08.02.2013 Views

Yield Gap Analysis: Implications for Research and Policy

Yield Gap Analysis: Implications for Research and Policy

Yield Gap Analysis: Implications for Research and Policy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Yield</strong> <strong>Gap</strong> <strong>Analysis</strong>:<br />

<strong>Implications</strong> <strong>for</strong> <strong>Research</strong> <strong>and</strong> <strong>Policy</strong><br />

Kenneth G. Cassman<br />

Heuermann Professor of Agronomy, <strong>and</strong><br />

Director, NE Center <strong>for</strong> Energy Sciences<br />

University of Nebraska—Lincoln<br />

www.ncesr.unl.edu<br />

Drier savanna<br />

Moist savanna<br />

Humid <strong>for</strong>est<br />

Midaltitude savanna


What do these have in common?<br />

• Ensuring global food security in face of climate<br />

change<br />

• L<strong>and</strong> use <strong>and</strong> indirect l<strong>and</strong> use change<br />

– Impact of climate change on agriculture <strong>and</strong><br />

vica versa<br />

• Competition between food <strong>and</strong> biofuel<br />

• Conservation of natural ecosystems <strong>and</strong><br />

biodiversity<br />

EACH DEPENDS ON RATE OF GAIN IN CROP<br />

YIELDS ON EXISTING FARM LAND


• Will business as usual meet projected<br />

global food dem<strong>and</strong> in 2050?<br />

� Global area <strong>for</strong> cereal crops declining<br />

�48% increase in cereal production<br />

needed by 2050 (40 yr) = 1.2% yr -1 of<br />

current average yield, or…..<br />

�1% annual exponential growth rate<br />

• If business as usual won’t do it, what is<br />

needed to change course?


Grain harvested area (Mha)<br />

800<br />

700<br />

600<br />

500<br />

Global Cereal Area Trends, 1966-2006<br />

Total cereal area<br />

(maize, rice, wheat, sorghum, millet, barley, oats)<br />

1966-1980 1966 1980<br />

+4.6 Mha y-1 1966-1980 1966 1980<br />

+3.9 Mha y-1 400<br />

1960 1970 1980 1990 2000 2010<br />

Year<br />

1981-2006 1981 2006<br />

-1.7 1.7 Mha y-1 maize + rice + wheat area<br />

1981-2006 1981 2006<br />

+0.5 Mha y-1


Urban-industrial expansion onto prime farml<strong>and</strong> at the periphery<br />

of Kunming (+6 million), the capital of Yunnan Province, China,


Grain <strong>Yield</strong> (kg ha -1 )<br />

Global Cereal <strong>Yield</strong> Trends, 1966-2006<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

+2.8%<br />

Maize <strong>Yield</strong><br />

y = 2260 + 62.5x<br />

r 2 = 0.94<br />

Wheat <strong>Yield</strong><br />

y = 1373 + 40.1x<br />

r 2 = 0.97<br />

1966 1976 1986 1996 2006<br />

Year<br />

Rice <strong>Yield</strong><br />

y = 2097 + 53.5x<br />

r 2 = 0.98<br />

THESE RATES OF INCREASE ARE NOT FAST ENOUGH TO MEET<br />

EXPECTED DEMAND ON EXISTING FARM LAND! source: FAOSTAT<br />

+1.3%


Global Average Maize <strong>Yield</strong> (kg ha -1 )<br />

7500<br />

7000<br />

6500<br />

6000<br />

5500<br />

5000<br />

4500<br />

Tyranny of constant rate of yield gain:<br />

Decreasing relative rate of gain<br />

Global Maize Grain <strong>Yield</strong> kg ha -1<br />

Relative Rate of Gain<br />

2010 2020 2030 2040 2050<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

Relative Rate of Gain (% average yield)


IRRIGATED AREA (Mha)<br />

Global Irrigated Area <strong>and</strong> as a % of Total Cultivated<br />

L<strong>and</strong> Area, 1966-2004<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Irrigated Area<br />

1965 1975 1985 1995 2005<br />

YEAR<br />

% of total<br />

cultivated area<br />

Irrigated systems occupied 18% of<br />

cultivated l<strong>and</strong> area but produced<br />

40% of human food supply<br />

20.0<br />

17.5<br />

15.0<br />

12.5<br />

10.0


Decreasing water supply in all major irrigated areas<br />

Yet, irrigated agriculture produces 40% of global food supply<br />

on just 18% of the cropped area.


