br />

i<br />

zΩ<br />

i3<br />

n<br />

(5.98)<br />

1<br />

I 3θ −4θ +θ + ∑ I u = 0<br />

(5.99)<br />

I −θ + 4θ−3θ + ∑ I u = 0<br />

(5.100)<br />

(5.93) => { } { }<br />

(5.94) => { } i { }<br />

yµω I I L<br />

xI1 xI2 xI3<br />

i= 1<br />

yΩ<br />

i1<br />

1<br />

n<br />

yµω I I L<br />

xI1 xI2 xI3<br />

i= 1<br />

i<br />

yΩ<br />

i3<br />

n<br />

1<br />

I 3θ −4θ +θ + ∑ I u = 0<br />

(5.101)<br />

I −θ + 4θ−3θ + ∑ I u = 0<br />

(5.102)<br />

(5.94) => { } { }<br />

1<br />

(S + S −S ) 3θ −4θ +θ + ∑ S u = 0 (5.103)<br />

(5.95) => { } i { }<br />

µω I I,y µ Iz zCIµ I L<br />

xI1 xI2 xI3<br />

i= 1<br />

Ω ,y<br />

i1<br />

1<br />

n<br />

µω I I,y µ Iz zCIµ I L<br />

xI1 xI2 xI3<br />

i= 1<br />

i<br />

Ω ,y<br />

i3<br />

(S + S −S ) −θ + 4θ −3θ + ∑ S u = 0 (5.104)<br />

(5.95) => { } { }<br />

1<br />

(S − S + S ) 3θ −4θ +θ + ∑ S u = 0<br />

(5.105)<br />

(5.96) => { } i { }<br />

µω I I,z µ Iy yCIµ I xI1 xI2 xI3 i1<br />

L<br />

Ω ,z<br />

i= 1<br />

1<br />

(S − S + S ) −θ + 4θ −3θ + ∑ S u = 0 (5.106)<br />

(5.96) => { } i { }<br />

µω I I,z µ Iy yCIµ I xI1 xI2 xI3 i3<br />

L<br />

Ω ,z<br />

i= 1<br />

Similar developments are done for equation (5.97).<br />

By neglect<strong>in</strong>g second order distortional warp<strong>in</strong>g (calculations similar to those <strong>in</strong> equation 5.30), (5.99,<br />

5.100, 5.101 and 5.102) are reduced to (5.107 and 5.108).<br />

n<br />

I u<br />

y i<br />

i 1<br />

i ∑ =<br />

Ω<br />

=<br />

n<br />

i<br />

zΩ<br />

i= 1<br />

i<br />

0<br />

n<br />

n<br />

n<br />

(5.107)<br />

∑ I u = 0<br />

(5.108)<br />

The stiffness matrix results from develop<strong>in</strong>g general equations (5.10). By comb<strong>in</strong><strong>in</strong>g the above<br />

described orthogonality relationships (equations 5.95-5.108), the coupled terms <strong>in</strong> the stiffness matrix<br />

are elim<strong>in</strong>ated. The non zero terms <strong>of</strong> k el obta<strong>in</strong>ed after this elim<strong>in</strong>ation are given <strong>in</strong> Appendix 7.<br />

K<strong>in</strong>ematical equations (3.32, 3.33, 3.34 and 3.35) are added to the <strong>in</strong>itial equilibrium system <strong>in</strong> order<br />

to relate the degrees <strong>of</strong> freedom ‘ui’ and to restra<strong>in</strong> the warp<strong>in</strong>g parameters to distortional warp<strong>in</strong>g.<br />

Similarly to the case <strong>of</strong> torsional warp<strong>in</strong>g developments (§5.2.3), two methods can be used (the<br />

5-50


condensation technique and the method <strong>in</strong>volv<strong>in</strong>g lagrange multipliers). The additional relations (5.95,<br />

5.96 and 5.97) together <strong>with</strong> the relations result<strong>in</strong>g from the jo<strong>in</strong>t/distortional_centers dependency<br />

(2.76 and 2.77) are used <strong>in</strong> order to determ<strong>in</strong>e the values <strong>of</strong> µI, yCI, zCI… The approach used <strong>in</strong> this<br />

study for unbranched pr<strong>of</strong>iles consists <strong>in</strong> consider<strong>in</strong>g 5m unknowns (yCI, zCI, µIyCI, µIzCI, µI; I=1,…m)<br />

to be calculated or condensed from five equations (5.95, 5.96, 5.97, 2.76 and 2.77). These five<br />

equations are l<strong>in</strong>ear <strong>with</strong> respect to the five unknowns.<br />

5.4.4 Applications on distortional warp<strong>in</strong>g<br />

The performance and the convergence <strong>of</strong> the elastic beam f<strong>in</strong>ite element ‘FEM4’ <strong>in</strong>clud<strong>in</strong>g distortional<br />

warp<strong>in</strong>g are shown by compar<strong>in</strong>g the results <strong>with</strong> analytical computations us<strong>in</strong>g Takahashi model<br />

[1978, 1980…] and numerical shell calculations. The Poisson coefficient is taken equal to zero <strong>in</strong> the<br />

numerical shell computations that aim at validat<strong>in</strong>g the f<strong>in</strong>ite element ‘FEM4’ based on the<br />

assumption HYPT4 (paragraph 2.3.3). In the first example, the distribution <strong>of</strong> rotations, normal<br />

stresses and shear stresses associated <strong>with</strong> distortion are compared and discussed for a<br />

monosymmetrical pr<strong>of</strong>ile. The second example compares the flexural, torsional and distortional<br />

behaviors exhibited by a beam submitted to a s<strong>in</strong>gle transversal load applied at one corner <strong>of</strong> its<br />

asymmetrical pr<strong>of</strong>ile.<br />

Example 1: Distortion <strong>of</strong> an open monosymmetrical pr<strong>of</strong>ile<br />

The distortional rotation and warp<strong>in</strong>g <strong>of</strong> a clamped-free beam <strong>with</strong> an open th<strong>in</strong> walled pr<strong>of</strong>ile (four<br />

polygonal segments [Ls = 0.08m] x [t = 0.001m]; Figure 5.40b) is prevented at the clamped end. At<br />

the free end, the beam is submitted to two opposite horizontal loads <strong>of</strong> 100N (Figure 5.40a).<br />

G=84GPa; E=210GPa.<br />

0.1kN<br />

x<br />

L=2m<br />

0.1kN<br />

Ls = 0.08m<br />

Figure 5.40 Clamped-free beam submitted to distortional load<strong>in</strong>g<br />

45°<br />

� � � �<br />

0.08m<br />

(a) (b)<br />

Problem def<strong>in</strong>ition<br />

This pr<strong>of</strong>ile, already analyzed by Takahashi (1978), presents a simple case <strong>of</strong> a monosymmetrical<br />

pr<strong>of</strong>ile <strong>with</strong> one distortional mode (associated <strong>with</strong> the jo<strong>in</strong>t 3). The distortional deformation <strong>of</strong> the<br />

pr<strong>of</strong>ile consists <strong>in</strong> the rotation <strong>of</strong> two rigid parts (left: 1-2-3 and right: 3-4-5) separated by the jo<strong>in</strong>t 3.<br />

S<strong>in</strong>ce the two rigid parts are symmetrical <strong>with</strong> respect to the vertical axis pass<strong>in</strong>g through the jo<strong>in</strong>t 3,<br />

the rotational angles are expected to have equal magnitude but opposite sign (µ = -1). Due to<br />

symmetry and to the alignment <strong>of</strong> the jo<strong>in</strong>t and the associated distortional centers (equation 2.77), the<br />

distortional centers are expected to be situated on the horizontal axis pass<strong>in</strong>g through the jo<strong>in</strong>t 3. The<br />

coord<strong>in</strong>ates <strong>of</strong> the distortional centers are computed <strong>with</strong><strong>in</strong> the present f<strong>in</strong>ite element analyses by<br />

apply<strong>in</strong>g equations (5.95-5.97). For uniform distortion <strong>with</strong>out additional local plate bend<strong>in</strong>g (uniform<br />

distribution <strong>of</strong> distortional moment along the beam length; distortional rotation prevented at one end<br />

�<br />

t = 0.001m<br />

5-51


<strong>with</strong> free warp<strong>in</strong>g), the computed location (figure 5.41b) co<strong>in</strong>cides exactly <strong>with</strong> that found by<br />

Takahashi (1978). Similarly to Vlassov computations, Takahashi warp<strong>in</strong>g function is assumed to be<br />

the same for arbitrary load<strong>in</strong>g and boundary conditions s<strong>in</strong>ce it assumes zero warp<strong>in</strong>g shear stresses at<br />

the contour (HYPT2 <strong>in</strong> §2.3.3). The position <strong>of</strong> the distortional centers, computed by Takahashi theory<br />

(equations 3.36-3.39), depends only on the geometrical shape and dimensions <strong>of</strong> the pr<strong>of</strong>ile. However,<br />

<strong>in</strong> the present f<strong>in</strong>ite element analyses, the location <strong>of</strong> the distortional centers depends on the solution <strong>in</strong><br />

arbitrary load<strong>in</strong>g cases and boundary conditions but is always found to be positioned on the horizontal<br />

axis pass<strong>in</strong>g through node 3 for this monosymmetrical pr<strong>of</strong>ile.<br />

The distribution <strong>of</strong> M s xI along the pr<strong>of</strong>ile contour result<strong>in</strong>g from plate additional bend<strong>in</strong>g and def<strong>in</strong>ed<br />

<strong>in</strong> §2.3.4 is given <strong>in</strong> figure 5.41a. The load<strong>in</strong>g <strong>in</strong> figure 5.40a <strong>in</strong>duces a distortional torque<br />

MxI = -11.32N.m associated <strong>with</strong> the jo<strong>in</strong>t 3 and computed from equation 4.45.<br />

Et 3 /4Ls<br />

�<br />

� � � �<br />

Figure 5.41 (a): Stiffen<strong>in</strong>g effects (distribution <strong>of</strong> M s xI along the pr<strong>of</strong>ile contour). (b): Position <strong>of</strong><br />

distortional centers<br />

<strong>F<strong>in</strong>ite</strong> element calculations<br />

Results <strong>with</strong> the f<strong>in</strong>ite element ‘FEM4’ developed <strong>in</strong> §5.5 are compared <strong>with</strong> analytical computations<br />

(see also Mahieux 2003) <strong>with</strong> Takahashi theory and numerical results <strong>with</strong> shell elements (400<br />

elements; figure 5.42) by us<strong>in</strong>g the s<strong>of</strong>tware Samcef (Samtech s.a. 2002).<br />

Figure 5.42 Mesh<strong>in</strong>g <strong>with</strong> Samcef shell f<strong>in</strong>ite elements<br />

C D right<br />

C<br />

�<br />

D 0.048m 0.048m<br />

left<br />

C T<br />

G<br />

y<br />

z<br />

5-52


Figure 5.43 (a): Distortional rotat<strong>in</strong>g angle distribution along the longitud<strong>in</strong>al axis (x); (b): Rotat<strong>in</strong>g<br />

angle distribution along the contour coord<strong>in</strong>ate (s) for x=2m<br />

The diagram <strong>of</strong> the distortional angle along the longitud<strong>in</strong>al axis <strong>of</strong> the beam is first <strong>in</strong>vestigated. The<br />

distortional rotation <strong>of</strong> the right part <strong>of</strong> the pr<strong>of</strong>ile is plotted <strong>in</strong> figure 5.43a. For shell elements, a<br />

rotation angle is calculated as the average <strong>of</strong> rotations <strong>of</strong> all the nodes that belong to the right part (s =<br />

0.16-0.32m). The differences between shell results and the f<strong>in</strong>ite element analysis ‘FEM4’ (<strong>with</strong> 20<br />

elements) and Takahashi analytical solution for the maximal distortional rotation angle are 2.13% and<br />

4.88% respectively. It is important to note that the assumption <strong>of</strong> rigid part rotations <strong>in</strong> beam theories<br />

(Takahashi and FEM4) is relaxed <strong>in</strong> shell element analyzes.<br />

normal stresses [Pa]<br />

0.01<br />

0<br />

teta[rad]<br />

-0.01<br />

-0.02<br />

-0.03<br />

2.E+07<br />

1.E+07<br />

0.E+00<br />

-1.E+07<br />

-2.E+07<br />

x[m]<br />

0 0.5 1 1.5 2<br />

FEM4<br />

Takahashi<br />

Samcef<br />

s[m]<br />

0 0.08 0.16 0.24 0.32<br />

FEM4<br />

Takahashi<br />

Samcef<br />

Figure 5.44 Normal stresses σx due to distortion <strong>of</strong> a monosymmetrical open pr<strong>of</strong>ile for x = 1.5m<br />

rotation angle[rad]<br />

0 0.08 0.16 0.24 0.32<br />

0.04<br />

FEM4<br />

Takahashi<br />

Samcef<br />

0.02<br />

0.00<br />

-0.02<br />

(a) (b)<br />

-0.04<br />

s[m] for x=2m<br />

5-53


Figure (5.43b) shows that, for beam theories, the distortional angle is uniform <strong>in</strong> each part (left: s = 0-<br />

0.16m; right : s = 0.16-0.32m) while, for shell results (cont<strong>in</strong>uous l<strong>in</strong>e), it varies slowly along each<br />

part and drops sharply around the jo<strong>in</strong>t (s = 0.16m). In both cases, it is opposite <strong>in</strong> the left and right<br />

parts due to the pr<strong>of</strong>ile monosymmetry.<br />

Figures 5.44 and 5.45 show the distributions <strong>of</strong> normal stresses (σx, σs) at x = 1.5m. The beam f<strong>in</strong>ite<br />

element results ‘FEM4’ are compared <strong>with</strong> analytical computations based on Takahashi theory and<br />

<strong>with</strong> numerical results from Samcef shell analyzes. An excellent agreement was found.<br />

local stresses [Pa]<br />

5.E+07<br />

4.E+07<br />

3.E+07<br />

2.E+07<br />

1.E+07<br />

0.E+00<br />

-1.E+07<br />

s[m]<br />

0 0.08 0.16 0.24 0.32<br />

Figure 5.45 Local stresses σs at the upper sk<strong>in</strong> for x = 1.5m<br />

shear stresses [Pa]<br />

2.E+05<br />

2.E+05<br />

1.E+05<br />

5.E+04<br />

0.E+00<br />

-1.E+05<br />

-2.E+05<br />

-2.E+05<br />

FEM4<br />

Samcef<br />

Takahashi<br />

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32<br />

-5.E+04<br />

s[m]<br />

Takahashi Samcef<br />

FEM4_4 FEM4_16<br />

FEM4Prsc_16<br />

Figure 5.46 <strong>Shear</strong> τxs stresses due to distortion <strong>of</strong> a monosymmetrical open pr<strong>of</strong>ile for x = 1.5m<br />

5-54


It is important to highlight that the distortional centers are prescribed as be<strong>in</strong>g those <strong>of</strong> a uniform<br />

distorsional case –except for the results concern<strong>in</strong>g warp<strong>in</strong>g shear stresses–. In Takahashi beam<br />

theory, the shear stresses are computed from normal stresses by us<strong>in</strong>g longitud<strong>in</strong>al equilibrium<br />

equation. Similarly to Vlassov theory, they cannot be computed from k<strong>in</strong>ematics by us<strong>in</strong>g Hooke law<br />

s<strong>in</strong>ce they would be equal to zero. However, <strong>in</strong> ‘FEM4’ analyzes, the zero midwall shear assumption<br />

is relaxed and shear stresses are calculated from Hooke law for each transversal segment <strong>of</strong> the pr<strong>of</strong>ile.<br />

Figure 5.46 shows the distribution <strong>of</strong> contour warp<strong>in</strong>g shear stresses τxs at x = 1.5m by condens<strong>in</strong>g the<br />

location <strong>of</strong> the distortional centers. S<strong>in</strong>ce warp<strong>in</strong>g shear stresses τxs ω have a parabolic shaped<br />

distribution (Takakashi or Samcef results <strong>in</strong> figure 5.46), ‘FEM4’ results need ref<strong>in</strong>ed discretization <strong>of</strong><br />

the contour by a f<strong>in</strong>ite number <strong>of</strong> nodes and segments (16 transversal segments are used for results<br />

FEM4_16 <strong>in</strong> figure 5.46; 4 transversal segments are used for results FEM4_4). The curve<br />

FEM4Prsc_16 (16 transversal segments) presents the erroneous warp<strong>in</strong>g shear stresses that would<br />

appear if the distortional centers are prescribed as those <strong>of</strong> Takahashi. It is <strong>in</strong>terest<strong>in</strong>g to note that the<br />

difference between prescrib<strong>in</strong>g (as be<strong>in</strong>g that <strong>of</strong> uniform distortion) and condens<strong>in</strong>g the location <strong>of</strong> the<br />

distorstional centers is found to be very small for the values <strong>of</strong> the distorsional angle and the normal<br />

stresses.<br />

Example 2: Distortion <strong>of</strong> an open asymmetrical pr<strong>of</strong>ile<br />

A clamped-free beam is considered <strong>with</strong> an asymmetrical open pr<strong>of</strong>ile (Figure 5.47b; all the degrees <strong>of</strong><br />

freedom are constra<strong>in</strong>ed at the clamped end). The thickness is t = 0.001m. The dimension <strong>of</strong> the<br />

contour is given by the lengths <strong>of</strong> transversal segments: Ls12 = 0.06m; Ls23 = 0.15m; Ls34 = 0.06m;<br />

Ls45 = 0.075m]. A horizontal load P = 100N acts at the free end (Figure 5.47a). G=84GPa; E=210GPa.<br />

(a) (b)<br />

P<br />

Figure 5.47 (a) Clamped-free beam submitted to bend<strong>in</strong>g, torsion and distortion; (b) Position <strong>of</strong><br />

torsional and distortional centers<br />

Problem def<strong>in</strong>ition<br />

Accord<strong>in</strong>g to the approach proposed <strong>in</strong> this work, the behavior <strong>of</strong> the th<strong>in</strong> walled beam is evaluated as<br />

be<strong>in</strong>g orig<strong>in</strong>ated by four different cases (a + b + c + d) <strong>in</strong>duced by the applied load P (figure 5.49).<br />

case a- A force Fy (-100N x cos24.11 = -91.279N), result<strong>in</strong>g from the projection <strong>of</strong> the load P on the<br />

pr<strong>in</strong>cipal axis (y), captures the (xy) bend<strong>in</strong>g behavior. A uniform shear force Ty and a l<strong>in</strong>ear bend<strong>in</strong>g<br />

moment Mz are distributed along the beam length.<br />

CD l<br />

1 2<br />

y<br />

CD r<br />

G<br />

CT<br />

3 4<br />

5<br />

z<br />

5-55


case b- A force Fz (-100N x s<strong>in</strong>24.11 = -40.844N), result<strong>in</strong>g from the projection <strong>of</strong> the load P on the<br />

other pr<strong>in</strong>cipal axis (z), captures the (xz) bend<strong>in</strong>g behavior. A shear force Tz and a bend<strong>in</strong>g moment<br />

My are uniformly and l<strong>in</strong>early distributed along the beam length respectively.<br />

case c- A torsional torque Cx T (100N x 0.04002m = 4.002Nm), result<strong>in</strong>g from the product <strong>of</strong> the<br />

<strong>in</strong>tensity <strong>of</strong> the force vector and the radius distance from the center <strong>of</strong> rotation CT to the po<strong>in</strong>t <strong>of</strong><br />

application <strong>of</strong> the load, captures the torsional behavior. A torsional moment (Mx) is uniformly<br />

distributed along the beam while the restra<strong>in</strong>ed warp<strong>in</strong>g at the clambed end <strong>of</strong> the beam <strong>in</strong>duces a non<br />

uniform distribution <strong>of</strong> a torsional bimoment <strong>with</strong> respect to the longitud<strong>in</strong>al direction.<br />

case d- A distortional ‘torque’ Cx D (100N x 0.05360m = 5.36Nm) result<strong>in</strong>g from the product <strong>of</strong> the<br />

<strong>in</strong>tensity <strong>of</strong> the load P and the radius distance from the center <strong>of</strong> right rotation CD r to the po<strong>in</strong>t <strong>of</strong><br />

application <strong>of</strong> the load. Similarly to the case (c) related to torsion, a distortional moment and a<br />

distortional bimoment are uniformly and non uniformly distributed along the beam length.<br />

The distortional mode considered hereby is associated <strong>with</strong> the jo<strong>in</strong>t 3. The distortional deformation <strong>of</strong><br />

the pr<strong>of</strong>ile <strong>in</strong>volves the rotation <strong>of</strong> two rigid parts (θD l for the left rigid part: 1-2-3 and θD r for the right<br />

rigid part: 3-4-5) around the respective distortional centers CD l and CD r ). S<strong>in</strong>ce the pr<strong>of</strong>ile is not<br />

symmetrical, the rotat<strong>in</strong>g angles are not the same (θD l = µθD r ; µ ≠ -1). The distribution <strong>of</strong> M s xI<br />

(result<strong>in</strong>g from plate stiffen<strong>in</strong>g effects) along the pr<strong>of</strong>ile contour is given <strong>in</strong> figure 5.48.<br />

Figure 5.48 Distribution <strong>of</strong> M s xI along the pr<strong>of</strong>ile contour<br />

αP = 137.313N<br />

37.24Nm/m<br />

βP = 37.313N<br />

λP = 137.313N<br />

(a+b+c) (d)<br />

γP = 137.313N<br />

Figure 5.49 Separat<strong>in</strong>g distortional load<strong>in</strong>g cases (d) from the bend<strong>in</strong>g/torsional load<strong>in</strong>g case (a+b+c)<br />

for the case <strong>of</strong> load<strong>in</strong>g <strong>in</strong> figure 5.47a<br />

Figure 5.49 presents the distortional case (d) when uncoupled from the well known bend<strong>in</strong>g/torsional<br />

cases (a+b+c). For the distortional configuration d, the applied load P is divided <strong>in</strong>to two forces (γP)<br />

and (λP) act<strong>in</strong>g respectively on the left and right parts <strong>of</strong> the cross section. The coefficients γ and λ are<br />

computed by sett<strong>in</strong>g that the flexural and torsional resultants are equal to zero (γP + λP =0) while the<br />

distortional moment is equivalent to that <strong>of</strong> the <strong>in</strong>itial configuration result<strong>in</strong>g from the applied load<br />

5-56


P(µ dD l γP+ dD r λP = dD r P). dD l and dD r are the radius distances from the center <strong>of</strong> left rotation CD l and<br />

the center <strong>of</strong> right rotation CD r to the po<strong>in</strong>t <strong>of</strong> application <strong>of</strong> loads act<strong>in</strong>g on the right part and the left<br />

part respectively. The flexural torsional configuration (a+b+c) is determ<strong>in</strong>ed by sett<strong>in</strong>g that the<br />

flexural and torsional resultants are those <strong>of</strong> the applied load P (αP + βP = P) and that the distortional<br />

moment µ dD l αP + dD r βP = 0) is equal to zero. This way <strong>of</strong> decompos<strong>in</strong>g the forces <strong>in</strong> not s<strong>in</strong>gle and<br />

is presented hereby for the purpose <strong>of</strong> enhanc<strong>in</strong>g the understand<strong>in</strong>g <strong>of</strong> the problem def<strong>in</strong>ition.<br />

The coord<strong>in</strong>ates <strong>of</strong> the torsional and distortional centers and the value <strong>of</strong> the distortional ratio are<br />

computed <strong>with</strong><strong>in</strong> the present f<strong>in</strong>ite element analyses by us<strong>in</strong>g equations (5.34-5.35) & (5.95-5.97).<br />

They are found to co<strong>in</strong>cide exactly <strong>with</strong> those <strong>of</strong> Vlassov and Takahashi theories <strong>in</strong> the cases <strong>of</strong><br />

uniform torsion and uniform distortion <strong>with</strong>out <strong>in</strong>clud<strong>in</strong>g the additional local plate bend<strong>in</strong>g (uniform<br />

distribution <strong>of</strong> torsional and distortional moment along the beam length; torsional and distortional<br />

rotation prevented at one end <strong>with</strong> free warp<strong>in</strong>g). As previously discussed, this is due to the fact that<br />

Vlassov and Takahashi warp<strong>in</strong>g functions assume zero warp<strong>in</strong>g shear stresses at the contour (HYPV2<br />

<strong>in</strong> § 2.2.3.1 for torsion & HYPT2 <strong>in</strong> §2.3.3 for distortion).<br />

<strong>F<strong>in</strong>ite</strong> element calculations <strong>in</strong>volv<strong>in</strong>g distortion<br />

Results <strong>with</strong> the f<strong>in</strong>ite element ‘FEM4’ are compared <strong>with</strong> analytical computations <strong>with</strong> Takahashi<br />

theory and simulations <strong>with</strong> shell elements (7000 elts; figure 5.50) by us<strong>in</strong>g the s<strong>of</strong>tware Samcef<br />

(Samtech s.a. 2002).<br />

Figure 5.50 Mesh<strong>in</strong>g <strong>with</strong> Samcef shell f<strong>in</strong>ite elements<br />

The distribution <strong>of</strong> the distortional angle θD r along the longitud<strong>in</strong>al axis <strong>of</strong> the beam is plotted <strong>in</strong> figure<br />

5.51. The differences between shell results and the f<strong>in</strong>ite element analysis ‘FEM4’ (<strong>with</strong> 20 elements)<br />

and analytical solutions <strong>with</strong> Takahashi formulation for the maximal distortional rotation angle are<br />

respectively 0.75% and 2.245% for the right part rotation.<br />

Figure 5.52 compares the distribution <strong>of</strong> the rotat<strong>in</strong>g angle along the contour coord<strong>in</strong>ate (s) at the end<br />

<strong>of</strong> the beam. The local effects captured <strong>in</strong> shell simulations and not considered <strong>in</strong> Takahashi and<br />

FEM4 calculations are shown to be more important <strong>in</strong> the left part (the differences between shell<br />

results and FEM4 and Takahashi solutions are 14.69% and 13.3% respectively).<br />

5-57


teta[rad]<br />

Figure 5.51 Distribution <strong>of</strong> the distortional rotat<strong>in</strong>g angle along the beam length (x)<br />

rotation angle[rad]<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

0.08<br />

0.06<br />

0.05<br />

0.03<br />

0.02<br />

0.00<br />

x[m]<br />

s[m] for x=2m<br />

Figure 5.52 Rotat<strong>in</strong>g angle (torsion+distortion) distribution along the contour coord<strong>in</strong>ate (s) for x=2m<br />

In this example, a very good agreement is found between the results <strong>of</strong> the proposed theory and those<br />

result<strong>in</strong>g from a complete shell analysis. The distortional behavior is shown to be important s<strong>in</strong>ce, <strong>in</strong><br />

this simple example, the distortional rotation (0.029rad) is not negligible if compared <strong>with</strong> the<br />

torsional rotation (0.040rad).<br />

Figure 5.53a shows the distributions <strong>of</strong> normal stresses (σx) result<strong>in</strong>g from the distortional mode at x =<br />

1.5m. The beam f<strong>in</strong>ite element results (FEM <strong>with</strong> 20elements) are compared (figure 5.53b) <strong>with</strong><br />

FEM4<br />

Takahashi<br />

FEM4<br />

Samcef<br />

Takahashi<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

5-58


numerical results from Samcef shell analyzes and <strong>with</strong> analytical computations based on Takahashi<br />

theory for distorsion. The contribution <strong>of</strong> each load<strong>in</strong>g cases (a, b, c & d) <strong>in</strong> the total value <strong>of</strong> normal<br />

stresses for this example is shown <strong>in</strong> table 5.7. The distortional behavior <strong>in</strong> this example is very<br />

important and neglect<strong>in</strong>g it leads to erroneous results. For the transversal node 5 (s = 0.345m), the<br />

distortional contribution <strong>in</strong> normal stresses is equal to 2.9 times that <strong>of</strong> bend<strong>in</strong>g and 3.3 times that <strong>of</strong><br />

torsion.<br />

normal stresses [Pa]<br />

normal stresses [Pa]<br />

2.E+07<br />

1.E+07<br />

0.E+00<br />

-1.E+07<br />

-2.E+07<br />

3.E+07<br />

2.E+07<br />

1.E+07<br />

0.E+00<br />

-1.E+07<br />

-2.E+07<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

(a)<br />

s[m]<br />

s[m]<br />

FEM4<br />

Takahashi<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

FEM<br />

Samcef<br />

Takahashi<br />

Figure 5.53 Normal stresses for x = 1.5m result<strong>in</strong>g from (a) distortion only; (b) bend<strong>in</strong>g, torsion and<br />

distortion<br />

5-59


Table 5.7 Normal stresses [Pa] <strong>of</strong> different load<strong>in</strong>g cases<br />

shear stresses [Pa]<br />

shear stresses [Pa]<br />

2.E+05<br />

0.E+00<br />

-2.E+05<br />

1.E+06<br />

0.E+00<br />

-1.E+06<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

(a)<br />

(b)<br />

s[m]<br />

s[m]<br />

Takahashi<br />

FEM4_4<br />

FEM4_12<br />

FEM4_16<br />

FEM4_24<br />

Samcef<br />

Analytical<br />

FEM_Cnds<br />

FEM_Prscrb<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

Figure 5.54 shear stresses for x = 1.5m result<strong>in</strong>g from (a) distortion only; (b) bend<strong>in</strong>g, torsion and<br />

distortion<br />

5-60


Similarly to the previous example, the results –except those concern<strong>in</strong>g warp<strong>in</strong>g shear stresses– are<br />

done by prescrib<strong>in</strong>g the torsional center, the distortional centers and the distortional ratio as be<strong>in</strong>g<br />

those <strong>of</strong> a uniform torsional and distorsional case.<br />

Figure 5.54a shows the distribution <strong>of</strong> distortional warp<strong>in</strong>g shear stresses τxs at x = 1.5m by<br />

condens<strong>in</strong>g the location <strong>of</strong> the distortional centers and the value <strong>of</strong> the distortional ratio. S<strong>in</strong>ce warp<strong>in</strong>g<br />

shear stresses τxs ω have a parabolic shaped distribution, ‘FEM4’ results need ref<strong>in</strong>ed discretization <strong>of</strong><br />

the contour by a f<strong>in</strong>ite number <strong>of</strong> nodes and segments (12 transversal segments are used for results<br />

