09.02.2013 Views

Untitled

Untitled

Untitled

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ABAQUS<br />

EI<br />

GMG<br />

CFD


R<br />

1 Vent<br />

2 Overpressure<br />

3 Internal Blast<br />

4 Scaled distance<br />

r<br />

3 R /<br />

[<br />

]<br />

GBU-27


Ps<br />

[<br />

]<br />

[<br />

]<br />

P s<br />

[<br />

]<br />

1.<br />

379<br />

P s<br />

P s<br />

r<br />

0.<br />

607<br />

r<br />

0.<br />

065<br />

r<br />

0.<br />

543<br />

r<br />

2<br />

0.<br />

032<br />

r<br />

2<br />

0.<br />

379<br />

r<br />

2<br />

[<br />

0.<br />

035<br />

]<br />

r<br />

(4)<br />

TNT<br />

3<br />

0.<br />

209<br />

r<br />

3<br />

0.<br />

322<br />

r<br />

3<br />

0.<br />

0006<br />

r<br />

4<br />

( 0. 05 r 0.<br />

3)<br />

(1)<br />

( 0. 3 r 1)<br />

(2)<br />

( 1 r 10 ) (3)<br />

Pr<br />

TM5-1300<br />

(5)<br />

PS<br />

P0<br />

[<br />

]


(6)<br />

72<br />

.<br />

0<br />

)<br />

/<br />

(<br />

166 V<br />

P s<br />

psi<br />

TNT<br />

v<br />

]<br />

[<br />

(7)<br />

max<br />

0<br />

/<br />

13<br />

.<br />

2<br />

0<br />

0 max<br />

0<br />

1<br />

13<br />

.<br />

2<br />

t<br />

P<br />

e<br />

V<br />

A<br />

P<br />

P<br />

i<br />

t<br />

V<br />

A<br />

s<br />

e<br />

Qs<br />

g<br />

s<br />

e<br />

v<br />

As<br />

0<br />

t<br />

e<br />

]<br />

[<br />

(8)<br />

PQS<br />

P0<br />

]<br />

[<br />

PBXN-109<br />

EBX-1<br />

]<br />

[


E<br />

[<br />

]<br />

Autodyn<br />

AUTODYN<br />

3<br />

R / E<br />

[ ]<br />

[<br />

]<br />

[<br />

]<br />

TNT<br />

AUTODYN<br />

JWL<br />

TNT


3- Vent<br />

[<br />

]<br />

Coarse<br />

[<br />

]<br />

TNT<br />

Fine<br />

(9)<br />

L<br />

[<br />

S<br />

D<br />

L/m 1/3<br />

]<br />

m


CFD<br />

[<br />

]<br />

[<br />

]<br />

[<br />

[<br />

]<br />

]<br />

[<br />

]<br />

CFD


[<br />

[<br />

]<br />

]<br />

[<br />

]<br />

[<br />

]


1-Krauthammer T., Modern protective structures, CRC Press, 2008<br />

2- Bangash M.Y.H., Shock, Impact and Explosion Structural Analysis and Design, springer, 2009.<br />

3- Department of the Army, Structures to resist the effects of accidental explosive, TM5-1300,<br />

Washington, D.C. , 1990.<br />

4- Weibull, H.R.W., "Pressures Recorder in Partially Closed Chambers at Explosion of TNT Charges,"<br />

Annals of the New York Academy of Sciences, Prevention of and Protection Against Accidental Explosion<br />

of Munitions, Fuels and Other Hazardous Mixtures, Vol. 152, Art. 1, pp. 356-351, October 28, 1968.<br />

5-Fu, R. Lindfors, A. Davis, J., Scaling for Internal Blast, AIP CONFERENCE PROCEEDINGS, VOL 706;<br />

PART 2, 1440-1443, 2004.<br />

6- Luccioni B.M., Ambrosini R.D., Danesi R.F., Analysis of building collapse under blast loads, Engineering<br />

Structures 26 63 71, 2004.<br />

7- Zyskowski A., Study of the explosion process in a small scale experiment structural loading, Journal of<br />

Loss Prevention in the Process Industries 17, 291 299, 2004.<br />

8-Feldgun V.R., Internal blast loading in a buried lined tunnel, International Journal of Impact Engineering<br />

35 172 183, 2008<br />

9- Tian L., Simplified analysis for reflective overpressure on walls of rectangle-section tunnel due to its<br />