Corn grain yield (bu ac -1 )<br />

USA Corn <strong>Yield</strong> Trends, 1966-2009<br />

(powerful support from science <strong>and</strong> technology)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

linear rate of gain = 1.86 bu ac -1 yr -1<br />

Expansion of irrigated area<br />

double- to<br />

single-cross<br />

hybrids<br />

Improved balance in N,P,K fertilization<br />

Multi-location hybrid testing in<br />

1000s of on-farm strip trials<br />

Increased N fertilizer rates<br />

Conservation tilliage <strong>and</strong> soil testing<br />

60<br />

1960 1970 1980 1990 2000 2010<br />

Year<br />

Electronic<br />

auto-steer<br />

Precision planters<br />

Transgenic (Bt)<br />

insect resistance<br />

Integrated pest management


From NCGA website, 8 May 2008:<br />

http://www.ncga.com/PDFs/NCGA%20Presentation%20on%20Food%20<strong>and</strong>%20Fuel%205-7-08.pdf


Bottom Line on <strong>Yield</strong> Trends<br />

• Expansion of crop area limited by lack of good<br />

quality arable soils <strong>and</strong> concerns about loss of<br />

wildlife habitat <strong>and</strong> biodiversity<br />

– USA conservation reserve l<strong>and</strong><br />

– Rain<strong>for</strong>ests <strong>and</strong> wetl<strong>and</strong>s in Latin America, SE Asia, SSA<br />

• Current rates of gain in crop yields not adequate to<br />

meet expected dem<strong>and</strong> <strong>for</strong> food, feed, fiber, <strong>and</strong> fuel<br />

on existing crop l<strong>and</strong><br />

• Little scope <strong>for</strong> increasing irrigated crop area due to<br />

competition <strong>for</strong> water with other sectors<br />

• Little increase in yield potential of maize or rice <strong>for</strong><br />

the last 30-40 years; yield stagnation in some areas<br />

• Little scope <strong>for</strong> quantum leap in yields from<br />

biotechnology?<br />

• Need <strong>for</strong> ecological intensification (global sense)


Clearing virgin rain <strong>for</strong>est in Brazil


Ecological Intensification<br />

• How close can average farm yields<br />

come to the yield potential ceiling<br />

using crop <strong>and</strong> soil management<br />

practices that conserve natural<br />

resources, protect environmental<br />

quality, give acceptable rate of<br />

economic return?<br />

• Necessary, but not sufficient…..<br />

– food af<strong>for</strong>dability <strong>and</strong> access, markets,<br />

good governance, policies, etc.


N fertilizer rate (kg N ha -1 )<br />

NUE (kg grain kg -1 N fertilizer)<br />

High yields <strong>and</strong> high nitrogen use efficiency (NUE) are possible*<br />

•Based on data from 123 fields farmer’s irrigated fields in 2005-2007 seasons, Nebraska, USA.<br />

Grassini et al., submitted, Field Crops Res.<br />

220<br />

200<br />

180<br />

160<br />

140<br />

90<br />

80<br />

70<br />

60<br />

50<br />

12.7 13.3 kg ha -1<br />

Continuous maize Soybean-maize<br />

U.S. maize averages<br />

13.5 13.4<br />

Continuous maize Soybean-maize<br />

Tillage system:<br />

Conservation (NT): strip-,<br />

ridge-, <strong>and</strong> no-till.<br />

Conventional (CT): disk<br />

• Higher N rates but also higher NUE<br />

compared to U.S. averages,<br />

especially under soybean-corn<br />

rotation due to higher yields <strong>and</strong><br />

lower N rate than continuous corn.<br />

• No difference in N fertilizer rate<br />

under continuous corn with NT or<br />

CT; under soybean-corn rotation, N<br />

fertilizer tended to be higher under<br />

NT than CT.<br />

• NUE tended to be higher under<br />

conventional tillage due to (i) higher<br />

yields at the same N rate under<br />

continuous corn <strong>and</strong> (ii) same yield<br />

with lower N rate under soybeancorn<br />

rotation.


