12.02.2013 Views

Evaporation vs. Sputtering of metal layers on the - John Covey ...

Evaporation vs. Sputtering of metal layers on the - John Covey ...

Evaporation vs. Sputtering of metal layers on the - John Covey ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Evaporati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>vs</str<strong>on</strong>g>. <str<strong>on</strong>g>Sputtering</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><br />

Backside <str<strong>on</strong>g>of</str<strong>on</strong>g> Silic<strong>on</strong> wafers<br />

Martina Ciacchi<br />

DEEI, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trieste,<br />

Trieste, Italy<br />

Infine<strong>on</strong> Technologies AT<br />

Villach, Austria<br />

martina.ciacchi@infine<strong>on</strong>.com<br />

Abstract<br />

We present <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> differences observed between<br />

evaporated and sputtered backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> processes<br />

<strong>on</strong> silic<strong>on</strong> wafers: These two methods <str<strong>on</strong>g>of</str<strong>on</strong>g> fabricating<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g> and <strong>the</strong> activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside semic<strong>on</strong>ductor-<str<strong>on</strong>g>metal</str<strong>on</strong>g><br />

c<strong>on</strong>tact follow different physical mechanisms.<br />

Differing crystalline structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g><br />

can be observed and <strong>the</strong> <strong>the</strong>rmal budget <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> overall<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wafer is affected in different ways. In this<br />

paper we describe <strong>the</strong>se differences, provide a descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> known physical and mechanical mechanisms<br />

and propose some models. Additi<strong>on</strong>ally we report a few<br />

producti<strong>on</strong> issues and experiences.<br />

Keywords<br />

Backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>, evaporati<strong>on</strong>, sputtering.<br />

INTRODUCTION<br />

In <strong>the</strong> semic<strong>on</strong>ductor technology <strong>the</strong> basic requirements<br />

for a backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> are: (a) good ohmic c<strong>on</strong>tact<br />

between <strong>the</strong> semic<strong>on</strong>ductor and <strong>the</strong> first <str<strong>on</strong>g>metal</str<strong>on</strong>g> layer; (b)<br />

good physical adhesi<strong>on</strong> between <strong>the</strong> silic<strong>on</strong> and <strong>the</strong> first<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g> layer and am<strong>on</strong>g <strong>the</strong> different <str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g> to prevent<br />

detachment effects like peeling; (c) formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an inter<str<strong>on</strong>g>metal</str<strong>on</strong>g>lic<br />

phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> with <strong>the</strong> solder<br />

material during <strong>the</strong> assembly process in <strong>the</strong> package.<br />

The challenges for backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> in producti<strong>on</strong> are<br />

to ensure <strong>the</strong>se basic requirements with high reliability<br />

and low yield loss <strong>on</strong> thin wafers. In <strong>the</strong> following we describe<br />

<strong>the</strong> different physical principles <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> and<br />

sputtering, present <strong>the</strong> physical differences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> produced<br />

films, and compare <strong>the</strong> two different depositi<strong>on</strong><br />

techniques in producti<strong>on</strong>.<br />

PHYSICAL PRINCIPLES<br />

The traditi<strong>on</strong>al approach to <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> in<br />

semic<strong>on</strong>ductor technology is <strong>the</strong> evaporati<strong>on</strong> process,<br />

where <strong>the</strong> target materials are c<strong>on</strong>tained in a crucible<br />

mounted at <strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> a large vacuum chamber (Figure<br />

1).<br />

1-4244-0255-07/06/$20.00©2006 IEEE<br />

Hannes Eder<br />

Infine<strong>on</strong> Technologies AT<br />

Villach, Austria<br />

hannes.eder@infine<strong>on</strong>.com<br />

Hans Hirscher<br />

UNAXIS Balzers AG<br />

Balzers, Fürstentum Liechtenstein<br />

hans.hirscher@unaxis.com<br />

Figure 1: Scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> principle <str<strong>on</strong>g>of</str<strong>on</strong>g> an evaporati<strong>on</strong> system.<br />

