08.02.2013 Views

Yield Gap Analysis: Implications for Research and Policy

Yield Gap Analysis: Implications for Research and Policy

Yield Gap Analysis: Implications for Research and Policy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Yield</strong> <strong>Gap</strong> <strong>Analysis</strong>:<br />

<strong>Implications</strong> <strong>for</strong> <strong>Research</strong> <strong>and</strong> <strong>Policy</strong><br />

Kenneth G. Cassman<br />

Heuermann Professor of Agronomy, <strong>and</strong><br />

Director, NE Center <strong>for</strong> Energy Sciences<br />

University of Nebraska—Lincoln<br />

www.ncesr.unl.edu<br />

Drier savanna<br />

Moist savanna<br />

Humid <strong>for</strong>est<br />

Midaltitude savanna


What do these have in common?<br />

• Ensuring global food security in face of climate<br />

change<br />

• L<strong>and</strong> use <strong>and</strong> indirect l<strong>and</strong> use change<br />

– Impact of climate change on agriculture <strong>and</strong><br />

vica versa<br />

• Competition between food <strong>and</strong> biofuel<br />

• Conservation of natural ecosystems <strong>and</strong><br />

biodiversity<br />

EACH DEPENDS ON RATE OF GAIN IN CROP<br />

YIELDS ON EXISTING FARM LAND


• Will business as usual meet projected<br />

global food dem<strong>and</strong> in 2050?<br />

� Global area <strong>for</strong> cereal crops declining<br />

�48% increase in cereal production<br />

needed by 2050 (40 yr) = 1.2% yr -1 of<br />

current average yield, or…..<br />

�1% annual exponential growth rate<br />

• If business as usual won’t do it, what is<br />

needed to change course?


Grain harvested area (Mha)<br />

800<br />

700<br />

600<br />

500<br />

Global Cereal Area Trends, 1966-2006<br />

Total cereal area<br />

(maize, rice, wheat, sorghum, millet, barley, oats)<br />

1966-1980 1966 1980<br />

+4.6 Mha y-1 1966-1980 1966 1980<br />

+3.9 Mha y-1 400<br />

1960 1970 1980 1990 2000 2010<br />

Year<br />

1981-2006 1981 2006<br />

-1.7 1.7 Mha y-1 maize + rice + wheat area<br />

1981-2006 1981 2006<br />

+0.5 Mha y-1


Urban-industrial expansion onto prime farml<strong>and</strong> at the periphery<br />

of Kunming (+6 million), the capital of Yunnan Province, China,


Grain <strong>Yield</strong> (kg ha -1 )<br />

Global Cereal <strong>Yield</strong> Trends, 1966-2006<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

+2.8%<br />

Maize <strong>Yield</strong><br />

y = 2260 + 62.5x<br />

r 2 = 0.94<br />

Wheat <strong>Yield</strong><br />

y = 1373 + 40.1x<br />

r 2 = 0.97<br />

1966 1976 1986 1996 2006<br />

Year<br />

Rice <strong>Yield</strong><br />

y = 2097 + 53.5x<br />

r 2 = 0.98<br />

THESE RATES OF INCREASE ARE NOT FAST ENOUGH TO MEET<br />

EXPECTED DEMAND ON EXISTING FARM LAND! source: FAOSTAT<br />

+1.3%


Global Average Maize <strong>Yield</strong> (kg ha -1 )<br />

7500<br />

7000<br />

6500<br />

6000<br />

5500<br />

5000<br />

4500<br />

Tyranny of constant rate of yield gain:<br />

Decreasing relative rate of gain<br />

Global Maize Grain <strong>Yield</strong> kg ha -1<br />

Relative Rate of Gain<br />

2010 2020 2030 2040 2050<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

Relative Rate of Gain (% average yield)


IRRIGATED AREA (Mha)<br />

Global Irrigated Area <strong>and</strong> as a % of Total Cultivated<br />

L<strong>and</strong> Area, 1966-2004<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Irrigated Area<br />

1965 1975 1985 1995 2005<br />

YEAR<br />

% of total<br />

cultivated area<br />

Irrigated systems occupied 18% of<br />

cultivated l<strong>and</strong> area but produced<br />

40% of human food supply<br />

20.0<br />

17.5<br />

15.0<br />

12.5<br />

10.0


Decreasing water supply in all major irrigated areas<br />

Yet, irrigated agriculture produces 40% of global food supply<br />

on just 18% of the cropped area.