FEM4_12 <strong>in</strong> figure 5.54a…). For Vlassov and Takahashi theories, the shear stresses are computed<br />

from normal stresses by us<strong>in</strong>g the longitud<strong>in</strong>al equilibrium equation. The curve FEMPrsc_16 (<strong>with</strong> 16<br />

transversal segments) presents the erroneous warp<strong>in</strong>g shear stresses that would result if the location <strong>of</strong><br />

the distortional centers is prescribed as be<strong>in</strong>g that <strong>of</strong> a uniform distorsional case. Once aga<strong>in</strong>, the<br />

difference between prescrib<strong>in</strong>g and condens<strong>in</strong>g the location <strong>of</strong> the distortional centers is found to be<br />

very small for the values <strong>of</strong> the distorsional angle and the normal stresses.<br />

The distance GCT (<strong>in</strong> figure 5.47b) between the torsional center CT and the centroid G and the distance<br />

GCD l (<strong>in</strong> figure 5.47b) between the left distorsional center CD l and the centroid G are found to vary<br />

along the longitud<strong>in</strong>al axis <strong>of</strong> the beam. The values associated <strong>with</strong> the uniform torsional (GCT =<br />

0.0718m) and uniform distortional cases (GCD l = 0.066m) are taken as the reference value <strong>in</strong> order to<br />

compute the differences computed for GCT and GCD l along the beam length. These differences are<br />

maximal at the clamped end for which non uniform torsional and distortional effects are dom<strong>in</strong>ant<br />

when compared to the uniform torsional and distortional effects. These differences are plotted <strong>in</strong> figure<br />

5.55.<br />

5.00%<br />

4.00%<br />

3.00%<br />

2.00%<br />

1.00%<br />

0.00%<br />

x[m]<br />

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2<br />

FEM2_16<br />

FEM4_16<br />

Figure 5.55 Curve FEM2_16: difference for the distance between the centroid and the torsional center;<br />

curve FEM4_16: difference for the distance between the centroid and the left distortional center<br />

5-61


5.5 Non l<strong>in</strong>ear element for buckl<strong>in</strong>g analyses<br />

5.5.1 Step by step solution<br />

When the relation between the displacement field and the applied forces is non l<strong>in</strong>ear, the solution<br />

requires a l<strong>in</strong>earization process and robust numerical algorithms. The non l<strong>in</strong>ear problem is<br />

transformed <strong>in</strong>to a set <strong>of</strong> l<strong>in</strong>ear problems that follow the evolution <strong>of</strong> a configuration. The solution<br />

follows the equilibrium path <strong>in</strong> a step by step procedure. The aim is to evaluate equilibrium positions<br />

at successive discrete states.<br />

At each step, the equilibrium <strong>of</strong> the structure must be satisfied and the values <strong>of</strong> the k<strong>in</strong>ematic and<br />

static variables must be determ<strong>in</strong>ed. This is repeated until the complete solution path has been<br />

obta<strong>in</strong>ed.<br />

The equilibrium <strong>of</strong> any deformed configuration is expressed by the virtual work pr<strong>in</strong>ciple. Two forms<br />

are given <strong>in</strong> Appendix 2. The updated lagrangian description is used hereby so that the reference<br />

configuration is the last known equilibrium configuration C i <strong>of</strong> the structure. The virtual work<br />

pr<strong>in</strong>ciple expressed <strong>in</strong> the current configuration as reference is given by (5.109). Similar developments<br />

can be done for any other description.<br />

{ }<br />

* * *<br />

ij ij vi i ai i<br />

v v a<br />

∫ ∫ ∫ (5.109)<br />

R = ε σ dv− f udv− f uda= 0<br />

If the current configuration is out <strong>of</strong> equilibrium, {R} does not vanish and is called the vector <strong>of</strong><br />

residuals or vector <strong>of</strong> out-<strong>of</strong>-balances forces.<br />

All the variables, coord<strong>in</strong>ates, displacements and stresses are known <strong>in</strong> C i and are supposed to satisfy<br />

(5.109). In order to determ<strong>in</strong>e the solution process for the next step (next configuration C i+1 ), an<br />

approximation must be taken for the coord<strong>in</strong>ates <strong>of</strong> po<strong>in</strong>ts <strong>in</strong> C i+1 . The computed stresses depend on<br />

the path chosen between the two configurations as well as on the <strong>in</strong>tegration scheme along this path.<br />

S<strong>in</strong>ce approximations are done dur<strong>in</strong>g this process, the stresses will not be <strong>in</strong> equilibrium <strong>with</strong> the<br />

applied forces and the out <strong>of</strong> balance forces will not be equal to zero. It is then necessary to search for<br />

another configuration that will be closer to equilibrium. An iterative procedure is needed to correct the<br />

coord<strong>in</strong>ates and to reach an acceptable configuration closer to equilibrium.<br />

5.5.2 Updated lagrangian formulation<br />

Let {dx} be the vector <strong>of</strong> nodal coord<strong>in</strong>ate <strong>in</strong>crements. The correspond<strong>in</strong>g <strong>in</strong>crement <strong>of</strong> the out <strong>of</strong><br />

balance forces {dR} is related to {dx} by:<br />

{dR} = [KT] {dx} (5.110)<br />

where [KT] is the tangent stiffness matrix def<strong>in</strong>ed as the derivative <strong>of</strong> {R} (5.109) <strong>with</strong> respect to x. Its<br />

expression can be obta<strong>in</strong>ed by differentiat<strong>in</strong>g (5.109). The differential is <strong>in</strong> general not simple s<strong>in</strong>ce<br />

the configuration is chang<strong>in</strong>g.<br />

To simplify the developments, body forces are only considered <strong>in</strong> order to shorten the notations.<br />

Similar developments can be done for the surface forces. The change <strong>in</strong> virtual work is expressed<br />

between two very close configurations C i and C i+1 . ui are the unknown <strong>in</strong>crements <strong>in</strong> the displacements<br />

occurr<strong>in</strong>g between situation i and situation i+1 at which the two configurations C i and C i+1 are <strong>in</strong><br />

equilibrium. V is the volume <strong>in</strong> C i . F is the <strong>in</strong>cremental applied force assumed to be a deformation<br />

<strong>in</strong>dependent load<strong>in</strong>g: the load is not affected by a perturbation <strong>of</strong> the coord<strong>in</strong>ates <strong>of</strong> C i . The value <strong>of</strong> df<br />

5-62


which represents the perturbation <strong>of</strong> the applied loads <strong>in</strong>duced by dx vanishes s<strong>in</strong>ce the load<strong>in</strong>g is<br />

conservative.<br />

In the unknown configuration C i+1 , the applied forces, stresses and stra<strong>in</strong>s are not known and thus the<br />

virtual work is written by tak<strong>in</strong>g the known configuration C i as reference (see Appendix 8, equation<br />

A8.24):<br />

{ }<br />

∫<br />

*<br />

ij ij ∫<br />

*<br />

i Vi<br />

V V<br />

*<br />

ESdV ij ij =<br />

*<br />

uF i VidV<br />

V V<br />

R = E S dV− u F dV= 0<br />

∫ ∫ (5.111)<br />

The l<strong>in</strong>ear part <strong>of</strong> the Eij Green stra<strong>in</strong> tensor is found to be the <strong>in</strong>f<strong>in</strong>itesimal stra<strong>in</strong>:<br />

ε<br />

ij<br />

1 ⎛<br />

⎜<br />

∂u<br />

=<br />

2 ⎜<br />

⎝<br />

∂x<br />

i<br />

j<br />

∂u<br />

j ⎞<br />

+ ⎟<br />

∂x<br />

⎟<br />

i ⎠<br />

The <strong>in</strong>cremental stra<strong>in</strong>, stress and applied force decompositions are:<br />

(5.112)<br />

1 ⎛ u u<br />

i j uk<br />

u ⎞<br />

k<br />

E ⎜<br />

∂ ∂ ∂ ∂<br />

ij = + + ⎟ = εij<br />

+ eij<br />

2 ⎜ x j xi<br />

xi<br />

x ⎟<br />

⎝<br />

∂ ∂ ∂ ∂ j ⎠<br />

(5.113)<br />

S = σ + ∆s<br />

(5.114)<br />

ij<br />

ij<br />

ij<br />

1 ⎛ ⎞<br />

⎜<br />

∂uk<br />

∂uk<br />

e =<br />

⎟<br />

ij<br />

(5.115)<br />

2 ⎜ ⎟<br />

⎝<br />

∂xi<br />

∂x<br />

j ⎠<br />

In (5.114) the unknown PK2 stress tensor components Sij are decomposed <strong>in</strong>to two parts: one part<br />

known at the situation C i (σij) and an unknown <strong>in</strong>crement (∆sij). Fi are the body forces <strong>of</strong> the situation<br />

C i+1 measured <strong>in</strong> C i .<br />

For a hyperelastic material (Appendix 0), <strong>in</strong> case <strong>of</strong> large displacements but small stra<strong>in</strong>, the second<br />

Piola Kirchh<strong>of</strong>f stress tensor is computed from:<br />

dS = d dE<br />

(5.116)<br />

ij<br />

ijkl<br />

kl<br />

where dijkl is the stress-stra<strong>in</strong> tensor at the configuration C i . In practice, dijkl are constant components <strong>of</strong><br />

elastic tensor def<strong>in</strong>ed <strong>in</strong> a manner similar to the small deformation ones.<br />

S<strong>in</strong>ce C i+1 and C i are very close configurations, the application <strong>of</strong> (5.116) can be approximated by [see<br />

also De Ville 1990 page 5.36…]:<br />

∆ s = d E<br />

(5.117)<br />

ij<br />

ijkl<br />

kl<br />

By us<strong>in</strong>g (5.117), (5.113) and (5.114), equation (5.111) can be written as:<br />

*<br />

ij ijkl kl +<br />

*<br />

ijσ ij<br />

*<br />

+ εijσ ij =<br />

*<br />

i Vi<br />

V V V V<br />

∫EdEdV ∫edV ∫ dV ∫ u F dV<br />

(5.118)<br />

5-63


This represents a non l<strong>in</strong>ear equation for the <strong>in</strong>cremental displacements ui and thus cannot be directly<br />

solved. In order to l<strong>in</strong>earize the equilibrium equations, approximate solutions will be obta<strong>in</strong>ed by<br />

assum<strong>in</strong>g that:<br />

E = ε<br />

(5.119)<br />

ij<br />

ij<br />

By us<strong>in</strong>g the approximation (5.119), the non l<strong>in</strong>ear term *<br />

e ∆ s which is a higher order term <strong>in</strong> ui will<br />

ij ij<br />

be dropped and the follow<strong>in</strong>g <strong>in</strong>cremental constitutive equation will be used:<br />

∆ s ε<br />

(5.120)<br />

ij = dijkl<br />

kl<br />

Thus, the approximate equilibrium equation to be solved is:<br />

*<br />

εij ijklε kl +<br />

*<br />

ijσ ij =<br />

*<br />

i vi −<br />

*<br />

εijσij V V V V<br />

∫ d dV ∫edV ∫uFdV ∫ dV<br />

(5.121)<br />

Due to the non-l<strong>in</strong>earities <strong>of</strong> the system, l<strong>in</strong>earization will not give an exact solution and iterations<br />

may be required <strong>with</strong><strong>in</strong> each load<strong>in</strong>g step to approach the exact solution <strong>of</strong> (5.111).<br />

5.5.3 Discretized equilibrium equations<br />

S<strong>in</strong>ce no analytical solution exists for any arbitrary geometry, load<strong>in</strong>g and boundary conditions,<br />

numerical buckl<strong>in</strong>g calculations are developed <strong>with</strong> the f<strong>in</strong>ite element method. The f<strong>in</strong>ite element<br />

‘FEM2’ based on Timoshenko model for bend<strong>in</strong>g and <strong>in</strong>clud<strong>in</strong>g torsional warp<strong>in</strong>g effects is developed<br />

for buckl<strong>in</strong>g analyses.<br />

As <strong>in</strong>troduced <strong>in</strong> paragraph 5.2.2, the displacement field is <strong>in</strong>terpolated by:<br />

⎛u<br />

q ⎞<br />

⎜ ⎟<br />

⎜ vq<br />

⎟ = [ η]{}<br />

q<br />

(5.122)<br />

⎜ ⎟<br />

⎜ w ⎟<br />

⎝ q ⎠<br />

where {q} is the nodal displacement vector <strong>with</strong> respect to a cartesian reference base, and [ η ] is given<br />

by (5.15).<br />

As it was already noted, the virtual work pr<strong>in</strong>ciple is discretized by us<strong>in</strong>g the actualized lagrangian<br />

description <strong>with</strong> C t as reference. Similar developments can be done <strong>with</strong> any other description.<br />

Under matrix form, the first term <strong>of</strong> equation (5.121) can be written as <strong>in</strong> l<strong>in</strong>ear elastic calculations<br />

(5.10) as follows:<br />

⎧ ⎫<br />

∫ (5.123)<br />

⎪ T<br />

⎪<br />

⎨ L L ⎬<br />

⎪ ⎣ ⎦ ⎣ ⎦<br />

⎩V⎪⎭ T<br />

{} q ( ⎡B ⎤ [ H] ⎡B ⎤)dV { δq}<br />

T<br />

⎡ ⎤<br />

L L [ ]<br />

⎣ ⎦ L<br />

V<br />

K = ∫ B H ⎡⎣B ⎤⎦dV<br />

(5.124)<br />

5-64


For the second term <strong>of</strong> (5.121), identically, a matrix form can be established (see also Prokić1996).<br />

The second term can then be expressed as follows:<br />

⎧ ⎫<br />

∫ (5.125)<br />

⎪ T<br />

⎪<br />

⎨ NL NL ⎬<br />

⎪ ⎣ ⎦ ⎣ ⎦<br />

⎩V⎪⎭ T<br />

{} q ( ⎡B ⎤ [ σ] ⎡B ⎤)dV<br />

{ δq}<br />

T<br />

⎡ ⎤<br />

NL NL [ ]<br />

⎣ ⎦ NL<br />

V<br />

K = ∫ B σ ⎡⎣B ⎤⎦dV<br />

(5.126)<br />

where [ σ ] is the Cauchy matrix.<br />

[ ]<br />

⎡σ 0 0 τ 0 τ 0 ⎤<br />

x xy xz<br />

⎢<br />

0 x 0 0 xy 0<br />

⎥<br />

⎢<br />

σ τ τxz⎥<br />

⎢ 0 0 σx<br />

0 0 0 0 ⎥<br />

⎢<br />

τxy<br />

0 0 0 0 0 0<br />

⎥<br />

σ =<br />

⎢ ⎥<br />

⎢ 0 0 τ 0 0 0 0 ⎥<br />

xy<br />

⎢ ⎥<br />

⎢τxz 0 0 0 0 0 0 ⎥<br />

⎢ 0 τxz<br />

0 0 0 0 0 ⎥<br />

⎣ ⎦<br />

(5.127)<br />

⎡ ∂ ⎤<br />

⎢<br />

0 0<br />

∂x<br />

⎥<br />

⎢ ∂ ⎥<br />

⎢ 0 0 ⎥<br />

⎢ ∂x<br />

⎥<br />

⎢ ∂<br />

0 0 ⎥<br />

⎢ ∂x<br />

⎥<br />

⎢ ∂ ⎥<br />

[ B = ⎢ 0 0<br />

NL ]<br />

⎥{}<br />

η<br />

(5.128)<br />

⎢∂y<br />

⎥<br />

⎢ ∂<br />

0 0<br />

⎥<br />

⎢ ∂y<br />

⎥<br />

⎢ ∂ ⎥<br />

⎢ 0 0 ⎥<br />

⎢ ∂z<br />

⎥<br />

⎢ ∂<br />

0 0<br />

⎥<br />

⎢⎣<br />

∂z<br />

⎥⎦<br />

BNL is a matrix relat<strong>in</strong>g the deformations to the nodal displacements.<br />

By denot<strong>in</strong>g the tangent matrix KT <strong>with</strong> KL + KNL =KT, the equilibrium equations can be written <strong>with</strong> a<br />

weak form by us<strong>in</strong>g the actualized lagrangian configuration as follows:<br />

[ KT] {q} = {R}-{F} (5.129)<br />

{F} <strong>in</strong>cludes the f<strong>in</strong>ite element evaluation <strong>of</strong> <strong>in</strong>ternal forces:<br />

T<br />

⎣ L ⎦<br />

v<br />

{ } = ⎡ ⎤ [ σ]<br />

F ∫ B dv<br />

(5.130)<br />

{R} is the f<strong>in</strong>ite element evaluation <strong>of</strong> applied loads as <strong>in</strong> paragraph 5.2.4.<br />

5-65


5.5.4 Tangent Stiffness matrix calculation<br />

The displacement at any po<strong>in</strong>t is deduced from the 6+n degrees <strong>of</strong> freedom as follows:<br />

⎧u<br />

⎪<br />

⎨v<br />

⎪<br />

⎪w<br />

⎩<br />

q<br />

q<br />

q<br />

⎧<br />

n<br />

i ⎫<br />

⎫<br />

⎪−<br />

ωθ + Ω<br />

⎧ ⎫ x,<br />

x ∑ ( y,<br />

z)<br />

ui<br />

( x)<br />

⎧ ⎫ ⎧ ⎫ − θ<br />

⎪<br />

⎪ u zθy<br />

y<br />

0<br />

z<br />

⎪ ⎪ ⎪<br />

i=<br />

1<br />

⎪<br />

⎪<br />

⎪ ⎪ ⎪ ⎪<br />

⎪<br />

⎪<br />

⎬ = ⎨0<br />

⎬ + ⎨0<br />

⎬ + ⎨v<br />

⎬ + ⎨−<br />

( z − zC<br />

) θx<br />

⎬<br />

⎪ ⎪0<br />

⎪ ⎪ ⎪ ⎪ ⎪ ⎪<br />

⎪<br />

⎪ ⎩ ⎭ ⎪w<br />

⎩ ⎪⎭<br />

⎪<br />

0<br />

⎩ ⎪⎭<br />

⎪(<br />

y − yC<br />

) θx<br />

⎭<br />

⎪<br />

⎪<br />

⎩<br />

⎪<br />

⎭<br />

(5.131)<br />

The <strong>in</strong>terpolation functions are used and the calculation <strong>of</strong> BNL is based on the follow<strong>in</strong>g calculations:<br />

⎧ i<br />

−ω N ′′ {q } + (y,z) N ′<br />

θ<br />

u {q u }<br />

⎫<br />

⎪ ∑Ω<br />

x<br />

i ⎪<br />

⎧u ⎫ ⎧ z N {q } y N {q }<br />

,x N ′ u {q } ⎫ ⎧ ′ ⎫ ⎧−′ ⎫ ⎪<br />

u<br />

θy θ<br />

⎪<br />

z<br />

0 ⎪ ⎪ ⎪ ⎪ (z z<br />

⎪ ⎪ ⎪ C)<br />

N ′ {q }<br />

⎪<br />

⎪<br />

− −<br />

θ<br />

⎪<br />

x<br />

⎪v,x ⎪ ⎪0⎪ ⎪0 ⎪ ⎪ N ′ {q v}<br />

⎪ ⎪ ⎪<br />

⎪w ⎪ ⎪ ⎪<br />

,x 0 ⎪ N ′ {q w}<br />

⎪ ⎪<br />

0<br />

⎪ ⎪<br />

(y − y C)<br />

N ′ {q }<br />

θ<br />

⎪<br />

x<br />

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪<br />

⎪ i<br />

⎪<br />

⎨u,y ⎬= ⎨0 ⎬+ ⎨0 ⎬+ ⎨− N ′ {q } ⎬+<br />

⎨−ω θ<br />

,y N ′ {q } + ∑Ω,y<br />

(y,z) N u {q u } ⎬<br />

z<br />

θx<br />

i<br />

⎪w⎪ ⎪0 ⎪ ⎪0 ⎪ ⎪ ⎪ ⎪ ⎪<br />

⎪ ,y ⎪ ⎪ 0<br />

u<br />

0<br />

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ N{q }<br />

⎪<br />

⎪<br />

N ′ {q }<br />

θx<br />

,z ⎪ ⎪ ⎪ ⎪ θ ⎪ ⎪0 ⎪ ⎪ ⎪<br />

y<br />

⎪ 0<br />

i<br />

v<br />

⎪ ⎪ ⎪ ⎪ ⎪ ⎪0 ⎪ ⎪<br />

⎩ ,z ⎪⎭<br />

⎩ ⎭ ⎪⎩ 0<br />

−ω ,z N ′ {q } + ∑Ω,z<br />

(y,z) N u {q u } ⎪<br />

⎪⎭<br />

⎩⎪ ⎪<br />

i<br />

⎭ ⎪ θx<br />

⎪<br />

⎪− N{q }<br />

⎪<br />

⎪⎩ θx<br />

⎭⎪<br />

⎡ i<br />

N′ u −ω N′′ z N′ −y N′ Ω N′<br />

⎤<br />

u<br />

⎢ ⎥<br />

⎢ N ′ −(z−z ) N′<br />

⎥<br />

c<br />

⎢<br />

N ′ (y−y c)<br />

N′<br />

⎥<br />

⎢ ⎥<br />

i<br />

BNL= ⎢ −ω,y N′ −N Ω ,y N ⎥<br />

u<br />

BNL T =<br />

⎢ ⎥<br />

⎢ N<br />

⎥<br />

⎢ i ⎥<br />

⎢ −ω,z N′ N Ω ,z Nu⎥<br />

⎢ − N<br />

⎥<br />

⎣ ⎦<br />

{ N′<br />

u}<br />

{ N′<br />

}<br />

−ω{ N ′′ }<br />

{ N′<br />

}<br />

−(z−z c) { N ′ } (y−y c ) { N′ } −ω,y { N′ } { N} −ω,z{ N′ } −{<br />

N}<br />

z{ N′ } { N}<br />

−y{ N′ } −{<br />

N}<br />

i<br />

Ω { N′ }<br />

i<br />

Ω { N }<br />

i<br />

Ω { N }<br />

⎡ ⎤<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎣ u ,y u ,z u ⎦<br />

(5.132)<br />

(5.133)<br />

(5.134)<br />

5-66


5.5.5 Solution procedures<br />

The <strong>in</strong>cremental iterative technique, implemented for solv<strong>in</strong>g the nonl<strong>in</strong>ear system <strong>of</strong> equations<br />

(5.129), comb<strong>in</strong>es the Newton Raphson method <strong>with</strong> the constant arc length <strong>of</strong> <strong>in</strong>cremental<br />

displacements. It assumes that the solution is known at an <strong>in</strong>itial discrete step (t), and iterations are<br />

performed to calculate the (t+1) equilibrium configuration by consider<strong>in</strong>g the equilibrium between the<br />

exterior load forces and the nodal <strong>in</strong>terior forces (equivalent to stresses <strong>in</strong> the element). Critical loads<br />

are calculated by tak<strong>in</strong>g <strong>in</strong>to consideration that the structure, already <strong>in</strong> equilibrium, reaches <strong>in</strong>stability<br />

if there is more than one equilibrium position for the same load<strong>in</strong>g level. The criterion to determ<strong>in</strong>e<br />

this buckl<strong>in</strong>g state is the s<strong>in</strong>gularity <strong>of</strong> the tangent stiffness matrix [KT] <strong>of</strong> the structure. This solution<br />

procedure is fully described <strong>in</strong> Appendix A9.<br />

5.5.6 Applications to buckl<strong>in</strong>g problems <strong>of</strong> th<strong>in</strong> walled structures<br />

The <strong>in</strong>fluence <strong>of</strong> non uniform torsional warp<strong>in</strong>g on the flexural torsional buckl<strong>in</strong>g <strong>of</strong> elastic th<strong>in</strong><br />

walled structures is analyzed and discussed by compar<strong>in</strong>g different k<strong>in</strong>ematical formulations. The<br />

proposed warp<strong>in</strong>g function <strong>of</strong>fers the advantage <strong>of</strong> automatic data generation and geometrical<br />

characteristic computations <strong>of</strong> arbitrary asymmetric cross sections. The 3D nonl<strong>in</strong>ear f<strong>in</strong>ite element<br />

beam model, based on developments <strong>in</strong> paragraphs 5.5.3 & 5.5.4, is validated for various pr<strong>of</strong>ile<br />

geometries and load<strong>in</strong>g cases by comparison <strong>with</strong> exist<strong>in</strong>g analytical solutions. The follow<strong>in</strong>g<br />

numerical examples <strong>in</strong>volve the m<strong>in</strong>imal discretisation required for the geometrical description <strong>of</strong> the<br />

contour pr<strong>of</strong>ile: 4 transversal nodes and 4 transversal segments are required for a rectangular tubular<br />

pr<strong>of</strong>ile, 6 nodes and 5 segments are required for an I pr<strong>of</strong>ile... Besides, the shear center is prescribed to<br />

be that <strong>of</strong> uniform torsion (as <strong>in</strong> Vlassov or Benscoter computations).<br />

Example 1: Plane frame flexural buckl<strong>in</strong>g<br />

The first example illustrates the plane flexural buckl<strong>in</strong>g <strong>of</strong> a portal frame (Figure 5.56a). The columns<br />

and the beam <strong>of</strong> the frame are identical and the closed cross section is given <strong>in</strong> figure 5.56b.<br />

E = 210GPa, G = 80GPa.<br />

0.04m<br />

(a)<br />

5m<br />

(b)<br />

t=0.001m<br />

0.04m<br />

P P<br />

5m<br />

100.0%<br />

10.0%<br />

1.0%<br />

0.1%<br />

Difference <strong>with</strong> Timoshenko's solution for the first critical load<br />

1 10 100<br />

Number <strong>of</strong> elements<br />

Figure 5.56 Buckl<strong>in</strong>g <strong>of</strong> a frame consist<strong>in</strong>g <strong>of</strong> members <strong>with</strong> closed cross section<br />

(c)<br />

The frame buckles first <strong>in</strong> a sway mode <strong>in</strong> bend<strong>in</strong>g. The difference between the f<strong>in</strong>ite element results<br />

and the solution given by Timoshenko (1961) is shown <strong>in</strong> Figure 5.56c. The numerical value <strong>of</strong> the<br />

5-67


first critical load converges to the value given by the analytical solution <strong>of</strong> Timoshenko (Pcr = 652N)<br />

when the total number <strong>of</strong> elements <strong>in</strong>creases.<br />

Example 2: Pure torsional buckl<strong>in</strong>g <strong>of</strong> a column<br />

A column <strong>with</strong> a cruciform section submitted to an axial load is considered (Figure 5.57). The<br />

thickness <strong>of</strong> the walls is t = 4mm. L = 1m, G = 80.8GPa, E = 210GPa.<br />

P[N]<br />

3.E+05<br />

2.E+05<br />

1.E+05<br />

0.E+00<br />

� �<br />

�<br />

L<br />

P<br />

�<br />

�<br />

Figure 5.57 Torsional buckl<strong>in</strong>g <strong>of</strong> a column <strong>with</strong> cruciform cross section<br />

Accord<strong>in</strong>g to Vlassov theory, this k<strong>in</strong>d <strong>of</strong> cross section does not warp. The theoretical torsional<br />

Eulerian buckl<strong>in</strong>g load is 258398N. To <strong>in</strong>itiate the torsional buckl<strong>in</strong>g <strong>of</strong> the column, a small<br />

perturbation is needed <strong>in</strong> the f<strong>in</strong>ite element analysis; this is <strong>in</strong>troduced by apply<strong>in</strong>g a small torsional<br />

moment Mx at mid height <strong>of</strong> the column. Figure 5.57 gives the relationship between the axial load and<br />

the angle <strong>of</strong> twist at mid height for <strong>in</strong>creas<strong>in</strong>g values <strong>of</strong> P and Mx. The horizontal l<strong>in</strong>e � is the critical<br />

load 258398N. The curves represent the geometrical non-l<strong>in</strong>ear variation <strong>of</strong> the angle <strong>of</strong> twist at mid<br />

8cm<br />

0.000 0.002 0.004 0.006 0.008<br />

θ[rad]<br />

4mm<br />

8cm<br />

8cm<br />

8cm<br />

5-68


height for different values <strong>of</strong> the ratio Mx/P: Mx/P = 5.10 -7 m for the curve�, 15.10 -7 m for�, 5.10 -6 m<br />

for� and 15.10 -6 m for�. The relationship between the load and the angle <strong>of</strong> twist is obviously<br />

<strong>in</strong>fluenced by the magnitude <strong>of</strong> the applied torsional perturbation, but all curves reach asymptotically<br />

the level <strong>of</strong> the elastic buckl<strong>in</strong>g load correspond<strong>in</strong>g to pure torsional buckl<strong>in</strong>g.<br />

Example 3: Flexural torsional buckl<strong>in</strong>g <strong>of</strong> a column<br />

A column <strong>with</strong> an open monosymmetric cross section is submitted to an axial load pass<strong>in</strong>g through the<br />

centroid (Figure 5.58): L = 20m, E = 210GPa, G = 80GPa.<br />

Figure 5.58 A column <strong>with</strong> open monosymmetric cross section<br />

100.0%<br />

10.0%<br />

1.0%<br />

0.1%<br />

L<br />

P<br />

tfs=0.02m<br />

tw=0.01m<br />

G<br />

C<br />

tfi=0.014m<br />

Difference <strong>with</strong> Vlassov solution for the first critical load<br />