Volume 14,<br />

Number 5 / October,<br />

2008,<br />

Transactions of Tianjin Universityinner-explosion,<br />

Transactions of Tianjin<br />

10-<br />

Liu J.<br />

, Analysis of blast wave propagation inside t unnel,<br />

Volume 14 , Number 5,<br />

2008,<br />

University<br />

11- Lu Y. , Xu K., Prediction of debris launch velocity of vented concrete structures under internal blast,<br />

International Journal of Impact Engineering 34, 1753 1767, 2007<br />

12- Itagaki H. , Hayashi T., Explosion Venting into an Enclosed Vessel, NIIS-RR-94 (1995) UDC 519.6,<br />

532.525, 614.839<br />

13- N. Sonoda,, A. Hashimoto, and Matsuo A., The influence of vessel geometry on the effect of explosion<br />

vent, Proceedings of the 5th International Seminar on Fire and Explosion Hazards, Edinburgh, UK, 2007<br />

14-Hannemann K., Seiler , Shock Waves 26th International Symposium on Shock Waves, Volume<br />

springer,73-78, 2009<br />

15-Bebbington J. and Groves A. Internal blast performance of maritime composite sandwich panels.<br />

http://www.qinetiq.com/global.html


CFD<br />

CFD<br />

CFD<br />

[<br />

]


2 Expl osion<br />

[<br />

]<br />

(CFD)<br />

TNT<br />

[<br />

]<br />

CFD<br />

` 1- Computational fluid dynamics<br />

9<br />

7<br />

3 - Detonation<br />

4 - Blast


Pso<br />

[ ]<br />

CFD<br />

CFD<br />

[<br />

]<br />

10<br />

5 - Overpressure<br />

6- Near field


(I)<br />

[<br />

]<br />

[<br />

BKW<br />

]<br />

CEBAM<br />

[ ]<br />

CFD<br />

7 - Computational Explosion and Blast Assessment Model


R/W 1/3<br />

[<br />

]<br />

R/W 1/3<br />

JWL<br />

LS-DYNA<br />

TNT<br />

I/W 1/3<br />

W<br />

Autodyn, Autoreagas<br />

[<br />

]<br />

R<br />

TNT<br />

CEBAM<br />

8 - Barrier wall


[<br />

L1/D=0.6 TNT<br />

]<br />

15<br />

[<br />

]<br />

[<br />

] HB=20m,H1=4m,D=20m,<br />

k-<br />

[<br />

]<br />

CFX<br />

CFX<br />

Chinook<br />

CFD<br />

14 UDS<br />

9 - upwind differencing scheme<br />

10- Vent


[<br />

]<br />

[<br />

]<br />

[<br />

]<br />

BLAST<br />

[<br />

BLAST<br />

CFD<br />

]<br />

CFD<br />

TNT


11- Gas Dynamics Tool<br />

[<br />

CFD<br />

]<br />

[<br />

TNT<br />

]<br />

CFD<br />

16 GDT


CFD<br />

(MESO)<br />

[<br />

]<br />

CBW-CFX<br />

[<br />

]<br />

MAZe<br />

[<br />

CBW-CFX<br />

]<br />

[<br />

]<br />

STAR-CD


[<br />

]<br />

[<br />

]<br />

CFX<br />

[<br />

]<br />

CFX<br />

[<br />

]


CFD<br />

CFD<br />

1-FM 100-12 Army Theater Missile Defense Operations, Chapter 7 Passive Defense, October 1999<br />

2webpages.iust.ac.ir/hashemabadi/pdf/CFDRG.pdf 3-Krauthammer T., Modern protective structures , CRC press, 2008<br />

4- Crowl D. A., Understanding Explosions, AICHE, 2003<br />

5- Rhodes N., Computational Fluid Dynamics in Practice, Professional Engineering Publishing<br />

Limited, 2001<br />

6-Clutte J. r, Mathis J. T, Stahl W., Modeling environmental effects in the simulation of explosion<br />

events, International Journal of Impact Engineering 34, 973 989, 2007<br />

7- Ledin H. S., Review of CEBAM Explosion Model, HSL/2006/112<br />

8- Xiuhua Z.G., Numerical Simulation of Dynamic Response and Collapse for Steel Frame<br />

Structures Subjected to Blast Load, Trans. Tianjin Univ., 14:523-529, 2008<br />

[<br />

]


9- Zhou X.Q., Hao H., Prediction of airblast loads on structures behind a protective barrier,<br />

International Journal of Impact Engineering 35, 363 375, 2008<br />

10-Chinook Input Manual, Martec Software Manual #SM-03-14, Martec Ltd., Halifax, NS, 2003<br />

