Untitled

pogc.ir

Untitled

ABAQUS

EI

GMG

CFD


R

1 Vent

2 Overpressure

3 Internal Blast

4 Scaled distance

r

3 R /

[

]

GBU-27


Ps

[

]

[

]

P s

[

]

1.

379

P s

P s

r

0.

607

r

0.

065

r

0.

543

r

2

0.

032

r

2

0.

379

r

2

[

0.

035

]

r

(4)

TNT

3

0.

209

r

3

0.

322

r

3

0.

0006

r

4

( 0. 05 r 0.

3)

(1)

( 0. 3 r 1)

(2)

( 1 r 10 ) (3)

Pr

TM5-1300

(5)

PS

P0

[

]


(6)

72

.

0

)

/

(

166 V

P s

psi

TNT

v

]

[

(7)

max

0

/

13

.

2

0

0 max

0

1

13

.

2

t

P

e

V

A

P

P

i

t

V

A

s

e

Qs

g

s

e

v

As

0

t

e

]

[

(8)

PQS

P0

]

[

PBXN-109

EBX-1

]

[


E

[

]

Autodyn

AUTODYN

3

R / E

[ ]

[

]

[

]

TNT

AUTODYN

JWL

TNT


3- Vent

[

]

Coarse

[

]

TNT

Fine

(9)

L

[

S

D

L/m 1/3

]

m


CFD

[

]

[

]

[

[

]

]

[

]

CFD


[

[

]

]

[

]

[

]


1-Krauthammer T., Modern protective structures, CRC Press, 2008

2- Bangash M.Y.H., Shock, Impact and Explosion Structural Analysis and Design, springer, 2009.

3- Department of the Army, Structures to resist the effects of accidental explosive, TM5-1300,

Washington, D.C. , 1990.

4- Weibull, H.R.W., "Pressures Recorder in Partially Closed Chambers at Explosion of TNT Charges,"

Annals of the New York Academy of Sciences, Prevention of and Protection Against Accidental Explosion

of Munitions, Fuels and Other Hazardous Mixtures, Vol. 152, Art. 1, pp. 356-351, October 28, 1968.

5-Fu, R. Lindfors, A. Davis, J., Scaling for Internal Blast, AIP CONFERENCE PROCEEDINGS, VOL 706;

PART 2, 1440-1443, 2004.

6- Luccioni B.M., Ambrosini R.D., Danesi R.F., Analysis of building collapse under blast loads, Engineering

Structures 26 63 71, 2004.

7- Zyskowski A., Study of the explosion process in a small scale experiment structural loading, Journal of

Loss Prevention in the Process Industries 17, 291 299, 2004.

8-Feldgun V.R., Internal blast loading in a buried lined tunnel, International Journal of Impact Engineering

35 172 183, 2008

9- Tian L., Simplified analysis for reflective overpressure on walls of rectangle-section tunnel due to its

Volume 14,

Number 5 / October,

2008,

Transactions of Tianjin Universityinner-explosion,

Transactions of Tianjin

10-

Liu J.

, Analysis of blast wave propagation inside t unnel,

Volume 14 , Number 5,

2008,

University

11- Lu Y. , Xu K., Prediction of debris launch velocity of vented concrete structures under internal blast,

International Journal of Impact Engineering 34, 1753 1767, 2007

12- Itagaki H. , Hayashi T., Explosion Venting into an Enclosed Vessel, NIIS-RR-94 (1995) UDC 519.6,

532.525, 614.839

13- N. Sonoda,, A. Hashimoto, and Matsuo A., The influence of vessel geometry on the effect of explosion

vent, Proceedings of the 5th International Seminar on Fire and Explosion Hazards, Edinburgh, UK, 2007

14-Hannemann K., Seiler , Shock Waves 26th International Symposium on Shock Waves, Volume

springer,73-78, 2009

15-Bebbington J. and Groves A. Internal blast performance of maritime composite sandwich panels.

http://www.qinetiq.com/global.html


CFD

CFD

CFD

[

]


2 Expl osion

[

]

(CFD)

TNT

[

]