Corn grain yield (bu ac -1 )<br />

USA Corn <strong>Yield</strong> Trends, 1966-2009<br />

(powerful support from science <strong>and</strong> technology)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

linear rate of gain = 1.86 bu ac -1 yr -1<br />

Expansion of irrigated area<br />

double- to<br />

single-cross<br />

hybrids<br />

Improved balance in N,P,K fertilization<br />

Multi-location hybrid testing in<br />

1000s of on-farm strip trials<br />

Increased N fertilizer rates<br />

Conservation tilliage <strong>and</strong> soil testing<br />

60<br />

1960 1970 1980 1990 2000 2010<br />

Year<br />

Electronic<br />

auto-steer<br />

Precision planters<br />

Transgenic (Bt)<br />

insect resistance<br />

Integrated pest management


From NCGA website, 8 May 2008:<br />

http://www.ncga.com/PDFs/NCGA%20Presentation%20on%20Food%20<strong>and</strong>%20Fuel%205-7-08.pdf


Bottom Line on <strong>Yield</strong> Trends<br />

• Expansion of crop area limited by lack of good<br />

quality arable soils <strong>and</strong> concerns about loss of<br />

wildlife habitat <strong>and</strong> biodiversity<br />

– USA conservation reserve l<strong>and</strong><br />

– Rain<strong>for</strong>ests <strong>and</strong> wetl<strong>and</strong>s in Latin America, SE Asia, SSA<br />

• Current rates of gain in crop yields not adequate to<br />

meet expected dem<strong>and</strong> <strong>for</strong> food, feed, fiber, <strong>and</strong> fuel<br />

on existing crop l<strong>and</strong><br />

• Little scope <strong>for</strong> increasing irrigated crop area due to<br />

competition <strong>for</strong> water with other sectors<br />

• Little increase in yield potential of maize or rice <strong>for</strong><br />

the last 30-40 years; yield stagnation in some areas<br />

• Little scope <strong>for</strong> quantum leap in yields from<br />

biotechnology?<br />

• Need <strong>for</strong> ecological intensification (global sense)


Clearing virgin rain <strong>for</strong>est in Brazil


Ecological Intensification<br />

• How close can average farm yields<br />

come to the yield potential ceiling<br />

using crop <strong>and</strong> soil management<br />

practices that conserve natural<br />

resources, protect environmental<br />

quality, give acceptable rate of<br />

economic return?<br />

• Necessary, but not sufficient…..<br />

– food af<strong>for</strong>dability <strong>and</strong> access, markets,<br />

good governance, policies, etc.


N fertilizer rate (kg N ha -1 )<br />

NUE (kg grain kg -1 N fertilizer)<br />

High yields <strong>and</strong> high nitrogen use efficiency (NUE) are possible*<br />

•Based on data from 123 fields farmer’s irrigated fields in 2005-2007 seasons, Nebraska, USA.<br />

Grassini et al., submitted, Field Crops Res.<br />

220<br />

200<br />

180<br />

160<br />

140<br />

90<br />

80<br />

70<br />

60<br />

50<br />

12.7 13.3 kg ha -1<br />

Continuous maize Soybean-maize<br />

U.S. maize averages<br />

13.5 13.4<br />

Continuous maize Soybean-maize<br />

Tillage system:<br />

Conservation (NT): strip-,<br />

ridge-, <strong>and</strong> no-till.<br />

Conventional (CT): disk<br />

• Higher N rates but also higher NUE<br />

compared to U.S. averages,<br />

especially under soybean-corn<br />

rotation due to higher yields <strong>and</strong><br />

lower N rate than continuous corn.<br />

• No difference in N fertilizer rate<br />

under continuous corn with NT or<br />

CT; under soybean-corn rotation, N<br />

fertilizer tended to be higher under<br />

NT than CT.<br />

• NUE tended to be higher under<br />

conventional tillage due to (i) higher<br />

yields at the same N rate under<br />

continuous corn <strong>and</strong> (ii) same yield<br />

with lower N rate under soybeancorn<br />

rotation.