11- Sklavounos S., Rigas F., Computer simulation of shock waves transmission in obstructed<br />

terrains, Journal of Loss Prevention in the Process Industries 17, 407 417, 2004<br />

12- Ferrara G., Benedetto A. D, Salzano E., Russo G., CFD analysis of gas explosions vented<br />

through relief pipes, Journal of Hazardous Materials, A137, 654 665, 2006<br />

13- . van den Berg A.C, BLAST : A compilation of codes for the numerical simulation of the gas<br />

dynamics of explosions, Journal of Loss Prevention in the Process Industries 22, 271 278, 2009<br />

14- Elsayed N. M., Explosion and Blast-Related Injuries, Elsevier Academic Press,2008<br />

15- WWW.CFD.ru<br />

16- Armistead M., Chemical and Biological Hazard Environmental Prediction, October 27, DTO<br />

CB.55, 2005<br />

17- Huang H. , Validation and Application of CFD Modeling for Predicting Traffic Induced Air<br />

Pollution in a Complex ,Urban AREA,http://ams.confex.com/ams/(2010)<br />

18- DiNenno P. J., SFPE Handbook of Fire Protection Engineering, 3th, NFPA 2002<br />

19- Gant S. E., CFD Modelling of Water Spray Barriers, HSL/2006/79<br />

20- Liu Y., Alfred Moser and Yehuda Sinai, Comparison of a CFD fire model against a ventilated<br />

fire experiment in an enclosure, International Journal of Ventilation, Volume 3, No 2,2005<br />

21- Yeoh G. H., Computational fluid dynamics in fire engineering, Butterworth-Heinemann is an<br />

imprint of Elsevier, 2009<br />

22- Sanders R. E., Chemical Process Safety, 2005, Elsevier Inc.


[<br />

]<br />

*<br />

[<br />

]


[ ]<br />

AUTODYN<br />

LS-DYNA


AGM-86D<br />

[<br />

]<br />

[<br />

]<br />

FMU-159/b<br />

FMU-159/b<br />

[ ]<br />

Tomahawk


[<br />

]


[<br />

]<br />

[<br />

]


[<br />

]


LS-DYNA<br />

AUTODYN


LS-DYNA<br />

1- Jonas A.zukas, High Velocity Impact Dynamics, JOHN WILEY, 1990<br />

2- Richard Fong, Advanced Warhead Technologies, International Armaments Technology<br />

Symposium & Exhibition, 2004<br />

3- http://www.globalsecurity.org/military/library/policy/bunker-buster<br />

4- BLU113,http://gizmodo.com/assets/resources/2008/02/divine%20thunder.jpg<br />

5- John Merkwan, ARDEC Fuze Overview48th Annual Fuze Conference, 2004<br />

6- Lawrence Fan, Fuze IPT Perspective DoD Fuze Technology Program, 50th Annual Fuze<br />

Conference, 10 May 2006<br />

AUTODYN<br />

7- Dr. Helmut Muthig, PIMPF - The German Hard Target Fuze is ready PIMPF - The German,<br />

THE 46TH ANNUAL FUZE CONFERENCE, 2002


8- JOOSEF LEPPÄNEN, Dynamic Behaviour of Concrete Structures subjected to Blast and<br />

Fragment Impacts, Department of Structural Engineering Concrete Structures, Göteborg, Sweden<br />

2002<br />

9- C.Y. Tham, Numerical and empirical approach in predicting the penetration of a concrete target<br />

by an ogive-nosed projectile, Finite Elements in Analysis and Design 42 (2006) 1258<br />

10- Q.M. Li, X.W. Chen, Dimensionless formulae for penetration depth of concrete<br />

1268<br />

target impacted by a non-deformable projectile, International Journal of Impact Engineering 28<br />

(2003) 93 116<br />

11- Michelle Crull, et al., Estimating Ordnance Penetration into Earth, U.S. Army Engineering &<br />

Support Center, Huntsville Attn: CEHNC-ED-CS-S<br />

12- P. K. ROY & K. RAMARAO, A Computer Code For Evaluation of Design Parameters of<br />

Concrete, Piercing Earth Shock ;Missile Warhead, Armament Research & Development<br />

Establisb.ent, 1985<br />

13- WANG Zaicheng, JIANG Chunlan & LIAO Haihua, Comparability Law about Simulation<br />

Experimentation of Kinetic Penetrator Penetrating Concrete Target, Beijing Insitute of Technology,<br />