CFD

` 1- Computational fluid dynamics

9

7

3 - Detonation

4 - Blast


Pso

[ ]

CFD

CFD

[

]

10

5 - Overpressure

6- Near field


(I)

[

]

[

BKW

]

CEBAM

[ ]

CFD

7 - Computational Explosion and Blast Assessment Model


R/W 1/3

[

]

R/W 1/3

JWL

LS-DYNA

TNT

I/W 1/3

W

Autodyn, Autoreagas

[

]

R

TNT

CEBAM

8 - Barrier wall


[

L1/D=0.6 TNT

]

15

[

]

[

] HB=20m,H1=4m,D=20m,

k-

[

]

CFX

CFX

Chinook

CFD

14 UDS

9 - upwind differencing scheme

10- Vent


[

]

[

]

[

]

BLAST

[

BLAST

CFD

]

CFD

TNT


11- Gas Dynamics Tool

[

CFD

]

[

TNT

]

CFD

16 GDT


CFD

(MESO)

[

]

CBW-CFX

[

]

MAZe

[

CBW-CFX

]

[

]

STAR-CD


[

]

[

]

CFX

[

]

CFX

[

]


CFD

CFD

1-FM 100-12 Army Theater Missile Defense Operations, Chapter 7 Passive Defense, October 1999

2webpages.iust.ac.ir/hashemabadi/pdf/CFDRG.pdf 3-Krauthammer T., Modern protective structures , CRC press, 2008

4- Crowl D. A., Understanding Explosions, AICHE, 2003

5- Rhodes N., Computational Fluid Dynamics in Practice, Professional Engineering Publishing

Limited, 2001

6-Clutte J. r, Mathis J. T, Stahl W., Modeling environmental effects in the simulation of explosion

events, International Journal of Impact Engineering 34, 973 989, 2007

7- Ledin H. S., Review of CEBAM Explosion Model, HSL/2006/112

8- Xiuhua Z.G., Numerical Simulation of Dynamic Response and Collapse for Steel Frame

Structures Subjected to Blast Load, Trans. Tianjin Univ., 14:523-529, 2008

[

]


9- Zhou X.Q., Hao H., Prediction of airblast loads on structures behind a protective barrier,

International Journal of Impact Engineering 35, 363 375, 2008

10-Chinook Input Manual, Martec Software Manual #SM-03-14, Martec Ltd., Halifax, NS, 2003

11- Sklavounos S., Rigas F., Computer simulation of shock waves transmission in obstructed

terrains, Journal of Loss Prevention in the Process Industries 17, 407 417, 2004

12- Ferrara G., Benedetto A. D, Salzano E., Russo G., CFD analysis of gas explosions vented

through relief pipes, Journal of Hazardous Materials, A137, 654 665, 2006

13- . van den Berg A.C, BLAST : A compilation of codes for the numerical simulation of the gas

dynamics of explosions, Journal of Loss Prevention in the Process Industries 22, 271 278, 2009

14- Elsayed N. M., Explosion and Blast-Related Injuries, Elsevier Academic Press,2008

15- WWW.CFD.ru

16- Armistead M., Chemical and Biological Hazard Environmental Prediction, October 27, DTO

CB.55, 2005

17- Huang H. , Validation and Application of CFD Modeling for Predicting Traffic Induced Air

Pollution in a Complex ,Urban AREA,http://ams.confex.com/ams/(2010)

18- DiNenno P. J., SFPE Handbook of Fire Protection Engineering, 3th, NFPA 2002

19- Gant S. E., CFD Modelling of Water Spray Barriers, HSL/2006/79

20- Liu Y., Alfred Moser and Yehuda Sinai, Comparison of a CFD fire model against a ventilated

fire experiment in an enclosure, International Journal of Ventilation, Volume 3, No 2,2005

21- Yeoh G. H., Computational fluid dynamics in fire engineering, Butterworth-Heinemann is an

imprint of Elsevier, 2009

22- Sanders R. E., Chemical Process Safety, 2005, Elsevier Inc.