A beam <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s is generated, accelerated and directed<br />

towards <strong>the</strong> crucible c<strong>on</strong>taining <strong>the</strong> material to be deposited<br />

[1]. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface melts and <strong>the</strong> material evaporates.<br />

The <str<strong>on</strong>g>metal</str<strong>on</strong>g> deposits itself <strong>on</strong> wafers mounted <strong>on</strong> a<br />

rotating cap (this c<strong>on</strong>figurati<strong>on</strong> is named “planetary system”).<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> basic advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> this method are <strong>the</strong> high<br />

depositi<strong>on</strong> rate and <strong>the</strong> low damage caused by <strong>the</strong> deposited<br />

atoms because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir low energy. Fur<strong>the</strong>rmore , <strong>the</strong><br />

evaporati<strong>on</strong> process is an inexpensive process. Many<br />

materials can be evaporated in <strong>on</strong>e run, high throughput<br />

can be achieved for wafers with diameter up to 150mm<br />

(The throughput is determined by <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible<br />

wafers within <strong>on</strong>e run. W ith increasing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wafer diameter,<br />

<strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible wafers mounted <strong>on</strong> <strong>the</strong> wafer<br />

holder is decreasing).<br />

The physical principle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtering is <strong>the</strong> dislocati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> atoms from <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>metal</str<strong>on</strong>g> target. The dislocati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>metal</str<strong>on</strong>g> atoms is caused by <strong>the</strong> collisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high energy<br />

i<strong>on</strong>s generated in a magnetr<strong>on</strong> assisted DC plasma. The<br />

ejected neutral atoms fly through <strong>the</strong> plasma and land <strong>on</strong><br />

<strong>the</strong> wafer situated in <strong>the</strong> opposite side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> target [2], [3]<br />

(Figure 2).<br />

99 2006 IEEE/SEMI Advanced Semic<strong>on</strong>ductor Manufacturing C<strong>on</strong>ference


Figure 2: Principal scattering mechanisms affecting<br />

<strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g> atoms during sputtering process.<br />

Multilayer <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>s can be produced in single wafer<br />

tools by visits to chambers with different targets, or in<br />

batch tools with different targets in <strong>on</strong>e chamber. Fig. 3<br />

shows <strong>the</strong> scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> a single wafer equipment with different<br />

sputtering modules and a central robot to handle <strong>the</strong><br />

wafers in high vacuum from chamber to chamber.<br />

Etch<br />

NiV<br />

Al Ti<br />

Central Handler<br />

NiV<br />

Figure 3: Scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> a single wafer sputtertool.<br />

The reproducibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtering process is higher<br />

because <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputter-deposited layer is<br />

better c<strong>on</strong>trolled than in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong>. This<br />

leads to a higher uniformity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mechanical and electrical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>.<br />

Before depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> it is necessary<br />

to remove any native oxides from <strong>the</strong> silic<strong>on</strong> backsurface.<br />

O<strong>the</strong>rwise <strong>the</strong>se oxides prevent <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

good electrical c<strong>on</strong>tact. In a sputtering clustertool (see fig.<br />

3) it is possible to perform an in situ etching step (Arg<strong>on</strong><br />

pre-clean chamber) under high vacuum c<strong>on</strong>diti<strong>on</strong>s,<br />

whereas in case <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> an additi<strong>on</strong>al prior cleaning<br />

step is needed.<br />

The optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> process was<br />

performed by <strong>the</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> different characteristics<br />

observed in <strong>the</strong> crystalline structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g>s composing<br />

<strong>the</strong> backside, <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two processes <strong>on</strong><br />

key electrical parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> devices and in <strong>the</strong> mechanical<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtered <str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g>. We ob-<br />