1 10 100<br />

Number <strong>of</strong> elements<br />

Figure 5.59 Buckl<strong>in</strong>g analysis <strong>of</strong> a column <strong>with</strong> open monosymmetric cross section<br />

Numerical results are compared <strong>with</strong> two analytical solutions. The first one is based on Vlassov theory<br />

for columns <strong>with</strong> open cross sections and the second is based on the proposed warp<strong>in</strong>g function. The<br />

0.1m<br />

0.125m 0.125m<br />

0.2m<br />

5-69


non l<strong>in</strong>ear buckl<strong>in</strong>g equations are developed from a state <strong>of</strong> comb<strong>in</strong>ed torsion, bend<strong>in</strong>g and axial<br />

compression. They are obta<strong>in</strong>ed from general equilibrium equations written for the deformed beam or<br />

column. The solution is given by tak<strong>in</strong>g <strong>in</strong>to consideration the boundary conditions.<br />

The first critical load is computed by us<strong>in</strong>g Vlassov theory. The analytical result (Pcr = 102223N) is<br />

then compared <strong>with</strong> the one based on Prokić warp<strong>in</strong>g function. The two analytical calculations give<br />

similar results <strong>with</strong> a difference <strong>of</strong> 0.0001%. The difference between the f<strong>in</strong>ite element solution and<br />

the reference value based on Vlassov theory is illustrated <strong>in</strong> Figure 5.59.<br />

Number <strong>of</strong> elements<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

0.E+00 2.E+06 4.E+06 6.E+06 8.E+06 1.E+07<br />

Critical loads [N]<br />

Figure 5.60 Critical loads for the centrally loaded column (figure 5.58)<br />

In a general flexural torsional buckl<strong>in</strong>g <strong>of</strong> a beam-column, the (xy) bend<strong>in</strong>g modes, the (xz) bend<strong>in</strong>g<br />

modes and the twist<strong>in</strong>g modes are coupled. The first-order theory gives three homogeneous equations<br />

and represents an eigenvalue problem. When, the shear center (C) and the centroid (G) co<strong>in</strong>cide, the<br />

equations are uncoupled and the solution gives a discrete set <strong>of</strong> buckl<strong>in</strong>g modes. The lowest critical<br />

load is, <strong>in</strong> general, <strong>of</strong> practical significance. When C and G do not co<strong>in</strong>cide (examples 1 and 2),<br />

buckl<strong>in</strong>g <strong>in</strong>volves simultaneously torsion and bend<strong>in</strong>g, and the critical load is lower than if torsional<br />

effects are ignored.<br />

Numerically, when the number <strong>of</strong> f<strong>in</strong>ite elements <strong>in</strong>creases, the number <strong>of</strong> detected critical loads<br />

<strong>in</strong>creases. Figure 5.60 shows the critical values obta<strong>in</strong>ed for the same example (figure 5.58) up to<br />

10MN. The squares along the horizontal axis <strong>of</strong> figure 5.60 represent the reference values <strong>of</strong> the<br />

buckl<strong>in</strong>g loads (based on Vlassov theory). The other sets <strong>of</strong> values correspond to buckl<strong>in</strong>g loads<br />

detected by f<strong>in</strong>ite element analyses <strong>with</strong> <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> elements (1, 2, 10, 16 and 20 elements).<br />

For one element, there are only three critical values when the applied load P <strong>in</strong>creases from zero to<br />

10MN. For two elements, the numerical values <strong>of</strong> buckl<strong>in</strong>g loads are improved and other critical loads<br />

appear and so on... Each critical value converges to the reference solution when the number <strong>of</strong><br />

elements <strong>in</strong>creases.<br />

5-70


Example 4: Lateral torsional beam buckl<strong>in</strong>g<br />

An I beam (Figure 5.61) is loaded by two couples at its ends and is therefore submitted to uniform<br />

bend<strong>in</strong>g. L = 20m, E = 300GPa, G = 99.5GPa. The critical value <strong>of</strong> the bend<strong>in</strong>g moment<br />

correspond<strong>in</strong>g to the lateral torsional buckl<strong>in</strong>g is computed analytically by us<strong>in</strong>g Vlassov warp<strong>in</strong>g<br />

function (Mcr = 6262.26Nm). Figure 5.61b shows how the numerical solution converges to the<br />

reference solution based on Vlassov theory.<br />

M M<br />

(a)<br />

tw=0.00375m<br />

tf=0.01m<br />

L<br />

tf=0.01m<br />

0.08m<br />

Figure 5.61 Lateral torsional buckl<strong>in</strong>g <strong>of</strong> an I beam<br />

Example 5: Buckl<strong>in</strong>g <strong>of</strong> a one-celled monosymmetrical cross section<br />

A column (Figure 5.62a) submitted to an axial load and a beam (Figure 5.62b) submitted to uniform<br />

bend<strong>in</strong>g are considered. The cross section (Figure 5.62c) consists <strong>of</strong> one cell and two walls. L = 20m,<br />

E = 206GPa, G = 82.4GPa. The analytical solution <strong>of</strong> this problem was already presented <strong>in</strong> paragraph<br />

4.4.7.<br />

L<br />

0.38m<br />

(a) (b) (c)<br />

P<br />

100.0%<br />

10.0%<br />

1.0%<br />

0.1%<br />

t f=0.014m<br />

0.1m<br />

t f=0.02m<br />

tw=0.01m<br />

0.125m 0.125m<br />

Figure 5.62 Flexural torsional and lateral torsional bukcl<strong>in</strong>g <strong>of</strong> an I beam <strong>with</strong> one cell<br />

M<br />

M<br />

(b)<br />

Difference <strong>with</strong> Vlassov solution for the first critical load<br />

1 10 100<br />

Number <strong>of</strong> elements<br />

0.1m<br />

0.2m<br />

5-71


For the first case (figure 5.62a), the lowest critical load is a coupl<strong>in</strong>g <strong>of</strong> flexural and torsional<br />

buckl<strong>in</strong>g. The difference between the analytical value (161kN; see table 4.2) and the present f<strong>in</strong>ite<br />

element solution is 21.53% for a two f<strong>in</strong>ite element discretization and 0.79% for a ten f<strong>in</strong>ite element<br />

discretisation.<br />

In the second case, the beam (Figure 5.62b) is subjected to a uniform plane bend<strong>in</strong>g that <strong>in</strong>duces<br />

compression <strong>in</strong> the th<strong>in</strong> walled cell and traction <strong>in</strong> the bottom flange. In this case <strong>of</strong> lateral torsional<br />

buckl<strong>in</strong>g, the differences between the present f<strong>in</strong>ite element and the analytical calculations (528Nm;<br />

see table 4.2) is 8.82% for a two f<strong>in</strong>ite element discretization and 1.01% for a ten f<strong>in</strong>ite element<br />

discretisation.<br />

Example 6: Buckl<strong>in</strong>g <strong>of</strong> columns <strong>with</strong> different cross sections<br />

A column <strong>with</strong> two different cross sections (1) and (2) is submitted to an axial load P (Figure 5.63b).<br />

The thickness is constant and equal to 20mm, E = 200 GPa, G = 80 GPa, L1 = 6m, and L2 = 14m.<br />

Two cases are considered:<br />

- two th<strong>in</strong> rectangular pr<strong>of</strong>iles as <strong>in</strong> figure 5.63a,<br />

- I and U pr<strong>of</strong>iles as <strong>in</strong> figure 5.63c.<br />

t=0.02m<br />

(2)<br />

0.2m<br />

t=0.02m<br />

(1)<br />

0.3m<br />

L2<br />

(2)<br />

L1 (1)<br />

P<br />

(a) (b) (c)<br />

(1)<br />

(2)<br />

Figure 5.63 A column (b) <strong>with</strong> two cases <strong>of</strong> a change <strong>in</strong> the cross sectional geometry: case (a) and case<br />

(c)<br />

For the first case, a method for estimat<strong>in</strong>g theoretically the Eulerian flexural buckl<strong>in</strong>g load <strong>of</strong> such a<br />

column <strong>with</strong> different cross sections can be found <strong>in</strong> (Timoshenko 1961); the value obta<strong>in</strong>ed for the<br />

critical load is 200.3N. Other solutions (table 5.8) give higher values s<strong>in</strong>ce they derive from energy<br />

methods. By perform<strong>in</strong>g an Eulerian stability analysis <strong>with</strong> shell elements (Samcef; Samtech s.a.<br />

2002), Pcr is equal to 201.2N. The Eulerian stability analysis <strong>with</strong> Samcef beam elements (that <strong>in</strong>clude<br />

Sa<strong>in</strong>t Venant torsional theory) gives also an acceptable solution s<strong>in</strong>ce the contour warp<strong>in</strong>g vanishes for<br />

the th<strong>in</strong> rectangular pr<strong>of</strong>iles. The buckl<strong>in</strong>g load obta<strong>in</strong>ed by a buckl<strong>in</strong>g analysis <strong>with</strong> 20 present beam<br />

elements is Pcr = 201.4N.<br />

(1)<br />

tw=0.0119m<br />

tf=0.0196m<br />

0.15m<br />

0.3m<br />

tf=0.0196m<br />

t=0.02m<br />

(2)<br />

0.3m<br />

y<br />

y<br />

z<br />

z<br />

0.3m<br />

5-72


Table 5.8 Flexural buckl<strong>in</strong>g loads<br />

Timoshenko, exact method<br />

Pcr [N]<br />

200.3<br />

Timoshenko, approximated method 202.0<br />

Samcef beam, 50 elts 201.9<br />

Samcef shell, 1840 elts 201.2<br />

Present beam f<strong>in</strong>ite element, 20 elts 201.4<br />

For the second case (<strong>with</strong> the cross sections I and U given <strong>in</strong> Figure 5.63c), the difference between the<br />

values <strong>of</strong> the first critical load found by an analysis <strong>with</strong> shell elements (880 elements, Pcr = 65.64kN)<br />

and the present f<strong>in</strong>ite element analysis (20 beam elements) is 0.4%.<br />

5-73


CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS<br />

In this chapter, the previously stated objectives are shown to be met <strong>with</strong><strong>in</strong> the presented work. A<br />

summary <strong>of</strong> the pr<strong>in</strong>cipal key po<strong>in</strong>ts <strong>of</strong> the thesis is followed by a general discussion <strong>of</strong> the results.<br />

The ma<strong>in</strong> achievements and conclusions <strong>of</strong> the work are provided. Several areas <strong>of</strong> further research<br />

that could complete the work presented <strong>in</strong> this dissertation are suggested.<br />

6.1 Objectives<br />

This thesis has <strong>in</strong>vestigated the behavior <strong>of</strong> th<strong>in</strong> walled 3D beam structures <strong>with</strong> arbitrary pr<strong>of</strong>iles. The<br />

ma<strong>in</strong> objectives have been:<br />

- a detailed understand<strong>in</strong>g <strong>of</strong> mechanical behaviors such as non uniform torsion, shear bend<strong>in</strong>g<br />

and distortion,<br />

- the elaboration <strong>of</strong> an efficient theoretical formulation and the implementation <strong>of</strong> the associate<br />

f<strong>in</strong>ite element model <strong>in</strong> order to analyze:<br />

• uniform and non uniform torsion<br />

• bend<strong>in</strong>g shear effects<br />

• distortion<br />

<strong>of</strong> th<strong>in</strong> walled beams by us<strong>in</strong>g a s<strong>in</strong>gle warp<strong>in</strong>g function for:<br />

6.2 Complexity<br />

• a broad variety <strong>of</strong> cross sectional shapes compris<strong>in</strong>g multiple branches and cells<br />

• asymmetrical pr<strong>of</strong>iles where the shear center does not co<strong>in</strong>cide <strong>with</strong> the centroid<br />

• partial transmissions <strong>of</strong> warp<strong>in</strong>g <strong>in</strong> beam assemblies...<br />

Th<strong>in</strong> walled beams are usually cold formed from flat strips or welded from th<strong>in</strong> plates, result<strong>in</strong>g <strong>in</strong> a<br />

wide variety <strong>of</strong> cross sectional shapes and forms. Their behavior is poorly described by elementary<br />

formulations for which the mechanical components are reduced to stretch<strong>in</strong>g, bend<strong>in</strong>g and uniform<br />

torsion. In practical applications, large shear stra<strong>in</strong>s and stresses are exhibited. A significant non<br />

uniform warp<strong>in</strong>g arises from restra<strong>in</strong>ed supports and from general non uniform distributions <strong>of</strong> shear<br />

forces, torsional moments, torsional bimoments or other resultants associated <strong>with</strong> the <strong>in</strong>-plane<br />

deformation <strong>of</strong> the entire cross section, and called <strong>with</strong><strong>in</strong> this dissertation distortional moments and<br />

bimoments.<br />

The representation <strong>of</strong> these important effects <strong>in</strong> structural applications was a big challenge:<br />

approach<strong>in</strong>g the <strong>in</strong>tricate problem by a simplified and ‘computationally manageable’ formulation.<br />

Several complex mechanical aspects had to be taken <strong>in</strong>to consideration <strong>in</strong> order to obta<strong>in</strong> an accurate<br />

representation <strong>of</strong> the real structural behavior.<br />

6-1


6.3 Research topics<br />

The reviewed research that describes the ma<strong>in</strong> topics concerned <strong>with</strong> the present work was presented<br />

<strong>in</strong> the first part <strong>of</strong> the dissertation ‘Overview’.<br />

In chapter 1, some basic assumptions and computations were surveyed for th<strong>in</strong> walled beam analyses.<br />

The complexity <strong>of</strong> the relevant computational schemes was highlighted and the present work was<br />

positioned by comparison <strong>with</strong> published literature. Even at the early stage <strong>of</strong> bibliographical work,<br />

difficulties arose from abundant and diversified literature concern<strong>in</strong>g the subject, lack <strong>of</strong> early<br />

publications or translations, unclear correlations between approximations and conclusions, miss<strong>in</strong>g<br />

l<strong>in</strong>ks or justifications…<br />

The objective <strong>of</strong> improv<strong>in</strong>g the understand<strong>in</strong>g <strong>of</strong> the mechanical components <strong>of</strong> exist<strong>in</strong>g th<strong>in</strong> walled<br />

beam theories was met <strong>in</strong> Chapter 2. The concept and history <strong>of</strong> ma<strong>in</strong> theories have been discussed <strong>in</strong><br />

order to improve the understand<strong>in</strong>g <strong>of</strong> the mechanical behavior and to prepare the theoretical and<br />

numerical developments presented <strong>in</strong> parts II and III.<br />

The performance <strong>of</strong> any beam method for the calculation <strong>of</strong> shear bend<strong>in</strong>g effects was shown to<br />

depend closely on adequate correction factors. The shear correction factor <strong>in</strong> Timoshenko formulation<br />

was found to depend on the geometrical aspect <strong>of</strong> the cross section, and particularly whether the<br />

pr<strong>of</strong>ile does comprise or does not closed cells. In the k<strong>in</strong>ematical description <strong>of</strong> the displacement field<br />

<strong>in</strong> high order bend<strong>in</strong>g shear theories, some coefficients were found to depend on the geometrical shape<br />

<strong>of</strong> the cross section.<br />

Some remarks and results have been correlated <strong>with</strong> the undertaken assumptions: torsional shear<br />

stresses found to be zero when computed from Vlassov k<strong>in</strong>ematics, Vlassov warp<strong>in</strong>g function<br />

<strong>in</strong>admissible for closed pr<strong>of</strong>iles, erroneous torsional moments when computed as <strong>in</strong>ternal resultants <strong>of</strong><br />

stresses result<strong>in</strong>g from Benscoter k<strong>in</strong>ematics, <strong>in</strong>fluence <strong>of</strong> the thickness warp<strong>in</strong>g function, deduc<strong>in</strong>g<br />

the thickness warp<strong>in</strong>g from the normality assumption <strong>of</strong> th<strong>in</strong> plates, limitations <strong>of</strong> Prokić analyses<br />

concern<strong>in</strong>g the torsional behavior <strong>of</strong> monosymmetrical and asymmetrical pr<strong>of</strong>iles… The mechanical<br />

<strong>in</strong>terpretation <strong>of</strong> some assumptions, approximations and relations has been improved: identify<strong>in</strong>g the<br />

distortional behavior as located somewhere between local and global classifications, select<strong>in</strong>g ‘global’<br />

distortional modes, comput<strong>in</strong>g local plate bend<strong>in</strong>g due to the membrane stiffen<strong>in</strong>g, describ<strong>in</strong>g the birotation<br />

<strong>of</strong> ‘h<strong>in</strong>ged’ pr<strong>of</strong>ile frame, calculat<strong>in</strong>g the coord<strong>in</strong>ates <strong>of</strong> the distortional centers, evaluat<strong>in</strong>g the<br />

distortional centers and jo<strong>in</strong>ts dependency…<br />

A brief presentation <strong>of</strong> elastic buckl<strong>in</strong>g <strong>of</strong> beams and columns was followed by analytical<br />

developments us<strong>in</strong>g Benscoter warp<strong>in</strong>g function for the calculations <strong>of</strong> flexural-torsional and lateraltorsional<br />

buckl<strong>in</strong>g <strong>in</strong> the case <strong>of</strong> a multi-branched pr<strong>of</strong>ile compris<strong>in</strong>g a closed cell.<br />

6.4 Methodologies<br />

Based on the knowledge and the <strong>in</strong> depth assessments <strong>of</strong> Chapter 2, a unified approach <strong>with</strong> a s<strong>in</strong>gle<br />

warp<strong>in</strong>g function has been formulated <strong>in</strong> this work <strong>in</strong> order to compute the response <strong>of</strong> th<strong>in</strong> walled<br />

beams <strong>with</strong> arbitrary pr<strong>of</strong>iles. Start<strong>in</strong>g from Prokić work, the contour warp<strong>in</strong>g was represented by a<br />

l<strong>in</strong>ear comb<strong>in</strong>ation <strong>of</strong> longitud<strong>in</strong>al displacements at cross sectional nodes. The expression (∑Ω i ui),<br />

<strong>in</strong>volv<strong>in</strong>g a sum <strong>of</strong> variables <strong>with</strong> constant ‘coefficients’ placed <strong>in</strong> front <strong>of</strong> each, allows a separation<br />

between:<br />

- the variables ‘ui’ which are longitud<strong>in</strong>al displacements vary<strong>in</strong>g <strong>with</strong> the longitud<strong>in</strong>al beam<br />

coord<strong>in</strong>ate (x);<br />

and<br />

6-2


- the functions ‘Ω i ’ which are constant <strong>with</strong> respect to x and l<strong>in</strong>ear <strong>with</strong> respect to the cross<br />

sectional contour coord<strong>in</strong>ate (s).<br />

This warp<strong>in</strong>g function, presented <strong>in</strong> Chapter 3, is very general s<strong>in</strong>ce –unlike Vlassov, Benscoter,<br />

Takahashi warp<strong>in</strong>g functions or high-order bend<strong>in</strong>g theories– its qualitative distribution over a cross<br />

section is not predeterm<strong>in</strong>ed or associated <strong>with</strong> a specific problem (e.g. torsional, distortional, shear<br />

bend<strong>in</strong>g…). One <strong>of</strong> the ma<strong>in</strong> achievements <strong>of</strong> this thesis was to develop adequate enhancements <strong>of</strong><br />

this general warp<strong>in</strong>g function <strong>in</strong> order to qualitatively and quantitatively reflect and capture the nature<br />

<strong>of</strong> mechanical behaviors. Specific constra<strong>in</strong>ts l<strong>in</strong>ked to different mechanical effects had to be<br />

<strong>in</strong>troduced at both k<strong>in</strong>ematical and equilibrium levels.<br />

At the k<strong>in</strong>ematical level, constra<strong>in</strong>ts have been prescribed <strong>in</strong> order to dedicate the general expression<br />

(∑Ω i ui) to a specific mechanical warp<strong>in</strong>g (torsional, distortional or bend<strong>in</strong>g shear). These constra<strong>in</strong>ts,<br />

developed <strong>in</strong> Chapter 3, concern the expression <strong>of</strong> the displacement field. They are found by l<strong>in</strong>k<strong>in</strong>g<br />

the warp<strong>in</strong>g degrees <strong>of</strong> freedom to one specific physical sub-problem and by decoupl<strong>in</strong>g this problem<br />

from the other stretch<strong>in</strong>g, bend<strong>in</strong>g, torsional and/or distortional terms. The satisfaction <strong>of</strong> these<br />

k<strong>in</strong>ematical relations resulted <strong>in</strong> a tw<strong>of</strong>old uncoupl<strong>in</strong>g at the level <strong>of</strong> the virtual work pr<strong>in</strong>ciple and the<br />

result<strong>in</strong>g equilibrium equations:<br />

(i) the dependency <strong>of</strong> normal forces and bend<strong>in</strong>g moments on torsional and distortional<br />

warp<strong>in</strong>g degrees <strong>of</strong> freedom was relaxed;<br />

(ii) the contribution <strong>of</strong> stretch<strong>in</strong>g and bend<strong>in</strong>g rotational degrees <strong>of</strong> freedom –when not<br />

<strong>in</strong>volved <strong>in</strong> warp<strong>in</strong>g– <strong>in</strong> the computation <strong>of</strong> bimoments and warp<strong>in</strong>g resultants disappeared.<br />

At the equilibrium level, additional relations were formulated <strong>in</strong> order to elim<strong>in</strong>ate similar tw<strong>of</strong>old<br />

dependencies:<br />

(i) bend<strong>in</strong>g shear forces from torsional and distortional degrees <strong>of</strong> freedom; torsional moment<br />

from distortional warp<strong>in</strong>g degrees <strong>of</strong> freedom…;<br />

(ii) torsional and distortional moments and bimoments from bend<strong>in</strong>g degrees <strong>of</strong> freedom and<br />

so on…<br />

Other requirements –such as the no shear boundary condition <strong>in</strong> bend<strong>in</strong>g, the dependency between<br />

distortional jo<strong>in</strong>t and centers…– contributed to the def<strong>in</strong>ition <strong>of</strong> the mechanical problem. In order to<br />

capture the physical problem, all the previously described constra<strong>in</strong>ts –most were already used <strong>in</strong> the<br />

uncoupl<strong>in</strong>g process– have been re-<strong>in</strong>troduced <strong>in</strong> the proposed formulation accord<strong>in</strong>g to the follow<strong>in</strong>g<br />

classification:<br />

– those <strong>in</strong>volv<strong>in</strong>g undeterm<strong>in</strong>ed torsional and distortional characteristics have been used <strong>in</strong> order<br />

to condense and evaluate these unknowns (coord<strong>in</strong>ates <strong>of</strong> the torsional center, coord<strong>in</strong>ates <strong>of</strong><br />

the distortional centers, distortional rotation ratio);<br />

– those driven at the stage <strong>of</strong> the displacement field description have been added to the<br />

equilibrium equations <strong>in</strong> order to identify the nature <strong>of</strong> warp<strong>in</strong>g represented by the additional<br />

degrees <strong>of</strong> freedom ui.<br />

6.5 Result summary and discussion<br />

The build<strong>in</strong>g <strong>of</strong> a robust method that efficiently captures many complex physical behaviors has been a<br />

cautious and tedious task. Simple techniques <strong>of</strong> identify<strong>in</strong>g, superpos<strong>in</strong>g and decoupl<strong>in</strong>g the different<br />

mechanical components constituted a crucial key <strong>of</strong> success for the develop<strong>in</strong>g process. The ability <strong>of</strong><br />

the proposed model to capture the response <strong>of</strong> th<strong>in</strong>-walled beam structures was assessed under various<br />

load<strong>in</strong>g cases by develop<strong>in</strong>g analytical formulations for simple problems (chapter 4) and f<strong>in</strong>ite element<br />

models for complete 3D beam structures (chapter 5). The results may be discussed <strong>in</strong> five different<br />

categories: (i) torsional behavior, (ii) flexural behavior, (iii) distortional behavior, (iv) buckl<strong>in</strong>g and (v)<br />

6-3


discussion on the general concept and suitability <strong>of</strong> warp<strong>in</strong>g functions and location <strong>of</strong> torsional and<br />

distorsional centers.<br />

6.5.1 The torsional behavior<br />

The first developments handled the torsional behavior <strong>of</strong> th<strong>in</strong> walled beams. A 2-node beam element<br />

(FEM1) <strong>in</strong>cluded the normality assumption (Bernoulli theory) for bend<strong>in</strong>g and related n warp<strong>in</strong>g<br />

degrees <strong>of</strong> freedom –where n is the number <strong>of</strong> transversal nodes <strong>of</strong> the beam element pr<strong>of</strong>ile– to the<br />

torsional behavior. This f<strong>in</strong>ite element model is based on a l<strong>in</strong>ear polynomial <strong>in</strong>terpolation <strong>of</strong> torsional<br />

rotations and warp<strong>in</strong>g degrees <strong>of</strong> freedom. Exact solutions were found <strong>with</strong> m<strong>in</strong>imum f<strong>in</strong>ite element<br />

discretization for the follow<strong>in</strong>g cases <strong>of</strong> uniform torsion, i.e.:<br />

- the case <strong>of</strong> a uniform variation <strong>of</strong> warp<strong>in</strong>g and <strong>of</strong> torsional moment distribution along the beam<br />

length;<br />

- the case <strong>of</strong> arbitrary load<strong>in</strong>g and boundary conditions for particular th<strong>in</strong> pr<strong>of</strong>iles <strong>with</strong> zero<br />

warp<strong>in</strong>g (e.g. those present<strong>in</strong>g radial symmetry…).<br />

However, for the rema<strong>in</strong><strong>in</strong>g cases, the <strong>in</strong>fluence <strong>of</strong> non uniform torsional effects was not captured<br />

accurately s<strong>in</strong>ce the exact solution consists <strong>in</strong> an exponential-vary<strong>in</strong>g torsional rotation and warp<strong>in</strong>g<br />

along the longitud<strong>in</strong>al beam. Numerical examples <strong>in</strong> Chapter 5 showed that ‘FEM1’ gave acceptable<br />

results <strong>in</strong> the case <strong>of</strong> m<strong>in</strong>or non uniform torsional effects and behaved rather poorly <strong>in</strong> the case <strong>of</strong><br />

strong non uniform torsional effects. This motivated the implementation <strong>of</strong> a 3-node beam element<br />

(FEM2) by apply<strong>in</strong>g l<strong>in</strong>ear <strong>in</strong>terpolation functions for longitud<strong>in</strong>al displacements and quadratic shape<br />

functions for the other degrees <strong>of</strong> freedom. The result<strong>in</strong>g f<strong>in</strong>ite element is based k<strong>in</strong>ematically on<br />

Timoshenko model for shear bend<strong>in</strong>g and on relat<strong>in</strong>g the warp<strong>in</strong>g degrees <strong>of</strong> freedom to non uniform<br />

torsional effects.<br />

A wide variety <strong>of</strong> beam structures <strong>with</strong> different pr<strong>of</strong>ile geometries was analyzed for various load<strong>in</strong>g<br />

cases. The torsional rotation, the amount <strong>of</strong> warp<strong>in</strong>g as well as normal and shear stresses were<br />

computed. The numerical examples <strong>of</strong> Chapter 5 showed an excellent agreement <strong>with</strong> analytical<br />

computations <strong>in</strong>clud<strong>in</strong>g Vlassov theory for open pr<strong>of</strong>iles and Benscoter theory for closed pr<strong>of</strong>iles, <strong>with</strong><br />

shell f<strong>in</strong>ite element simulations <strong>in</strong> Samcef (Sametch s.a.) and <strong>with</strong> some published results from the<br />

literature. The accuracy <strong>of</strong> ‘FEM2’ was shown to depend on the f<strong>in</strong>ite element discretization that aims<br />

at approach<strong>in</strong>g the exponential –<strong>with</strong> respect to the longitud<strong>in</strong>al axis x– nature <strong>of</strong> the response by<br />

polynomial functions. It could be concluded that, for a standard beam member, a discretization <strong>with</strong><br />

ten elements gives reasonable accuracy while a twenty element discretization gives an excellent<br />

agreement. Similarly to other contributions, warp<strong>in</strong>g restra<strong>in</strong>ts were found to have a strong impact on<br />

the beam response. Partial or full warp<strong>in</strong>g restra<strong>in</strong>ts were shown to stiffen significantly the torsional<br />

behavior <strong>of</strong> beam structures, particularly for open pr<strong>of</strong>iles exhibit<strong>in</strong>g an important non uniform<br />

torsional behavior. The accuracy was also assessed <strong>in</strong> the case <strong>of</strong> beam assemblies <strong>with</strong> different<br />

shaped pr<strong>of</strong>iles where the connection type determ<strong>in</strong>es the nature <strong>of</strong> the warp<strong>in</strong>g transmission. The<br />

discont<strong>in</strong>uity <strong>of</strong> warp<strong>in</strong>g at the assembly po<strong>in</strong>t was found to <strong>in</strong>fluence strongly the beam response.<br />

6.5.2 The flexural behavior<br />

The 2-node f<strong>in</strong>ite element ‘FEM1’ <strong>with</strong> Hermitian cubic shape functions gave –as expected and well<br />

known <strong>in</strong> the literature– the exact solution <strong>of</strong> Bernoulli. The assumption <strong>of</strong> Bernoulli theory was<br />

shown to be unacceptable <strong>in</strong> some cases, especially for short beams <strong>with</strong> high and th<strong>in</strong> pr<strong>of</strong>iles. The 3node<br />

f<strong>in</strong>ite element, based on Timoshenko, has been modified by a reduced <strong>in</strong>tegration scheme for the<br />

stiffness terms associated <strong>with</strong> shear bend<strong>in</strong>g effects <strong>in</strong> order to avoid the shear lock<strong>in</strong>g problem.<br />

Exact solutions were found <strong>in</strong> the cases <strong>of</strong> l<strong>in</strong>ear and quadratic distributions <strong>of</strong> bend<strong>in</strong>g moment. The<br />