[

]

*

[

]


[ ]

AUTODYN

LS-DYNA


AGM-86D

[

]

[

]

FMU-159/b

FMU-159/b

[ ]

Tomahawk


[

]


[

]

[

]


[

]


LS-DYNA

AUTODYN


LS-DYNA

1- Jonas A.zukas, High Velocity Impact Dynamics, JOHN WILEY, 1990

2- Richard Fong, Advanced Warhead Technologies, International Armaments Technology

Symposium & Exhibition, 2004

3- http://www.globalsecurity.org/military/library/policy/bunker-buster

4- BLU113,http://gizmodo.com/assets/resources/2008/02/divine%20thunder.jpg

5- John Merkwan, ARDEC Fuze Overview48th Annual Fuze Conference, 2004

6- Lawrence Fan, Fuze IPT Perspective DoD Fuze Technology Program, 50th Annual Fuze

Conference, 10 May 2006

AUTODYN

7- Dr. Helmut Muthig, PIMPF - The German Hard Target Fuze is ready PIMPF - The German,

THE 46TH ANNUAL FUZE CONFERENCE, 2002


8- JOOSEF LEPPÄNEN, Dynamic Behaviour of Concrete Structures subjected to Blast and

Fragment Impacts, Department of Structural Engineering Concrete Structures, Göteborg, Sweden

2002

9- C.Y. Tham, Numerical and empirical approach in predicting the penetration of a concrete target

by an ogive-nosed projectile, Finite Elements in Analysis and Design 42 (2006) 1258

10- Q.M. Li, X.W. Chen, Dimensionless formulae for penetration depth of concrete

1268

target impacted by a non-deformable projectile, International Journal of Impact Engineering 28

(2003) 93 116

11- Michelle Crull, et al., Estimating Ordnance Penetration into Earth, U.S. Army Engineering &

Support Center, Huntsville Attn: CEHNC-ED-CS-S

12- P. K. ROY & K. RAMARAO, A Computer Code For Evaluation of Design Parameters of

Concrete, Piercing Earth Shock ;Missile Warhead, Armament Research & Development

Establisb.ent, 1985

13- WANG Zaicheng, JIANG Chunlan & LIAO Haihua, Comparability Law about Simulation

Experimentation of Kinetic Penetrator Penetrating Concrete Target, Beijing Insitute of Technology,

China, 2000


GF-JA2

JA2

M9

,


JA2

PEN

s

M30

GF-JA2

35mm

M30

JA2

JA2

JA2

inch

DEGDN

mm


JA2

GF-JA2


17 Frankford

JA2

GF-JA2

P2

JA2

2.5m

P1


kJ

JA2

JA2

GF-JA2


GF-JA2

E

GF-JA2

JA2


M30

JA2


[1]- Richard A. Beyer and Andrew L. Brant, Plasma Ignition in a 30mm Cannon, U.S Army

Research Laboratory, Aberdeen Proving Ground, Maryland

[2] R. A. Beyer and R. A. Pesce-Rodriguez., "The Response of Propellants to Plasma Radiation,"

IEEE Trans. Mag, Vol. 41, No. 1, pp 344-349, Jan. 2005.

[3]- D. Zoler*, N. Shafir, D. Forte, E. Kot, A. Ravid, S. Wald and M. Sudai ,Study of Plasma Jet

Capabilities to Rroduce Uniform Ignition of Propellant, Ballistic Gain and Significant Decrease of

the "Temperature Gradient" Effect, Propulsion Physics Laboratory, Soreq NRC, Yavne 81800,

Israel, Electrothermal/Electrothermal-Chemical Launchers paper 91.


[4] J. W. Colburn, A. W. Johnson, M. B. Ridgley, D. E. Kooker, T. C. Minor, "The Effects of Base

Ignition on Slab Propellant in a 30-mm Short Gun," Proceedings of the 35th JANNAF Combustion

Subcommittee Meeting, CPIA Publication 680, Volume I, pp. 79-8, December 1998.

[5] R. A. Pesce-Rodriguez, and R. A. Beyer, "A Theory of Plasma-Propellant Interactions", Army

Research Lab. Tech. Rpt. ARL-TR-3286, 2004.