Ag<br />

100<br />

served a difference in all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se features when changing<br />

from evaporati<strong>on</strong> to sputtering. It has been observed that<br />

it is possible with <strong>the</strong> sputtered process to obtain a more<br />

reproducible process. The level <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>taminati<strong>on</strong>s that<br />

normally are present in <strong>the</strong> traditi<strong>on</strong>al evaporati<strong>on</strong> process<br />

can be decreased and finally <strong>the</strong> cycle time and throughput<br />

increased for backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>.<br />

PROCESS CHARACTERIZATION<br />

The evaporated backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> (Al/Ti/Ni/Ag) is<br />

performed in vacuum depositi<strong>on</strong> equipment. The c<strong>on</strong>tact<br />

to <strong>the</strong> semic<strong>on</strong>ductor is achieved via <strong>the</strong> aluminum layer.<br />

The first functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Al is <strong>the</strong> electrical interc<strong>on</strong>necti<strong>on</strong><br />

with low ohmic resistivity. Since this process is quite<br />

“cold” (<strong>the</strong> temperature during <strong>the</strong> evaporati<strong>on</strong> is in <strong>the</strong><br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 150-180°C), after <strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> a fur<strong>the</strong>r step <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>rmal annealing is needed in order to activate <strong>the</strong> ohmic<br />

c<strong>on</strong>tact. This is performed inside a furnace with a temperature<br />

higher than 300°C in a c<strong>on</strong>trolled inert atmosphere.<br />

According to <strong>the</strong> phase-diagrams (see fig. 4, [4]) interdiffusi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> and aluminum takes place, which leads to<br />

a phenomen<strong>on</strong> known as “spiking”.<br />

Temperature °C<br />

900<br />

700<br />

500<br />

300<br />

660.452 °C<br />

(Al)<br />

L<br />

12.6<br />

577 °C<br />

0 10 20 30<br />

Al Weight Percent Silic<strong>on</strong> Si<br />

Figure 4: Al-Si phase diagram<br />

The Al layer also prevents <strong>the</strong> interdiffusi<strong>on</strong> between Ti<br />

and Si which would lead to Ti-silicates. These compounds<br />

can have very high melting temperatures and thus can be<br />

very brittle.<br />

The Ti-layer is a barrier against <strong>the</strong> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ni<br />

through <strong>the</strong> Al toward <strong>the</strong> Si. The Ni layer is <strong>the</strong> main<br />

comp<strong>on</strong>ent for <strong>the</strong> soldering process since it easily reacts<br />

with most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> comm<strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t solders. The functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

silver layer is to protect <strong>the</strong> underlying <str<strong>on</strong>g>layers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ni and Ti<br />

from oxidati<strong>on</strong> which can cause problems at <strong>the</strong> solder and<br />

glue die-attach steps.


Figure 5 shows <strong>the</strong> cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an evaporated backside<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. It can be observed that <strong>the</strong> evaporated<br />

Ni has a “clustered” crystalline structure.<br />

Figure 5: Cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an evaporated Ni layer.<br />

The main difference <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtered b ackside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong><br />

developed by Infine<strong>on</strong> Technologies compared to <strong>the</strong><br />

evaporated <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> is <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a Ni-7V (wt %) target.<br />

By adding Vanadium <strong>the</strong> target NiV changes to a<br />

n<strong>on</strong>magnetic material. This firstly allows <strong>the</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a standard ma gnet system (Planar Magnetr<strong>on</strong>) and sec<strong>on</strong>dly<br />

an increased target thickness (no loss <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic<br />

flux). The functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each layer is <strong>the</strong> same as for <strong>the</strong><br />

evaporated backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. An in situ sputtered<br />

pre-clean is performed in <strong>the</strong> etch module prior <strong>the</strong> first Al<br />

depositi<strong>on</strong>.<br />

The main parameters taken into account to define <strong>the</strong> target<br />

process were <strong>the</strong> sputtering energy, <strong>the</strong> thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g> and <strong>the</strong> time needed for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtering<br />