High yields <strong>and</strong> high water use<br />

efficiency are possible: maize in<br />

south-central NE, 2-y means 2005-06<br />

More crop per drop<br />

Treatment <strong>Yield</strong><br />

(t/ha)<br />

Irrigation<br />

(cm)<br />

100% ET 14.9 22.6<br />

Irrigation Efficiency<br />

(t/cm)<br />

0.66<br />

75% ET* 14.7 17.0<br />

0.86<br />

50% ET 12.8 11.4<br />

1.12<br />

Rainfed 5.8 0<br />

--<br />

*75% ET replacement except 10 d be<strong>for</strong>e <strong>and</strong> 7 d after silking


Ecological Intensification<br />

• How close can average farm yields<br />

come to the yield potential ceiling<br />

using crop <strong>and</strong> soil management<br />

practices that conserve natural<br />

resources, protect environmental<br />

quality, give acceptable rate of<br />

economic return?<br />

• Necessary, but not sufficient…..<br />

– food af<strong>for</strong>dability <strong>and</strong> access, markets,<br />

good governance, policies, etc.


<strong>Yield</strong> (Mg ha -1 <strong>Yield</strong> (t ha ) -1 )<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Evidence that average national yields begin to plateau<br />

when they reach 70-80% of yield potential<br />

Rice<br />

R. Korea<br />

Cassman, 1999. PNAS, 96: 5952-5959<br />

China<br />

Indonesia<br />

India<br />

1960 1970 1980 1990 2000 2010<br />

Year<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Wheat<br />

Northwest Europe<br />

China<br />

India<br />

1960 1970 1980 1990 2000 2010<br />

Year<br />

Cassman et al, 2003, ARER 28: 315-358<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Maize<br />

USA - irrigated<br />

China<br />

USA - rainfed<br />

Brazil<br />

1960 1970 1980 1990 2000 2010<br />

Year<br />

Note yield plateaus in Korea <strong>and</strong> China <strong>for</strong> rice, wheat in northwest Europe<br />

<strong>and</strong> India, <strong>and</strong> maize in China <strong>and</strong>……..perhaps <strong>for</strong> irrigated maize in the USA<br />

?


Crop Sci. 50:1882–1890 (2010)<br />

Genetic Improvement in Winter Wheat <strong>Yield</strong>s in the Great Plains of North<br />

America, 1959–2008<br />

Robert A. Graybosch* <strong>and</strong> C. James Peterson<br />

Abstract<br />

……Linear regressions of relative grain yields vs. year over the time period 1984 to<br />

2008, however, showed no statistically significant trend in the SRPN. For the same<br />

time period in the NRPN, a statistically significant positive slope of 0.83 was<br />

observed, though the coefficient of determination (R2) was only 0.28. …….. <strong>and</strong><br />

further improvement in the genetic potential <strong>for</strong> grain yield awaits some new<br />

technological or biological advance.<br />

Field Crops <strong>Research</strong> 119 (2010) 201–212<br />

Why are wheat yields stagnating in Europe? A comprehensive data<br />

analysis <strong>for</strong> France<br />

Nadine Brissona,∗, Philippe Gateb, David Gouacheb, Gilles Charmetc, Francois-<br />

Xavier Ouryc, Frédéric Huarda<br />

Abstract<br />

The last two decades are witnessing a decline in the growth trend of cereal yields in<br />

many European countries. The present study analyses yield trends in France using<br />

various sources of data: national <strong>and</strong> regional statistics, scattered trials, results of<br />

agroclimatic models using climatic data.