[6] L.-M. Chang, and S. L. Howard, "Electro-Thermal Chemical (ETC) Plasma Ignition of Gun

Propelling Charges: The Role of Pulse Length," 39th JANNAF Combustion Subcommittee

Meeting, Colorado Springs, 2004

[7] Beyer, R. A., and Bunte, S. W. "Spatial and Temporal Temperature Studies of Electrothermal

Chemical (ETC) Plasmas," Ballistic Res. Lab. Tech. Rept. BRLTR- 3324, 1992.

[8] N. Shafir, D. Zoler, S.Wald and M. Shapira, "Reliable, Highly Reproducible Plasma Injectors

for ET and ETC launchers", IEEE Trans. on Magn., vol.41,pp.355-359,2005.

[9] S. Cuperman, D. Zoler, J. Ashkenazi, J. Caner and Z. Kaplan, "Consistent Treatment of Critical

Plasma Flows in High Pressure Discharges Ablative Capillaries", IEEE Trans. on Plasma Science,

vol.21, 3, pp. 282-288,1993.

[10] D. Zoler, S. Cuperman, J. Ashkenazi, J. Caner and Z. Kaplan, "A Time Dependent Model for

High-Pressure Discharges in arrow Ablative Capillaries", Journ. Plasma Phys., vol.50, part.1, pp.

51-70,1993.


18 . part per trillion

ppt

ppt

ppm


in

mAb

in vivo

19 -immunosensores

20 -Enzyme Linked Immunosorbent Assay

21 -horse radish peroxidase

ELISA

ELISA

TNT

ELISA

TNT

TNT

ELISA

HRP

vitro


22 -fluoroimmunoassay

RDX

TNT

TNT

TNT ELISA

RDX

TNT

RDX

TNT

ELISA

TNT

TNT

DTECH

TNT

TNT


photo-multiplier

TISPR-1

SPR

TNT

NRL

Ciumasu

SPR

23 -Naval Research Laboratory

24 -chemiluminescent

25 -electrochemiluminescent

26 -surface plasmon resonance-based

27 -Texas Instruments surface plasmon resonance sensor

28 -fluorescence resonance energy transfer

NAVAL

SPR

ECL

FRET

TNT

TNT

SPR

TNT

TNT

PMT


FRET

29 quantum dot-based

30 - Lateral-flow

TNT

CdSe-ZnS

Dstl

TNT

TNT

QDs

TNT

TNT

FRET

Medintz

DHLA

TNT


FAD-

FAD

TNT

31 -Apoenzyme reactivation

32 -fluorescein

Gox

TNT

TNT RDX PETN

apo-Gox

TNT

FAD-TNT-Gox

ARIS

TNT

TNT

Gox

TNT

Gox

FAD

apo-Gox

H2O2

FAD

TNP


TNT

33 -calcein

34 -Quartz crystal microbalance

QCM

QCM

QCM

PETN

QCM

TNT

TNT

Biosensor Application

BIOSENS

TNT


ABTS

HMTD

NADH

NADH

TATP

UV

RDX

HMTD

TNT

TATP

ABTS

HMTD

TATP


DNT

TNT

TNT

DNT

ScenTraK

RNA

ELISA

DNA

TNT

CogniScent

DNA

CDs

TNT

DNA

TNB


NADH

TNT

35 - biomimetic fluorescent reporter

NTR

TNT

nfnB

NTR

TNT

Vibrio

NTR

FMN

fischeri

TNT


NTR

36 -ferrocene dicarboxylic acid

FcDA

NADH

NAD +

FcDA

NADH

NADH

NTR

DNEB

FcDA

NTR


SCE

DNEB

HPLC

DNEB

(

ppt

DNEB

ppt (

HPLC

ppt


pg

ng ml -1

ng ml -1

pg ml -1

g l -1

ng ml -1

ng ml -1

ppb

mg/l -1

ng ml -1

ng ml -1

g l -1

g ml -1

ng ml -1

ng

pg µl -1

ppt

nmol ml -1

mg/l -1

pg

ng ml -1

(LOD

ELISA

SPR

QCM


mg/l -1

1- R. G. Smith, N. D Souza and S. Nicklin, A review of biosensors and biologically inspired systems for explosives detection.