6-4


shear correction factor was also <strong>in</strong>troduced. The result<strong>in</strong>g modified ‘FEM2’ gave an excellent<br />

agreement <strong>with</strong> the modified Timoshenko analytical solution under uniformly distributed applied<br />

loads.<br />

The necessity <strong>of</strong> an automatic and unified computational method <strong>of</strong> the shear correction factor<br />

constituted an additional motivation for adapt<strong>in</strong>g the present warp<strong>in</strong>g function to bend<strong>in</strong>g shear<br />

warp<strong>in</strong>g effects. Full developments (FEM3) aimed therefore at captur<strong>in</strong>g the <strong>in</strong>fluence <strong>of</strong> warp<strong>in</strong>g due<br />

to shear bend<strong>in</strong>g. The effects <strong>of</strong> shear deformation on the beam deflection were evaluated for different<br />

pr<strong>of</strong>ile forms and dimensions: rectangular cross sections <strong>with</strong> different height/width ratios, an open<br />

asymmetrical pr<strong>of</strong>ile <strong>with</strong> many branches, a high th<strong>in</strong> pr<strong>of</strong>ile compris<strong>in</strong>g closed cells. It was concluded<br />

that the benefit <strong>of</strong> <strong>in</strong>clud<strong>in</strong>g shear bend<strong>in</strong>g warp<strong>in</strong>g <strong>in</strong> order to predict the displacements <strong>of</strong> a structure<br />

is marg<strong>in</strong>al when compared to the benefit <strong>of</strong> <strong>in</strong>clud<strong>in</strong>g torsional warp<strong>in</strong>g. The accuracy ga<strong>in</strong>ed <strong>in</strong><br />

comput<strong>in</strong>g torsional warp<strong>in</strong>g, when compared to the Sa<strong>in</strong>t Venant solution, was found to be much<br />

more important than the accuracy ga<strong>in</strong>ed <strong>in</strong> comput<strong>in</strong>g bend<strong>in</strong>g shear warp<strong>in</strong>g, when compared to the<br />

modified Timoshenko solution. As a result, it was suggested to keep the modified 3-node element<br />

‘FEM2’ for the general analysis <strong>of</strong> 3D beam structures and to apply the developments <strong>in</strong>clud<strong>in</strong>g<br />

bend<strong>in</strong>g shear warp<strong>in</strong>g effects for the calculation <strong>of</strong> the shear correction factor only. S<strong>in</strong>ce the<br />

proposed warp<strong>in</strong>g function allows automatic and accurate computations for arbitrary pr<strong>of</strong>iles, ‘FEM3’<br />

was <strong>in</strong>cluded as a ‘black box’ <strong>in</strong> ‘FEM2’ <strong>in</strong> order to compute the shear correction factor before<br />

analyz<strong>in</strong>g the flexural behavior <strong>of</strong> a 3D beam structure <strong>with</strong> the modified Timoshenko model.<br />

6.5.3 The distortional behavior<br />

Additional developments <strong>in</strong>volved the distortional behavior <strong>of</strong> th<strong>in</strong> walled pr<strong>of</strong>iles. The k<strong>in</strong>ematics <strong>of</strong><br />

this work (and particularly the general warp<strong>in</strong>g function ∑Ω i ui) was adapted and <strong>in</strong>troduced <strong>in</strong> a f<strong>in</strong>ite<br />

element model (FEM4) <strong>in</strong> order to capture the response <strong>of</strong> a structure exhibit<strong>in</strong>g one mode <strong>of</strong><br />

distortional behavior. The mechanical nature <strong>of</strong> pr<strong>of</strong>ile distortions was def<strong>in</strong>ed and described <strong>in</strong> an<br />

approach similar to that currently used by Takahashi. Important similarities have been identified<br />

between the distortional theory and the torsional theory <strong>with</strong> uniform and non uniform effects. The<br />

torsional mode was found to be a particular mode <strong>of</strong> the distortional modes. The cross sectional<br />

distortion was identified as be<strong>in</strong>g <strong>in</strong>duced by particular external loads which are statically equivalent<br />

to zero. The result<strong>in</strong>g stresses attenuate very slowly along the length <strong>of</strong> the beam. The location <strong>of</strong><br />

distortional centers and the distortional rotational ratio were determ<strong>in</strong>ed. An excellent agreement was<br />

found between ‘FEM4’ results and other results <strong>in</strong>volv<strong>in</strong>g Takahashi analytical beam theory and<br />

numerical shell computations us<strong>in</strong>g the commercial code Samcef for the distortional rotation, normal<br />

and shear stresses distributions. The <strong>in</strong>fluence <strong>of</strong> the distortion on the stresses, usually ignored <strong>in</strong> th<strong>in</strong>walled<br />

beam designs, was shown to be important when compared to bend<strong>in</strong>g and torsion even <strong>in</strong><br />

simple load<strong>in</strong>g cases (e.g. second example <strong>in</strong> paragraph 5.4.4).<br />

6.5.4 Buckl<strong>in</strong>g<br />

A non l<strong>in</strong>ear f<strong>in</strong>ite element based on the updated lagrangian formulation was developed by <strong>in</strong>clud<strong>in</strong>g<br />

Timoshenko k<strong>in</strong>ematics and torsional warp<strong>in</strong>g degrees <strong>of</strong> freedom for 3D th<strong>in</strong> walled beam structures.<br />

An <strong>in</strong>cremental iterative method us<strong>in</strong>g the arc length and the Newton-Raphson methods were used to<br />

solve the non l<strong>in</strong>ear problem. The result<strong>in</strong>g non l<strong>in</strong>ear f<strong>in</strong>ite element model was validated for beams,<br />

columns and frames submitted to various load<strong>in</strong>g cases. Numerical computations <strong>of</strong> critical loads were<br />

compared <strong>with</strong> analytical solutions us<strong>in</strong>g Vlassov or Benscoter warp<strong>in</strong>g functions, and to numerical<br />

simulations <strong>with</strong> shell f<strong>in</strong>ite elements. The proposed f<strong>in</strong>ite element was found to converge to reference<br />

solutions when mesh is ref<strong>in</strong>ed. It was shown aga<strong>in</strong> that, for a s<strong>in</strong>gle beam, an acceptable agreement is<br />

6-5


found for a discretization <strong>with</strong> ten elements and an excellent agreement is found for a twenty elements<br />

discretization. The present non l<strong>in</strong>ear element was able to capture the pure flexural, pure torsional,<br />

flexural torsional and lateral torsional buckl<strong>in</strong>g <strong>of</strong> beam structures <strong>with</strong> different forms <strong>of</strong> pr<strong>of</strong>ile<br />

(monosymmetrical, asymmetrical, open, compris<strong>in</strong>g cells…).<br />

6.5.5 Discussion on warp<strong>in</strong>g functions and locations <strong>of</strong> torsional and distortional centers<br />

The simplest solution <strong>of</strong> a torsional problem corresponds to the case <strong>of</strong> a uniform distribution <strong>of</strong> cross<br />

sectional warp<strong>in</strong>g along the beam axis. The correspond<strong>in</strong>g theory, commonly known as the de Sa<strong>in</strong>t<br />

Venant method, restricts its applications to a few exceptional cases. The non uniform torsional<br />

behavior is extremely complex and an exact theory <strong>in</strong>volves unfortunately laborious mathematical<br />

complications for general cases <strong>of</strong> pr<strong>of</strong>ile geometries, torsional load<strong>in</strong>g and boundary conditions.<br />

Approximate theories have been developed for th<strong>in</strong> walled beams. Open pr<strong>of</strong>iles are commonly<br />

analyzed by Vlassov theory which assumes an <strong>in</strong>flexible cross sectional contour. Warp<strong>in</strong>g shear<br />

stra<strong>in</strong>s are assumed to vanish <strong>in</strong> the middle surface <strong>of</strong> the th<strong>in</strong> walled structure and the out <strong>of</strong> plane<br />

displacement (or warp<strong>in</strong>g) <strong>of</strong> the pr<strong>of</strong>ile is obta<strong>in</strong>ed as a function <strong>of</strong> the rotat<strong>in</strong>g angle. Start<strong>in</strong>g from<br />

the k<strong>in</strong>ematics <strong>of</strong> this approximate theory, the longitud<strong>in</strong>al warp<strong>in</strong>g stresses are also expressed as a<br />

function <strong>of</strong> the rotat<strong>in</strong>g angle while shear warp<strong>in</strong>g stresses are found to be equal to zero.<br />

Closed th<strong>in</strong> walled pr<strong>of</strong>iles have been analyzed by approximate theories based on the assumption that<br />

the distribution <strong>of</strong> warp<strong>in</strong>g is the same as <strong>in</strong> the case <strong>of</strong> uniform torsion. A new parameter is<br />

<strong>in</strong>troduced and is found to depend on the angle <strong>of</strong> rotation <strong>of</strong> the pr<strong>of</strong>ile. Longitud<strong>in</strong>al warp<strong>in</strong>g stresses<br />

are found to be function <strong>of</strong> this new parameter while shear stresses cannot be derived directly from the<br />

k<strong>in</strong>ematics but have to be found by other methods.<br />

With<strong>in</strong> the previously overviewed methods, and as a result <strong>of</strong> the undertaken approximations, the<br />

warp<strong>in</strong>g function and the location <strong>of</strong> the torsional centers were found to depend only on the geometry<br />

<strong>of</strong> the cross section.<br />

With<strong>in</strong> this thesis work, it was shown how these approximations were relaxed. The warp<strong>in</strong>g function<br />

and the torsional center do not represent a pure characteristic <strong>of</strong> the pr<strong>of</strong>ile geometry. They depend on<br />

the solution <strong>of</strong> the problem, and thus, on the applied load<strong>in</strong>g and on the boundary conditions. These<br />

more general computations give accurate analyses <strong>in</strong> the cases where shear warp<strong>in</strong>g stresses at the<br />

midwall are large (e.g. short beams <strong>with</strong> th<strong>in</strong> pr<strong>of</strong>iles).<br />

The location <strong>of</strong> the shear center, as computed by Vlassov for open asymmetrical pr<strong>of</strong>iles or by<br />

Benscoter for closed asymmetrical pr<strong>of</strong>iles, is found <strong>with</strong> the present analyses <strong>in</strong> the case <strong>of</strong> uniform<br />

torsion; i.e. the case <strong>of</strong> uniform distribution <strong>of</strong> torsional moment and free warp<strong>in</strong>g. For this particular<br />

load<strong>in</strong>g case and boundary conditions, the present f<strong>in</strong>ite element calculations give exactly the location<br />

<strong>of</strong> torsional center as computed by Vlassov and Benscoter. This co<strong>in</strong>cidence could be expected s<strong>in</strong>ce<br />

Vlassov and Benscoter theories do not take <strong>in</strong>to account warp<strong>in</strong>g shear stresses <strong>in</strong> their k<strong>in</strong>ematical<br />

formulations. In the case <strong>of</strong> a uniform torsional case, warp<strong>in</strong>g shear stresses vanish and the present<br />

f<strong>in</strong>ite element results co<strong>in</strong>cide <strong>with</strong> those <strong>of</strong> Vlassov and Benscoter. However, <strong>in</strong> general load<strong>in</strong>g cases<br />

and boundary conditions, Vlassov and Benscoter computations use the same warp<strong>in</strong>g function and<br />

torsional center –as <strong>in</strong> the case <strong>of</strong> absence <strong>of</strong> warp<strong>in</strong>g shear stresses– while the present computations<br />

do not. If the location <strong>of</strong> the torsional center is prescribed <strong>in</strong> the f<strong>in</strong>ite element computations as be<strong>in</strong>g<br />

that <strong>of</strong> uniform torsion, the torsional rotation and longitud<strong>in</strong>al stress distributions are found to be those<br />

<strong>of</strong> Vlassov and Benscoter. However, erroneous shear stresses are obta<strong>in</strong>ed if calculated from the<br />

k<strong>in</strong>ematics by us<strong>in</strong>g Hooke’s law. This error vanishes for bisymmetrical pr<strong>of</strong>iles and gets larger <strong>with</strong><br />

<strong>in</strong>creas<strong>in</strong>g distance between the torsional center and the centroid.<br />

6-6


Similar observations were found for the distortional behavior. The locations <strong>of</strong> the distortional centers<br />

were found to be exactly those <strong>of</strong> Takahashi <strong>in</strong> the case <strong>of</strong> uniform distortion (uniform distribution <strong>of</strong><br />

distortional moment and free warp<strong>in</strong>g along the length <strong>of</strong> the beam) <strong>with</strong>out tak<strong>in</strong>g <strong>in</strong>to account the<br />

local plate bend<strong>in</strong>g. Similarly to the torsional behavior, the location <strong>of</strong> the distortional center and the<br />

amount <strong>of</strong> warp<strong>in</strong>g were found to vary along the beam <strong>in</strong> general load<strong>in</strong>g cases and boundary<br />

conditions.<br />

6.6 Suggestions for further works<br />

The <strong>in</strong>troduction <strong>of</strong> this thesis stated that the ma<strong>in</strong> aim <strong>of</strong> this work was to <strong>in</strong>vestigate 3D th<strong>in</strong> walled<br />

beam structures for arbitrary geometry, load<strong>in</strong>g cases and boundary conditions and to enable an<br />

accurate representation <strong>of</strong> the widest range possible <strong>of</strong> behaviors. The target was reached; all the<br />

designed and developed models gave satisfactory results and were conclusive. The work has provided<br />

important <strong>in</strong>formation that enhances the understand<strong>in</strong>g <strong>of</strong> structural problems and the fundamental<br />

physical pr<strong>in</strong>ciples that underlie them.<br />

The developed model proved to be applicable to the exam<strong>in</strong>ed behaviors. However more situations<br />

could fall <strong>with</strong><strong>in</strong> the scope <strong>of</strong> the formulation. For example, the distortional model, developed for<br />

arbitrary cases <strong>of</strong> pr<strong>of</strong>ile geometry, could be validated for other pr<strong>of</strong>iles. The f<strong>in</strong>ite element <strong>with</strong><br />

bend<strong>in</strong>g shear effects could be validated for the calculation <strong>of</strong> shear stresses. The variation <strong>of</strong> the<br />

position <strong>of</strong> the shear center could be <strong>in</strong>vestigated for a structure exhibit<strong>in</strong>g buckl<strong>in</strong>g…<br />

A wide range <strong>of</strong> practical problems (central cores <strong>of</strong> towers, bridge decks, naval structures…), that<br />

<strong>in</strong>itially motivated this research, could be deeply explored and fully analyzed by the 3D developed<br />

model. Such a complete application might reveal additional questions to be answered, would explore<br />

the advantageous effects <strong>of</strong> the presented advanced beam model and would certa<strong>in</strong>ly give a better<br />

understand<strong>in</strong>g <strong>of</strong> its limitations.<br />

F<strong>in</strong>ally, the present work provides the opportunity to explore new horizons:<br />

- apply<strong>in</strong>g the presented analyses <strong>in</strong> order to optimize the geometry <strong>of</strong> a pr<strong>of</strong>ile or the brac<strong>in</strong>g <strong>of</strong> a<br />

structure,<br />

- develop<strong>in</strong>g additional non l<strong>in</strong>ear computations <strong>with</strong> the presented warp<strong>in</strong>g function <strong>in</strong> order to<br />

study the distortional buckl<strong>in</strong>g and its <strong>in</strong>teraction <strong>with</strong> the other effects,<br />

- study<strong>in</strong>g the plastic and the full non l<strong>in</strong>ear post buckl<strong>in</strong>g behaviors <strong>with</strong><strong>in</strong> the present<br />

formulation.<br />

6-7


References<br />

Avery P., Mahendran M. & Nasir A. 2000. Flexural capacity <strong>of</strong> hollow flange beams. Journal <strong>of</strong><br />

Constructional Steel Research, 53(3): 201-223.<br />

Akoussah E., Beaulieu D. & Dhatt G. 1987. Analyse non l<strong>in</strong>éaire des structures à parois m<strong>in</strong>ces par<br />

éléments f<strong>in</strong>is et son application aux bâtiments <strong>in</strong>dustriels. Report GCT-87-07. University Laval,<br />

Canada.<br />

Back S. & Will K. 1998. A shear-flexible element <strong>with</strong> warp<strong>in</strong>g for th<strong>in</strong> walled open beams.<br />

International Journal for Numerical Methods <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g, 43: 1173-1191.<br />

Bakker M.C.M. & Peköz T. 2001. The f<strong>in</strong>ite element method for th<strong>in</strong> walled members- basic<br />

pr<strong>in</strong>ciples, Proceed<strong>in</strong>gs <strong>of</strong> the Third International Conference on Th<strong>in</strong>-<strong>Walled</strong> Structures (ICTWS<br />

2001), Krakow, Poland. Elsevier: 417-425.<br />

Bathe K.J., Ramm E. & Wilson E.L. 1975. <strong>F<strong>in</strong>ite</strong> element formulations for large deformation<br />

dynamics, International Journal <strong>of</strong> Numerical Methods Eng<strong>in</strong>eer<strong>in</strong>g, 9: 353-386.<br />

Batoz J.L. & Dhatt G. 1990. Modélisation des structures par éléments f<strong>in</strong>is. Volume 2, poutres et<br />

plaques. Hermès edition, Paris.<br />

Batoz J.L., Dhatt G. & Fafard M. 1999. Algorithmes et strategies de resolution pour l’analyse non<br />

l<strong>in</strong>éaire. Modélisation des structures m<strong>in</strong>ces par éléments f<strong>in</strong>is. 1(4): 1-53. Institut pour la promotion<br />

des sciences de l’<strong>in</strong>génieur, Paris.<br />

Bažant Z.P. & Cedol<strong>in</strong> L. 1991. Stability <strong>of</strong> structures : elastic, <strong>in</strong>elastic, fracture and damage<br />

theories. Oxford University Press, Oxford.<br />

Bažant Z.P. 2000. Stuctural stability. International Journal <strong>of</strong> Solids and Structures, 37: 55-67.<br />

Belytschko T., Kam L.W. & Moran B. 2000. Non-l<strong>in</strong>ear <strong>F<strong>in</strong>ite</strong> <strong>Element</strong>s for Cont<strong>in</strong>ua and Structures.<br />

Wiley, Chichester, England.<br />

Benscoter SU. 1954. A theory <strong>of</strong> torsion bend<strong>in</strong>g for multicell beams. Journal <strong>of</strong> Applied mechanics,<br />

21(1), March: 25-34.<br />

Bleich F. 1952. Buckl<strong>in</strong>g strength <strong>of</strong> metal structures. McGraw-Hill, New York, USA.<br />

B<strong>in</strong>kevich E.V., Mamuzich I., Shynkarenko V.B. & Vodopivec F. 1988. Lock<strong>in</strong>g-suppression<br />

techniques and their application to the FEM-analysis <strong>of</strong> processes <strong>of</strong> deformation <strong>of</strong> th<strong>in</strong>-walled<br />

objects. Journal <strong>of</strong> Materials Process<strong>in</strong>g Technology,75: 27-32.<br />

Bradford M.A. & Cuk P. 1988. Lateral buckl<strong>in</strong>g <strong>of</strong> tapered monosymmetric I-beams. Journal <strong>of</strong><br />

Structural Eng<strong>in</strong>eer<strong>in</strong>g ASCE, 120(8): 1607-1629.<br />

Bradford M.A. 1992. Lateral distortional buckl<strong>in</strong>g <strong>of</strong> steel I-section members. Journal <strong>of</strong> Construction<br />

Steel Research, 23: 97-116.<br />

Bradford M.A. & Ge. X.P. 1997. Elastic distortional buckl<strong>in</strong>g <strong>of</strong> cont<strong>in</strong>uous I-beams. Journal <strong>of</strong><br />

Construction Steel Research, 41(2-3): 249-266.<br />

Bradford M.A. 1997. Lateral distortional buckl<strong>in</strong>g <strong>of</strong> cont<strong>in</strong>uously restra<strong>in</strong>ed columns. Journal <strong>of</strong><br />

Construction Steel Research, 42(2):121-139.<br />

Bradford M.A. 1998. Distortional buckl<strong>in</strong>g <strong>of</strong> elastically restra<strong>in</strong>ed cantilevers. Journal <strong>of</strong><br />

Construction Steel Research, 47: 3-18.<br />

Bradford M.A. 1999. Elastic distortional buckl<strong>in</strong>g <strong>of</strong> tee-section cantilevers. Th<strong>in</strong>-walled Structures,<br />

33: 3-17.<br />

Braham M. 2001. Le déversement élastique des poutres en I à section monosymétrique soumises à un<br />

gradient de moment de flexion. Revue Construction Métallique, 1 : 17-28.<br />

Calgaro J.-A. 1988. Projet et construction des ponts. Presses de l’Ecole Nationale des Ponts et<br />

Chaussées, Paris.<br />

Chan S. 1990. Buckl<strong>in</strong>g analysis <strong>of</strong> structures composed <strong>of</strong> tapered members. Journal <strong>of</strong> Structural<br />

Eng<strong>in</strong>eer<strong>in</strong>g ASCE, 116(7): 1893-1906.


Chan S.L. 1995. Stability analysis <strong>of</strong> semirigid steel scaffold<strong>in</strong>g. Eng<strong>in</strong>eer<strong>in</strong>g Structures, 17(8): 568-<br />

574.<br />

Chan S.L. 2001. Non l<strong>in</strong>ear behavior and design <strong>of</strong> steel structures. Journal <strong>of</strong> Constructional Steel<br />

Research, 57: 1217-1231.<br />

Chen H. & Blanford G. 1989. A C0 f<strong>in</strong>ite element formulation for th<strong>in</strong> walled beams. International<br />

Journal <strong>of</strong> Numerical Methods <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g, 28: 2239-2255.<br />

Chen H. & Blandford G.E. 1991. Th<strong>in</strong>-<strong>Walled</strong> space frames: I-Large deformation analysis theory.<br />

Journal <strong>of</strong> Structural Eng<strong>in</strong>eer<strong>in</strong>g ASCE, 117(8):2499-2539<br />

Cheung M.S., Li W. & Chidiac S.E. 1996. <strong>F<strong>in</strong>ite</strong> strip analysis <strong>of</strong> bridges. E&FN Spon, London.<br />

Cheung Y.K. & Than L.G. 1998. <strong>F<strong>in</strong>ite</strong> strip method. CRC Press, Boca Raton.<br />

Conci A. 1992. Large displacement analysis <strong>of</strong> th<strong>in</strong>-walled beams <strong>with</strong> generic open section.<br />

International Journal <strong>of</strong> Numerical Methods <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g, 33: 2109-2127.<br />

Cowper, G. R. 1966. The shear coefficient <strong>in</strong> Timoshenko’s beam theory. Journal <strong>of</strong> Applied<br />

Mechanics,:335-340.<br />

Criesfield M. A. 1997. Non-l<strong>in</strong>ear <strong>F<strong>in</strong>ite</strong> <strong>Element</strong> Analysis <strong>of</strong> Solids and Structures. Wiley,<br />

Chichester, England.<br />

Davis J.M. 1998. Generalized beam theory (GBT) for coupled <strong>in</strong>stability problem. Coupled<br />

<strong>in</strong>stabilities <strong>in</strong> metal structures, CISM courses and lectures, International Center for Mechanical<br />

Sciences NO. 379: 151-224. Spr<strong>in</strong>ger Wien New York.<br />

Davis J.M. 2000. Recent research advances <strong>in</strong> cold-formed steel structures. Journal <strong>of</strong> Constructional<br />

Steel research, 55(1-3): 267-288.<br />

Degée H. 2000. Contribution à la prise en compte de la déformabilité de la section droite dans un<br />

élément f<strong>in</strong>i de type poutre. Ph.D. thesis, University <strong>of</strong> Liège, Belgium.<br />

De Ville De Goyet V. 1989. L'analyse statique non l<strong>in</strong>éaire par la méthode des éléments f<strong>in</strong>is des<br />

poutres à section non symétrique. Ph.D. thesis, University <strong>of</strong> Liège, Belgium.<br />

Djalaly H. 1974. Calcul de la résistance ultime au déversement. Revue Construction Métallique 1: 58-<br />

77.<br />

Dube G.P. & Dumir P.C. 1996. Tapered th<strong>in</strong> open section beams on elastic foundation –I-Buckl<strong>in</strong>g<br />

analysis. Computers and Structures, 61(5): 845-857.<br />

Dvork<strong>in</strong> E. N., Celentano D., Cuit<strong>in</strong>o A. & Gioia G. 1989. A Vlassov beam element. Computers and<br />

Structures, 33(1): 187-196.<br />

Eisenberger M. 2003. An exact high order beam element. Computers and Structures, 81: 147-152.<br />

ENV 1993-1-1 (1992). Eurocode 3: Design <strong>of</strong> steel structures, Part 1-1: General rules and rules for<br />

build<strong>in</strong>gs. CEN, Brussels (<strong>in</strong> French).<br />

Frey F. 1977. L’analyse statique non l<strong>in</strong>éaire des structures par la méthode des éléments f<strong>in</strong>is et son<br />

application à la construction métallique. Ph.D. thesis, University <strong>of</strong> Liège, Belgium.<br />

Frey F. 2000. Analyse des structures et milieux cont<strong>in</strong>us. Traité de Génie Civil de l’Ecole<br />

polytechnique fédérale de Lausanne. Volume 2. Presses Polytech<strong>in</strong>ques et Universitaires Romandes,<br />

CH-1015 Lausanne.<br />

Galéa Y. 2002. Déversement élastique d’une poutre à section bi-symétrique soumise à des moments<br />

d’extrémité et une charge répartie ou concentrée. Revue Construction Métallique 2: 59-83.<br />

Gjelsvik A. 1981. The theory <strong>of</strong> th<strong>in</strong> walled bars. Wiley.<br />

Gonçalves R. & Camot<strong>in</strong> D. 2003. Buckl<strong>in</strong>g behavior <strong>of</strong> th<strong>in</strong>-walled alum<strong>in</strong>ium and sta<strong>in</strong>less steel<br />

columns us<strong>in</strong>g Generalised Beam Theory. Proceed<strong>in</strong>gs <strong>of</strong> the <strong>in</strong>ternational conference on Advances<br />

<strong>in</strong> Structures (ASSCCA’03), Sydney, Australia, June 22-25. Balkema, ISBN 90-5809-588-6, 1: 405-<br />

411.<br />

Gonçalves R. & Camot<strong>in</strong> D. 2004. GBT local and global buckl<strong>in</strong>g analysis <strong>of</strong> alum<strong>in</strong>ium and sta<strong>in</strong>less<br />

steel columns . Computers & Structures, 82(17-19): 1473-1484.


Gunnlaugsson G. A. & Pedersen P. T. 1982. A f<strong>in</strong>ite element formulation for beams <strong>with</strong> th<strong>in</strong> walled<br />

cross-sections. Computers and Structures, 15(6): 691-699.<br />

Hancock G.J. 1978. Local distortional and lateral buckl<strong>in</strong>g <strong>of</strong> I-beams, Journal <strong>of</strong> the Structural<br />

Eng<strong>in</strong>eer<strong>in</strong>g ASCE, 104(11): 1787-1798.<br />

Hancock G.J. 1985. Distortional buckl<strong>in</strong>g <strong>of</strong> steel storage rack columns, Journal <strong>of</strong> the Structural<br />

Eng<strong>in</strong>eer<strong>in</strong>g ASCE, 111(12): 2770-2783.<br />

Hancock G.J. 1997. Design for distortional buckl<strong>in</strong>g <strong>of</strong> flexural members. Th<strong>in</strong>-walled Structures, 27:<br />

3-12.<br />

Hancock G.J. 1998. <strong>F<strong>in</strong>ite</strong> strip buckl<strong>in</strong>g and non l<strong>in</strong>ear analyses and distortional buckl<strong>in</strong>g analysis <strong>of</strong><br />

th<strong>in</strong>-walled structural members. Coupled <strong>in</strong>stabilities <strong>in</strong> metal structures, CISM courses and<br />

lectures, International Center for Mechanical Sciences NO. 379: 225-289. Spr<strong>in</strong>ger Wien New York.<br />

Hancock G.J. 2003. Cold-formed steel structures. Journal <strong>of</strong> Constructional Steel Research, 59: 473-<br />

487.<br />

Hsiao K.M. & Wen Y.L. 2000. A co-rotational formulation for th<strong>in</strong>-walled beams <strong>with</strong><br />

monosymmetric open section. Computer Methods for Applied Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, 190: 1163-<br />

1185.<br />

Jirousek J. 1984. On the capacity <strong>of</strong> the isoparametric quadratic beam element to solve accurately a<br />

uniformly loaded beam segment. Computers & Structures, 19: 693-695.<br />

Kesti J. & Davies J.M. 1999. Local and distortional buckl<strong>in</strong>g <strong>of</strong> th<strong>in</strong>-walled short columns. Th<strong>in</strong>walled<br />

Structures, 34: 115-134.<br />

Kim S.B. & Kim M.Y. 2000. Improved formulation for spatial stability and free vibration <strong>of</strong> th<strong>in</strong>walled<br />

tapered beams and space frames. Eng<strong>in</strong>eer<strong>in</strong>g Structures, 22(5): 446-458.<br />

Kim M.Y., Chang S.P. & Park H.G. 2000. Spatial postbuckl<strong>in</strong>g analysis <strong>of</strong> nonsymmetric th<strong>in</strong>-walled<br />

frames. Journal <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g Mechanics ASCE, 127(8): 769-778.<br />

Kitipornchai S., Wang C.M. & Trahair N.S. 1986. Buckl<strong>in</strong>g <strong>of</strong> monosymmetric I-beams under<br />

moment gradient. Journal <strong>of</strong> Structural Eng<strong>in</strong>eer<strong>in</strong>g ASCE, 112(4):781-799.<br />

Kitipornchai S. & Trahair NS. 1975. Elastic behavior <strong>of</strong> tapered monosymmetric I-beams. Journal <strong>of</strong><br />

the Structural Division ASCE, 101(ST8): 1661-1678.<br />

Kollbrunner C.F. & Basler K. 1970. Torsion application à l’étude des structures. SPES editor,<br />

Lausanne.<br />

Kollbrunner C.F. & Hajd<strong>in</strong> N. 1972. Dünnwandige Stäbe. Band 1 Stäbe mit undeformierbaren<br />

Querschnitten. Spr<strong>in</strong>ger–Verlag Berl<strong>in</strong>.<br />

Krajc<strong>in</strong>ovic D. 1970. Matrix force analysis <strong>of</strong> th<strong>in</strong>-walled structures. Journal <strong>of</strong> the Structural<br />

Division ASCE, 96(ST1) : 107-121.<br />

Kwak H.G., Kim D.Y. & Lee H.W. 2001. Effect <strong>of</strong> warp<strong>in</strong>g <strong>in</strong> geometric nonl<strong>in</strong>ear analysis <strong>of</strong> spatial<br />

beams. Journal <strong>of</strong> Constructional Steel Research, 57: 729-751.<br />

Kwon Y.B. & Hancock G.J. 1992. Strength tests <strong>of</strong> cold-formed channel sections undergo<strong>in</strong>g local<br />

and distortional buckl<strong>in</strong>g, Journal <strong>of</strong> the Structural Eng<strong>in</strong>eer<strong>in</strong>g ASCE, 117(2) : 1786-1803.<br />

Mahieux A. 2003. Méthode de calculs des structures à parois m<strong>in</strong>ces avec prise en compte des<br />

<strong>in</strong>stabilités. F<strong>in</strong>al-year eng<strong>in</strong>eer<strong>in</strong>g project. Université Libre de Bruxelles, Belgium.<br />

Massonnet C.E. 1983. A new approach (<strong>in</strong>clud<strong>in</strong>g shear lag) to elementary mechanics <strong>of</strong> materials.<br />

International Journal <strong>of</strong> Solids and Structures, 19(1):33-54.<br />

Meek J.L. & Ho P.T.S. 1983. A simple f<strong>in</strong>ite element model for the warp<strong>in</strong>g torsion problem.<br />

Computer methods <strong>in</strong> applied mechanics and eng<strong>in</strong>eer<strong>in</strong>g, 37: 25-36.<br />

Meek J.L. & Loganathan S. 1989. Large displacement analysis <strong>of</strong> space-frame structures, Computer<br />

Methods <strong>in</strong> Applied Mechanics and Eng<strong>in</strong>eer<strong>in</strong>g, 72(1):57-75.<br />

Meek J.L. & Qiang X. 1998. A study on the <strong>in</strong>stability problem for 3D frames. Computer Methods <strong>in</strong><br />

Applied Mechanics and Eng<strong>in</strong>eer<strong>in</strong>g, 158: 235-254.