processes. These parameters affect <strong>the</strong> temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wafer during depositi<strong>on</strong>. A reliable temperature performance<br />

is needed, since we wanted to develop an in situ<br />

annealing process without an additi<strong>on</strong>al annealing step<br />

after <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. Figure 6 shows a simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical<br />

temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile during sputtering. The temperature<br />

was m<strong>on</strong>itored by a pyrometer fixed at <strong>the</strong> chuck <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

sputtering chamber. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> basic targets <str<strong>on</strong>g>of</str<strong>on</strong>g> all fabricati<strong>on</strong><br />

processes is to define a process-window where stability<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneity and reproducibility is assured.<br />

To understand how <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> process has been<br />

accomplished, c<strong>on</strong>sider <strong>the</strong> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile in figure 6<br />

in more detail. Each point <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> curve corresp<strong>on</strong>ds to a<br />

certain thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtered layer and as <strong>the</strong> time<br />

goes <strong>on</strong> <strong>the</strong> layer <str<strong>on</strong>g>of</str<strong>on</strong>g> course becomes thicker.<br />

It is important to check in which range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure<br />

6 <strong>the</strong> process lies. If <strong>the</strong> process lies in <strong>the</strong> range “A”<br />

this means that a slight shift <str<strong>on</strong>g>of</str<strong>on</strong>g> some process parameters<br />

could lead to a lower temperature budget with <strong>the</strong> possible<br />

c<strong>on</strong>sequence that <strong>the</strong> backside ohmic c<strong>on</strong>tact is not activated.<br />

So it is important that <strong>the</strong> target-process lies far<br />

from <strong>the</strong> “knee” <str<strong>on</strong>g>of</str<strong>on</strong>g> that curve as for instance in <strong>the</strong> area<br />

101<br />

“B”. In this range, a slight deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some process parameters<br />

will not a ffect <strong>the</strong> activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ohmic c<strong>on</strong>tact.<br />

temperature [°C]<br />

A B<br />

t1 t2 t1´ t2´<br />

Figure 6: Temperature/time characteristics for <strong>the</strong><br />

sputtering <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NiV layer.<br />

Reliable temperature behavior is important because at<br />

sputtering temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> around 300°C inter-diffusi<strong>on</strong><br />

between silic<strong>on</strong> and aluminum according to <strong>the</strong> phase diagram<br />

shown in Figure 4 takes place. As <strong>the</strong> silic<strong>on</strong> atoms<br />

move inside <strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g> <strong>the</strong> aluminum fills <strong>the</strong> voids left by<br />

<strong>the</strong> semic<strong>on</strong>ductor. This phenomen<strong>on</strong>, as already menti<strong>on</strong>ed,<br />

is known as “spiking”. With this starting point, a<br />

qualitative approach in <strong>the</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside has<br />

been <strong>the</strong> observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spiking density at <strong>the</strong> interface<br />

between silic<strong>on</strong> and backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. We removed<br />

<strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> and took SEM pictures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> remaining silic<strong>on</strong> surface.<br />

An objective approach to judge <strong>the</strong> electrical c<strong>on</strong>tact is<br />

measuring <strong>the</strong> ohmic resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> silic<strong>on</strong>-<str<strong>on</strong>g>metal</str<strong>on</strong>g> interface<br />

via TLM measurements (basically a 4-point test) [5],<br />

[6]. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se measurements show that <strong>the</strong> optical<br />

inspecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spiking is a good qualitative predicti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ohmic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. It has been<br />

verified that an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spiking density (due to an<br />

increased <strong>the</strong>rmal budget) can be related to a lower value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ohmic resistance. Moreover, in <strong>the</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> no spiking<br />

<strong>the</strong> TLM measurement will reveal a Schottky c<strong>on</strong>tact.<br />

Figure 7: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> high spiking density.<br />

time [s]