Analyst, 2008, 133, 571-584.

2- D. D. Fetterolf, J. L. Mudd and K. Teten , An enzyme-linked immunosorbent assay (ELISA) for trinitrotoluene (TNT)

residue on hands. J Forensic Sci , 1991, 36(2), 343-349.

3- H. Craig, G. Ferguson, A. Markos, A. Kusterbeck, L. Shriver-Lake, T. Jenkins, and P. Thorne, Field demonstration of on-

site analytical methods for TNT and RDX in ground water , in Proceedings of the 1996 HSRC WERC Joint Conference on

the Environment, held in Albuquerque, NM, Great Plains/Rocky Mountain Hazardous Substance Research Center,

Manhattan, KS, 1996, pp. 204

219, http://www.engg.ksu.edu/HSRC/ 96Proceed/craig.html (accessed 29 February 2008)

4- J. P. Whelan, A. W. Kusterbeck, G. A. Wemhoff, R. Bredehorst and F. S. Ligler, Continuous-flow immunosensor for

detection of explosives. Anal. Chem., 1993, 65, 3561-3565.

5- Strategic Diagnostics Inc., Newark, USA, www.sdix.com (accessed 29 February 2008).

6- I.M. Ciumasu, P.M. Kramer, C.M. Weber, G. Kolb, D. Tiemann, S. Windisch, I. Frese, A.A. Kettrup : A new, versatile

field immunosensor for environmental pollutants. Development and proof of principle with TNT, diuron and atrazine.

Biosens. Bioelectron. 21, 354-364 (2005).

7- I. L. Medintz, E. R. Goldman, M. E. Lassman, A. Hayhurst, A. W. Kusterbeck and J. R. Deschamps, A Hybrid Quantum

Dot Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor. Anal. Chem., 2005, 77, 365 37.

8- H. Itzhaky, E. Keinan, Method and kit for the detection of explosives. 2004, U.S. Patent 6,767,717.

9- T. K. Alkasab, J. White, J. S. Kauer, A computational system for simulating and analyzing arrays of biological and

artificial chemical sensors. Chem. Senses. 2002, 27, 261-275.

10- C. D. Gwenin, M. Kalaji, C. M. Kay, P. A. Williams and D. N. Tito ,An in situ amperometric biosensor for the detection of

vaporus from explosive compounds. Analyst, 2008, 133, 621-625.


MBA

Email address: p.baradaran.g@gmail.com

37


PolySaccharide

OH

R

CO

NH

2

.

Heat,

Catalyst,

mg

PolySaccharide

O

CO

NH

2


Air

PolySaccharide O CO NH 2

P4

P2O

5 C(

Foamed ) NH 4 PO4

P

3

4 Re main


1- J.Breitenbach, Melt extrusion: from process to drug delivery technology, European Journal of Pharmaceutics and

Biopharmaceutics 54 (2002) 107 117

2- H.A. Talaat, M.H. Sorour, A.G. Aboulnour, H.F. Shaalan, Enas M. Ahmed, A.M. Awad and

M.A. Ahmed, Development of a Multi-Component Fertilizing Hydrogel with Relevant Techno-Economic

IndicatorsAmerican-Eurasian J. Agric. & Environ. Sci., 3 (5): 764-770, 2008.


3-P. Anna, S. Nagy, S. Keszei, A. Szabó, Gy. Marosi,Thermoplastics in pharmaceutical technology, Proceeding of

the 8th Polymers for Advanced Technologies International Symposium, Budapest, Hungary, 13-16 September 2005

4- Xiao Fei MA, Jiu Gao YU, Jin FENG, A Mixed Plasticizer for the Preparation of Thermoplastics, Chinese

Chemical Letters Vol. 15, No. 6, pp 741-744, 2004.