Menn<strong>in</strong>k J., Soetens F., Snijder H.H. & van Hove B.W.E.M. 2003. Buckl<strong>in</strong>g experiments and FE<br />

simulations on complex alum<strong>in</strong>ium extrusions. Proceed<strong>in</strong>gs <strong>of</strong> the <strong>in</strong>ternational conference on<br />

Advances <strong>in</strong> Structures (ASSCCA’03), Sydney, Australia, June 22-25. Balkema, ISBN 90-5809-588-<br />

6, 1: 421-426.<br />

Mohri F., Brouki A. & Roth J.-C. 2000. Déversement des poutres en I sous chargements asymétriques.<br />

Revue Construction Métallique 2, 41-52.<br />

Mohri F., Brouki A. & Roth J.-C. 2003. Theoretical and numerical stability analyses <strong>of</strong> unrestra<strong>in</strong>ed<br />

monosymmetric th<strong>in</strong>-walled beams. Journal <strong>of</strong> Constructional Steel Research, 59: 63-90.<br />

Mottershead J. 1988. Warp<strong>in</strong>g torsion <strong>in</strong> th<strong>in</strong> walled open section beams us<strong>in</strong>g the semilo<strong>of</strong> beam<br />

element. International Journal for Numerical Methods <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g, 26: 231-243.<br />

Mukherjee S., Reddy J.N. & Krishnamoorthy C.S. 2001. Convergence properties and derivative<br />

extraction <strong>of</strong> the superconvergent Timoshenko beam f<strong>in</strong>ite element. Computer Methods <strong>in</strong> Applied<br />

Mechanics and Eng<strong>in</strong>eer<strong>in</strong>g, 190 : 3475-3500.<br />

Musat S.D. & Epureaunu B.I. 1996. Study <strong>of</strong> warp<strong>in</strong>g torsion <strong>of</strong> th<strong>in</strong>-walled beams <strong>with</strong> closed crosssection<br />

us<strong>in</strong>g macro-elements. International Journal for Numerical Methods <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g, 12:<br />

873-884.<br />

Musat S.D. & Epureaunu B.I. 1999. Study <strong>of</strong> warp<strong>in</strong>g torsion <strong>of</strong> th<strong>in</strong>-walled beams <strong>with</strong> open crosssection<br />

us<strong>in</strong>g macro-elements. International Journal for Numerical Methods <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g, 44:<br />

853-868.<br />

Murray N. 1986. Introduction to the theory <strong>of</strong> th<strong>in</strong>-walled structures. Oxford University Press, New<br />

York, USA.<br />

Now<strong>in</strong>ski J. 1959. Theory <strong>of</strong> th<strong>in</strong>-walled bars. Applied Mechanics Reviews, 12(4): 219-227.<br />

Pedersen P. T. 1991. Beam theories for torsional-bend<strong>in</strong>g response <strong>of</strong> ship hulls. Journal <strong>of</strong> Ship<br />

Research, 35(3): 254-265.<br />

Peng J.L., Pan A.D.E. & Chan S.L. 1998. Simplified models for analysis and design <strong>of</strong> modular<br />

falsework. Journal <strong>of</strong> Constructional Steel Research, 48: 189-209.<br />

Prokić A. 1990. Th<strong>in</strong> walled beams <strong>with</strong> open and closed cross section. Ph.D. thesis, Univ. <strong>of</strong><br />

Belgrade, Yugoslavia (<strong>in</strong> Serbian).<br />

Prokić A. 1993. Th<strong>in</strong> walled beams <strong>with</strong> open and closed cross section. Computers & Structures,<br />

47(6): 1065-1070.<br />

Prokić A. 1994. Material nonl<strong>in</strong>ear analysis <strong>of</strong> th<strong>in</strong>-walled beams. ASCE Journal <strong>of</strong> Structural<br />

Eng<strong>in</strong>eer<strong>in</strong>g, 120(10): 2841-2852.<br />

Prokić A. 1996. New warp<strong>in</strong>g function for th<strong>in</strong>-walled beams I: theory. Journal <strong>of</strong> Structural<br />

Eng<strong>in</strong>eer<strong>in</strong>g ASCE, 122(12): 1437-1442.<br />

Prokić A. 1996. New warp<strong>in</strong>g function for th<strong>in</strong>-walled beams II: f<strong>in</strong>ite element method and<br />

applications. Journal <strong>of</strong> Structural Eng<strong>in</strong>eer<strong>in</strong>g ASCE,122(12): 1443-1452.<br />

Prokić A. 2002. New f<strong>in</strong>ite element for analysis <strong>of</strong> shear lag. Computers and Structures, 80(11): 1011-<br />

1024.<br />

Pilkey W. 1994. Formulas for stress, stra<strong>in</strong>, and structural matrices. New York. Wiley.<br />

Rajasekaran S. 1994. Equations for tapered th<strong>in</strong>-walled beams <strong>of</strong> generic open cross-section. Journal<br />

<strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g Mechanics, ASCE, 120(8): 1607-1629<br />

Ram E. & Osterrieder P. 1983. Ultimate load analysis <strong>of</strong> three dimensional beam structures <strong>with</strong> th<strong>in</strong>walled<br />

cross sections us<strong>in</strong>g f<strong>in</strong>ite elements. Prelim<strong>in</strong>ary report on Stability <strong>of</strong> Metal Structures, Paris.<br />

Razaqpur A.G. Hangang L. 1991. Th<strong>in</strong>-walled multicell box-girder f<strong>in</strong>ite element. Journal <strong>of</strong><br />

Structural Eng<strong>in</strong>eer<strong>in</strong>g ASCE, 117(10): 2953-2971.<br />

Reddy J.N. 1997. On lock<strong>in</strong>g shear deformable beam f<strong>in</strong>ite elements. Computer methods <strong>in</strong> applied<br />

mechanics and eng<strong>in</strong>eer<strong>in</strong>g, 149: 113-132.


Reddy J.N., Wang C.M. & Lee K.H. 1997. Relationships between bend<strong>in</strong>g solutions <strong>of</strong> classical and<br />

shear deformation beam theories. International Journal <strong>of</strong> Solids and Structures, 34(26): 3373-3384.<br />

Reilly J. 1972. Stiffness analysis <strong>of</strong> grids <strong>in</strong>clud<strong>in</strong>g warp<strong>in</strong>g. Journal <strong>of</strong> the Structural Division ASCE,<br />

98(ST7): 9022-1523.<br />

Ronagh H.R. & Bradford M.A. 1996. A rational model for the distortional buckl<strong>in</strong>g <strong>of</strong> tapered<br />

members. Computer methods <strong>in</strong> applied mechanics and eng<strong>in</strong>eer<strong>in</strong>g, 130: 263-277.<br />

Ronagh H.R. & Bradford M.A. 1999. Non-l<strong>in</strong>ear analysis <strong>of</strong> th<strong>in</strong>-walled members <strong>of</strong> open crosssection.<br />

International Journal for Numerical Methods <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g, 46: 535-552.<br />

Ronagh H.R. & Bradford M.A. 2000. Nonl<strong>in</strong>ear analysis <strong>of</strong> th<strong>in</strong>-walled members <strong>of</strong> variable crosssection.<br />

Computers and Structures, 77: 285-313.<br />

Saadé K., Espion B. & Warzée G. 2004. Non-uniform torsional behavior and stability <strong>of</strong> th<strong>in</strong>-walled<br />

elastic beams <strong>with</strong> arbitrary cross sections. Th<strong>in</strong>-<strong>Walled</strong> Structures, 42 (6): 857-881.<br />

Saadé K., Espion B. & Warzée G. 2004. Discussion <strong>of</strong> ‘exact f<strong>in</strong>ite element for<br />

nonuniform torsion <strong>of</strong> open sections’ by Magdi Mohareb and Farhood Nowzartash, Journal <strong>of</strong><br />

Structural Eng<strong>in</strong>eer<strong>in</strong>g ASCE, 130(9): 1420-1420.<br />

Samtech S.A. 2002. Samcef s<strong>of</strong>tware v9.1 (file:///opt/Samcef91/doc/<strong>in</strong>dex.html) Samtech S.A. 8, rue<br />

des Chasseurs ardennais; 4031 Angleur, Belgium.<br />

Serrette R. & Peköz T. 1997. Bend<strong>in</strong>g strength <strong>of</strong> stand<strong>in</strong>g seam ro<strong>of</strong> panels. Th<strong>in</strong>-<strong>Walled</strong> Structures,<br />

27(1): 55-64.<br />

Shakourzadeh H., Guo YQ & Batoz J.L. 1995. A torsion bend<strong>in</strong>g element for th<strong>in</strong>-walled beams <strong>with</strong><br />

open and closed cross sections. Computers & Structures, 55(6): 1045-1054.<br />

Shakourzadeh H., Guo YQ & Batoz J.L. 1996. On the large displacement and <strong>in</strong>stability <strong>of</strong> 3D elastoplastic<br />

th<strong>in</strong> walled beam structure. Proceed<strong>in</strong>gs <strong>of</strong> the Second ECCOMAS Conference on Numerical<br />

Methods <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Paris, France, September 9-13. Désidéri J.A., Le Tallec P., Oñate E.,<br />

Périaux J. & Ste<strong>in</strong> E. editors. Wiley: 197-203.<br />

Shakourzadeh, H., Guo Y.Ch. & Batoz J.L. 1999. <strong>Model<strong>in</strong>g</strong> <strong>of</strong> connections <strong>in</strong> the analyses <strong>of</strong> th<strong>in</strong>walled<br />

space frames. Computers and Structures, 71: 423-433.<br />

Sharman P.W. 1985. Analysis <strong>of</strong> structures <strong>with</strong> th<strong>in</strong> walled open sections. International Journal <strong>of</strong><br />

Mechanical Science, 27(10): 665-677.<br />

Silvestre N. & Camotim D. 2002. First-order generalised beam theory for arbitrary orthotropic<br />

materials. Th<strong>in</strong>-<strong>Walled</strong> Structures, 40(9): 755-789.<br />

Silvestre N. & Camotim D. 2002. Second-order generalised beam theory for arbitrary orthotropic<br />

materials. Th<strong>in</strong>-<strong>Walled</strong> Structures, 40(9): 791-820.<br />

Silvestre N. & Camotim D. 2004. Distortional buckl<strong>in</strong>g formulae for cold-formed steel C and Zsection<br />

members: Part I-derivation. Th<strong>in</strong>-<strong>Walled</strong> Structures, 42(11): 1567-1597.<br />

Silvestre N. & Camotim D. 2004. Distortional buckl<strong>in</strong>g formulae for cold-formed steel C and Zsection<br />

members: Part II-validation and application. Th<strong>in</strong>-<strong>Walled</strong> Structures, 42(11): 1599-1629.<br />

Silvestre N. & Camotim D. 2003. GBT buckl<strong>in</strong>g analysis <strong>of</strong> pultruded FRP lipped channel members,<br />

Computers & Structures, 81(18-19): 1889-1904.<br />

Takahashi K. & Mizuno M. 1978. Distortion <strong>of</strong> th<strong>in</strong>-walled open cross section members (one degree<br />

<strong>of</strong> freedom and s<strong>in</strong>gly symmetrical cross-section). JSME, 21(160): 1448-1454.<br />

Takahashi K. & Mizuno M. 1980. Distortion <strong>of</strong> th<strong>in</strong>-walled open cross section members (for the case<br />

<strong>of</strong> distortion <strong>of</strong> multi-degree-<strong>of</strong>-freedom). JSME, 23(182): 1290-1296.<br />

Takahashi K. Yonago A. & Mizuno M. 1982. Analysis <strong>of</strong> th<strong>in</strong>-walled open cross section curved<br />

members consider<strong>in</strong>g cross sectional distortion. JSCE, 320: 47-55.<br />

Takahashi K. & Mizuno M. 1987. A new buckl<strong>in</strong>g mode <strong>of</strong> th<strong>in</strong>-walled open cross section members.<br />

Applied solid mechanics-2, 1(620): 553-573.


Takahashi K., Hitoshi N. & Imamura K. 2001. Pure distortional buckl<strong>in</strong>g <strong>of</strong> closed cross section<br />

columns. Proceed<strong>in</strong>gs <strong>of</strong> the Third International Conference on Th<strong>in</strong>-walled Structures (ICTWS<br />

2001), Krakow, Poland. Elsevier: 623-630.<br />

Takahashi K. 2003. Analytical and numerical solutions for distortional <strong>in</strong>stabilities <strong>of</strong> th<strong>in</strong>-walled<br />

beams under bend<strong>in</strong>g moment. Coupled <strong>in</strong>stabilities <strong>in</strong> metal structures, Lisbon. Imperial College<br />

Press: 73-81.<br />

Timoshenko S. 1913. Sur la stabilité des systèmes élastiques. Annales des Ponts et Chaussées, 9th<br />

series, 16 (4): 73-132.<br />

Timoshenko S. & Gere J. 1961. Theory <strong>of</strong> Elastic Stability. McGraw-Hill, New York.<br />

Trahair N.S. 1993. Flexural torsional buckl<strong>in</strong>g <strong>of</strong> structures. E&FN Spon, London.<br />

Trahair N.S. & Bradford M.A. 1995. The behavior and design <strong>of</strong> steel structures. E&FN Spon,<br />

London.<br />

Van Impe R. 2001. Torsional buckl<strong>in</strong>g <strong>of</strong> steel members: the flexural buckl<strong>in</strong>g analogy. Advances <strong>in</strong><br />

Structural Eng<strong>in</strong>eer<strong>in</strong>g, 4(3):181-185.<br />

Villette M. (2002). Propositions pour de nouvelles courbes de déversement. Revue Construction<br />

Métallique, 2 : 17-39.<br />

Vlassov VZ. 1961. Th<strong>in</strong> walled elastic beams. Israel Program for Scientific Translations, Jerusalem.<br />

Volokh K.Yu. & Vilnay O. 2001. On the prediction <strong>of</strong> geometrical non-l<strong>in</strong>earity <strong>of</strong> slender structures,<br />

International Journal <strong>of</strong> Numerical Methods Eng<strong>in</strong>eer<strong>in</strong>g, 9: 353-386.<br />

Von Karman TH. 1944. Methods <strong>of</strong> analysis for torsion <strong>with</strong> variable twist, Journal <strong>of</strong> the<br />

Aeronautical Sciences, 11: 110-124.<br />

Von Karman TH. 1946. Torsion <strong>with</strong> variable twist, Journal <strong>of</strong> the Aeronautical Sciences, 13: 503-<br />

510.<br />

Wang C.M., Reddy J.N. & Lee K.H. 2000. <strong>Shear</strong> deformable beams and plates. Elsevier, NewYork.<br />

Waszczyszyn Z., Cichoń C. & Radwaskań M. 1994. Stability <strong>of</strong> Structures by <strong>F<strong>in</strong>ite</strong> <strong>Element</strong> Methods.<br />

Elsevier, Amsterdam.<br />

Yang D. & Hancock J. G. 2003. Compression tests <strong>of</strong> cold-reduced high strength steel chanel columns<br />

fail<strong>in</strong>g <strong>in</strong> the distortional mode, Proceed<strong>in</strong>gs <strong>of</strong> the <strong>in</strong>ternational conference on Advances <strong>in</strong><br />

Structures (ASSCCA’03), Sydney, Australia, June 22-25. Balkema, ISBN 90-5809-588-6, 1: 303-<br />

308.<br />

Yunhua L. 1998. Explanation and elim<strong>in</strong>ation <strong>of</strong> shear lock<strong>in</strong>g and membrane lock<strong>in</strong>g <strong>with</strong> field<br />

consistence approach. Computer methods <strong>in</strong> applied mechanics and eng<strong>in</strong>eer<strong>in</strong>g, 162: 249-269.<br />

Zienkiewicz O.C. & Taylor R.L. 2000. The f<strong>in</strong>ite element method volume 1 The basis. Butterworth-<br />

He<strong>in</strong>emann, Oxford.


Appendix 0. Constitutive relations<br />

The calculation <strong>of</strong> the constitutive relations that describe the stress-stra<strong>in</strong> relation is important for the<br />

analysis <strong>of</strong> the behavior <strong>of</strong> structures. In order to complete any f<strong>in</strong>ite element development and to ensure<br />

sufficient equilibrium equations for the unknowns to be found, it is necessary to describe how the material<br />

behaves when submitted to deformation histories. Constitutive laws depend on the physical constitution <strong>of</strong><br />

the material and are <strong>in</strong>troduced to describe the macroscopic behavior under load<strong>in</strong>g. They l<strong>in</strong>k the<br />

k<strong>in</strong>ematic and static variables <strong>of</strong> a deformed body <strong>in</strong> order to fit accurately the observed physical behavior.<br />

Clearly, this task is not easy and is a subject <strong>of</strong> lots <strong>of</strong> research [De Ville 1989 §5.6…]. The simplest law<br />

for solids is the elastic l<strong>in</strong>ear Hooke law. The behavior <strong>of</strong> elastic materials depends only on the current<br />

level <strong>of</strong> the stra<strong>in</strong>. This implies that the load<strong>in</strong>g and unload<strong>in</strong>g stress-stra<strong>in</strong> relations are identical and that<br />

the orig<strong>in</strong>al shape is recovered upon unload<strong>in</strong>g. The solids are considered to return to their <strong>in</strong>itial<br />

undeformed configuration upon stress removal. The constitutive law implies that the stresses <strong>in</strong> a given<br />

configuration only depend on the stra<strong>in</strong>s <strong>in</strong> this configuration and not on a stra<strong>in</strong> history.<br />

For a general behavior <strong>of</strong> a non l<strong>in</strong>ear material, the constitutive equations are given by a relation between<br />

the rate <strong>of</strong> stresses and the rate <strong>of</strong> stra<strong>in</strong>s. This work is restricted to the elastic behavior <strong>of</strong> th<strong>in</strong> walled<br />

structures. The purely mechanical behavior <strong>of</strong> metallic structures generates large displacements and small<br />

deformations. When thermodynamic effects such as heat conduction are not considered, the response <strong>of</strong> the<br />

material may then be modeled by a simple extension <strong>of</strong> l<strong>in</strong>ear elastic laws by replac<strong>in</strong>g the stress by the<br />

PK2 stress and the l<strong>in</strong>ear stra<strong>in</strong> by the Green stra<strong>in</strong> [De Ville 1989 §5.6.2]. This is called a Sa<strong>in</strong>t Venant-<br />

Kirchh<strong>of</strong>f material:<br />

Sij=dijklEkl (A0.1)<br />

dijkl are the components <strong>of</strong> the fourth-order tensor <strong>of</strong> elastic moduli which are constants for the Kirchh<strong>of</strong>f<br />

