10.02.2013 Views

Tehnici nanolitografice pentru fabricarea dispozitivelor ... - ICPE-CA

Tehnici nanolitografice pentru fabricarea dispozitivelor ... - ICPE-CA

Tehnici nanolitografice pentru fabricarea dispozitivelor ... - ICPE-CA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

12 October 2012<br />

<strong>Tehnici</strong> <strong>nanolitografice</strong> <strong>pentru</strong> <strong>fabricarea</strong><br />

<strong>dispozitivelor</strong> nanoelectronice<br />

Adrian Dinescu, IMT Bucuresti<br />

Workshop “Parteneriat <strong>pentru</strong> inovare: cercetare – industria electronica”


18 October 2012<br />

Nanoscale Structuring and Characterization Laboratory<br />

Raith e_Line - dedicated EBL equipment NanoInk Nscriptor – dip pen nanolithography<br />

Tescan Vega LMU II<br />

Thermionic (tungsten) SEM<br />

FEI Nova NanoSEM630<br />

FEG-SEM<br />

NT-MDT Ntegra Aura AFM & STM<br />

Agilent G200 - Nanoindenter


First EBL equipment in IMT - Tescan Vega LMU II<br />

and Raith Elphy Plus – installation 2006 Raith e-Line – installation 2008<br />

18 October 2012<br />

Smallest beam diameter : 5nm @ 3pA<br />

beam current and 30kV<br />

100nm<br />

Electron Beam Lithography equipment in IMT Bucharest<br />

30nm diameter holes in PMMA 950k<br />

Smallest beam diameter: 1.5nm @ 200pA<br />

150nm<br />

̴ 10nm diameter holes in PMMA 950k


600µm<br />

18 October 2012<br />

Mix and match lithography: photolitography & EBL<br />

200µm


18 October 2012<br />

Acoustic devices for GHz applications<br />

Acoustic resonators<br />

A.Muller, D. Neculoiu, G. Constantinidis, G. Deligeorgis, A. Dinescu, A. Stavrinidis, A. Cismaru, M. Dragoman and A. Stefanescu,<br />

„ SAW Devices manufactured on GaN/Si for frequencies beyond 5GHz”, IEEE Electron Device Letters, Vol. 31, No. 12, Dec. 2010<br />

D. Neculoiu, A. Müller, G. Deligeorgis, A. Dinescu, A. Stavrinidis, D. Vasilache, A. Cismaru, G. E. Stan and G. Konstantinidis,<br />

“AlN on silicon based surface acoustic wave resonators operating at 5 GHz”, Electronics Letters, vol 45, No 23, 2009


18 October 2012<br />

AlN/Si<br />

•Deposition by magnetron sputtering<br />

•Sound velocity 6000 m/s<br />

•Coupling coefficient ̴ 6%<br />

GaN/Si<br />

•Deposition by MBE and MOCVD<br />

•Sound velocity 5000 m/s<br />

•Coupling coefficient ̴ 2%<br />

•Monolithic integration with HEMT<br />

transistors is possible<br />

SAW devices for microwave applications (1)<br />

HEMTs<br />

SAWs<br />

Collaboration IMT Bucharest – FORTH IESL Heraklion, Grece


GDSII layout for contact<br />

pads and alignment marks<br />

18 October 2012<br />

Detail of Ti/Au<br />

nanoelectrodes<br />

SAW devices for microwave applications (2)<br />

Photolithography<br />

Metallization<br />

(Cr/Au)<br />

Lift off<br />

Wafer patterned with Cr/Au<br />

contact pads<br />

SAW resonator after<br />

metallization and lift off<br />

+<br />

E-beam evaporation<br />

(Ti/Au)<br />

Lift off<br />

GDSII layout of the IDTs<br />

EBL<br />

IDTs patterned in PMMA 950k


SAW devices for microwave applications (5)<br />

Results 2009<br />

Resonance > 5GHz on AlN<br />

D. Neculoiu, A. Müller, G. Deligeorgis, A. Dinescu, A.<br />

Stavrinidis, D. Vasilache, A. Cismaru, G. E. Stan and G.<br />

Konstantinidis, “AlN on silicon based Surface Acoustic<br />

Wave resonators operating at 5 GHz”<br />

-70<br />

4.6 4.8 5<br />

frequency, GHz<br />

5.2 5.4<br />

Electron. Lett. 45, 1196 (2009) Best previous result obtained before was a SAW on<br />