In Figure 7 a quite high and homogeneous distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spikes can be observed. The probe had a low ohmic c<strong>on</strong>tact,<br />

whereas figure 8 shows <strong>the</strong> example <str<strong>on</strong>g>of</str<strong>on</strong>g> a probe with<br />

no spikes and bad c<strong>on</strong>tact. In <strong>the</strong> two cases a different<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> grain precipitates can be observed. Also<br />

this phenomen<strong>on</strong> is related to <strong>the</strong> <strong>the</strong>rmal budget achieved<br />

during <strong>the</strong> pro cess.<br />

Figure 8: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> no spiking.<br />

Figure 9 shows <strong>the</strong> cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a sputtered NiV layer.<br />

The sputtered NiV layer shows a quite regular “vertical”<br />

structure, a pore-free texture and small grain size. These<br />

two features c<strong>on</strong>tribute to a better adhesi<strong>on</strong> between <strong>the</strong><br />

<str<strong>on</strong>g>layers</str<strong>on</strong>g> and an improved behavior during <strong>the</strong> soldering<br />

process.<br />

Figure 9: Cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a sputtered NiV layer.<br />

The sputtering process generates a rougher aluminum<br />

layer compared to <strong>the</strong> evaporati<strong>on</strong> process. The root<br />

cause is <strong>the</strong> different depositi<strong>on</strong> temperature: <str<strong>on</strong>g>Evaporati<strong>on</strong></str<strong>on</strong>g><br />

takes place at about 150°C - 180°C, during <strong>the</strong> sputtering<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> Al we reach about 300°C.<br />

PROCESS EXPERIENCES<br />

The main advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtering process versus <strong>the</strong><br />

evaporati<strong>on</strong> in producti<strong>on</strong> are: (a) in situ activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

electrical c<strong>on</strong>tact (b) less manual handling <str<strong>on</strong>g>of</str<strong>on</strong>g> thin wafers<br />

(c) easier c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>layers</str<strong>on</strong>g> through <strong>the</strong><br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a set <str<strong>on</strong>g>of</str<strong>on</strong>g> process parameters (d) higher<br />

throughput.<br />

102<br />

WET PRE-CLEAN<br />

WAFERS LOADING<br />

EVAPORATION<br />

WAF. UNLOADING<br />

ANNEALING<br />

Figure 10: Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> processes: (a)<br />

evaporati<strong>on</strong>; (b) sputtering.<br />

This simplifies <strong>the</strong> whole fabricati<strong>on</strong> flow; a schematic<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> <str<strong>on</strong>g>vs</str<strong>on</strong>g>. sputtering is drawn in figure<br />

10. For <strong>the</strong> sputtered flow <strong>the</strong> wet pre -clean is substituted<br />

by an in situ Arg<strong>on</strong> sputter pre-clean and <strong>the</strong> annealing<br />

is carried out during <strong>the</strong> depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>.<br />

Table 1 summarizes <strong>the</strong> comparis<strong>on</strong> between evaporati<strong>on</strong><br />

and sputtering with reference to a set <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant process<br />

parameters related to <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. The data<br />

collected was from more than 300.000 processed wafers for<br />

both variants.<br />

Table 1: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some significant process parameter<br />

between evaporati<strong>on</strong> and sputtering.<br />

Process<br />

parameter<br />

Operator time<br />

(minutes for 100<br />

wafers)<br />

Global process<br />

time (minutes<br />

for 50 wafers)<br />

Defect density<br />

(particle/cm 2 )<br />

WAFERS LOADING<br />

SPUTTERING &<br />

INSITU PRE-CLEAN<br />

WAF. UNLOADING<br />

(a) (b)<br />

<str<strong>on</strong>g>Evaporati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Sputtering</str<strong>on</strong>g> Ratio<br />