materials. The correspond<strong>in</strong>g rate relationship is:<br />

dSij = dijkldE kl<br />

(A0.2)<br />

dijkl are called the tangent moduli.<br />

1


Appendix 1. Calculation <strong>of</strong> geometrical properties<br />

∫<br />

A = dA A = ∑ lkepk<br />

k=<br />

1<br />

A<br />

ns<br />

2<br />

1<br />

2<br />

I y = ∫ z dA I y ( y1<br />

+ z1)<br />

epkl<br />

k +<br />

α +<br />

4<br />

2<br />

3<br />

lkep<br />

k s<strong>in</strong> k<br />

12<br />

A<br />

A<br />

ns<br />

= ∑<br />

k=<br />

1<br />

= ns<br />

k 1<br />

2<br />

1<br />

I z = ∫ y dA Iz<br />

∑ ( y1<br />

+ y2<br />

)<br />

= 4<br />

2<br />

ep<br />

k<br />

l<br />

k<br />

+<br />

1 1 3<br />

2<br />

kepk<br />

cosα<br />

k<br />

1<br />

12<br />

l<br />

k<br />

ep<br />

3<br />

k<br />

cosα<br />

2<br />

k<br />

+<br />

l<br />

12<br />

∫ ω = S ω,<br />

y , ydA<br />

A<br />

ns<br />

Sω, y = ∑(<br />

y1<br />

− yC<br />

) lkepk<br />

cosα<br />

k s<strong>in</strong>α<br />

k<br />

k<br />

2<br />

lk<br />

− epk<br />

cosα<br />

k<br />

2<br />

∫ ω = S ω,<br />

z , zdA<br />

A<br />

ns<br />

Sω = ∑ − ( z1<br />

− zC<br />

) lkepk<br />

cosα<br />

k s<strong>in</strong>α<br />

, z<br />

k<br />

k=<br />

1<br />

2<br />

lk<br />

− epk<br />

s<strong>in</strong> αk<br />

2<br />

∫ ω =<br />

ns ep<br />

l<br />

I yω<br />

y dA I yω<br />

cosα<br />

k ( y1lk<br />

s<strong>in</strong> αk<br />

− z1l<br />

k cosα<br />

k − )<br />

12<br />

2<br />

A<br />

= ∑<br />

k=<br />

1<br />

3 k<br />

∫ ω =<br />

ns ep<br />

l<br />

I zω<br />

z dA Izω<br />

s<strong>in</strong> αk<br />

( y1lk<br />

s<strong>in</strong> αk<br />

− z1l<br />

k cosα<br />

k − )<br />

12<br />

2<br />

I<br />

ω,<br />

yω,<br />

y<br />

A<br />

= ∫ ω,<br />

yω,<br />

ydA<br />

A<br />

ns<br />

k<br />

= ∑<br />

k=<br />

1<br />

3 k<br />

2<br />

1<br />

12<br />

2<br />

l<br />

3 k<br />

ep<br />

k<br />

s<strong>in</strong> α<br />

1<br />

2<br />

k<br />

− ( z − z ) l ep cosα<br />

C<br />

C<br />

k<br />

k<br />

k<br />

k<br />

2<br />

k<br />

2<br />

k<br />

+ y − y ) l ep s<strong>in</strong> α ;<br />

2<br />

4<br />

2 3<br />

3<br />

Iω, yω,<br />

y = ∑ ( z1<br />

− zC<br />

) lkepk<br />

cosα<br />

k + ( z1<br />

− zC<br />

) lkepk<br />

cosα<br />

k − 2(<br />

z1<br />

− zC<br />

)( y1<br />

− yC<br />

) l epk<br />

cosα<br />

k s<strong>in</strong>α<br />

I<br />

I<br />

2<br />

2 2<br />

2 2 1 3 2 1 3<br />

+ ( y1<br />

− yC<br />

) lkepk<br />

cosα<br />

k s<strong>in</strong> αk<br />

+ ( y1<br />

− yC<br />

) lkepk<br />

cosα<br />

k s<strong>in</strong> αk<br />

+ lkepk<br />

cosα<br />

k + lkepk<br />

s<strong>in</strong> α<br />

3<br />

12<br />

= ∫ ω,<br />

zω,<br />

zdA<br />

ω,<br />

zω,<br />

z<br />

ω , zω,<br />

z<br />

A<br />

ns<br />

= ∑ ( y1<br />

− y<br />

k<br />

C<br />

)<br />

2<br />

l<br />

k<br />

ep<br />

k<br />

s<strong>in</strong> α<br />

4<br />

k<br />

− ( y<br />

1<br />

− y<br />

C<br />

) l<br />

2 k<br />

ep<br />

k<br />

s<strong>in</strong> α<br />

3<br />

k<br />

− 2(<br />

z<br />

1<br />

− z<br />

C<br />

)( y<br />

1<br />

( 1<br />

− y<br />

C<br />

) l<br />

k<br />

k<br />

ep<br />

k<br />

cosα<br />

<strong>in</strong>α<br />

2<br />

2 2<br />

2 2 1 3 2 1 3<br />

+ ( z1<br />

− zC<br />

) lkepk<br />

cosα<br />

k s<strong>in</strong> αk<br />

+ ( z1<br />

− zC<br />

) lkepk<br />

cosα<br />

k s<strong>in</strong> αk<br />

+ lkepk<br />

s<strong>in</strong> αk<br />

+ lkepk<br />

cosα<br />

3<br />

12<br />

I = ( zω<br />

− yω<br />

) dA<br />

ω<br />

∫<br />

A<br />

, y<br />

, z<br />

ns ep l<br />

2 2<br />

Iω ( lk<br />

− epk<br />

+ ( y1<br />

s<strong>in</strong>α<br />

k − z1<br />

cosα<br />

k ) epkl<br />

k − ( y1<br />

s<strong>in</strong>α<br />

k − z1<br />

cosα<br />

k ) epkl<br />

k )<br />

12 3<br />

S i<br />

Ω<br />

S i<br />

Ω,<br />

y<br />

S i<br />

Ω,<br />

z<br />

= ∑<br />

k=<br />

1<br />

∫ Ω =<br />

A<br />

∫ Ω =<br />

A<br />

∫ Ω =<br />

A<br />

i dA<br />

3 k<br />

i<br />

, ydA<br />

i<br />

, zdA<br />

3 k<br />

S i<br />

Ω , y<br />

( i)<br />

nd<br />

= ∑<br />

k=<br />

1<br />

nd<br />

=<br />

Ω ∑<br />

k=<br />

1<br />

S i,<br />

z<br />

− ep<br />

ep<br />

k<br />

k cos<br />

s<strong>in</strong>α<br />

α<br />

k<br />

k + ∑<br />

=<br />

na<br />

k 1<br />

+<br />

na<br />

∑<br />

k=<br />

1<br />

− ep ( k)<br />

s<strong>in</strong>α(<br />

k)<br />

;<br />

ep<br />

k cos<br />

α<br />

k<br />

k<br />

3<br />

k<br />

2<br />

k<br />

k<br />

2<br />

k<br />

1


A<br />

I i<br />

nd<br />

= ∑<br />

l=<br />

1<br />

na 1<br />

∑ y1lkepk<br />

k=<br />

12<br />

∫ Ω = I i<br />

zΩ<br />

i<br />

z dA<br />

A<br />

nd 1 cosα<br />

k 2<br />

I i = z<br />

z<br />

1lkepk<br />

+ lkep<br />

Ω ∑ k<br />

k=<br />

12<br />

6<br />

na<br />

+ 1 k k<br />

k 1<br />

ep l z<br />

1<br />

∑<br />

= 2<br />

∫ Ω =<br />

i<br />

1 s<strong>in</strong>α<br />

k 2<br />

I i y dA<br />

y −<br />

+<br />

yΩ<br />

Ω<br />

1l<br />

y<br />

kepk<br />

lkepk<br />

2<br />

6<br />

s<strong>in</strong>α<br />

+<br />

6<br />

k<br />

cosα<br />

−<br />

6<br />

l<br />

2 k<br />

ep<br />

k<br />

k 2<br />

lkepk<br />

∫ Ω = I i<br />

yΩ,<br />

z<br />

i<br />

y , zdA<br />

A<br />

nd<br />

l na<br />

k<br />

lk<br />

I i =<br />

y ∑− y1epk<br />

cosα<br />

k + cosα<br />

k s<strong>in</strong>α<br />

k ep<br />

Ω , z<br />

k + ∑ y1epk cosα<br />

k + cosα k s<strong>in</strong>α<br />

k epk<br />

l<br />

2 k=<br />

1<br />

2<br />

∫ Ω = I i<br />

zΩ,<br />

y<br />

i<br />

z , ydA<br />

A<br />

nd<br />

I i = ∑+<br />

z α<br />

zΩ<br />

, y 1epk<br />

s<strong>in</strong> k<br />

k<br />

l na<br />

k<br />

cosα k s<strong>in</strong>α<br />

kl<br />

kepk<br />

+ cosα k s<strong>in</strong>α<br />

k epk<br />

+ ∑ − z1epk<br />

s<strong>in</strong>α<br />

k +<br />

2 k=<br />

1<br />

2<br />

I i j<br />

Ω,<br />

zΩ,<br />

z<br />

I i j<br />

Ω,<br />

yΩ<br />

, y<br />

I i<br />

Ω<br />

I<br />

=<br />

∫ Ω Ω = ,<br />

∫<br />

A<br />

A<br />

i z<br />

j<br />

, z<br />

= ∫ Ω,<br />

Ω<br />

A<br />

( −yΩ<br />

i y<br />

i<br />

, z<br />

dA<br />

j<br />

, y<br />

dA<br />

+ zΩ<br />

i<br />

, y<br />

∑ + nd na epk<br />

2<br />

epm<br />

2<br />

I i i = cosα<br />

Ω , zΩ<br />

, z<br />

k I i k = − cos αm<br />

k=<br />

1 lk<br />

)<br />

Ω , zΩ<br />

, z lm<br />

I i i<br />

Ω , yΩ<br />

, y<br />

) dA<br />

∫ Ω Ω =<br />

i j<br />

i j dA<br />

Ω Ω<br />

∑ + nd na<br />

I i i =<br />

Ω Ω<br />

k=<br />

1<br />

I i j<br />

Ω Ω<br />

=<br />

ep<br />

1<br />

6<br />

I = ωωdA<br />

ωω<br />

∫<br />

∫<br />

y ω ,z ,z<br />

m m l<br />

I = yω dA<br />

∫ ω = z , dA<br />

Izω, y y<br />

I<br />

I<br />

j<br />

ω,<br />

yΩ,<br />

y<br />

j<br />

ω,<br />

zΩ<br />

, z<br />

∫<br />

∫ Ω ω = , y<br />

∫ Ω ω = , z<br />

j<br />

, y<br />

j<br />

, z<br />

2<br />

dA<br />

dA<br />

=<br />

∑ + nd na<br />

k=<br />

1<br />

1<br />

l<br />

3<br />

ep<br />

l<br />

k<br />

k<br />

k k ep<br />

s<strong>in</strong>α<br />

2<br />

k<br />

I i k<br />

Ω , yΩ<br />

, y<br />

m is the segment whose end nodes are i et k.<br />

I h = ([ z + ω,<br />

y ] + [ y − ω,<br />

z ] ) dA<br />

I h ∑ ( h<br />

k=<br />

1<br />

A<br />

2 2 2 2 2<br />

where h k = z1<br />

s<strong>in</strong> αk<br />

+ y1<br />

cos αk<br />

*<br />

h = ∫<br />

A<br />

−<br />

2<br />

C +ω ,y + − C −ω,z<br />

2<br />

I ([z z ] [y y ] )dA<br />

2<br />

= ns<br />

2<br />

k<br />

ep<br />

k<br />

l<br />

k<br />

ep<br />

= −<br />

l<br />

+<br />

1<br />

l<br />

3<br />

m<br />

k<br />

m<br />

ep<br />

s<strong>in</strong>α<br />

3 k<br />

)<br />

2<br />

m<br />

* 2 2<br />

h = h + C + C − C ω,y +<br />

C ω,z<br />

I I (y z )A 2z S 2y S<br />

2


*DI h = ∫<br />

A<br />

2<br />

µ I − CI +ω I,y<br />

2 2<br />

+µ I − CI −ωI,z<br />

2<br />

I ( [z z ] [y y ] )dA<br />

12<br />

D M dA<br />

2<br />

ISM = ∫ 3 I<br />

A e<br />

DI i<br />

i =<br />

yΩ<br />

∫ µ I Ω,z<br />

,z<br />

A<br />

I y dA<br />

DI i<br />

i =<br />

zΩ<br />

∫ µ I Ω,y<br />

,y<br />

A<br />

I z dA<br />

DI i<br />

i =<br />

z<br />

I CI ,y<br />

CI Ω ∫ µ Ω<br />

,y<br />

A<br />

S z dA<br />

DI i<br />

i =<br />

y<br />

I CI ,z<br />

CI Ω ∫<br />

µ Ω<br />

,z<br />

A<br />

S y dA<br />

3


Appendix 2. <strong>Element</strong>ary stiffness matrix (<strong>with</strong>out shear effects)<br />

k<br />

el<br />

< q<br />

u0<br />

, q<br />

u0<br />

> =<br />

EA<br />

[ K ]<br />

el *<br />

k < q v,qv > = EI ⎡<br />

z K ⎤<br />

⎣ 1 ⎦<br />

el *<br />

k < q w,qw > = EI ⎡<br />

y K ⎤<br />

⎣ 2 ⎦<br />

k<br />

el<br />

< qθ<br />

, q<br />

x θx<br />

> =<br />

GI<br />

* h<br />

4<br />

[ K ]<br />

4<br />

k q ,q G[I I z S y S ] ⎡K ⎤<br />

⎣ ⎦<br />

el *<br />

< θ i i i i<br />

x u > = − +<br />

i<br />

y c −<br />

Ω c 7<br />

,z zΩ,y<br />

Ω,y Ω,z<br />

el T<br />

*<br />

< u i j i j i j<br />

i u > = ⎡<br />

j<br />

4⎤ + +<br />

ΩΩ Ω 3<br />

,y Ω,y Ω,z Ω,z<br />

k q ,q EI ⎣K ⎦ G[I I ] ⎡K ⎣<br />

⎤<br />

⎦<br />

where<br />

⎡ 12 6L −12<br />

6L ⎤<br />

⎢ 2 2⎥<br />

* 1 6L −4L−6L 2L<br />

1 =<br />

3<br />

L ⎢ 12 6L 12 6L⎥<br />

⎢ 2 2⎥<br />

⎡K ⎣<br />

⎤<br />

⎦<br />

⎢<br />

− − −<br />

⎥<br />

⎣6L 2L −6l<br />

4L ⎦<br />

⎡ 12 −6L −12−6L⎤ ⎢ 2 2⎥<br />

* 1 −6L<br />

4L 6L 2L<br />

2 =<br />

3<br />

L ⎢ 12 6L 12 6L ⎥<br />

⎢ 2 2⎥<br />

⎡K ⎣<br />

⎤<br />

⎦<br />

⎢<br />

−<br />

⎥<br />

⎣−6l 2L 6l 4L ⎦<br />

⎡ * L 2 1<br />

K ⎤ ⎡ ⎤<br />

3 =<br />

⎣ ⎦ 6 ⎢<br />

⎣1 2⎥<br />

⎦<br />

1 ⎡ 1<br />

−1⎤<br />

[ K4 ] =<br />

L<br />

⎢ ⎥<br />

⎣−<br />

1 1 ⎦<br />

⎡ * 0.5 0.5<br />

K ⎤ ⎡− − ⎤<br />

7 =<br />

⎣ ⎦ ⎢<br />

⎣ 0.5 0.5 ⎥<br />

⎦<br />

1


Appendix 3. <strong>Element</strong>ary stiffness matrix <strong>with</strong> Timoshenko shear effects<br />

{qu0} T = <br />

{qv} T = <br />

{qw} T = <br />

{qθx} T = <br />

{qθy} T = <br />

{qθz} T = <br />

{qui} T = ; i=1,2,…n<br />

k<br />

k<br />

k<br />

k<br />

el<br />

el<br />

< q<br />

< q<br />

u0<br />

v<br />

, q<br />

, q<br />

u0<br />

v<br />

el<br />

< q v , qθ<br />

> =<br />

> =<br />

el<br />

< qθ<br />

, q<br />

z θz<br />

el<br />

w<br />

w<br />

z<br />

EA<br />

GA<br />

> = −<br />

> =<br />

[ K ]<br />

4<br />

[ K ]<br />

2<br />

GA<br />

EI<br />

k < q , q > = GA<br />

k<br />

k<br />

k<br />

el<br />

< qw<br />

, qθ<br />

y<br />

el<br />

< qθ<br />

, q<br />

y θy<br />

el<br />

< qθ<br />

, qθ<br />

el<br />

x<br />

x<br />

> =<br />

> =<br />

> =<br />

z<br />

GA<br />

EI<br />

GI<br />

[ K ]<br />

5<br />

[ K ] + GA[<br />

K ]<br />

2<br />

[ K ]<br />

2<br />

[ K ]<br />

y<br />

* h<br />

5<br />

1<br />

[ K ] + GA[<br />

K ]<br />

2<br />

[ K ]<br />

2<br />

k < q ,q > = G[I − I + z S −y S ] ⎡⎣ K ⎤⎦<br />

θ i i i i<br />

x ui yΩ c c 7<br />

,z zΩ,y<br />

Ω,y Ω,z<br />

1<br />

[ K ] + G[<br />

I + I ] [ K ]<br />

el<br />

k < qu<br />

, qu<br />

> = EI i j 4<br />

i j i j<br />

i j Ω Ω<br />

Ω,<br />

yΩ<br />

, y Ω,<br />

zΩ<br />

, z<br />

where<br />

[ ]<br />

K 1<br />

=<br />

⎡ 2<br />

L ⎢<br />

1<br />

15 ⎢<br />

⎢⎣<br />

− 0.<br />

5<br />

1<br />

8<br />

1<br />

− 0.<br />

5⎤<br />

1<br />

⎥<br />

⎥<br />

2 ⎥⎦<br />

3<br />

1


If the selective reduced <strong>in</strong>tegration method is used (§5.2.2), K1 is evaluated by us<strong>in</strong>g a two po<strong>in</strong>t Gauss<br />

<strong>in</strong>tegration rule (equation 5.28):<br />

⎡ 1 1 −0.5⎤<br />

⎡ s L<br />

K ⎤ 1 =<br />

⎢<br />

1 4 1<br />

⎥<br />

⎣ ⎦ 9 ⎢ ⎥<br />

⎢− ⎣ 0.5 1 1 ⎥⎦<br />

[ ]<br />

K 2<br />

=<br />

1<br />

3L<br />

L ⎡2<br />

⎡ 7<br />

⎢<br />

− 8<br />

⎢<br />

⎢⎣<br />

1<br />

1⎤<br />

[ K3 ] =<br />

6<br />

⎢ ⎥<br />

⎣1<br />

2⎦<br />

1 ⎡ 1<br />

− 8<br />

16<br />

− 8<br />

−1⎤<br />

[ K4 ] =<br />

L<br />

⎢ ⎥<br />

⎣−<br />

1 1 ⎦<br />

[ ]<br />

K 5<br />

[ ]<br />

K 6<br />

[ ]<br />

K 7<br />

[ ]<br />

K 8<br />

=<br />

=<br />

=<br />

⎡−<br />

3<br />

1 ⎢<br />

4<br />

6 ⎢<br />

⎢⎣<br />

−1<br />

⎡0.<br />

5<br />

l ⎢<br />

1<br />

3 ⎢<br />

⎢⎣<br />

0<br />

⎡−<br />

5<br />

1 ⎢<br />

4<br />

6 ⎢<br />

⎢⎣<br />

1<br />

⎡ 1<br />

1<br />

=<br />

⎢<br />

0<br />

l ⎢<br />

⎢⎣<br />

−1<br />

− 4<br />

0<br />

4<br />

0 ⎤<br />

1<br />

⎥<br />

⎥<br />

0.<br />

5⎥⎦<br />

−1⎤<br />

− 4<br />

⎥<br />

⎥<br />

5 ⎥⎦<br />

−1⎤<br />

0<br />

⎥<br />

⎥<br />

1 ⎥⎦<br />

1 ⎤<br />

− 8<br />

⎥<br />

⎥<br />

7 ⎥⎦<br />

1 ⎤<br />

− 4<br />

⎥<br />

⎥<br />

3 ⎥⎦<br />

2


Appendix 4. Transition to global axes<br />

The equilibrium equations and the f<strong>in</strong>ite element calculations have been developed <strong>in</strong> this dissertation <strong>in</strong><br />

pr<strong>in</strong>cipal axes related to the orientation <strong>of</strong> each beam element <strong>of</strong> the structure. To analyze a complete<br />

structure, the assembly process <strong>of</strong> different elements needs to refer to a common axis system. S<strong>in</strong>ce<br />

detailed <strong>in</strong>formation can be found <strong>in</strong> the literature on the f<strong>in</strong>ite element method, only basic formulae and<br />

equations are given hereafter.<br />

Transition from pr<strong>in</strong>cipal axes to given local axes<br />

If the longitud<strong>in</strong>al axis x <strong>of</strong> an element rema<strong>in</strong>s the same, the matrix [t] allows the transformation <strong>of</strong> nodal<br />

forces or displacements from the local pr<strong>in</strong>cipal axis to an arbitrary local axis system. [t] is an identity<br />

matrix modified to <strong>in</strong>sert a rotation matrix Rβ (A4.1) <strong>of</strong> pr<strong>in</strong>cipal axes y and z. β is the angle between<br />

pr<strong>in</strong>cipal axes and the local axes where the cross section geometry is described.<br />

⎡1 0 0 ⎤<br />

[R β]<br />

= ⎢0cosβ −s<strong>in</strong>β⎥ ⎢ ⎥<br />

⎣0 s<strong>in</strong>β cosβ<br />

⎦<br />

{qn}loc=[t] T {qn}prnc<br />

[k] loc =[t] T [k] prnc [t]<br />

{fn} loc =[t] T {fn} prnc<br />

(A4.1)<br />

[t] T =[t] -1 (A4.2)<br />

Transition from local axes to global axes<br />

Equations (A4.2) are used <strong>with</strong> a rotation matrix Q[3x3] that allows the transformation from local axes<br />

(x,y,z) to global axes (X,Y,Z). Batoz and Datt [Batoz 1990, page 183] gave the follow<strong>in</strong>g transformation<br />

matrix.<br />

[ Q]<br />

= [ QA<br />

][ R α]<br />

where:<br />

(A4.3)<br />

⎡<br />

⎢<br />

a<br />

⎢<br />

[ Q ⎢<br />

A ] = b<br />

⎢<br />

⎢c<br />

⎢<br />

⎣<br />

<strong>with</strong><br />

− ab<br />

2 2<br />

a + c<br />

2 2<br />

a + c<br />

− bc<br />

2 2<br />

a + c<br />

− c ⎤<br />

2 2 ⎥<br />

a + c ⎥<br />

0 ⎥<br />

a ⎥<br />

⎥<br />

2 2<br />

a + c ⎥<br />

⎦<br />

1<br />

< a b c>= < X21 L<br />

Y21 Z21<br />

><br />

X21, Y21 and Z21 are the differences <strong>of</strong> co-ord<strong>in</strong>ates <strong>of</strong> extreme nodes <strong>of</strong> the element. The length <strong>of</strong> the<br />

element L is thus:<br />

2 2 2 221<br />

L = X + Y + Z<br />

21<br />

21<br />

The position <strong>of</strong> the local axes y and z <strong>of</strong> the cross section is characterized by the angle α between the local<br />

axis y and the <strong>in</strong>tersection between the planes (x,Y) and the cross section plane (yz).<br />

This angle <strong>of</strong> orientation (α) can be given as a data [Batoz 1990, page 183], or computed from the<br />

coord<strong>in</strong>ates <strong>of</strong> an arbitrary po<strong>in</strong>t D (XD, YD, ZD) at the positive part <strong>of</strong> the local axis y is taken at the second<br />

node <strong>of</strong> the element. The distance between the extreme node 2 and the arbitrary po<strong>in</strong>t D is L2D.<br />

1


α is the angle between the local axis y whose direction is def<strong>in</strong>ed by the unit vector coord<strong>in</strong>ates di (A4.4)<br />

and the <strong>in</strong>tersection vector between the planes (x,Y) and the cross section plane (yz) that is def<strong>in</strong>ed by its<br />

unit vector coord<strong>in</strong>ates oi (A4.5).<br />

X − X2<br />

Y − Y ZD<br />

− Z2<br />

d = , ,<br />

(A4.4)<br />

L<br />

o<br />

D<br />

L2D<br />

D 2<br />

L2D<br />

2D<br />

− ab 2 2 − bc<br />

= , a + c ,<br />

(A4.5)<br />

2 2<br />

2 2<br />

a + c<br />

a + c<br />

[Rα] can be directly calculated by <strong>in</strong>sert<strong>in</strong>g the expressions (A4.6) and (A4.7) <strong>of</strong> cosβ and s<strong>in</strong>β <strong>in</strong> (A4.1).<br />

∑<br />

α = o cos (A4.6)<br />

3<br />

i i d<br />

2<br />

3<br />

3<br />

2<br />

2<br />

1<br />

3<br />

3<br />

1<br />

2<br />

s <strong>in</strong>α = ( o d − o d ) + ( o d − o d ) + ( o d − o d )<br />

(A4.7)<br />

1<br />

2<br />

2<br />

If the local axis x is parallel to the global axis Y (a = 0 et c = 0), the angle ψ between the global X and the<br />

local z characterizes the rotation.<br />

If x and Y have the same direction<br />

⎡ 0 s<strong>in</strong> ψ cosψ<br />

⎤<br />

[ Q]<br />

=<br />

⎢<br />

−1<br />

0 0<br />

⎥<br />

(A4.8)<br />

⎢<br />

⎥<br />

⎢⎣<br />

0 cosψ<br />

− s<strong>in</strong> ψ⎥⎦<br />

<strong>with</strong><br />

ZD − Z2<br />

cos ψ =<br />

(A4.9)<br />

L<br />

2D<br />

XD<br />

− X2<br />

s <strong>in</strong>ψ<br />

=<br />

(A4.10)<br />

L<br />

2D<br />

If x and Y have the opposite direction,<br />

⎡ 0<br />

[ Q]<br />

=<br />

⎢<br />

−1<br />

⎢<br />

⎢⎣<br />

0<br />

<strong>with</strong><br />

s<strong>in</strong> ψ<br />

0<br />

− cosψ<br />

cosψ⎤<br />

0<br />

⎥<br />

⎥<br />

s<strong>in</strong> ψ⎥⎦<br />

(A4.11)<br />

Z2 − ZD<br />

cos ψ =<br />

L<br />

(A4.12)<br />

2D<br />

X2<br />

− XD<br />

s <strong>in</strong>ψ<br />

=<br />

(A4.13)<br />

L<br />

2D<br />

1<br />

2<br />

2


Appendix 5. <strong>Element</strong>ary l<strong>in</strong>ear stiffness matrix <strong>with</strong> (xz) bend<strong>in</strong>g warp<strong>in</strong>g effects<br />

{qv} T = <br />

{qw} T = <br />

{qθy} T = <br />

{qθz} T = <br />

{qui} T = ; i=1,2,…n<br />

k<br />

k<br />

k<br />

el<br />

< q<br />

v<br />

, q<br />

v<br />

el<br />

< q v , qθ<br />

z<br />

el<br />

< qθ<br />

, qθ<br />

el<br />

z<br />

w<br />

w<br />

> =<br />

z<br />

GA<br />

> = −<br />

> =<br />

[ K ]<br />

GA<br />

EI<br />

k < q , q > = GA<br />

k<br />

k<br />

el<br />

< qw<br />

, qθ<br />

y<br />

el<br />

< qθ<br />

, q<br />

y θy<br />

el<br />

> =<br />

> =<br />

z<br />

GA<br />

EI<br />

2<br />

[ K ]<br />

5<br />

[ K ] + GA[<br />

K ]<br />

2<br />

[ K ]<br />

2<br />

[ K ]<br />

y<br />

5<br />

1<br />

[ K ] + GA[<br />

K ]<br />

k < q ,q > = G[S ] ⎡⎣K ⎤⎦<br />

el<br />

w u i<br />

i<br />

Ω 7<br />

,z<br />

k < q ,q > = EI ⎡⎣ K ⎤⎦+ GS ⎡⎣K ⎤⎦<br />

2<br />

θ i i<br />

y ui zΩ<br />

8 Ω 6<br />

,z<br />

1<br />

T [ K ] + G[<br />

I + I ] [ K ]<br />

el<br />

k < qu<br />

, qu<br />

> = EI i j 4<br />

i j i j<br />

i j Ω Ω<br />

Ω,<br />

yΩ<br />

, y Ω,<br />

zΩ<br />

, z<br />

[K1], [K2]…[K8] are given <strong>in</strong> Appendix 3.<br />

3<br />

1


Appendix 6. <strong>Shear</strong> lock<strong>in</strong>g problem presentation<br />

Timoshenko model deals <strong>with</strong> bend<strong>in</strong>g behaviors by <strong>in</strong>clud<strong>in</strong>g shear bend<strong>in</strong>g effects as it has been seen <strong>in</strong><br />

§2.1.2. The simplest beam f<strong>in</strong>ite element <strong>with</strong> l<strong>in</strong>ear <strong>in</strong>terpolations for both transversal displacement and<br />

section rotation displays strong over-stiffen<strong>in</strong>g and significant errors <strong>in</strong> some cases. In this appendix, a<br />

brief presentation <strong>of</strong> this problem, the so-called lock<strong>in</strong>g phenomenon, is <strong>in</strong>troduced and developments are<br />

done, for simplicity, for a two dimensional (xz) beam ly<strong>in</strong>g along the x-axis.<br />

In Timoshenko model, the generalized stra<strong>in</strong>s are the shear stra<strong>in</strong> (A6.1) and the curvature χ (A6.2):<br />

F<br />

xz<br />

w θ + = γ (A6.1)<br />

y,<br />

x<br />

0,<br />

x<br />

y<br />

χ = θ<br />

(A6.2)<br />

For a two-node beam Timoshenko element, (A6.1) and (A6.2) can be developed as follows:<br />

F ⎧ 1 1 ⎫ 1 x 1 x<br />

γ xz = ⎨− w1+ w2⎬<br />

+ (1 − ) θ y1 + (1 + ) θ y2<br />

(A6.3)<br />

⎩ L L ⎭ 2 L 2 L<br />

1 1<br />

χ=− θ y1 + θ y2<br />

(A6.4)<br />

2L 2L<br />

For this simple l<strong>in</strong>ear Timoshenko element, the absence <strong>of</strong> shear stra<strong>in</strong> (A6.5) along the entire length <strong>of</strong> the<br />

beam <strong>in</strong>duces two equations (A6.6). The second equation <strong>of</strong> (A6.6) leads to zero curvature (A6.7):<br />

F<br />

xz =<br />

γ 0<br />

(A6.5)<br />

1 1 1 1<br />

− w1+ w2 + θ y1+ θ y2 = 0<br />

L L 2 2<br />

1 1<br />

− θ y1 + θ y2<br />

(A6.6)<br />

2L 2L<br />

0 θ = χ (A6.7)<br />

y , x =<br />

This shows that for l<strong>in</strong>ear Timoshenko element, the shear lock<strong>in</strong>g represents the <strong>in</strong>ability <strong>of</strong> the element to<br />

represent exact pure bend<strong>in</strong>g.<br />

In particular, if a pure state <strong>of</strong> bend<strong>in</strong>g (A6.8) is considered, (A6.3) gives the correspond<strong>in</strong>g shear stra<strong>in</strong><br />

(A6.9).<br />

w1 = w2 = 0 , θy1 = -θy2 = α (A6.8)<br />

γ F xz<br />

x<br />

= − α<br />

l<br />

(A6.9)<br />

From (A6.9), it could be seen that the stra<strong>in</strong> is found to be nonzero along the element except at x = 0. This<br />

is <strong>in</strong>compatible <strong>with</strong> the equilibrium equation <strong>of</strong> the state <strong>of</strong> pure bend<strong>in</strong>g where the shear and hence the<br />

stra<strong>in</strong> should vanish when the moment is constant. The transverse shear which appears <strong>in</strong> this state <strong>of</strong> pure<br />

bend<strong>in</strong>g is <strong>of</strong>ten called parasitic shear and has large effects on the behavior <strong>of</strong> the element.<br />

1


x xd E<br />

3 L<br />

0<br />

2<br />

y,x dx E<br />

3 2<br />

α<br />

xz<br />

F<br />

xzd L<br />

Gbh<br />

0<br />

F 2<br />

xz dx G<br />

2<br />

α<br />

1 bh bh<br />

σε Ω= θ =<br />

2 24 24L<br />

∫ ∫ (A6.10)<br />

Ω<br />

1 1 bhL<br />

τ γ Ω= γ =<br />

2 2 6<br />

∫ ∫ (A6.11)<br />

Ω<br />

Consequently, the ratio between the shear energy and the bend<strong>in</strong>g energy (A6.10 and A6.11) for the case <strong>of</strong><br />

pure bend<strong>in</strong>g <strong>of</strong> a rectangular (bxh) beam is proportional to (L/h) 2 . The shear energy should be equal to<br />

zero <strong>in</strong> case <strong>of</strong> pure bend<strong>in</strong>g but for this element, the parasitic shear energy absorbs a large part <strong>of</strong> the<br />

available energy. The displacement solution is <strong>in</strong>fluenced by shear effects where it should be only<br />

associated to bend<strong>in</strong>g effects.<br />

2


Appendix 7. <strong>Element</strong>ary stiffness matrix <strong>with</strong> distortional effects<br />

{qθxI} T = ; I=1,2,…m<br />

{qui} T = ; i=1,2,…n<br />

el<br />

*D<br />

[ ] [ ]<br />

I<br />

k < q θ ,q GI<br />

xI θ > =<br />

xI h K + ED K<br />

el<br />

2 ISM 1<br />

D D D D<br />

u 7<br />

k < q ,q > = G[I − I + S −S ] ⎡⎣ K ⎤⎦<br />

I I I I<br />

θ i i i i<br />

xI i<br />

yΩ,z zΩ,yzCI Ω,yyCI Ω,z<br />

[ K ] + G[<br />

I + I ] [ K ]<br />

el<br />

k < qu<br />

, qu<br />

> = EI i j 4<br />

i j i j<br />

i j Ω Ω<br />

Ω,<br />

yΩ<br />

, y Ω,<br />

zΩ<br />

, z<br />

[K1], [K2]…[K7] are given <strong>in</strong> Appendix 3.<br />

3<br />

1


Appendix 8. Basic concepts <strong>of</strong> non-l<strong>in</strong>ear analyses<br />

The analysis <strong>of</strong> slender th<strong>in</strong>-walled structures which <strong>of</strong>fer a high resistance for a relatively light weight<br />

takes <strong>in</strong>to account economy and stability. As th<strong>in</strong> walled structures have a very high load<strong>in</strong>g capacity, their<br />

design is usually determ<strong>in</strong>ed by structural <strong>in</strong>stabilities. Due to their small thickness, they are subject dur<strong>in</strong>g<br />

the load<strong>in</strong>g process to large deflections and to significant changes <strong>in</strong> stiffness so that the load-deflection<br />

curve becomes non l<strong>in</strong>ear. The hypothesis <strong>of</strong> l<strong>in</strong>earity and the pr<strong>in</strong>ciple <strong>of</strong> superposition cannot be adopted<br />

and the reference configuration cannot be kept as the undeformed structure. The non l<strong>in</strong>ear displacement<br />

response is thus determ<strong>in</strong>ed by apply<strong>in</strong>g gradually the load and solv<strong>in</strong>g l<strong>in</strong>ear sets <strong>of</strong> equations. The load is<br />

divided <strong>in</strong>to a series <strong>of</strong> <strong>in</strong>crements and the stiffness <strong>of</strong> the structure is adjusted at the end <strong>of</strong> each <strong>in</strong>crement.<br />

The purpose <strong>of</strong> this paragraph is to <strong>in</strong>troduce the nonl<strong>in</strong>ear analysis <strong>in</strong> order to study the elastic stability.<br />

The k<strong>in</strong>ematic equations describ<strong>in</strong>g the geometric movement <strong>of</strong> a structure and the basic mechanics<br />

relations <strong>in</strong>troduc<strong>in</strong>g the stress concepts are given. As the <strong>in</strong>stability <strong>of</strong>ten occurs after a small deformation<br />

<strong>of</strong> most th<strong>in</strong> walled structures, the hypotheses <strong>of</strong> moderate rotations and small stress-stra<strong>in</strong> relations are<br />

kept forwardly.<br />

The f<strong>in</strong>ite deformation solid mechanics is detailed <strong>in</strong> standard references (Criesfield 1997; Belytschko<br />

2000; Zienkiewicz 2000;…). This appendix, based ma<strong>in</strong>ly on the work <strong>of</strong> Akoussah (1987) and De Ville<br />

(1989), presents a brief outl<strong>in</strong>e <strong>of</strong> the basic equations. A deformable three dimensional body is considered.<br />

Different successive positions <strong>in</strong> the space and dur<strong>in</strong>g the deformation history are analyzed. A<br />

configuration denotes a set <strong>of</strong> positions <strong>of</strong> the structure for a given load level. If C 1 et C 2 are two<br />

configurations and if the coord<strong>in</strong>ates <strong>of</strong> C 1 are taken as <strong>in</strong>dependent variables to describe C 2 , the<br />

configuration C 1 is called reference configuration and the description <strong>of</strong> the movement is called lagrangian.<br />

The deformed structure is referred by the position vector position <strong>of</strong> material po<strong>in</strong>ts <strong>in</strong> a chosen reference<br />

configuration <strong>in</strong> a three dimensional space.<br />

y,Y<br />

C 0<br />

C i<br />

(X, Y, Z)<br />

( i x, i y, i z)<br />

z,Z<br />

Figure A8.1: Undeformed, <strong>in</strong>termediate and deformed configurations for f<strong>in</strong>ite deformation problems.<br />

Three successive configurations are considered:<br />

-the <strong>in</strong>itial configuration C 0 refers to the unloaded and undeformed state <strong>of</strong> the structure,<br />