China, 2000


GF-JA2<br />

JA2<br />

M9<br />

,


JA2<br />

PEN<br />

s<br />

M30<br />

GF-JA2<br />

35mm<br />

M30<br />

JA2<br />

JA2<br />

JA2<br />

inch<br />

DEGDN<br />

mm


JA2<br />

GF-JA2


17 Frankford<br />

JA2<br />

GF-JA2<br />

P2<br />

JA2<br />

2.5m<br />

P1


kJ<br />

JA2<br />

JA2<br />

GF-JA2


GF-JA2<br />

E<br />

GF-JA2<br />

JA2


M30<br />

JA2


[1]- Richard A. Beyer and Andrew L. Brant, Plasma Ignition in a 30mm Cannon, U.S Army<br />

Research Laboratory, Aberdeen Proving Ground, Maryland<br />

[2] R. A. Beyer and R. A. Pesce-Rodriguez., "The Response of Propellants to Plasma Radiation,"<br />

IEEE Trans. Mag, Vol. 41, No. 1, pp 344-349, Jan. 2005.<br />

[3]- D. Zoler*, N. Shafir, D. Forte, E. Kot, A. Ravid, S. Wald and M. Sudai ,Study of Plasma Jet<br />

Capabilities to Rroduce Uniform Ignition of Propellant, Ballistic Gain and Significant Decrease of<br />

the "Temperature Gradient" Effect, Propulsion Physics Laboratory, Soreq NRC, Yavne 81800,<br />

Israel, Electrothermal/Electrothermal-Chemical Launchers paper 91.


[4] J. W. Colburn, A. W. Johnson, M. B. Ridgley, D. E. Kooker, T. C. Minor, "The Effects of Base<br />

Ignition on Slab Propellant in a 30-mm Short Gun," Proceedings of the 35th JANNAF Combustion<br />

Subcommittee Meeting, CPIA Publication 680, Volume I, pp. 79-8, December 1998.<br />

[5] R. A. Pesce-Rodriguez, and R. A. Beyer, "A Theory of Plasma-Propellant Interactions", Army<br />

Research Lab. Tech. Rpt. ARL-TR-3286, 2004.<br />

[6] L.-M. Chang, and S. L. Howard, "Electro-Thermal Chemical (ETC) Plasma Ignition of Gun<br />

Propelling Charges: The Role of Pulse Length," 39th JANNAF Combustion Subcommittee<br />

Meeting, Colorado Springs, 2004<br />

[7] Beyer, R. A., and Bunte, S. W. "Spatial and Temporal Temperature Studies of Electrothermal<br />

Chemical (ETC) Plasmas," Ballistic Res. Lab. Tech. Rept. BRLTR- 3324, 1992.<br />

[8] N. Shafir, D. Zoler, S.Wald and M. Shapira, "Reliable, Highly Reproducible Plasma Injectors<br />

for ET and ETC launchers", IEEE Trans. on Magn., vol.41,pp.355-359,2005.<br />

[9] S. Cuperman, D. Zoler, J. Ashkenazi, J. Caner and Z. Kaplan, "Consistent Treatment of Critical<br />

Plasma Flows in High Pressure Discharges Ablative Capillaries", IEEE Trans. on Plasma Science,<br />

vol.21, 3, pp. 282-288,1993.<br />

[10] D. Zoler, S. Cuperman, J. Ashkenazi, J. Caner and Z. Kaplan, "A Time Dependent Model for<br />

High-Pressure Discharges in arrow Ablative Capillaries", Journ. Plasma Phys., vol.50, part.1, pp.<br />

51-70,1993.