40

41 decoy

42 flare

Spectrally Balanced Infrared Flare Pyrotechnic Composition

1950

58

9

16

13

20

11

4

8

7

5

44

10


70

45

20

PTFE

45

25

10

MTV

IR

UV

MT

MTV

MT

MTV


MTV

43 Brisance

44 Soft Ignation

US

UK

US

MTV

IR

MTV

MTV

54

55

61

30

40

34

16

5

5

MTV

MTV

MTV

MTV

MTV

MTV

MTV

MTV

1

2

3

MTV


MTV

33

Mg(g)

MTV

-1123kj/mol

MgF2

MgF2(g)

9.2kj/gr

MTV

MTV

m>n: MgF2 (Solid, Gas, Liquid)+ Mg(g+l) + C(s) + MgF

K

M=n: MgF2 (g+l) + C(s)

M


45 Relaxation

MTV

Mg(OH)2

MTV

MTV

MTV

Mg+2H2O Mg(OH)2 +H2

Mg

Mg(OH)2

Mg/Mg(OH)2

MTV


1/8


mm

mm

psi

C

S

KNO3

MTV


[ ]F.C.Chisto,http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-0938.

Thermodynamic and Kinetics Models For Magnesium/ Teflon/ Viton Pyrotechnic

Compositions .

[ ] D.Herskovitz, J. Electronic defense,pp.41-46,1998.

[ ] L.V.de Yong, K. J. Smit, A Theoretical Study of the Combustion of MTV Pyrotechnic

Compositions, MRL-Technical Report-91- . 25,1991

[ ] J. Mul, J. Meulenbrugge, G. de Valk, Development of an MTV Composition as an Igniter for

Rocket Proellants, 85-1, ICT. Con. Proceeding, 1991.

[ ] L. J. Potter, F. J. Valanta, Compersion of Several Pyrotechnic Compositions of Interest at Naval

Ordnance Stattion, G. T. P. S., 1989.

[ ] G. W. Nauflett, R. E. Farncomb, L. Choridia, Preparation of Magnesium/Fluoropolymer

Pyrotechnic Material, U. S. Patent 5886293,1999.

[ ] David W. Herbage, Spectrally Balanced Infrared Flare Pyrotechnic Composition, U.S. Patent

5472533,1995.


46

47

-


gr/mol

gr/mol

°C

°C

gr/cm 3

48 - Incendiary Ammunition

49 - MSDS (Material Safety Data Sheet)

P


50 -High Explosive

gr/cm 3

mm.Hg

°C

°C

J/mol.K

P

NFPA

Cp


51 - Fenian Fire

52 - Fallujah, The Hidden Massacre

53 - Sigfrido Ranucci

54 - RAI

(CS2)


mg/m 3

phossy jaw

mg


ppm

(P2O5)


CO2


55 - Ultra Violet (UV)


[2]. D. M. Considine, Van Notrand Renhold Encyclopedia of Chemistry, 4 th ed, Van Nostrand, 1984

[3]. Kirk Othmer, Encyclopedia of Chemical Thechnology, 4 th ed., vol. 18

[4]- CRC Handbook of Chemistry and Physics, CRC Press, 2005

[5]. B.T. Federoff, O.E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 8, Picatinny Arsenal, 1978

[6]. Hazardeous Material guide for First Responders, Federal Emergency Management Agency,United States Fire

Administration

[7]. Marc C. Duncan, Incendiary Agents, Chapter 9, 2004

56 -CPR

57 - atropine ophthalmic


[8] http://www.islamtimes.org

[9]. http://www.rainews24.rai.it/ran24/inchiesta/video/fallujah_ING.mwv

[10]. Fallujah, The Hidden Massacre, Wikipedia, the free encyclopedia, (http://en.wikipedia.org)

http://

hamshahrionline.

ir/

News/

? id=

90996

http://

www2.

irna.

ir

[15]. Toxicologigal Profile For White Phosphorus, Sciene International inc, U.S. Department of Health and Human

Services, 1997

[17]. http://en.wikipedia.org/wiki/White_pphosphorus

[18]. http://www.guardian.co.uk/world/video/2009/jan/19/gaza-phosphorus-victim

[19]. Jane's Ammunition Handbook, edited by: L. Ness and A. G. Williams,15 th . Ed., Cambridge University Press, 2006-2007

[22]. J. C. Cornner, V. S. Bebarta, White phosphorus Dermal Burns, The New England Journal of Medicine, 11

October, 2007


Tf

(Mg)

Mg/Tf

PTFE

(C3H3F7)n

Tracking Flares, Decoy Flares

PTFE

(-C2F4-)n

Mg

58 AMMUNITION INDUSTRY- ISFAHAN- "SHAHMORADI.MOHSEN@YAHOO.COM"-

Tel: 0334 6322358- Mob: 09131070027.