High yields <strong>and</strong> high water use<br />

efficiency are possible: maize in<br />

south-central NE, 2-y means 2005-06<br />

More crop per drop<br />

Treatment <strong>Yield</strong><br />

(t/ha)<br />

Irrigation<br />

(cm)<br />

100% ET 14.9 22.6<br />

Irrigation Efficiency<br />

(t/cm)<br />

0.66<br />

75% ET* 14.7 17.0<br />

0.86<br />

50% ET 12.8 11.4<br />

1.12<br />

Rainfed 5.8 0<br />

--<br />

*75% ET replacement except 10 d be<strong>for</strong>e <strong>and</strong> 7 d after silking


Ecological Intensification<br />

• How close can average farm yields<br />

come to the yield potential ceiling<br />

using crop <strong>and</strong> soil management<br />

practices that conserve natural<br />

resources, protect environmental<br />

quality, give acceptable rate of<br />

economic return?<br />

• Necessary, but not sufficient…..<br />

– food af<strong>for</strong>dability <strong>and</strong> access, markets,<br />

good governance, policies, etc.


<strong>Yield</strong> (Mg ha -1 <strong>Yield</strong> (t ha ) -1 )<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Evidence that average national yields begin to plateau<br />

when they reach 70-80% of yield potential<br />

Rice<br />

R. Korea<br />

Cassman, 1999. PNAS, 96: 5952-5959<br />

China<br />

Indonesia<br />

India<br />

1960 1970 1980 1990 2000 2010<br />

Year<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Wheat<br />

Northwest Europe<br />

China<br />

India<br />

1960 1970 1980 1990 2000 2010<br />

Year<br />

Cassman et al, 2003, ARER 28: 315-358<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Maize<br />

USA - irrigated<br />

China<br />

USA - rainfed<br />

Brazil<br />

1960 1970 1980 1990 2000 2010<br />

Year<br />

Note yield plateaus in Korea <strong>and</strong> China <strong>for</strong> rice, wheat in northwest Europe<br />

<strong>and</strong> India, <strong>and</strong> maize in China <strong>and</strong>……..perhaps <strong>for</strong> irrigated maize in the USA<br />

?


Crop Sci. 50:1882–1890 (2010)<br />

Genetic Improvement in Winter Wheat <strong>Yield</strong>s in the Great Plains of North<br />

America, 1959–2008<br />

Robert A. Graybosch* <strong>and</strong> C. James Peterson<br />

Abstract<br />

……Linear regressions of relative grain yields vs. year over the time period 1984 to<br />

2008, however, showed no statistically significant trend in the SRPN. For the same<br />

time period in the NRPN, a statistically significant positive slope of 0.83 was<br />

observed, though the coefficient of determination (R2) was only 0.28. …….. <strong>and</strong><br />

further improvement in the genetic potential <strong>for</strong> grain yield awaits some new<br />

technological or biological advance.<br />

Field Crops <strong>Research</strong> 119 (2010) 201–212<br />

Why are wheat yields stagnating in Europe? A comprehensive data<br />

analysis <strong>for</strong> France<br />

Nadine Brissona,∗, Philippe Gateb, David Gouacheb, Gilles Charmetc, Francois-<br />

Xavier Ouryc, Frédéric Huarda<br />

Abstract<br />

The last two decades are witnessing a decline in the growth trend of cereal yields in<br />

many European countries. The present study analyses yield trends in France using<br />

various sources of data: national <strong>and</strong> regional statistics, scattered trials, results of<br />

agroclimatic models using climatic data.