18 . part per trillion<br />

ppt<br />

ppt<br />

ppm


in<br />

mAb<br />

in vivo<br />

19 -immunosensores<br />

20 -Enzyme Linked Immunosorbent Assay<br />

21 -horse radish peroxidase<br />

ELISA<br />

ELISA<br />

TNT<br />

ELISA<br />

TNT<br />

TNT<br />

ELISA<br />

HRP<br />

vitro


22 -fluoroimmunoassay<br />

RDX<br />

TNT<br />

TNT<br />

TNT ELISA<br />

RDX<br />

TNT<br />

RDX<br />

TNT<br />

ELISA<br />

TNT<br />

TNT<br />

DTECH<br />

TNT<br />

TNT


photo-multiplier<br />

TISPR-1<br />

SPR<br />

TNT<br />

NRL<br />

Ciumasu<br />

SPR<br />

23 -Naval Research Laboratory<br />

24 -chemiluminescent<br />

25 -electrochemiluminescent<br />

26 -surface plasmon resonance-based<br />

27 -Texas Instruments surface plasmon resonance sensor<br />

28 -fluorescence resonance energy transfer<br />

NAVAL<br />

SPR<br />

ECL<br />

FRET<br />

TNT<br />

TNT<br />

SPR<br />

TNT<br />

TNT<br />

PMT


FRET<br />

29 quantum dot-based<br />

30 - Lateral-flow<br />

TNT<br />

CdSe-ZnS<br />

Dstl<br />

TNT<br />

TNT<br />

QDs<br />

TNT<br />

TNT<br />

FRET<br />

Medintz<br />

DHLA<br />

TNT


FAD-<br />

FAD<br />

TNT<br />

31 -Apoenzyme reactivation<br />

32 -fluorescein<br />

Gox<br />

TNT<br />

TNT RDX PETN<br />

apo-Gox<br />

TNT<br />

FAD-TNT-Gox<br />

ARIS<br />

TNT<br />

TNT<br />

Gox<br />

TNT<br />

Gox<br />

FAD<br />

apo-Gox<br />

H2O2<br />

FAD<br />

TNP


TNT<br />

33 -calcein<br />

34 -Quartz crystal microbalance<br />

QCM<br />

QCM<br />

QCM<br />

PETN<br />

QCM<br />

TNT<br />

TNT<br />

Biosensor Application<br />

BIOSENS<br />

TNT


ABTS<br />

HMTD<br />

NADH<br />

NADH<br />

TATP<br />

UV<br />

RDX<br />

HMTD<br />

TNT<br />

TATP<br />

ABTS<br />

HMTD<br />

TATP


DNT<br />

TNT<br />

TNT<br />

DNT<br />

ScenTraK<br />

RNA<br />

ELISA<br />

DNA<br />

TNT<br />

CogniScent<br />

DNA<br />

CDs<br />

TNT<br />

DNA<br />

TNB


NADH<br />

TNT<br />

35 - biomimetic fluorescent reporter<br />

NTR<br />

TNT<br />

nfnB<br />

NTR<br />

TNT<br />

Vibrio<br />

NTR<br />

FMN<br />

fischeri<br />

TNT


NTR<br />

36 -ferrocene dicarboxylic acid<br />

FcDA<br />

NADH<br />

NAD +<br />

FcDA<br />

NADH<br />

NADH<br />

NTR<br />

DNEB<br />

FcDA<br />

NTR


SCE<br />

DNEB<br />

HPLC<br />

DNEB<br />

(<br />

ppt<br />

DNEB<br />

ppt (<br />

HPLC<br />

ppt


pg<br />

ng ml -1<br />

ng ml -1<br />

pg ml -1<br />

g l -1<br />

ng ml -1<br />

ng ml -1<br />

ppb<br />

mg/l -1<br />

ng ml -1<br />

ng ml -1<br />

g l -1<br />

g ml -1<br />

ng ml -1<br />

ng<br />

pg µl -1<br />

ppt<br />

nmol ml -1<br />

mg/l -1<br />

pg<br />

ng ml -1<br />

(LOD<br />

ELISA<br />

SPR<br />

QCM


mg/l -1<br />

1- R. G. Smith, N. D Souza and S. Nicklin, A review of biosensors and biologically inspired systems for explosives detection.<br />

Analyst, 2008, 133, 571-584.<br />

2- D. D. Fetterolf, J. L. Mudd and K. Teten , An enzyme-linked immunosorbent assay (ELISA) for trinitrotoluene (TNT)<br />

residue on hands. J Forensic Sci , 1991, 36(2), 343-349.<br />

3- H. Craig, G. Ferguson, A. Markos, A. Kusterbeck, L. Shriver-Lake, T. Jenkins, and P. Thorne, Field demonstration of on-<br />

site analytical methods for TNT and RDX in ground water , in Proceedings of the 1996 HSRC WERC Joint Conference on<br />

the Environment, held in Albuquerque, NM, Great Plains/Rocky Mountain Hazardous Substance Research Center,<br />

Manhattan, KS, 1996, pp. 204<br />

219, http://www.engg.ksu.edu/HSRC/ 96Proceed/craig.html (accessed 29 February 2008)<br />

4- J. P. Whelan, A. W. Kusterbeck, G. A. Wemhoff, R. Bredehorst and F. S. Ligler, Continuous-flow immunosensor for<br />

detection of explosives. Anal. Chem., 1993, 65, 3561-3565.<br />

5- Strategic Diagnostics Inc., Newark, USA, www.sdix.com (accessed 29 February 2008).<br />

6- I.M. Ciumasu, P.M. Kramer, C.M. Weber, G. Kolb, D. Tiemann, S. Windisch, I. Frese, A.A. Kettrup : A new, versatile<br />

field immunosensor for environmental pollutants. Development and proof of principle with TNT, diuron and atrazine.<br />