Tf

PTFE

RAM

Mg/Tf

MTV

Shidlovsky

MTV

MTV


PTFE

IR- Decoy Flares

MTV

MTV

MTV

Al

Ellerm

MTV

Zr-NH4ClO4 , B-KNO3 , Mg-TF

Mg

ANFO , RDX , HMX , TNT

MTV

MTV


CO2

CO , H2 , H2O

NH4ClO4 , KClO4 , KNO3

Zr , Ti ,Al ,Mg ,Na ,B ,Li


SF6

(-C2 -F4-)n

SF6

6LiF + Li2S + Heat

Li

(Tf)

SF6

SF6 + 8Li


f

Vt

600K

800-940K

K

Vt

Vt

f

C(s)

3550-4200 Kg/m 3

(Vt)

Kg/m 3

HF

f

VITON

f

623K

TEFLON

C5H3F7-

HF

Vt

K

f

Vt

Vt

CO ,HF

Tf: polytetrafluoroethylene; PB: hydroxy-terminated polybutadiene; Tg: combustion temperature

MnO2

H2

Mg(OH)2

2MgO + Mn

Mg-MnO2

Mg + MnO2


Mg

59 Adiabatic

(Viton)

Mg

16,8 Mj/Kg

F2

(Tf)

(F2)

(Tf)

(Mg)

PTFE)

(Tf)

O2

(-C2F4-)n

Tf

Mg

Mg

Mg

Mg

TF


Mpa

Mg

Tf

60 Reactivity

C(s)

Mg F2(L)

MgF2(g)

Mg

MgF2 , Mg

Mg(g)

KS -1

F2

Tf

0.656

TG

K

Mg(g)

K

Mg-Tf

Tf

K

MgF2(L)

Mg

DTA , TG

K

Tf

Mg-T

Mg = 0.66

K

Tf

Tf

MgF2

Mg= 0.38

Tf

Mg F2(g), C(s)

K

Tf

Mg

, Mg =0.600

Mg

Mg

X-Ray

Mg +F2

Mg


Mg

1Mpa

(62.31 gr) MgF2

MgF2

dTf =25 m , dMg = 22 m

Mg-Tf

Mg=0.7

Mg-Tf

0.3

dMg dTf

dTf

dMg

Mg=0.3

0.4

Mg

T

Mg

(38.00gr)

Mg

0.19 m

Mg-Tf

MgF2

(24.31 gr)Mg

Tf , Mg


dTf

Mg

Tf

Mg

Mg-Tf

dMg

Mg 0.3

Tf

Mg-Tf

Mg

Tf

Tf

0.60

=

0.40

(dTf = 450 m

Tf

Mg

Mg

Mg

Mg

Tf

Mg 0.3

Mg


Mg

Tf

MTV


1- Naminosuke Kubota, Propellants and Explosives, Chapter 11, PP.309-315, Thermochemical

Aspects of Combustion, Second Edition, Wiley 2007.

2- Conkling, John A., CHEMISTRY OF PYROTECHNICS, New York 1976.

3- Ernst-Christian Koch, Metal-Fluorocarbon-Pyrolants: III. Development and Application of

Magnesium/Teflon/Viton (MTV), Propellants, Explosives, Pyrotechnics 27, 262 - 266 (2002).

4- Ernst-Christian Koch, Pyrotechnic Countermeasures: II. Advanced Aerial Infrared

Countermeasures, Review, Propellants, Explosives, Pyrotechnics 31, No. 1 (2006)


This document was created with Win2PDF available at http://www.daneprairie.com.

The unregistered version of Win2PDF is for evaluation or non-commercial use only.

More magazines by this user
Similar magazines