What are reasons <strong>for</strong> yield stagnation?<br />

• Secret plot among farmers to limit<br />

production?<br />

• Climate change?<br />

• Unidentified constraints <strong>and</strong>/or lack of<br />

appropriate crop <strong>and</strong> soil management<br />

technologies to take full advantage of solar<br />

radiation <strong>and</strong> water resources?<br />

• Average farm yields are bumping up against<br />

the yield potential (Yp) ceiling (75-85% of Yp)<br />

– Size of exploitable yield gap is too small


<strong>Yield</strong><br />

CO 2<br />

Solar radiation<br />

Temperature<br />

Growth period<br />

Plant density<br />

<strong>Gap</strong> 1<br />

Attainable yield<br />

with available<br />

water supply:<br />

Soil<br />

Rainfall<br />

Irrigation<br />

<strong>Yield</strong> potential Water-limited<br />

yield potential<br />

<strong>Gap</strong> 2<br />

Other limiting<br />

factors:<br />

Nutrients<br />

Weeds<br />

Pests<br />

Others<br />

Actual yield<br />

<strong>Yield</strong> potential <strong>and</strong> yield gaps<br />

Modified from: van Ittersum <strong>and</strong> Rabbinge, 1997


When producing crops near the yield potential ceiling, there is a razorthin<br />

margin <strong>for</strong> error in managing inputs (too much, too little, too early,<br />

too late), <strong>and</strong> also in managing pests because of dynamic interactions<br />

between nutrient status <strong>and</strong> pest incidence <strong>and</strong> severity


Interactions between plant<br />

nutrient status <strong>and</strong> disease<br />

become more prominent at<br />

high yield levels:<br />

For many crops, there is often<br />

a positive relationship between<br />

leaf N concentration <strong>and</strong> the<br />

prevalence <strong>and</strong> severity of<br />

several foliar diseases. In this<br />

case, sheath blight on rice in<br />

Vietnam. Hence, a critical<br />

need to precisely balance N<br />

supply with crop dem<strong>and</strong><br />

without excess or deficiency.


<strong>Yield</strong><br />

75-85% Yp<br />

CO 2<br />

Solar radiation<br />

Temperature<br />

Growth period<br />

Plant density<br />

<strong>Gap</strong> 1<br />

70-80% Yp-r<br />

Attainable yield<br />

with available<br />

water supply:<br />

Soil<br />

Rainfall<br />

Irrigation<br />

<strong>Yield</strong> potential Water-limited<br />

yield potential<br />

<strong>Gap</strong> 2<br />

Other limiting<br />

factors:<br />

Nutrients<br />

Weeds<br />

Pests<br />

Others<br />

Actual yield<br />

<strong>Yield</strong> potential <strong>and</strong> yield gaps


Developing a transparent, robust,<br />

reproducible protocol to estimate<br />

crop yield potential (Yp) in a given<br />

field, region, state, or nation<br />

PhD. Project---Justin van Wart


Rainfed Maize area <strong>and</strong> NOAA weather stations with +20 yr data<br />

(daily Tmax/Tmin, rainfall, dewpoint, wind speed)


Rank of NOAA weather stations by density of harvested rainfed maize area


Select reference weather stations (RWS) with greatest maize area density<br />

within 100-km buffers, with minimum overlap, until >50% of U.S maize area<br />

is covered. Weight Yp estimates <strong>for</strong> each RWS buffer by maize area<br />

density to estimate national Yp.<br />

Total area within buffers<br />

account <strong>for</strong> 52% of USA<br />

RF maize production


Appropriate crop simulation model<br />

(validated against yields that approach Yp)