What are reasons <strong>for</strong> yield stagnation?<br />

• Secret plot among farmers to limit<br />

production?<br />

• Climate change?<br />

• Unidentified constraints <strong>and</strong>/or lack of<br />

appropriate crop <strong>and</strong> soil management<br />

technologies to take full advantage of solar<br />

radiation <strong>and</strong> water resources?<br />

• Average farm yields are bumping up against<br />

the yield potential (Yp) ceiling (75-85% of Yp)<br />

– Size of exploitable yield gap is too small


<strong>Yield</strong><br />

CO 2<br />

Solar radiation<br />

Temperature<br />

Growth period<br />

Plant density<br />

<strong>Gap</strong> 1<br />

Attainable yield<br />

with available<br />

water supply:<br />

Soil<br />

Rainfall<br />

Irrigation<br />

<strong>Yield</strong> potential Water-limited<br />

yield potential<br />

<strong>Gap</strong> 2<br />

Other limiting<br />

factors:<br />

Nutrients<br />

Weeds<br />

Pests<br />

Others<br />

Actual yield<br />

<strong>Yield</strong> potential <strong>and</strong> yield gaps<br />

Modified from: van Ittersum <strong>and</strong> Rabbinge, 1997


When producing crops near the yield potential ceiling, there is a razorthin<br />

margin <strong>for</strong> error in managing inputs (too much, too little, too early,<br />

too late), <strong>and</strong> also in managing pests because of dynamic interactions<br />

between nutrient status <strong>and</strong> pest incidence <strong>and</strong> severity


Interactions between plant<br />

nutrient status <strong>and</strong> disease<br />

become more prominent at<br />

high yield levels:<br />

For many crops, there is often<br />

a positive relationship between<br />

leaf N concentration <strong>and</strong> the<br />

prevalence <strong>and</strong> severity of<br />

several foliar diseases. In this<br />

case, sheath blight on rice in<br />

Vietnam. Hence, a critical<br />

need to precisely balance N<br />

supply with crop dem<strong>and</strong><br />

without excess or deficiency.


<strong>Yield</strong><br />

75-85% Yp<br />

CO 2<br />

Solar radiation<br />

Temperature<br />

Growth period<br />

Plant density<br />

<strong>Gap</strong> 1<br />

70-80% Yp-r<br />

Attainable yield<br />

with available<br />

water supply:<br />

Soil<br />

Rainfall<br />

Irrigation<br />

<strong>Yield</strong> potential Water-limited<br />

yield potential<br />

<strong>Gap</strong> 2<br />

Other limiting<br />

factors:<br />

Nutrients<br />

Weeds<br />

Pests<br />

Others<br />

Actual yield<br />

<strong>Yield</strong> potential <strong>and</strong> yield gaps


Developing a transparent, robust,<br />

reproducible protocol to estimate<br />

crop yield potential (Yp) in a given<br />

field, region, state, or nation<br />

PhD. Project---Justin van Wart


Rainfed Maize area <strong>and</strong> NOAA weather stations with +20 yr data<br />

(daily Tmax/Tmin, rainfall, dewpoint, wind speed)


Rank of NOAA weather stations by density of harvested rainfed maize area


Select reference weather stations (RWS) with greatest maize area density<br />

within 100-km buffers, with minimum overlap, until >50% of U.S maize area<br />

is covered. Weight Yp estimates <strong>for</strong> each RWS buffer by maize area<br />

density to estimate national Yp.<br />

Total area within buffers<br />

account <strong>for</strong> 52% of USA<br />

RF maize production


Appropriate crop simulation model<br />

(validated against yields that approach Yp)