-the deformed or current C t represents the deformed state or the position at a load level t <strong>of</strong> the structure,<br />

-an <strong>in</strong>termediate configuration C i refers to an <strong>in</strong>termediate state between the first two configurations.<br />

A Cartesian system is used and the description is called actualized s<strong>in</strong>ce the reference configuration is<br />

taken as C t .<br />

Deformation<br />

The position vector has three coord<strong>in</strong>ates that can be treated as components <strong>of</strong> one column matrix:<br />

x,X<br />

C t<br />

( t x, t y, t z)<br />

1


x(X,t) = X + u(X)<br />

(A8.1)<br />

The displacement vector = is <strong>in</strong>troduced as the change <strong>of</strong> arbitrary po<strong>in</strong>t p between two<br />

frames (C 0 ,C t ) <strong>in</strong> a Cartesian system.<br />

= is the <strong>in</strong>itial position vector.<br />

z,Z<br />

Figure A8.2 Common reference for all the configurations<br />

The displacement components (Uk or uk), <strong>with</strong> respect to either a reference configuration C 0 (Uk) or a<br />

current configuration C t (uk) respectively, are related through:<br />

(A8.2)<br />

Ui = ui<br />

Both components may be used equally for f<strong>in</strong>ite element developments.<br />

A fundamental measure <strong>of</strong> deformation is described by the deformation gradient [J] which is a direct<br />

measure that maps a differential l<strong>in</strong>e element dx <strong>in</strong> the reference configuration C 0 <strong>in</strong>to one <strong>in</strong> the current<br />

configuration as:<br />

dx dX du<br />

y,Y<br />

⎡ ∂u<br />

⎤<br />

dx =<br />

⎢<br />

I + dX = [J]{dX}<br />

⎣ ∂X<br />

⎥<br />

⎦<br />

= + { } { }<br />

⎡ ∂u ⎢<br />

1+ ∂X x<br />

⎢<br />

⎡∂ ⎤ ∂v [] J = ⎢<br />

⎢<br />

=<br />

⎣∂X⎥ ⎦ ⎢ ∂X ⎢ ∂w ⎢<br />

⎣ ∂X ∂u ∂Y ∂v 1+<br />

∂Y ∂w ∂Y ∂u<br />

⎤<br />

∂Z<br />

⎥<br />

∂v<br />

⎥<br />

⎥<br />

∂Z<br />

⎥<br />

∂w⎥<br />

1+<br />

∂Z<br />

⎥<br />

⎦<br />

where [I] is the identity matrix.<br />

X<br />

C 0<br />

(A8.3)<br />

J = det[J] > 0 (A8.4)<br />

[J] is subject to the constra<strong>in</strong>t (A8.4) to ensure that material volume elements rema<strong>in</strong> positive. F may be<br />

used to determ<strong>in</strong>e the change <strong>in</strong> length and direction <strong>of</strong> a differential l<strong>in</strong>e element and the determ<strong>in</strong>ant J<br />

maps a volume element <strong>in</strong> the reference configuration <strong>in</strong>to one <strong>in</strong> the current configuration:<br />

dx =<br />

T<br />

dX [J]<br />

dV = (dX *dY).dZ becomes dv = (dx *dy).dz = JdV<br />

(A8.5)<br />

t u<br />

t x<br />

x,X<br />

C t<br />

2


The follow<strong>in</strong>g relations are also given:<br />

�� �� �� �<br />

dA = (dX*dY) = n dA<br />

0 0 0<br />

d A = ( dx<br />

* dy)<br />

=<br />

ndA<br />

−T<br />

0 0<br />

−T<br />

0<br />

{} ndA= JJ [] { n} dA<br />

{ dA} J[] J { dA }<br />

= (A8.6)<br />

If dl 0 and dl are the lengths <strong>of</strong> differential elements dX and dx respectively, the follow<strong>in</strong>g relations are<br />

obta<strong>in</strong>ed:<br />

0<br />

2<br />

( dl ) dX { dX}<br />

= ( dl) dx { dx}<br />

2 =<br />

2 T<br />

( dl) dX [J] [J] { dX}<br />

= (A8.7)<br />

It is common to <strong>in</strong>troduce the Green stra<strong>in</strong> [E] for deformation measurements:<br />

2<br />

2 0<br />

( dl) − ( dl ) =<br />

T<br />

dX ([J] [J] − [I]) { dX} = 2 dX [E] { dX}<br />

where [ E] 1 T ( [] J [] J [] I ) E<br />

1<br />

= J J −δ<br />

= − or ij ( ki kj ij)<br />

2<br />

In terms <strong>of</strong> the reference displacements,<br />

2<br />

1 ⎛<br />

⎞<br />

⎜<br />

∂U<br />

∂U<br />

i j ∂Uk<br />

∂Uk<br />

E = + + ⎟<br />

ij<br />

(A8.8)<br />

2 ⎜<br />

⎟<br />

⎝<br />

∂X<br />

j ∂Xi<br />

∂Xi<br />

∂X<br />

j ⎠<br />

y,Y<br />

z,Z<br />

Figure A8.3 Movement <strong>of</strong> a differential element<br />

X<br />

C 0<br />

0 dl<br />

t u<br />

C t<br />

The right hand side <strong>of</strong> equation (A8.8) can be split <strong>in</strong>to l<strong>in</strong>ear and nonl<strong>in</strong>ear stra<strong>in</strong>s. The l<strong>in</strong>ear stra<strong>in</strong> is<br />

noted εij.<br />

Stress measures<br />

In the follow<strong>in</strong>g developments, capital and small letters are used to design respectively the variables <strong>in</strong> a<br />

reference configuration C i and <strong>in</strong> the current configuration C t .<br />

t dl<br />

x,X<br />

3


Stresses measure the amount <strong>of</strong> force per unit <strong>of</strong> area. p is a material po<strong>in</strong>t <strong>of</strong> the deformed configuration C t<br />

and ∆a is an elementary surface which orientation is def<strong>in</strong>ed by a normal n � . Let ∆f be the force vector<br />

act<strong>in</strong>g at this area element. The def<strong>in</strong>ition <strong>of</strong> the stress vector t � (n) at p is given by the limit:<br />

� �<br />

t(<br />

n)<br />

=<br />

lim<br />

∆f<br />

a<br />

∆a−<br />

> 0 ∆<br />

(A8.9)<br />

This vector is def<strong>in</strong>ed by unit <strong>of</strong> deformed area <strong>in</strong> the configuration C t and can be expressed <strong>in</strong> different<br />

manners.<br />

Figure A8.4 Stress measures<br />

Cauchy stress<br />

In f<strong>in</strong>ite deformation problems, the stress is def<strong>in</strong>ed <strong>with</strong> respect to the chosen configuration. If the current<br />

configuration is selected, the Cauchy (true) stress is a symmetric measure def<strong>in</strong>ed as follows:<br />

t jda<br />

= σijnida<br />

= σijda<br />

� � T<br />

t(<br />

n)<br />

= σ n<br />

<strong>with</strong><br />

⎡σ<br />

⎢<br />

[ σ]<br />

= ⎢τ<br />

⎢<br />

⎣<br />

τ<br />

[ ] {}<br />

xx<br />

yx<br />

zx<br />

τ<br />

σ<br />

τ<br />

xy<br />

yy<br />

zy<br />

τ<br />

τ<br />

σ<br />

i<br />

xz<br />

yz<br />

zz<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

Figure A8.5 Components <strong>of</strong> [ ]<br />

σ<br />

z<br />

z<br />

y<br />

C t<br />

y<br />

They are usually used to def<strong>in</strong>e general constitutive equations for materials.<br />

If df � is the load act<strong>in</strong>g on the differential area da which normal is n � <strong>in</strong> the configuration C t , then:<br />

p<br />

σz<br />

x<br />

τyz<br />

τzy<br />

σy<br />

n<br />

∆a<br />

τzx<br />

τyx<br />

τxz<br />

τxy<br />

∆f<br />

σx<br />

x<br />

(A8.10)<br />

(A8.11)<br />

4


{ df} = {} t da = [ σ]da<br />

(A8.11)<br />

Second Piola Kirchh<strong>of</strong>f stress<br />

The second Piola Kirchh<strong>of</strong>f stress S is a symmetric stress measure <strong>with</strong> respect to the reference<br />

configuration and is related to the true or Cauchy stress through the deformation gradient as:<br />

1<br />

σ ij = JikSklJjl (A8.13)<br />

J<br />

The force vector {F} and the stress vector {T}, associated <strong>with</strong> the Piola Kirchh<strong>of</strong>f stress def<strong>in</strong>ition, are<br />

related as follows:<br />

{ dF } { T}<br />

dA = []dA S<br />

= (A8.14)<br />

{T} is a surface traction def<strong>in</strong>ed by:<br />

{t} da = {T} dA (A8.15)<br />

The elementary area da <strong>in</strong> C t results from the deformation <strong>of</strong> an elementary area dA <strong>in</strong> C i .<br />

Identically, a volume force fv = ρt.f <strong>in</strong> C t can be related (A8.17) to FV <strong>in</strong> any known configuration C i by<br />

us<strong>in</strong>g (A8.16):<br />

ρ = ρ dV<br />

(A8.16)<br />

tdv<br />

i<br />

fv dv = FV dV (A8.17)<br />

ρt is the mass density <strong>in</strong> the current configuration and f is body force per unit mass. The relation <strong>with</strong> the<br />

reference configuration mass density ρi results from the pr<strong>in</strong>ciple <strong>of</strong> mass conservation.<br />

It should be noted that the values <strong>of</strong> Piola-Kirchh<strong>of</strong>f stresses (expressed by unit undeformed area) can be<br />

very different from those <strong>of</strong> Cauchy (expressed by unit <strong>of</strong> deformed area) if the solid is subjected to large<br />

deformations.<br />

Equilibrium equations<br />

By keep<strong>in</strong>g quantities relat<strong>in</strong>g to the current deformation, the equilibrium equations for a solid subjected to<br />

f<strong>in</strong>ite deformation are deduced from the pr<strong>in</strong>ciple <strong>of</strong> conservation <strong>of</strong> movement quantity. They describe the<br />

macroscopic behavior <strong>of</strong> materials under load<strong>in</strong>g effects.<br />

Let v be a volume <strong>in</strong> the configuration C t hav<strong>in</strong>g a as contour and submitted to external forces fv per unit <strong>of</strong><br />

deformed volume and fs par unit <strong>of</strong> deformed surface. The equilibrium <strong>in</strong> the current configuration is:<br />

ij<br />

∂σ<br />

∂x<br />

j<br />

+<br />

f<br />

vi<br />

= 0<br />

i,j=1,3 (A8.19)<br />

The equilibrium equations are nearly identical to those <strong>of</strong> small deformation.<br />

The boundary conditions consist <strong>of</strong> two types :<br />

-mechanical or traction boundary conditions [ σ]{ n } = { f}<br />

s on af<br />

-geometrical or displacement boundary conditions on au<br />

5


where<br />

a = a ∪ a and ∩ a = 0<br />

(A8.20)<br />

u<br />

f<br />

au f<br />

By us<strong>in</strong>g a matrix formulation :<br />

[]{} b {} f 0<br />

T<br />

+ =<br />

σ (A8.21)<br />

σ<br />

=<br />

σ<br />

σ<br />

where x y z xy yz xz<br />

b T<br />

et []<br />

⎡ ∂<br />

⎢<br />

∂x<br />

⎢<br />

= ⎢ 0<br />

⎢<br />

⎢<br />

⎢ 0<br />

⎣<br />

0<br />

∂<br />

∂y<br />

0<br />

0<br />

0<br />

∂<br />

∂z<br />

σ<br />

∂<br />

∂y<br />

∂<br />

∂x<br />

0<br />

τ<br />

0<br />

∂<br />

∂z<br />

∂<br />

∂y<br />

τ<br />

τ<br />

∂ ⎤<br />

∂z<br />

⎥<br />

⎥<br />

0 ⎥<br />

⎥<br />

∂ ⎥<br />

⎥<br />

∂x<br />

⎦<br />

(A8.22)<br />

Virtual work pr<strong>in</strong>ciple<br />

In order to construct f<strong>in</strong>ite element approximations, it is necessary to write a formulation <strong>in</strong> a weak or<br />

variational form. In this work, analyses are developed for materials behav<strong>in</strong>g elastically when subjected to<br />

deformation histories. To simplify the numerical developments, capital and small letters are used to design<br />

respectively the variables <strong>in</strong> a reference configuration C i and <strong>in</strong> the current configuration C t .<br />

Figure A8.6 Boundary conditions <strong>in</strong> the equilibrated configuration<br />

The pr<strong>in</strong>ciple <strong>of</strong> virtual work for real forces and virtual displacements implies that, at equilibrium, the<br />

virtual work done by <strong>in</strong>ternal forces is equal to the work done by external forces for any virtual<br />

displacement field. v and V denote the volume <strong>in</strong> C t and C i ; a and A represent the part <strong>of</strong> the surface <strong>of</strong> C t<br />

and C i on which specified tractions fa and FA are applied; fv and FV are body forces <strong>in</strong> C t and C i , σ<br />

represents the Cauchy stresses and is associated <strong>with</strong> the virtual <strong>in</strong>f<strong>in</strong>itesimal stra<strong>in</strong> tensor ε.<br />

The equivalence between two reference configuration formulations (A8.23) <strong>in</strong> C t and (A8.24) <strong>in</strong> C i is<br />

developed hereby.<br />

In C t :<br />

In C i :<br />

z<br />

*<br />

=<br />

*<br />

εijσij −<br />

*<br />

i vi −<br />

*<br />

i ai =<br />

v v a<br />

* * * *<br />

ij ij i Vi i Ai<br />

V V A<br />

∫ ∫ ∫ (A8.23)<br />

W dv u f dv u f da 0<br />

∫ ∫ ∫ (A8.24)<br />

W = E S dV− U F dV− U F dA= 0<br />

y<br />

au<br />

C t<br />

fv<br />

u* and U* are assumed to be k<strong>in</strong>ematically homogenous virtual displacements (assumed to vanish on<br />

geometric boundary conditions so that reactions do not appear <strong>in</strong> virtual work formulation). These virtual<br />

displacements can be chosen as <strong>in</strong>f<strong>in</strong>itesimal and taken as arbitrary variations <strong>of</strong> displacement δu or δU<br />

(equation A8.2).<br />

x<br />

v<br />

af<br />

fa<br />

6


The choice <strong>of</strong> the selected stress tensor (and hence the expression <strong>of</strong> the virtual work) depends on the<br />

adopted reference configuration (C t or C i ). By us<strong>in</strong>g a reference configuration (A8.24), the second Piola-<br />

Kirchh<strong>of</strong>f stress tensor S is found to be conjugated to the Green stra<strong>in</strong> E.<br />

The equivalence between the <strong>in</strong>ternal work <strong>in</strong> (A8.23) and (A8.24) (see also De Ville 1989 §5.5.2.2) is<br />

shown below <strong>in</strong> (A8.29) by us<strong>in</strong>g equations (A8.25…28) which are deduced from (A8.2), (A8.5), (A8.8)<br />

and (A8.13).<br />

∫dv = ∫ JdV<br />

(A8.25)<br />

v V<br />

Ui = δij uj<br />

1 ∂x<br />

∂x<br />

i j<br />

σ ij = Skl<br />

J ∂X<br />

∂X<br />

(A8.26)<br />

(A8.27)<br />

k<br />

l jl<br />

The Green stra<strong>in</strong> tensor is expressed <strong>in</strong> terms <strong>of</strong> reference displacements as<br />

1 ⎛<br />

⎞<br />

⎜<br />

∂U<br />

∂U<br />

i j ∂U<br />

k ∂U<br />

k<br />

E = + + ⎟<br />

ij<br />

(A8.28)<br />

2 ⎜<br />

⎟<br />

⎝<br />

∂X<br />

j ∂Xi<br />

∂Xi<br />

∂X<br />

j ⎠<br />

The first term <strong>of</strong> (A8.23) is developed as follows:<br />

1 x x<br />

X u<br />

i j Xm<br />

ui<br />

m j<br />

ij ijdv<br />

Skl<br />

dV<br />

2 X Xl<br />

x j Xm<br />

xi<br />

X ⎟<br />

v<br />

V k<br />

m<br />

⎟<br />

∂ ∂ ⎛<br />

⎞<br />

⎜<br />

∂ ∂δ<br />

∂ ∂δ<br />

∫ σ δε = ∫<br />

+<br />

∂ ∂ ⎜<br />

⎝<br />

∂ ∂ ∂ ∂<br />

⎠<br />

1 x<br />

x X u<br />

i Xm<br />

ui<br />

j m j<br />

ij ijdv<br />

Skl<br />

dV<br />

2 Xk<br />

Xl<br />

Xm<br />

Xl<br />

Xk<br />

X ⎟<br />

m<br />

⎟<br />

⎛ ∂ ∂ ∂δ<br />

∂ ∂ ∂δ<br />

⎞<br />

∫ σ δε = ∫ ⎜<br />

+<br />

⎝ ∂ ∂ ∂ ∂ ∂ ∂ ⎠<br />

v<br />

∫<br />

v<br />

∫<br />

v<br />

∫<br />

v<br />

V<br />

1 ( X<br />

( X U ) u<br />

i Ui<br />

) ui<br />

j j<br />

j<br />

ij ijdv<br />

Skl<br />

ml<br />

mk dV<br />

2 Xk<br />

Xm<br />

Xl<br />

X ⎟<br />

m<br />

⎟<br />

⎛ ∂ + ∂δ<br />

∂ + ∂δ<br />

⎞<br />

σ δε = ∫ ⎜ δ +<br />

δ<br />

⎝ ∂ ∂ ∂ ∂ ⎠<br />

V<br />

1<br />

( U<br />

( U ) u<br />

i ) ui<br />

j j<br />

ij ijdv<br />

Skl<br />

( ik ) ( jl ) dV<br />

2<br />

Xk<br />

Xl<br />

Xl<br />

X ⎟<br />

k<br />

⎟<br />

⎛ ∂ ∂δ<br />

∂ ∂δ<br />

⎞<br />

σ δε = ∫ ⎜ δ +<br />

+ δ +<br />

⎝ ∂ ∂<br />

∂ ∂ ⎠<br />

V<br />

1 uk<br />

ul<br />

Ui<br />

ij ijdv<br />

Skl<br />

2 X X X<br />

V<br />

l k k<br />

u U j u<br />

i<br />

j<br />

dV<br />

Xl<br />

Xl<br />

X ⎟<br />

k<br />

⎟<br />

⎛ ∂δ<br />

∂δ<br />

∂<br />

σ δε = ∫ ⎜ + +<br />

⎝ ∂ ∂ ∂<br />

∂δ<br />

∂ ∂δ<br />

⎞<br />

+<br />

∂ ∂ ∂ ⎠<br />

σδε dv = S δE<br />

dV<br />

∫ ∫ (A8.29)<br />

ij ij kl kl<br />

v V<br />

The equivalence between the external work <strong>in</strong> (A8.23) and (A8.24) is directly found by us<strong>in</strong>g (A8.25),<br />

(A8.15) and (A8.17).<br />

7


Appendix 9. Solution methods for the non l<strong>in</strong>ear problem<br />

Significant changes <strong>of</strong> shape can take place suddenly <strong>with</strong>out warn<strong>in</strong>g for structural members <strong>with</strong> elastic<br />

behaviour. Such phenomenon <strong>of</strong> loss <strong>of</strong> equilibrium stability constitutes a typical failure mode for some<br />

structures. The theory <strong>of</strong> stability is a basis for design and exam<strong>in</strong>ation <strong>of</strong> the safety <strong>of</strong> new and exist<strong>in</strong>g<br />

structures. It deals <strong>with</strong> critical loads and deformations associated <strong>with</strong> sudden changes <strong>of</strong> the states <strong>of</strong> a<br />

structure.<br />

In a general load<strong>in</strong>g process, a structure becomes more flexible and is subject to large geometric changes<br />

when the load<strong>in</strong>g reaches critical values. The configuration must be actualized s<strong>in</strong>ce the associated<br />

govern<strong>in</strong>g equations are nonl<strong>in</strong>ear. This appendix shows how the loss <strong>of</strong> stability is detected for the elastic<br />

structures under conservative load<strong>in</strong>g that are analyzed <strong>in</strong> paragraph 5.5. The follow<strong>in</strong>g developments are<br />

based on the work <strong>of</strong> Criesfield (1997, chapter 9) and on that <strong>of</strong> Fafard (Batoz 1999, course 4).<br />

The energy functional <strong>in</strong> paragraph 5.5.2 is reformulated <strong>in</strong> general terms as:<br />

T<br />

π ( u,<br />

λ)<br />

= Π(<br />

u)<br />

− λu<br />

F<br />

(A9.1)<br />

where π is the total potential energy, Π is the stra<strong>in</strong> energy which is function <strong>of</strong> a f<strong>in</strong>ite set <strong>of</strong> displacement<br />

variables u, F is a fixed external load vector and the applied loads vary <strong>in</strong> magnitude by a s<strong>in</strong>gle scalar<br />

multiplier λ.<br />

With λ fixed, a small change <strong>in</strong> potential energy, δπ, is approximated by truncated Taylor series:<br />

2<br />

∂π<br />

1 T ∂ π<br />

δπ = δu<br />

+ δu<br />

δu<br />

+ ...<br />

∂u<br />

2 2<br />

∂u<br />

(A9.2)<br />

R<br />

u =<br />

∂π<br />

∂<br />

(A9.3)<br />

2<br />

K<br />

2 T<br />

u =<br />

∂ π<br />

∂<br />

(A9.4)<br />

By us<strong>in</strong>g the notations <strong>in</strong> paragraph 5.5, (A9.3) can be identified as the out <strong>of</strong> balance forces or gradient R<br />

and (A9.4) can be identified as the tangent stiffness matrix KT.<br />

1 T<br />

δπ = Rδu + δu<br />

KTδu<br />

+ ...<br />

(A9.5)<br />

2<br />

Higher order terms <strong>in</strong> (A9.5) are omitted. In order to ensure equilibrium, the energy change <strong>in</strong> (A9.5)<br />

should be stationary <strong>with</strong> respect to δu. The theorem <strong>of</strong> equilibrium state sets that the conservative system<br />

is <strong>in</strong> equilibrium if the first variation <strong>of</strong> potential energy equals zero:<br />

∂π<br />

= R(<br />

u,<br />

λ)<br />

= 0<br />

∂u<br />

(A9.6)<br />

The set <strong>of</strong> non l<strong>in</strong>ear equilibrium equations (A9.6) for n degrees <strong>of</strong> freedom <strong>of</strong> the discrete model<br />

determ<strong>in</strong>es the configuration that an elastic structure assumes under a given set <strong>of</strong> loads. Stable<br />

configurations <strong>of</strong> equilibrium are determ<strong>in</strong>ed accord<strong>in</strong>g to the Lagrange-Dirichlet theorem. For stable<br />

equilibrium, a small change <strong>of</strong> energy must be positive for any small perturbation δu about the equilibrium<br />

1


po<strong>in</strong>t. The potential energy is positive def<strong>in</strong>ite and a m<strong>in</strong>imum <strong>of</strong> potential energy occurs <strong>in</strong> the stable<br />

equilibrium configuration.<br />

T<br />

u T<br />

δ K δu<br />

> 0<br />

(A9.7)<br />

(A9.7) must be satisfied for all δu.<br />

In case <strong>of</strong> conservative system, an equilibrium state is unstable if the change <strong>in</strong> energy is negative for a<br />

small perturbation δu. KT is no more positive def<strong>in</strong>ite and will have at least one negative eigenvalue.<br />

A neutral state is def<strong>in</strong>ed by the fact that the second variation <strong>of</strong> potential energy is equal to zero. KT has a<br />

zero eigenvalue.<br />

det( KT<br />

) = 0<br />

(A9.8)<br />

Given a solution at a level A <strong>in</strong>volv<strong>in</strong>g uA et λA, a Taylor expansion <strong>of</strong> (A9.6) for λ vary<strong>in</strong>g gives by<br />

neglect<strong>in</strong>g higher order terms:<br />

∂R<br />

∂u<br />

A<br />

∂R<br />

∆u<br />

+<br />

∂λ<br />

A<br />

∆λ<br />

= K<br />

T<br />

∆u<br />

− ∆λF<br />

= 0<br />

In order to f<strong>in</strong>d the equilibrium path for the structure, (A9.10) must be solved:<br />

−1<br />

T<br />

(A9.9)<br />

∆ u = ∆λK<br />

F<br />

(A9.10)<br />

When equation (A9.8) is satisfied, (A9.10) does not have a solution and the associated state is called<br />

critical. The potential system reaches a critical state <strong>of</strong> equilibrium if the first and second variations <strong>of</strong><br />

potential energy equal zero. This critical or s<strong>in</strong>gular po<strong>in</strong>t can be either a limit po<strong>in</strong>t (figure A9.1a) or a<br />

bifurcation po<strong>in</strong>t (figure A9.1b) and corresponds either to a snapp<strong>in</strong>g or to a buckl<strong>in</strong>g phenomenon<br />

respectively.<br />

λ<br />

(a)<br />

Figure A9.1 S<strong>in</strong>gular po<strong>in</strong>ts: Limit po<strong>in</strong>t (a) and bifurcation po<strong>in</strong>t (b)<br />

u1<br />

In the (n+1) dimensional space, a curve (figure A9.1) is constituted by plott<strong>in</strong>g a set <strong>of</strong> po<strong>in</strong>ts <strong>with</strong><br />

coord<strong>in</strong>ates λ and u1 which are solutions <strong>of</strong> (A9.6). The curves <strong>in</strong> the (n+1) dimensional space constitute<br />

the equilibrium path. The primary branch passes through the orig<strong>in</strong> <strong>of</strong> the coord<strong>in</strong>ate system and the<br />

secondary branch does not.<br />

Parameterization <strong>of</strong> load displacement curve<br />

The concept <strong>of</strong> scalar load multiplier λ is thus <strong>in</strong>troduced as a factor multiply<strong>in</strong>g a load vector up to the<br />

desired level.<br />

λ<br />

(b)<br />

u1<br />

2


A parameterization <strong>of</strong> the load-displacement curve is necessary to <strong>in</strong>troduce functional aspects <strong>of</strong> the<br />

resolution. n+1 is the total number <strong>of</strong> unknowns where n is the number <strong>of</strong> degrees <strong>of</strong> freedom and the n+1<br />

unknown is the scalar load multiplier λ.<br />

{ R} λ{<br />

F}<br />

− { R <strong>in</strong>t } = { 0}<br />

= (A9.11)<br />

F corresponds to equivalent nodal forces. It depends strictly on the external load<strong>in</strong>g given for a problem.<br />

R<strong>in</strong>t is the <strong>in</strong>ternal force vector that depends on the displacements u. λ is the load level parameter.<br />

It is crucial to choose the most suitable parameter that dictates the path trac<strong>in</strong>g <strong>of</strong> the load-displacement<br />

curve. If the parameter is chosen to be λ or any displacement ui, the algorithm fails at limit po<strong>in</strong>ts or at<br />

‘snap-throughs’. To overcome this, the arc length method is used and a curvil<strong>in</strong>ear axis coord<strong>in</strong>ate s that<br />

follows the load displacement curve is taken hereby as a parameter (A9.12).<br />

λ = λ(<br />

s)<br />

{} u = { u(<br />

s)<br />

}<br />

The load level parameter λ is therefore the variable to be determ<strong>in</strong>ed as a function <strong>of</strong> s.<br />

The tangent unit vector at the po<strong>in</strong>t s <strong>of</strong> the curve is:<br />

{}<br />

{} �u<br />

(A9.12)<br />

⎧ ⎫<br />

t = ⎨ ⎬<br />

(A9.13)<br />

⎩λ�<br />

⎭<br />

1 ⎧du<br />

⎫ 1 dλ<br />

where{ u� } = ⎨ ⎬ , λ =<br />

m ⎩ ds ⎭ m ds<br />

� , <strong>with</strong> m =<br />

As t is a unit vector,<br />

du<br />

ds<br />

⎧du<br />

⎫ ⎛ dλ<br />

⎞<br />

⎨ ⎬ + ⎜ ⎟<br />

⎩ ds ⎭ ⎝ ds ⎠<br />

t<br />

2 {} t = u {} u�<br />

+ ( λ�<br />

) = 1<br />

� (A9.14)<br />

In order to approximate the equilibrium path by a broken l<strong>in</strong>e <strong>of</strong> chords whose end po<strong>in</strong>ts correspond to<br />

successive discrete values, the <strong>in</strong>cremental form is used <strong>in</strong>stead <strong>of</strong> the differential one. (A9.14) is<br />

discretized as follows:<br />

⎧∆u<br />

⎫<br />

{} u� = ⎨ ⎬<br />

⎩ ∆s<br />

⎭<br />

(A9.15)<br />

∆λ<br />

λ =<br />

∆s<br />

� (A9.16)<br />

∆ u . ∆u<br />

2<br />

+ ( ∆λ)<br />

= ( ∆s)<br />

(A9.17)<br />

{ } 2<br />

2<br />

3


Figure A9.2 Spherical arc length procedure for one degree <strong>of</strong> freedom (after Criesfield 1997)<br />

In (A9.17), a scal<strong>in</strong>g parameter ψ is required because the load contribution depends on the adopted scal<strong>in</strong>g<br />

between the load and displacement terms.<br />

2 2 2<br />

{ ∆u}<br />

+ ψ ( ∆λ)<br />

= ( s)<br />

∆ u .<br />

∆<br />

(A9.18)<br />

If the load<strong>in</strong>g term <strong>in</strong>volv<strong>in</strong>g ψ is set to zero (A9.19), the method is known as cyl<strong>in</strong>drical rather than<br />

spherical [Criesfield 1997 page 274, …]. (A9.18) is thus reduced to (A9.20).<br />