Complicated systems: Maize, rice, wheat in China<br />

Source: Monfreda et al, 2008


NOAA weather stations with +20 yrs data: daily Tmax,<br />

Tmin, precip, dewpoint, wind speed <strong>and</strong> harvested rice<br />

area density in China


Intensive lowl<strong>and</strong> rice systems in Asia<br />

Central Luzon<br />

Philippines<br />

Mekong Delta<br />

Vietnam<br />

West Java<br />

Indonesia<br />

Cauvery Delta<br />

South India<br />

Southern<br />

China<br />

Indo-Gangetic<br />

Plain & SC China<br />

Red River D.<br />

Vietnam<br />

Central Java<br />

Indonesia<br />

Rice-Rice<br />

Rice-Rice-<br />

Rice<br />

Rice-Rice<br />

Rice-Rice-<br />

Pulses<br />

Rice-Rice<br />

(hybrid)<br />

Rice-Rice-<br />

Maize<br />

DS rice WS rice<br />

DS rice WS rice<br />

WS rice DS rice<br />

Pulses WS rice DS rice<br />

Early-rice Late-rice<br />

Rice-Wheat Wheat<br />

WS rice<br />

Rice-Rice-<br />

Maize<br />

WS rice<br />

Spring-rice Summer-rice Maize<br />

Rice Maize Rice<br />

J F M A M J J A S O N D<br />

Month


Major rice cropping systems in China: 17 provinces, 44 systems (94% of total rice area)<br />

Province Cropping season Crop establish Seeding rate* Hills per m2 Seeding date Transplanting date Flowering date Maturity date Area (ha) Variety match<br />

Hubei Early season Transplanting 25 266,667 IR72<br />

Middle season<br />

Direct seeding<br />

Transplanting<br />

45 (H), 90 (I)<br />

21<br />

266,667<br />

533,333<br />

IR72<br />

2You725<br />

Direct seeding 45 (H), 90 (I) 800,000 2You725<br />

Hunan<br />

Late season<br />

Early season<br />

Transplanting<br />

Transplanting<br />

22.5<br />

25<br />

200,000<br />

1,133,333<br />

IR72<br />

IR72<br />

Direct seeding 30 (H), 60 (I) 466,667 IR72<br />

Middle season<br />

Single late season<br />

Transplanting<br />

Transplanting<br />

22.5<br />

18.4<br />

500,000<br />

366,667<br />

2You725<br />

2You725<br />

Double late season Transplanting 18.4 1,600,000 IR72<br />

Anhui Early season Transplanting 37.5 80,000 IR72<br />

Direct seeding 75 (I) 186,667 IR72<br />

Middle season Transplanting 22.5 1,466,667 2You501<br />

Direct seeding 45 (I) 200,000 2You501<br />

Late season Transplanting 37.5 300,000 IR72<br />

Jiangxi Early season Transplanting 30 1,333,333 IR72<br />

Direct seeding 37.5 (H), 60 (I) 133,333 IR72<br />

Middle season Transplanting 27 333,333 2You501<br />

Late season Transplanting 27 1,400,000 IR72<br />

Guangdong Early season Transplanting 22.5 1,000,000 IR72<br />

Late season Transplanting 22.5 1,000,000 IR72<br />

Sichuan Single season Transplanting 16 2,666,667 2You501<br />

Guangxi Early season Transplanting 30 1,000,000 IR72<br />

Middle season Transplanting 28.5 133,333 2You501<br />

Late season Transplanting 27 1,000,000 IR72<br />

Fujian Early season Transplanting 22.5 233,333 IR72<br />

Middle season Transplanting 18 533,333 IR72<br />

Late season Transplanting 19.5 233,333 IR72<br />

Jiangsu Single season Transplanting 25.5 1,200,000 Wuxiangjing 9<br />

Direct seeding 60 (I) 800,000 Wuxiangjing 9<br />

Jilin Single season Transplanting 22.5 733,333 Jin Dao 305<br />

Heilongjiang<br />

Liaoning<br />

Single season<br />

Single season<br />

Transplanting<br />

Transplanting<br />

24<br />

22.5<br />

2,600,000<br />

666,667<br />

Jin Dao 305<br />

Jin Dao 305<br />

Henan Single season Transplanting 20.5 633,333 XD90247<br />

Zhejiang Early season Transplanting 30 93,333 IR72<br />

Direct seeding 75 (I) 40,000 IR72<br />

Middle season Transplanting 20 333,333 Wuxiangjing 9<br />

Direct seeding 52.5 (I) 333,333 Wuxiangjing 9<br />

Yunan<br />

Late season<br />

Single season (japonica)<br />

Transplanting<br />

Transplanting<br />

22.5<br />

55.5<br />

200,000<br />

600,000<br />

IR72<br />

Jin Dao 305<br />

Single season (indica) Transplanting 55.5 333,333 2You501<br />

Upl<strong>and</strong> rice Direct seeding 75 (I) 100,000 HD297<br />

Guizhou Single season Transplanting 15 733,333 2You725<br />

Hainan Early season Transplanting 33 166,667 IR72<br />

Late season Transplanting 33<br />

*kg/ha, H=hybrid <strong>and</strong> I=inbred<br />

213,333<br />

29,146,667<br />

IR72<br />

Simulate rice Yp <strong>for</strong> each of these systems


Selected reference weather stations (RWS) <strong>and</strong> 100-km buffer<br />

zones over geospatial distribution of harvested rice area.<br />

Selected buffer zones account <strong>for</strong> 50% of total rice area in<br />