Complicated systems: Maize, rice, wheat in China<br />

Source: Monfreda et al, 2008


NOAA weather stations with +20 yrs data: daily Tmax,<br />

Tmin, precip, dewpoint, wind speed <strong>and</strong> harvested rice<br />

area density in China


Intensive lowl<strong>and</strong> rice systems in Asia<br />

Central Luzon<br />

Philippines<br />

Mekong Delta<br />

Vietnam<br />

West Java<br />

Indonesia<br />

Cauvery Delta<br />

South India<br />

Southern<br />

China<br />

Indo-Gangetic<br />

Plain & SC China<br />

Red River D.<br />

Vietnam<br />

Central Java<br />

Indonesia<br />

Rice-Rice<br />

Rice-Rice-<br />

Rice<br />

Rice-Rice<br />

Rice-Rice-<br />

Pulses<br />

Rice-Rice<br />

(hybrid)<br />

Rice-Rice-<br />

Maize<br />

DS rice WS rice<br />

DS rice WS rice<br />

WS rice DS rice<br />

Pulses WS rice DS rice<br />

Early-rice Late-rice<br />

Rice-Wheat Wheat<br />

WS rice<br />

Rice-Rice-<br />

Maize<br />

WS rice<br />

Spring-rice Summer-rice Maize<br />

Rice Maize Rice<br />

J F M A M J J A S O N D<br />

Month


Major rice cropping systems in China: 17 provinces, 44 systems (94% of total rice area)<br />

Province Cropping season Crop establish Seeding rate* Hills per m2 Seeding date Transplanting date Flowering date Maturity date Area (ha) Variety match<br />

Hubei Early season Transplanting 25 266,667 IR72<br />

Middle season<br />

Direct seeding<br />

Transplanting<br />

45 (H), 90 (I)<br />

21<br />

266,667<br />

533,333<br />

IR72<br />

2You725<br />

Direct seeding 45 (H), 90 (I) 800,000 2You725<br />

Hunan<br />

Late season<br />

Early season<br />

Transplanting<br />

Transplanting<br />

22.5<br />

25<br />

200,000<br />

1,133,333<br />

IR72<br />

IR72<br />

Direct seeding 30 (H), 60 (I) 466,667 IR72<br />

Middle season<br />

Single late season<br />

Transplanting<br />

Transplanting<br />

22.5<br />

18.4<br />

500,000<br />

366,667<br />

2You725<br />

2You725<br />

Double late season Transplanting 18.4 1,600,000 IR72<br />

Anhui Early season Transplanting 37.5 80,000 IR72<br />

Direct seeding 75 (I) 186,667 IR72<br />

Middle season Transplanting 22.5 1,466,667 2You501<br />

Direct seeding 45 (I) 200,000 2You501<br />

Late season Transplanting 37.5 300,000 IR72<br />

Jiangxi Early season Transplanting 30 1,333,333 IR72<br />

Direct seeding 37.5 (H), 60 (I) 133,333 IR72<br />

Middle season Transplanting 27 333,333 2You501<br />

Late season Transplanting 27 1,400,000 IR72<br />

Guangdong Early season Transplanting 22.5 1,000,000 IR72<br />

Late season Transplanting 22.5 1,000,000 IR72<br />

Sichuan Single season Transplanting 16 2,666,667 2You501<br />

Guangxi Early season Transplanting 30 1,000,000 IR72<br />

Middle season Transplanting 28.5 133,333 2You501<br />

Late season Transplanting 27 1,000,000 IR72<br />

Fujian Early season Transplanting 22.5 233,333 IR72<br />

Middle season Transplanting 18 533,333 IR72<br />

Late season Transplanting 19.5 233,333 IR72<br />

Jiangsu Single season Transplanting 25.5 1,200,000 Wuxiangjing 9<br />

Direct seeding 60 (I) 800,000 Wuxiangjing 9<br />

Jilin Single season Transplanting 22.5 733,333 Jin Dao 305<br />

Heilongjiang<br />

Liaoning<br />

Single season<br />

Single season<br />

Transplanting<br />

Transplanting<br />

24<br />

22.5<br />

2,600,000<br />

666,667<br />

Jin Dao 305<br />

Jin Dao 305<br />

Henan Single season Transplanting 20.5 633,333 XD90247<br />

Zhejiang Early season Transplanting 30 93,333 IR72<br />

Direct seeding 75 (I) 40,000 IR72<br />

Middle season Transplanting 20 333,333 Wuxiangjing 9<br />

Direct seeding 52.5 (I) 333,333 Wuxiangjing 9<br />

Yunan<br />

Late season<br />

Single season (japonica)<br />

Transplanting<br />

Transplanting<br />

22.5<br />

55.5<br />

200,000<br />

600,000<br />

IR72<br />

Jin Dao 305<br />

Single season (indica) Transplanting 55.5 333,333 2You501<br />

Upl<strong>and</strong> rice Direct seeding 75 (I) 100,000 HD297<br />

Guizhou Single season Transplanting 15 733,333 2You725<br />

Hainan Early season Transplanting 33 166,667 IR72<br />

Late season Transplanting 33<br />

*kg/ha, H=hybrid <strong>and</strong> I=inbred<br />

213,333<br />

29,146,667<br />

IR72<br />

Simulate rice Yp <strong>for</strong> each of these systems


Selected reference weather stations (RWS) <strong>and</strong> 100-km buffer<br />

zones over geospatial distribution of harvested rice area.<br />

Selected buffer zones account <strong>for</strong> 50% of total rice area in<br />