AlN (but on diamond not on silicon) operating at 4.5<br />

GHz [P. Kirsch et al. Appl Phys. Lett.88, 223504,<br />

2006]<br />

18 October 2012<br />

S21, dB<br />

-40<br />

-45<br />

-50<br />

-55<br />

-60<br />

-65


18 October 2012<br />

SAW devices for microwave applications (6)<br />

SEM micrograph of the test structure. The distance between the IDTs was d = 20 µm;<br />

for the other test structures, it was d = 100, 200, and 600 µm.<br />

Detail of the nanolithographic process with fingers and interdigits which are<br />

nominally 200-nm wide, developed on the GaN surface.<br />

(a) SEM photograph. (b) AFM image.<br />

A.Muller; D.Neculoiu; G.Konstantinidis; G. Deligeorgis; A. Dinescu; A.<br />

Stavrinidis; A. Cismaru; M.Dragoman; A.Stefanescu; “SAW Devices<br />

Manufactured on GaN/Si for Frequencies Beyond 5 GHz “<br />

IEEE ELECTRON DEVICE LETTERS Volume: 31 Issue: 12 Pages:<br />

1398-1400 1398 1400 (2010)<br />

Results 2010<br />

Resonance > 5GHz on GaN<br />

Measured reflection losses (S11) versus the frequency for three<br />

structures with different distances between the IDTs compared<br />

with the electromagnetic simulated results (without the<br />

inclusion of the piezoelectric effect).<br />

The highest resonance frequency reported for a SAW structure on GaN (on sapphire) is<br />

2.225 GHz, with the interdigitated transducer (IDT) having 600-nm-wide fingers and<br />

spacings: T. Palacios, F. Calle, E. Monroy, and F. Munoz, “Submicron technologyfor IIInitride<br />

semiconductors,” J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol.<br />

20, no. 5, pp. 2071–2074, Sep. 2002.


SAW, single resonator; length 100 µm<br />

IDTs, digit/interdigit spacing 0.2 µm;<br />

Distance between reflectors and IDTs:<br />

d= 0.95 µm;<br />

IDT: 100 fingers/interdigits ; reflectors<br />

60 digits /interdigits<br />

GaN/Si; GaN layer 1 µm thin<br />

IDT and reflectors 0.1 µm thin Au<br />

18 October 2012<br />

SAW devices for microwave applications (7)<br />

SmartPower - Smart integration of GaN & SiC high power electronics for industrial<br />

and RF applications. (www.smart-power.com)<br />

Experiments to prove the concept of monolithic integration of MMIC and GaN T sensor.<br />

Q = 400<br />

Sensitivity ~ 356.9 kHz/°C<br />

= 65 ppm/°C


18 October 2012<br />

MSM photodetectors on silicon supported GaN membranes<br />

Schematic cross-section of the membrane<br />

MSM UV detector structure.<br />

Top view of the detector Detail of the interdigitated contacts<br />

a) Responsivity vs wavelength for the 0.5µm finger/interdigit UV GaN detector before the silicon substrate removal.<br />

b) Responsivity vs wavelengthfor the 0.5 µm finger/interdigit UV detectorst manufactured on thin GaN membrane.<br />

1. A.Muller, G. Konstantinidis, M. Dragoman, D. Neculoiu, A. Dinescu, M. Androulidaki, M. Kayambaki, A. Stavrinidis, D. Vasilache, C. Buiculescu, I. Petrini, A. Kostopoulos and<br />

D. Dascalu, “GaN Membrane-supported UV Photodetector manufactured using nanolithographic process” , Microelectronics Journal; ,40,2009, p 319-321.<br />

2. A. Müller, G. Konstantinidis, M. Androulidaki, A. Dinescu, A. Stefanescu , A. Cismaru , D. Neculoiu , E. Pavelescu, A. Stavrinidis, “Front and backside-illuminated GaN/Si<br />

based metal–semiconductor–metal ultraviolet photodetectors manufactured using micromachining and nano-lithographic technologies”, Thin Solid Films, 520 (2012)<br />