Biosens. Bioelectron. 21, 354-364 (2005).<br />

7- I. L. Medintz, E. R. Goldman, M. E. Lassman, A. Hayhurst, A. W. Kusterbeck and J. R. Deschamps, A Hybrid Quantum<br />

Dot Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor. Anal. Chem., 2005, 77, 365 37.<br />

8- H. Itzhaky, E. Keinan, Method and kit for the detection of explosives. 2004, U.S. Patent 6,767,717.<br />

9- T. K. Alkasab, J. White, J. S. Kauer, A computational system for simulating and analyzing arrays of biological and<br />

artificial chemical sensors. Chem. Senses. 2002, 27, 261-275.<br />

10- C. D. Gwenin, M. Kalaji, C. M. Kay, P. A. Williams and D. N. Tito ,An in situ amperometric biosensor for the detection of<br />

vaporus from explosive compounds. Analyst, 2008, 133, 621-625.


MBA<br />

Email address: p.baradaran.g@gmail.com<br />

37


PolySaccharide<br />

OH<br />

R<br />

CO<br />

NH<br />

2<br />

.<br />

Heat,<br />

Catalyst,<br />

mg<br />

PolySaccharide<br />

O<br />

CO<br />

NH<br />

2


Air<br />

PolySaccharide O CO NH 2<br />

P4<br />

P2O<br />

5 C(<br />

Foamed ) NH 4 PO4<br />

P<br />

3<br />

4 Re main


1- J.Breitenbach, Melt extrusion: from process to drug delivery technology, European Journal of Pharmaceutics and<br />

Biopharmaceutics 54 (2002) 107 117<br />

2- H.A. Talaat, M.H. Sorour, A.G. Aboulnour, H.F. Shaalan, Enas M. Ahmed, A.M. Awad and<br />

M.A. Ahmed, Development of a Multi-Component Fertilizing Hydrogel with Relevant Techno-Economic<br />

IndicatorsAmerican-Eurasian J. Agric. & Environ. Sci., 3 (5): 764-770, 2008.


3-P. Anna, S. Nagy, S. Keszei, A. Szabó, Gy. Marosi,Thermoplastics in pharmaceutical technology, Proceeding of<br />

the 8th Polymers for Advanced Technologies International Symposium, Budapest, Hungary, 13-16 September 2005<br />

4- Xiao Fei MA, Jiu Gao YU, Jin FENG, A Mixed Plasticizer for the Preparation of Thermoplastics, Chinese<br />

Chemical Letters Vol. 15, No. 6, pp 741-744, 2004.


40<br />

41 decoy<br />

42 flare<br />

Spectrally Balanced Infrared Flare Pyrotechnic Composition<br />

1950<br />

58<br />

9<br />

16<br />

13<br />

20<br />

11<br />

4<br />

8<br />

7<br />

5<br />

44<br />

10


70<br />

45<br />

20<br />

PTFE<br />

45<br />

25<br />

10<br />

MTV<br />

IR<br />

UV<br />

MT<br />

MTV<br />

MT<br />

MTV


MTV<br />

43 Brisance<br />

44 Soft Ignation<br />

US<br />

UK<br />

US<br />

MTV<br />

IR<br />

MTV<br />

MTV<br />

54<br />

55<br />

61<br />

30<br />

40<br />

34<br />

16<br />

5<br />

5<br />

MTV<br />

MTV<br />

MTV<br />

MTV<br />

MTV<br />

MTV<br />

MTV<br />

MTV<br />

1<br />

2<br />

3<br />

MTV


MTV<br />

33<br />

Mg(g)<br />

MTV<br />

-1123kj/mol<br />

MgF2<br />

MgF2(g)<br />

9.2kj/gr<br />

MTV<br />

MTV<br />

m>n: MgF2 (Solid, Gas, Liquid)+ Mg(g+l) + C(s) + MgF<br />

K<br />

M=n: MgF2 (g+l) + C(s)<br />

M


45 Relaxation<br />

MTV<br />

Mg(OH)2<br />

MTV<br />

MTV<br />

MTV<br />

Mg+2H2O Mg(OH)2 +H2<br />

Mg<br />

Mg(OH)2<br />

Mg/Mg(OH)2<br />

MTV


1/8


mm<br />

mm<br />

psi<br />

C<br />

S<br />

KNO3<br />

MTV


[ ]F.C.Chisto,http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-0938.<br />