China. Simulation with ORYZA2000,<br />

Once selected, each RWS database undergoes rigorous Q/A vetting <strong>and</strong> gap<br />

filling <strong>for</strong> missing data, then used in simulation model to estimate Yp


Wheat area density (green) <strong>and</strong> reference weather stations with<br />

100 km buffers in Germany covering 74% of total harvested area<br />

Collaboration with:<br />

Kurt Christian Kersebaum<br />

Inst. of L<strong>and</strong>scape Systems<br />

<strong>Analysis</strong>, Muncheberg, Germany


Production-weighted yield potential (Yp) estimates based on current<br />

crop management compared to average national yield (Ya), <strong>and</strong><br />

coverage of crop area included in Yp estimates.<br />

Country Crop Total<br />

harvested<br />

area, Mha<br />

China<br />

USA<br />

USA<br />

Irrigated<br />

rice<br />

Rainfed<br />

maize<br />

Irrigated<br />

maize<br />

Germany Rainfed<br />

wheat<br />

% of total<br />

area in Yp<br />

estimate<br />

Ya †<br />

(year)<br />

Yp<br />

6.6<br />

29.5 50%<br />

8.8 75%<br />

(2008)<br />

28.7<br />

3.6<br />

3.2<br />

52%<br />

60%<br />

10.1<br />

(2009)<br />

12.4<br />

(2009)<br />

13.2<br />

15.1<br />

8.1<br />

74% 9.5<br />

(2008)<br />

† US data from USDA NASS, 2009; China rice <strong>and</strong> German wheat data from FAO, 2008.<br />

Ya/Yp<br />

(%)<br />

77%<br />

82%<br />

85%


How high can average farm yields go?<br />

• Best current estimate:<br />

– 75-85% <strong>for</strong> irrigated crops<br />

– 70-80% <strong>for</strong> rainfed crops<br />

• Actual threshold depends on:<br />

– Relative prices <strong>for</strong> outputs versus inputs<br />

– Crop sensitivity to lodging, diseases <strong>and</strong><br />

insect pests, other stresses at high yield<br />

levels, <strong>and</strong> probability of intense storms<br />

• Rice more sensitive than maize (lower ceiling)<br />

• Wheat varies: southern (India) > northern<br />

(northern Europe)


Conclusions<br />

• Crop yield potential (Yp) can be estimated<br />

using methods that are transparent, robust,<br />

<strong>and</strong> reproducible based on weather data,<br />

geospatial distribution of crop area, current<br />

crop management (plant date <strong>and</strong> maturity,<br />

plant population) <strong>and</strong> appropriate crop models<br />

• Average farm yields begin to stagnate when<br />

they reach 70-85% of Yp<br />

• <strong>Yield</strong> gap analysis depends on accurate<br />

estimate of Yp


Need <strong>for</strong> <strong>Yield</strong> Potential--<strong>Yield</strong> <strong>Gap</strong> Atlas<br />

• Interpret historical yield trends <strong>and</strong> yield<br />

plateaus (predict yield plateaus?)<br />

• Prioritize research to ensure global food<br />

security in the face of climate change<br />

– Identify areas with largest unexploited yield gaps,<br />

identify constraints, close yield gaps through<br />

ecological intensification<br />

• Estimate agricultural l<strong>and</strong> requirements <strong>and</strong><br />

indirect l<strong>and</strong> use change (<strong>and</strong> associated<br />

GHG emissions) as influenced by policies<br />

– e.g. competition between food <strong>and</strong> biofuel

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!