China. Simulation with ORYZA2000,<br />

Once selected, each RWS database undergoes rigorous Q/A vetting <strong>and</strong> gap<br />

filling <strong>for</strong> missing data, then used in simulation model to estimate Yp


Wheat area density (green) <strong>and</strong> reference weather stations with<br />

100 km buffers in Germany covering 74% of total harvested area<br />

Collaboration with:<br />

Kurt Christian Kersebaum<br />

Inst. of L<strong>and</strong>scape Systems<br />

<strong>Analysis</strong>, Muncheberg, Germany


Production-weighted yield potential (Yp) estimates based on current<br />

crop management compared to average national yield (Ya), <strong>and</strong><br />

coverage of crop area included in Yp estimates.<br />

Country Crop Total<br />

harvested<br />

area, Mha<br />

China<br />

USA<br />

USA<br />

Irrigated<br />

rice<br />

Rainfed<br />

maize<br />

Irrigated<br />

maize<br />

Germany Rainfed<br />

wheat<br />

% of total<br />

area in Yp<br />

estimate<br />

Ya †<br />

(year)<br />

Yp<br />

6.6<br />

29.5 50%<br />

8.8 75%<br />

(2008)<br />

28.7<br />

3.6<br />

3.2<br />

52%<br />

60%<br />

10.1<br />

(2009)<br />

12.4<br />

(2009)<br />

13.2<br />

15.1<br />

8.1<br />

74% 9.5<br />

(2008)<br />

† US data from USDA NASS, 2009; China rice <strong>and</strong> German wheat data from FAO, 2008.<br />

Ya/Yp<br />

(%)<br />

77%<br />

82%<br />

85%


How high can average farm yields go?<br />

• Best current estimate:<br />

– 75-85% <strong>for</strong> irrigated crops<br />

– 70-80% <strong>for</strong> rainfed crops<br />

• Actual threshold depends on:<br />

– Relative prices <strong>for</strong> outputs versus inputs<br />

– Crop sensitivity to lodging, diseases <strong>and</strong><br />

insect pests, other stresses at high yield<br />

levels, <strong>and</strong> probability of intense storms<br />

• Rice more sensitive than maize (lower ceiling)<br />

• Wheat varies: southern (India) > northern<br />

(northern Europe)


Conclusions<br />

• Crop yield potential (Yp) can be estimated<br />

using methods that are transparent, robust,<br />

<strong>and</strong> reproducible based on weather data,<br />

geospatial distribution of crop area, current<br />

crop management (plant date <strong>and</strong> maturity,<br />

plant population) <strong>and</strong> appropriate crop models<br />

• Average farm yields begin to stagnate when<br />

they reach 70-85% of Yp<br />

• <strong>Yield</strong> gap analysis depends on accurate<br />

estimate of Yp


Need <strong>for</strong> <strong>Yield</strong> Potential--<strong>Yield</strong> <strong>Gap</strong> Atlas<br />

• Interpret historical yield trends <strong>and</strong> yield<br />

plateaus (predict yield plateaus?)<br />

• Prioritize research to ensure global food<br />

security in the face of climate change<br />

– Identify areas with largest unexploited yield gaps,<br />

identify constraints, close yield gaps through<br />

ecological intensification<br />

• Estimate agricultural l<strong>and</strong> requirements <strong>and</strong><br />

indirect l<strong>and</strong> use change (<strong>and</strong> associated<br />

GHG emissions) as influenced by policies<br />

– e.g. competition between food <strong>and</strong> biofuel

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!