Thermodynamic and Kinetics Models For Magnesium/ Teflon/ Viton Pyrotechnic<br />

Compositions .<br />

[ ] D.Herskovitz, J. Electronic defense,pp.41-46,1998.<br />

[ ] L.V.de Yong, K. J. Smit, A Theoretical Study of the Combustion of MTV Pyrotechnic<br />

Compositions, MRL-Technical Report-91- . 25,1991<br />

[ ] J. Mul, J. Meulenbrugge, G. de Valk, Development of an MTV Composition as an Igniter for<br />

Rocket Proellants, 85-1, ICT. Con. Proceeding, 1991.<br />

[ ] L. J. Potter, F. J. Valanta, Compersion of Several Pyrotechnic Compositions of Interest at Naval<br />

Ordnance Stattion, G. T. P. S., 1989.<br />

[ ] G. W. Nauflett, R. E. Farncomb, L. Choridia, Preparation of Magnesium/Fluoropolymer<br />

Pyrotechnic Material, U. S. Patent 5886293,1999.<br />

[ ] David W. Herbage, Spectrally Balanced Infrared Flare Pyrotechnic Composition, U.S. Patent<br />

5472533,1995.


46<br />

47<br />

-


gr/mol<br />

gr/mol<br />

°C<br />

°C<br />

gr/cm 3<br />

48 - Incendiary Ammunition<br />

49 - MSDS (Material Safety Data Sheet)<br />

P


50 -High Explosive<br />

gr/cm 3<br />

mm.Hg<br />

°C<br />

°C<br />

J/mol.K<br />

P<br />

NFPA<br />

Cp


51 - Fenian Fire<br />

52 - Fallujah, The Hidden Massacre<br />

53 - Sigfrido Ranucci<br />

54 - RAI<br />

(CS2)


mg/m 3<br />

phossy jaw<br />

mg


ppm<br />

(P2O5)


CO2


55 - Ultra Violet (UV)


[2]. D. M. Considine, Van Notrand Renhold Encyclopedia of Chemistry, 4 th ed, Van Nostrand, 1984<br />

[3]. Kirk Othmer, Encyclopedia of Chemical Thechnology, 4 th ed., vol. 18<br />

[4]- CRC Handbook of Chemistry and Physics, CRC Press, 2005<br />

[5]. B.T. Federoff, O.E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 8, Picatinny Arsenal, 1978<br />

[6]. Hazardeous Material guide for First Responders, Federal Emergency Management Agency,United States Fire<br />

Administration<br />

[7]. Marc C. Duncan, Incendiary Agents, Chapter 9, 2004<br />

56 -CPR<br />

57 - atropine ophthalmic


[8] http://www.islamtimes.org<br />

[9]. http://www.rainews24.rai.it/ran24/inchiesta/video/fallujah_ING.mwv<br />

[10]. Fallujah, The Hidden Massacre, Wikipedia, the free encyclopedia, (http://en.wikipedia.org)<br />

http://<br />

hamshahrionline.<br />

ir/<br />

News/<br />

? id=<br />

90996<br />

http://<br />

www2.<br />

irna.<br />

ir<br />

[15]. Toxicologigal Profile For White Phosphorus, Sciene International inc, U.S. Department of Health and Human<br />

Services, 1997<br />

[17]. http://en.wikipedia.org/wiki/White_pphosphorus<br />

[18]. http://www.guardian.co.uk/world/video/2009/jan/19/gaza-phosphorus-victim<br />

[19]. Jane's Ammunition Handbook, edited by: L. Ness and A. G. Williams,15 th . Ed., Cambridge University Press, 2006-2007<br />

[22]. J. C. Cornner, V. S. Bebarta, White phosphorus Dermal Burns, The New England Journal of Medicine, 11<br />