ψ = 0 (A9.19)<br />

∆ u . ∆u<br />

= ( ∆s)<br />

(A9.20)<br />

{ } 2<br />

∆λ1F<br />

λ0F<br />

λ<br />

u0<br />

δλ1<br />

∆λ2F<br />

∆λ3F<br />

δλ2<br />

(u0,λ0F)<br />

δu0<br />

∆u1 ∆u2<br />

(u1,λ1F)<br />

Equation A9.17 describes the evolution from step to step by us<strong>in</strong>g the arc length method. ∆ s , the discrete<br />

arc length value <strong>of</strong> the curve ( {} u , λ ) , represents at each step the fixed radius <strong>of</strong> the desired <strong>in</strong>tersection (see<br />

figure A9.2 & A9.3). ∆ λ and ∆ u are <strong>in</strong>cremental and relate back to the last converged equilibrium state.<br />

∆u3<br />

∆s<br />

δu1<br />

(u2,λ2F)<br />

(u3,λ3F)<br />

δu2<br />

u<br />

4


Figure A9.3 Cyl<strong>in</strong>drical arc length method for 2 degrees <strong>of</strong> freedom (after Batoz 1999)<br />

Cyl<strong>in</strong>drical arc length method calculations<br />

Solv<strong>in</strong>g equation (A9.11)<br />

Let ∆ui be the <strong>in</strong>crement <strong>in</strong> the displacement u from the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> a step till the current iteration i. δui is<br />

the <strong>in</strong>crement <strong>in</strong> the displacement between two consecutive iterations i-1 and i. Identically, let ∆λi be the<br />

<strong>in</strong>crement <strong>in</strong> the load parameter from the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> a step till the current iteration and δλi is the<br />

<strong>in</strong>crement between two consecutive iterations i-1 and i.<br />

At a new unknown level, the change <strong>in</strong> displacement δui must be calculated from (A9.11) to ensure the<br />

equilibrium.<br />

−1<br />

{ δu<br />

i } = [ K ] { R } + δλ i { F }<br />

t<br />

i<br />

ext<br />

The iterative displacement δui can be split <strong>in</strong>to two parts <strong>in</strong>volv<strong>in</strong>g <strong>in</strong>ternal and external forces:<br />

−1<br />

−1<br />

{ u i } = [ K t ] { R i } + δλ i [ K t ] { Fext}<br />

{ u i } = { δu<br />

} + δλ i { δu<br />

}<br />

(A9.21)<br />

δ (A9.22)<br />

δ (A9.23)<br />

iR<br />

iF<br />

δλi is still unknown and the new <strong>in</strong>cremental displacement can be written as:<br />

∆ + = ∆u<br />

+ δu<br />

+ δλ δu<br />

(A9.24)<br />

{ u i 1 } { i } { } i { }<br />

i 1<br />

i<br />

i<br />

iR<br />

iF<br />

∆ λ + = ∆λ<br />

+ δλ<br />

(A9.25)<br />

Then, (A9.24) is <strong>in</strong>serted <strong>in</strong>to (A9.20) and a scalar quadratic equation is solved <strong>in</strong> order to determ<strong>in</strong>e δλi.<br />

2 ( ) + b(<br />

δλ)<br />

+ c = 0<br />

a δλ<br />

where<br />

(A9.26)<br />

δ u δu<br />

(A9.27)<br />

a= { }<br />

iF iF<br />

2 uiF<br />

( ∆u<br />

i + δuiR<br />

δ (A9.28)<br />

b= { }{ } { })<br />

c= { } { } { } { } ( ) 2<br />

u + δu<br />

)( ∆u<br />

+ δu<br />

) − ∆s<br />

( i iR i<br />

up i+1<br />

u2 s<br />

∆s<br />

u p+1<br />

u p-1<br />

∆ (A9.29)<br />

iR<br />

u p<br />

Courbe u(s)<br />

This is applied for each iteration <strong>in</strong> order to let the Euclidean norm <strong>of</strong> the vector ∆u equal to ∆s.<br />

F<strong>in</strong>d<strong>in</strong>g the appropriate root to (A9.26)<br />

For a regular curve, there are two <strong>in</strong>tersection po<strong>in</strong>ts between the circle and the load displacement curve<br />

(figure A9.4). Equation (A9.26) has then two roots and the appropriate one must be chosen. Both solutions<br />

(δλi1 and δλi2) are computed and the closest to the previous <strong>in</strong>cremental direction is kept <strong>in</strong> order to prevent<br />

u1<br />

5


the solution from diverg<strong>in</strong>g or ‘doubl<strong>in</strong>g back on it tracks’ [Criesfield 1997 page 277]. This criterion is<br />

based on the fact that dur<strong>in</strong>g the iteration process, two consecutive iterated vectors po<strong>in</strong>t roughly <strong>in</strong> the<br />

same direction.<br />

The solution <strong>with</strong> m<strong>in</strong>imum angle between ∆ui and ∆ui+1 is kept (<strong>with</strong> maximum cos<strong>in</strong>e <strong>of</strong> the angle):<br />

{ ∆u<br />

}{ ∆u<br />

}<br />

i<br />

i<br />

1<br />

+ cos( θ i ) =<br />

(A9.30)<br />

( ∆s)²<br />

Figure A9.4 Selection <strong>of</strong> solution for the cyl<strong>in</strong>drical arc length method (after Batoz 1999)<br />

Predictor solution<br />

The set <strong>of</strong> l<strong>in</strong>ear problems is solved start<strong>in</strong>g from a first estimate. At the first step (s = 0) <strong>of</strong> calculation, the<br />

value <strong>of</strong> ∆s can be determ<strong>in</strong>ed from a given value ∆λ <strong>of</strong> the load <strong>in</strong>crement:<br />

∆λ1 = ∆λ<br />

1<br />

F<br />

1 { u }<br />

∆ s = ∆λ<br />

∆u<br />

∆<br />

(A9.31)<br />

F<br />

In this particular case for s = 0, the problem is l<strong>in</strong>ear and [KT ]= [K].<br />

In the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> any other step p (arbitrary values <strong>of</strong> s), the value <strong>of</strong> ∆λ is calculated from (A9.32):<br />

∆s<br />

∆ λ1<br />

= ±<br />

(A9.32)<br />

1<br />

∆u<br />

F<br />

1 { ∆u<br />

}<br />

Real values <strong>of</strong> (A9.32) are found if :<br />

{ ∆ i } + { δu<br />

} ≤ ( ∆s)<br />

u iR<br />

u2<br />

F<br />

p−1<br />

1<br />

Two predictors are possible and the sign <strong>of</strong> ∆u<br />

{ ∆u<br />

}<br />

u p<br />

up i<br />

up i+1<br />

up i+1<br />

u1<br />

p F<br />

is prevalent. If the tangent matrix is positive<br />

def<strong>in</strong>ite, the positive sign is kept. However, if it is not the case, a negative pivot implies one negative<br />

eigenvalue for the tangent matrix. Discussion about the nature <strong>of</strong> this s<strong>in</strong>gular po<strong>in</strong>t is found <strong>in</strong> [Criesfield<br />

1997 page 286].<br />

s<br />

6


List <strong>of</strong> figures<br />

Figure 2.1 Pr<strong>in</strong>cipal axes <strong>of</strong> a beam pr<strong>of</strong>ile ........................................................................................................... 2-1<br />

Figure 2.2 Difference between TBTM and (BBT, TBT and RBT) for maximal deflection <strong>of</strong><br />

rectangular beams submitted to a uniformly distributed load............................................................... 2-5<br />

Figure 2.3 Difference between TBTM and (BBT, TBT and RBT) for maximal deflection <strong>of</strong><br />

rectangular beams submitted to a concentrated force P at mid span .................................................... 2-6<br />

Figure 2.4 (a) Square tubular cross section (b = 0.1m, t = 0.001m), (b) open I cross section<br />

(b = 0.08m, tf = 0.01m, h = 0.38m, tw = 0.0035m), (c) tubular cross section (b = 0.3m, tf =<br />

0.008m, h = 0.8m, tw = 0.001m) and (d) T cross section (b = 0.4m, tf = 0.01m, h = 0.4m,<br />

tw = 0.01m) ........................................................................................................................................... 2-7<br />

Figure 2.5 Variation [(wTBTM-wBBT)/ wBBT] <strong>of</strong> shear deformation effects on maximal deflection [m]<br />

<strong>of</strong> beams (Figure 2.4) submitted to a uniformly distributed load (a) and to a unit<br />

concentrated load at mid length (b) ...................................................................................................... 2-9<br />

Figure 2.6 Closed and open cross sections ............................................................................................................ 2-12<br />

Figure 2.7 Cross sectional geometry...................................................................................................................... 2-14<br />

Figure 2.8 Internal stresses act<strong>in</strong>g on the edges <strong>of</strong> an element (ds dx) .................................................................. 2-18<br />

Figure 2.9 Open (b) and closed (c) asymmetrical cross sections submitted to non uniform torsion ...................... 2-22<br />

Figure 2.10 Pr<strong>in</strong>cipal warp<strong>in</strong>g function [m 2 ] <strong>of</strong> open cross section figure 2.9b....................................................... 2-23<br />

Figure 2.11 Torsional moment Mx = M x st + Mx ω [Nm], bimoment B [Nm 2 ] and twist<strong>in</strong>g angle teta<br />

[rad] <strong>of</strong> an open asymmetrical th<strong>in</strong> walled beam for x vary<strong>in</strong>g from 0 (left support) till<br />

10m (midspan)...................................................................................................................................... 2-23<br />

Figure 2.12 Pr<strong>in</strong>cipal warp<strong>in</strong>g function [m 2 ] <strong>of</strong> closed cross section <strong>in</strong> figure 2.9c ................................................ 2-24<br />

Figure 2.13 Rotat<strong>in</strong>g angle teta [rad], torsional moment Mx = M x st + Mx ω [Nm], and bimoment B<br />

[Nm 2 Figure 2.14<br />

] <strong>of</strong> closed asymmetrical th<strong>in</strong> walled beam for x vary<strong>in</strong>g from 0 (left support) till<br />

10m (midspan)...................................................................................................................................... 2-25<br />

(a) A global behavior: bend<strong>in</strong>g <strong>of</strong> an I beam; (b); a local behavior that <strong>in</strong>volves one plate<br />

<strong>of</strong> a Z beam; (c) a distortional behavior................................................................................................ 2-27<br />

Figure 2.15 A transversal load (a) separated <strong>in</strong>to: flexural & torsional load<strong>in</strong>g (b) and distortional<br />

load<strong>in</strong>g (c) (after Takahashi) ................................................................................................................ 2-28<br />

Figure 2.16 ‘yz’ beam axes and ‘se’ local axes ....................................................................................................... 2-29<br />

Figure 2.17 Distortional modes ............................................................................................................................... 2-29<br />

Figure 2.18 (a): Two cross section blocks (1-2-3 & 3-4-5) associated <strong>with</strong> the distortional jo<strong>in</strong>t 3; (b)<br />

cross section <strong>with</strong> no distortional modes .............................................................................................. 2-29<br />

Figure 2.19 Open cross section <strong>with</strong>out ramifications............................................................................................. 2-31<br />

Figure 2.20 (a) An isolated unit length strip; stiffen<strong>in</strong>g effects represented by the distribution <strong>of</strong> Ms xI<br />

along the pr<strong>of</strong>ile contour (c) depend<strong>in</strong>g on the pr<strong>of</strong>ile geometry (b).................................................... 2-33<br />

Figure 2.21 Cross sections conta<strong>in</strong><strong>in</strong>g one or more than one cell............................................................................ 2-35<br />

Figure 2.22 Lateral torsional buckl<strong>in</strong>g <strong>of</strong> a beam .................................................................................................... 2-37<br />

Figure 3.1 General form <strong>of</strong> a cross section ............................................................................................................ 3-1<br />

Figure 3.2 (a)Warp<strong>in</strong>g along the contour <strong>of</strong> the pr<strong>of</strong>ile;�(b) & (c): functions<br />

��<br />

and� .......................................... 3-2<br />

Figure 3.3 Thickness warp<strong>in</strong>g function, cut A-A <strong>of</strong> figure 3.1 .............................................................................. 3-3<br />

Figure 3.4 (a) Tension <strong>of</strong> an I beam; (b) extension u0 <strong>of</strong> the beam <strong>with</strong> ui vanish<strong>in</strong>g; (c): possible<br />

configuration when uncoupl<strong>in</strong>g is not satisfied: warp<strong>in</strong>g (-ui) related to tension ................................. 3-5


Figure 3.5 Pure bend<strong>in</strong>g <strong>of</strong> an I beam ................................................................................................................... 3-6<br />

Figure 3.6 Regression l<strong>in</strong>es <strong>of</strong> plots (a): (y,f) and (b): (y,u) ................................................................................. 3-7<br />

Figure 3.7 A beam submitted to a shear force ...................................................................................................... 3-9<br />

Figure 3.8 (a): Beam cross section; (b): shear stresses; (c): warp<strong>in</strong>g <strong>of</strong> the cross section <strong>with</strong> a<br />

constant shear force ............................................................................................................................. 3-10<br />

Figure 4.1 Simply supported beam <strong>with</strong> rectangular cross section (bxh) under uniformly distributed<br />

load....................................................................................................................................................... 4-11<br />

Figure 4.2 Column <strong>with</strong> cruciform cross section................................................................................................... 4-23<br />

Figure 4.3 Critical loads for flexural and torsional buckl<strong>in</strong>g <strong>of</strong> a column ............................................................ 4-24<br />

Figure 4.4 Difference between analytical calculations <strong>of</strong> torsional critical loads by us<strong>in</strong>g Vlassov and<br />

adapted Prokić k<strong>in</strong>ematic formulations ................................................................................................ 4-25<br />

Figure 4.5 Difference between analytical calculations (Vlassov and adapted Prokić k<strong>in</strong>ematic<br />

formulations) <strong>of</strong> torsional critical loads for columns <strong>with</strong> rectangular, cruciform and I<br />

sections and <strong>of</strong> coupled flexural torsional loads for columns <strong>with</strong> channel (U) and angle<br />

(L) cross sections.................................................................................................................................. 4-26<br />

Figure 4.6 Difference between analytical calculations (Vlassov and Prokić k<strong>in</strong>ematic formulations)<br />

<strong>of</strong> lateral torsional critical moments for beams <strong>with</strong> rectangular, cruciform, I, U and L<br />

cross sections........................................................................................................................................ 4-26<br />

Figure 4.7 Flexural, flexural-torsional and lateral-torsional buckl<strong>in</strong>g <strong>of</strong> beams and columns .............................. 4-27<br />

Figure 4.8 A monosymmetrical I beam ................................................................................................................ 4-28<br />

Figure 4.9 Lateral torsional buckl<strong>in</strong>g <strong>of</strong> monosymmetrical I beam ...................................................................... 4-28<br />

Figure 4.10 Lateral torsional buckl<strong>in</strong>g <strong>of</strong> simply supported beam <strong>with</strong> different pr<strong>of</strong>iles (Table 4.3)<br />

under uniformly distributed load ......................................................................................................... 4-31<br />

Figure 5.1 Beam f<strong>in</strong>ite element <strong>with</strong>out shear effects............................................................................................ 5-2<br />

Figure 5.2 Beam f<strong>in</strong>ite element <strong>with</strong> shear effects................................................................................................. 5-4<br />

Figure 5.3 A straight connection............................................................................................................................ 5-14<br />

Figure 5.4 Plane flexure......................................................................................................................................... 5-15<br />

Figure 5.5a Rigid connection, warp<strong>in</strong>g restra<strong>in</strong>ed (after Gjelsvik 1981) (ui (1) (2)<br />

=0, ui =0)....................................... 5-15<br />

Figure 5.5b Semi rigid connection, warp<strong>in</strong>g transmitted (after Gjelsvik 1981) (ui (1) (2)<br />

= ui )................................... 5-16<br />

Figure 5.5c H<strong>in</strong>ged connection, <strong>in</strong>dependent warp<strong>in</strong>g (after Gjelsvik 1981) (ui (1) (2) (1) (2)<br />

≠ ui , fi = fi<br />

=0) ........................................................................................................................................................ 5-16<br />

Figure 5.6 Simply supported beam submitted to a concentrated torque................................................................. 5-19<br />

Figure 5.7 Square tubular beam <strong>with</strong> uniform density <strong>of</strong> torque ........................................................................... 5-20<br />

Figure 5.8 Torsion <strong>of</strong> a tubular cross section......................................................................................................... 5-20<br />

Figure 5.9 Relative difference between values <strong>of</strong> maximal torsional angle <strong>of</strong> the beam <strong>in</strong> 5.9b<br />

obta<strong>in</strong>ed by the theory <strong>of</strong> Benscoter and the f<strong>in</strong>ite elements FEM1 and FEM2 ................................... 5-20<br />

Figure 5.10 Simply supported beam submitted to a uniform density <strong>of</strong> torque ...................................................... 5-21<br />

Figure 5.11 Relative difference between the values <strong>of</strong> mid span twist angle obta<strong>in</strong>ed by the theory <strong>of</strong><br />

Vlassov and the f<strong>in</strong>ite elements FEM1 and FEM2 ............................................................................... 5-21<br />

Figure 5.12 Relative difference between values <strong>of</strong> mid span twist<strong>in</strong>g angle obta<strong>in</strong>ed by the theory <strong>of</strong><br />

Vlassov and the f<strong>in</strong>ite element FEM2 .................................................................................................. 5-22<br />

Figure 5.13 Channel beam submitted to non-uniform torsion ................................................................................. 5-23<br />

Figure 5.14 Normal and shear stresses due to non-uniform torsion for a channel beam.......................................... 5-24<br />

Figure 5.15 (a) Difference between Vlassov and FEM2 calculations for the distance between the centroid<br />

and the shear center, (b) warp<strong>in</strong>g shear stresses (x = 0m) at the mid wall when prescrib<strong>in</strong>g


Figure 5.16<br />

shear center coord<strong>in</strong>ates, (c) warp<strong>in</strong>g shear stresses (x = 0m) at the mid wall when<br />

condens<strong>in</strong>g the shear center coord<strong>in</strong>ates............................................................................................... 5-25<br />

Maximum torsional rotation angle <strong>in</strong> case <strong>of</strong> non uniform torsion for a closed cross<br />

section .................................................................................................................................................. 5-26<br />

Figure 5.17 Normal and shear stresses <strong>in</strong> case <strong>of</strong> non uniform torsion for a closed cross section beam.................. 5-27<br />

Figure 5.18 Cont<strong>in</strong>uous beam <strong>with</strong> three spans submitted to a uniform density <strong>of</strong> torque at central span............... 5-27<br />

Figure 5.19 Distributions <strong>of</strong> twist and bimoment along the beam <strong>in</strong> figure 5.18..................................................... 5-28<br />

Figure 5.20 An I beam submitted to an eccentric s<strong>in</strong>gle axial load ......................................................................... 5-29<br />

Figure 5.21 Longitud<strong>in</strong>al stresses correspond<strong>in</strong>g to four sets <strong>of</strong> load<strong>in</strong>g result<strong>in</strong>g from a s<strong>in</strong>gle load<br />

applied <strong>in</strong> 5.20; a: compression, b &c: bend<strong>in</strong>g, d: torsional warp<strong>in</strong>g ................................................. 5-29<br />

Figure 5.22 Diagram <strong>of</strong> twist [rad] along the longitud<strong>in</strong>al beam <strong>in</strong> figure 5.20....................................................... 5-30<br />

Figure 5.23 A Beam submitted to torsion................................................................................................................ 5-31<br />

Figure 5.24 distribution <strong>of</strong> rotat<strong>in</strong>g angle [rad] along the beam for different types <strong>of</strong> warp<strong>in</strong>g<br />

conditions at supports........................................................................................................................... 5-32<br />

Figure 5.25 Portal frame geometry <strong>with</strong> H (1) and U (2) cross sections ................................................................. 5-32<br />

Figure 5.26 Difference <strong>with</strong> Vlassov f<strong>in</strong>ite element solution for the rotational rotation at the<br />

connection and FEM2 .......................................................................................................................... 5-33<br />

Figure 5.27 Box girder <strong>with</strong> large open<strong>in</strong>g submitted to torsion ............................................................................. 5-34<br />

Figure 5.28 Results from Gunnlaugsson (1982) ...................................................................................................... 5-35<br />

Figure 5.29 Comparison <strong>of</strong> the rotation angle along the girder by us<strong>in</strong>g ‘FEM2’ (16 beam elements)<br />

and the results <strong>of</strong> Pedersen (1991)........................................................................................................ 5-35<br />

Figure 5.30 Values <strong>of</strong> axial stresses due to non uniform warp<strong>in</strong>g along the girder by us<strong>in</strong>g ‘FEM2’<br />

<strong>with</strong> 16 beam elements ......................................................................................................................... 5-36<br />

Figure 5.31 <strong>F<strong>in</strong>ite</strong> element <strong>with</strong> (xz) bend<strong>in</strong>g shear warp<strong>in</strong>g effects ....................................................................... 5-38<br />

Figure 5.32 Difference between FEM3 and TBTM for a simply supported beam submitted to uniform<br />

load....................................................................................................................................................... 5-41<br />

Figure 5.33a <strong>F<strong>in</strong>ite</strong> element errors for maximal deflection <strong>of</strong> simply supported beam submitted to a<br />

uniformly applied load <strong>with</strong> vary<strong>in</strong>g aspect ratio (L/h); all f<strong>in</strong>ite element analyses<br />

performed <strong>with</strong> two elements ............................................................................................................... 5-42<br />

Figure 5.33b Illustration <strong>of</strong> shear lock<strong>in</strong>g shear phenomenon; two f<strong>in</strong>ite elements (enlargement <strong>of</strong><br />

figure 5.33a) ......................................................................................................................................... 5-43<br />

Figure 5.34 Simply supported beam submitted to a pure bend<strong>in</strong>g ........................................................................... 5-43<br />

Figure 5.35 (a): Lock<strong>in</strong>g shear phenomenon for the maximal deflection <strong>of</strong> a simply supported beam<br />

submitted to a pure bend<strong>in</strong>g <strong>with</strong> vary<strong>in</strong>g aspect ratio (L/h); (b): enlargement <strong>of</strong> figure<br />

5.35a <strong>with</strong> CIE, RIE and FEM3 values ................................................................................................ 5-44<br />

Figure 5.36 (a) open cross section, (b) two-celled cross sections ............................................................................ 5-45<br />

Figure 5.37 Differences between TBTM and BBT, TBT & FEM2 for maximal deflection <strong>of</strong> simply<br />

supported beam <strong>with</strong> the open pr<strong>of</strong>ile (a) and the closed pr<strong>of</strong>ile (b) .................................................... 5-46<br />

Figure 5.38 Compar<strong>in</strong>g beam shear theories for maximal deflection <strong>of</strong> simply supported beam <strong>with</strong><br />

the closed pr<strong>of</strong>ile .................................................................................................................................. 5-47<br />

Figure 5.39 <strong>F<strong>in</strong>ite</strong> element <strong>with</strong> distortional effects ................................................................................................ 5-48<br />

Figure 5.40 Clamped-free beam submitted to distortional load<strong>in</strong>g.......................................................................... 5-51<br />

Figure 5.41 (a): Stiffen<strong>in</strong>g effects (distribution <strong>of</strong> M s xI along the pr<strong>of</strong>ile contour). (b): Position <strong>of</strong><br />

distortional centers ............................................................................................................................... 5-52<br />

Figure 5.42 Mesh<strong>in</strong>g <strong>with</strong> Samcef shell f<strong>in</strong>ite elements .......................................................................................... 5-52


Figure 5.43 (a): Distortional rotat<strong>in</strong>g angle distribution along the longitud<strong>in</strong>al axis (x); (b): Rotat<strong>in</strong>g<br />

angle distribution along the contour coord<strong>in</strong>ate (s) for x=2m............................................................... 5-53<br />

Figure 5.44 Normal stresses σx due to distortion <strong>of</strong> a monosymmetrical open pr<strong>of</strong>ile for x = 1.5m ....................... 5-53<br />

Figure 5.45 Local stresses σs at the upper sk<strong>in</strong> for x = 1.5m ................................................................................... 5-54<br />

Figure 5.46 <strong>Shear</strong> τxs stresses due to distortion <strong>of</strong> a monosymmetrical open pr<strong>of</strong>ile for x = 1.5m .......................... 5-54<br />

Figure 5.47 (a) Clamped-free beam submitted to bend<strong>in</strong>g, torsion and distortion; (b) Position <strong>of</strong><br />

torsional and distortional centers.......................................................................................................... 5-55<br />

Figure 5.48 Distribution <strong>of</strong> M s xI along the pr<strong>of</strong>ile contour ..................................................................................... 5-56<br />

Figure 5.49 Separat<strong>in</strong>g distortional load<strong>in</strong>g cases (d) from the bend<strong>in</strong>g/torsional load<strong>in</strong>g case (a+b+c)<br />

for the case <strong>of</strong> load<strong>in</strong>g <strong>in</strong> figure 5.47a .................................................................................................. 5-56<br />

Figure 5.50 Mesh<strong>in</strong>g <strong>with</strong> Samcef shell f<strong>in</strong>ite elements .......................................................................................... 5-57<br />

Figure 5.51 Distribution <strong>of</strong> the distortional rotat<strong>in</strong>g angle along the beam length (x) ............................................. 5-58<br />

Figure 5.52 Rotat<strong>in</strong>g angle (torsion+distortion) distribution along the contour coord<strong>in</strong>ate (s) for x=2m ............... 5-58<br />

Figure 5.53 Normal stresses for x = 1.5m result<strong>in</strong>g from (a) the distortional mode only; (b) bend<strong>in</strong>g,<br />

torsion and distortion............................................................................................................................ 5-59<br />

Figure 5.54 <strong>Shear</strong> stresses for x = 1.5m result<strong>in</strong>g from (a) the distortional mode only; (b) bend<strong>in</strong>g,<br />

torsion and distortion............................................................................................................................ 5-60<br />

Figure 5.55 Curve FEM2_16: difference for the distance between the centroid and the torsional center;<br />

curve FEM4_16: difference for the distance between the centroid and the left distortional<br />

center.................................................................................................................................................... 5-61<br />

Figure 5.56 Buckl<strong>in</strong>g <strong>of</strong> a frame consist<strong>in</strong>g <strong>of</strong> members <strong>with</strong> closed cross section ................................................ 5-67<br />

Figure 5.57 Torsional buckl<strong>in</strong>g <strong>of</strong> a column <strong>with</strong> cruciform cross section.............................................................. 5-68<br />

Figure 5.58 A column <strong>with</strong> open monosymmetric cross section ............................................................................. 5-69<br />

Figure 5.59 Buckl<strong>in</strong>g analysis <strong>of</strong> a column <strong>with</strong> open monosymmetric cross section............................................. 5-69<br />

Figure 5.60 Critical loads for the centrally loaded column (figure 5.58)................................................................. 5-70<br />

Figure 5.61 Lateral torsional buckl<strong>in</strong>g <strong>of</strong> an I beam................................................................................................ 5-71<br />

Figure 5.61 Flexural torsional and lateral torsional buckl<strong>in</strong>g <strong>of</strong> an I beam <strong>with</strong> one cell ........................................ 5-71<br />

Figure 5.63 A column (b) <strong>with</strong> two cases <strong>of</strong> a change <strong>in</strong> the cross sectional geometry: case (a) and<br />

case (c) ................................................................................................................................................. 5-72


List <strong>of</strong> tables<br />

Table 2.1 <strong>Shear</strong> deformation effects on the maximal deflection [m] <strong>of</strong> beams (Figure 2.4) submitted<br />

to a unit uniformly distributed load ..................................................................................................... 2-8<br />

Table 2.2 <strong>Shear</strong> deformation effects on the maximal deflection [m] <strong>of</strong> beams (Figure 2.4) submitted<br />

to a unit concentrated load at mid span ................................................................................................ 2-8<br />

Table 4.1 Analytical values <strong>of</strong> maximal deflection [m] <strong>of</strong> beam (Figure 4.1)...................................................... 4-12<br />

Table 4.2 Data for pr<strong>of</strong>ile geometries.................................................................................................................. 4-25<br />

Table 4.3 Difference between critical loads or bend<strong>in</strong>g moments calculated by us<strong>in</strong>g Benscoter and<br />

adapted Prokić warp<strong>in</strong>g functions ....................................................................................................... 4-27<br />

Table 4.4 Data for pr<strong>of</strong>ile geometries under uniformly distributed load ............................................................. 4-29<br />

Table 5.1 Description <strong>of</strong> examples....................................................................................................................... 5-18<br />

Table 5.2 Rotat<strong>in</strong>g angle [rad] and warp<strong>in</strong>g [m] along the longitud<strong>in</strong>al beam <strong>in</strong> Figure 5.20 .............................. 5-30<br />

Table 5.3 Rotat<strong>in</strong>g angle [rad] at 1.75m from left end for different types <strong>of</strong> warp<strong>in</strong>g conditions ........................ 5-31<br />

Table 5.4 Rotat<strong>in</strong>g angle at the rigid jo<strong>in</strong>t ............................................................................................................ 5-33<br />

Table 5.5 BBT, TBTM and PBT results [m] for maximal deflection <strong>of</strong> a simply supported<br />

rectangular beam submitted to uniform load 10N/m ............................................................................ 5-41<br />

Table 5.6 <strong>F<strong>in</strong>ite</strong> element maximal deflection [m] for simply supported beam L=10m, and th<strong>in</strong><br />

rectangular cross sections <strong>with</strong> b = 0.002m and vary<strong>in</strong>g values <strong>of</strong> height h......................................... 5-42<br />

Table 5.7 Normal stresses [Pa] <strong>of</strong> different load<strong>in</strong>g cases.................................................................................... 5-60<br />

Table 5.8 Flexural buckl<strong>in</strong>g loads ........................................................................................................................ 5-73

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!