2158–2161


Schematic cross-section of the membrane<br />

MSM UV detector structure.<br />

18 October 2012<br />

MSM photodetectors on silicon<br />

E. Budianu, M. Purica, A. Dinescu, E. Manea “Metal-Semiconductor-Metal photodetector on silicon insulating wafers<br />

based on nanoscale interdigitated electrodes”, EMRS Fall meeting 2009, September 14-18, Warsaw, Poland


18 October 2012<br />

AFM image of the SLG<br />

Equipment: NT-MDT N-Tegra Aura<br />

Intensity (a. u.)<br />

1581.0<br />

EBL for graphene based devices<br />

2656.7<br />

1 500 2 000 2 500 3 000 3 500 4 000<br />

Raman shift (cm -1 )<br />

Intensity (a. u.)<br />

1583.2<br />

A.C. Ferrari et. al., Pyhs. Rev. Lett. 97 , 187401 (2006)<br />

MLG BLG SLG<br />

2657.6<br />

1 500 2 000 2 500 3 000 3 500 4 000<br />

Raman shift (cm -1 )<br />

Intensity (a. u.)<br />

1586.1<br />

2640.7<br />

1 500 2 000 2 500 3 000 3 500 4 000<br />

Raman shift (cm -1 )<br />

Raman spectra of a few selected points of graphene flake used for FET fabrication<br />

Substrate: p ++ silicon, boron doped, resistivity 0.005 Ωcm, covered with 300nm dry thermal oxide


18 October 2012<br />

SLG areas surrounded by alignment marks


18 October 2012<br />

Patterned electrical contacts on graphene flakes


18 October 2012<br />

CPW structures on SLG


18 October 2012<br />

Cutting process for<br />

SLG<br />

- Electronresist<br />

-SLG<br />

-Silicon dioxide<br />

-Silicon<br />

Electron resist deposition<br />

EBL exposure<br />

RIE (oxygen plasma)<br />

Electron resist removal<br />

E-beam lithography patterning of graphene flake<br />

RIE etching (oxygen plasma) of graphene flake


18 October 2012<br />

Intensity (a. u.)<br />

1588.1<br />

2642.8<br />

1 500 2 000 2 500 3 000 3 500 4 000<br />

Raman shift (cm -1 )<br />

Electrical contacts for source and drain fabricated by e-beam lithography, metal<br />

evaporation (Ti/Au- 5-30nm), and lift-off


18 October 2012<br />

Pristine SLG<br />

Graphene patterned for RIE<br />

Patterning in the PMMA before metal coating The structre with 20 transistors after lift-off<br />

Array of 17 back gated FETs on graphene ribbons<br />

Graphene ribbons<br />

A back gated FET on<br />

graphene ribbon


Rds (kΩ)<br />

Semiconductor Characterization System - 4200-SCS/C/Keithley<br />

with Wafer Probing Station –Easyprobe EP6/ Suss MicroTec<br />

18 October 2012<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-40 -30 -20 -10 0 10 20 30 40<br />

Back gate voltage (V)<br />

R d s i n th e C N P (k Ω )<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

The device under test, on the probing station<br />

0<br />

0 200 400 600 800 1000 1200<br />

Dose (µC/cm2)<br />

Rds in the CNP vs irradiation dose (HV = 200V)<br />

Similar behavior at 500V and 1kV


18 October 2012<br />

EBID module<br />

SEM micrographs showing platinum lines connecting a polymer nanowire to the electrical pads<br />

L. Gence, V. Callegari, A Dinescu, S. Melinte and S. Demoustier-Champagne, “Hybrid Polymer nanowire based electronic devices correlated characterization”<br />

14-th International Conference of Modulated Semiconductor Structures (MSS 14), 19-24 July 2009, Kobe, Japan


• Project: Carbon nAnotube Technology for High-speed nExt-geneRation nano-<br />

InterconNEcts – <strong>CA</strong>THERINE (FP7/STREP, 2008-2010)<br />

Structure used for electrical characterization of CNTs<br />

at high frequencies. EBL was used for patterning the<br />

small calibration line and EBID technique for fixing<br />

the CNTs<br />

18 October 2012<br />

Platinum deposition was used for fixing the CNTs<br />

across V-shaped trenches in order to measure their<br />

mechanical properties

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!