October, 2007


Tf<br />

(Mg)<br />

Mg/Tf<br />

PTFE<br />

(C3H3F7)n<br />

Tracking Flares, Decoy Flares<br />

PTFE<br />

(-C2F4-)n<br />

Mg<br />

58 AMMUNITION INDUSTRY- ISFAHAN- "SHAHMORADI.MOHSEN@YAHOO.COM"-<br />

Tel: 0334 6322358- Mob: 09131070027.<br />

Tf<br />

PTFE<br />

RAM<br />

Mg/Tf<br />

MTV<br />

Shidlovsky<br />

MTV<br />

MTV


PTFE<br />

IR- Decoy Flares<br />

MTV<br />

MTV<br />

MTV<br />

Al<br />

Ellerm<br />

MTV<br />

Zr-NH4ClO4 , B-KNO3 , Mg-TF<br />

Mg<br />

ANFO , RDX , HMX , TNT<br />

MTV<br />

MTV


CO2<br />

CO , H2 , H2O<br />

NH4ClO4 , KClO4 , KNO3<br />

Zr , Ti ,Al ,Mg ,Na ,B ,Li


SF6<br />

(-C2 -F4-)n<br />

SF6<br />

6LiF + Li2S + Heat<br />

Li<br />

(Tf)<br />

SF6<br />

SF6 + 8Li


f<br />

Vt<br />

600K<br />

800-940K<br />

K<br />

Vt<br />

Vt<br />

f<br />

C(s)<br />

3550-4200 Kg/m 3<br />

(Vt)<br />

Kg/m 3<br />

HF<br />

f<br />

VITON<br />

f<br />

623K<br />

TEFLON<br />

C5H3F7-<br />

HF<br />

Vt<br />

K<br />

f<br />

Vt<br />

Vt<br />

CO ,HF<br />

Tf: polytetrafluoroethylene; PB: hydroxy-terminated polybutadiene; Tg: combustion temperature<br />

MnO2<br />

H2<br />

Mg(OH)2<br />

2MgO + Mn<br />

Mg-MnO2<br />

Mg + MnO2


Mg<br />

59 Adiabatic<br />

(Viton)<br />

Mg<br />

16,8 Mj/Kg<br />

F2<br />

(Tf)<br />

(F2)<br />

(Tf)<br />

(Mg)<br />

PTFE)<br />

(Tf)<br />

O2<br />

(-C2F4-)n<br />

Tf<br />

Mg<br />

Mg<br />

Mg<br />

Mg<br />

TF


Mpa<br />

Mg<br />

Tf<br />

60 Reactivity<br />

C(s)<br />

Mg F2(L)<br />

MgF2(g)<br />

Mg<br />

MgF2 , Mg<br />

Mg(g)<br />

KS -1<br />

F2<br />

Tf<br />

0.656<br />

TG<br />

K<br />

Mg(g)<br />

K<br />

Mg-Tf<br />

Tf<br />

K<br />

MgF2(L)<br />

Mg<br />

DTA , TG<br />

K<br />

Tf<br />

Mg-T<br />

Mg = 0.66<br />

K<br />

Tf<br />

Tf<br />

MgF2<br />

Mg= 0.38<br />

Tf<br />

Mg F2(g), C(s)<br />

K<br />

Tf<br />

Mg<br />

, Mg =0.600<br />

Mg<br />

Mg<br />

X-Ray<br />

Mg +F2<br />

Mg


Mg<br />

1Mpa<br />

(62.31 gr) MgF2<br />

MgF2<br />

dTf =25 m , dMg = 22 m<br />

Mg-Tf<br />

Mg=0.7<br />

Mg-Tf<br />

0.3<br />

dMg dTf<br />

dTf<br />

dMg<br />

Mg=0.3<br />

0.4<br />

Mg<br />

T<br />

Mg<br />

(38.00gr)<br />

Mg<br />

0.19 m<br />

Mg-Tf<br />

MgF2<br />

(24.31 gr)Mg<br />

Tf , Mg


dTf<br />

Mg<br />

Tf<br />

Mg<br />

Mg-Tf<br />

dMg<br />

Mg 0.3<br />

Tf<br />

Mg-Tf<br />

Mg<br />

Tf<br />

Tf<br />

0.60<br />

=<br />

0.40<br />

(dTf = 450 m<br />

Tf<br />

Mg<br />

Mg<br />

Mg<br />

Mg<br />

Tf<br />

Mg 0.3<br />

Mg


Mg<br />

Tf<br />

MTV


1- Naminosuke Kubota, Propellants and Explosives, Chapter 11, PP.309-315, Thermochemical<br />

Aspects of Combustion, Second Edition, Wiley 2007.<br />

2- Conkling, John A., CHEMISTRY OF PYROTECHNICS, New York 1976.<br />

3- Ernst-Christian Koch, Metal-Fluorocarbon-Pyrolants: III. Development and Application of<br />

Magnesium/Teflon/Viton (MTV), Propellants, Explosives, Pyrotechnics 27, 262 - 266 (2002).<br />

4- Ernst-Christian Koch, Pyrotechnic Countermeasures: II. Advanced Aerial Infrared<br />

Countermeasures, Review, Propellants, Explosives, Pyrotechnics 31, No. 1 (2006)


This document was created with Win2PDF available at http://www.daneprairie.com.<br />

The unregistered version of Win2PDF is for evaluation or non-commercial use only.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!