243 36 6,7<br />

567 117 4,8<br />


ameter. The “scrap rate” arising from process, operator or<br />

machine failures for <strong>the</strong> sputtered flow is more than a factor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 3 better than for <strong>the</strong> evaporati<strong>on</strong> flow.<br />

The sputtered backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> and <strong>the</strong> simplified<br />

fabricati<strong>on</strong> flow minimize manual handling. Due to this fact<br />

and <strong>the</strong> advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> in situ Arg<strong>on</strong> pre -clean without<br />

vacuum break <strong>the</strong> rate for backside adhesi<strong>on</strong> problems<br />

reported from backend is a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 better than for <strong>the</strong><br />

evaporated backside.<br />

CONCLUSIONS<br />

The sputtering process developed by Infine<strong>on</strong> Technologies<br />

has been shown to improve <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g>liza ti<strong>on</strong> <strong>on</strong> silic<strong>on</strong> wafers and reduce process<br />

time. It has also been shown that this method leads to a<br />

“cleaner” process due to <strong>the</strong> fact that no more wet etch <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> silic<strong>on</strong> surface is needed before starting <strong>the</strong> sputtering<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first <str<strong>on</strong>g>metal</str<strong>on</strong>g> layer and <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> handling<br />

steps are reduced. These two facts help to avoid c<strong>on</strong>taminati<strong>on</strong>s,<br />

which leads to a lower peeling rate and a lower<br />

yield loss from process, operator or machine-failures.<br />

ACKNOWLEDGMENTS<br />

We thank Dr. Vallant, chief <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Infine<strong>on</strong> Technologies<br />

Metal Depositi<strong>on</strong> Unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Villach Fab, for his support<br />

and all <str<strong>on</strong>g>of</str<strong>on</strong>g> his team for <strong>the</strong> realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our experiments. A<br />

major c<strong>on</strong>trib uti<strong>on</strong> to this research during <strong>the</strong> development<br />

and tuning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> process was from <strong>the</strong> collaborati<strong>on</strong><br />

with UNAXIS. Thanks also goes to Mr. Franz Stückler, Dr.<br />

Daniel Kraft and to all <strong>the</strong> people in <strong>the</strong> Failure Analysis<br />

Lab that supported us to fur<strong>the</strong>r understand and improve<br />

our sputtering process.<br />

103<br />

REFERENCES<br />

[1] L. Eckertova: “Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> thin films”, Plenum Press,<br />

1977, chap. 2.<br />

[2] S. Wolf, R.N. Tauber: “Silic<strong>on</strong> Processing for <strong>the</strong> VLSI<br />

Era”, Lattice Press, 1986. Vol.1, chap. 10.<br />

[3] C.Y. Chang, S. Sze: “ULSI Technology”, McGrawHill,<br />

1996. Chap. 8.<br />

[4] B.M.Thaddeus: “Binary Alloy Phase Diagramms“,<br />

ASM Internati<strong>on</strong>al, 1990, Vol. 1<br />

[5] S. Kramp: "Quantitative Bestimmung des Rückseitenk<strong>on</strong>taktwiderstandes",<br />

Infine<strong>on</strong> Technologies internal<br />

report, 2004.<br />

[6] D.K. Schroder: „Semic<strong>on</strong>ductor material & device<br />

characterizati<strong>on</strong>“, 2nd Editi<strong>on</strong>, Wiley Interscience,<br />

1998, chap. 1.<br />

BIOGRAPHY<br />

Martina Ciacchi received her PhD in Electr<strong>on</strong>ics at <strong>the</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trieste (Italy) with a <strong>the</strong>sis regarding semic<strong>on</strong>ductor<br />

device physics. She is currently working for<br />

Infine<strong>on</strong> Technologies as process engineer and she participated<br />

in <strong>the</strong> integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtered 4 layer backside<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> for IC products.<br />

Hannes Eder received his PhD in Physics at <strong>the</strong> University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna (Austria) with a <strong>the</strong>sis regarding studies <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid surfaces under i<strong>on</strong> impact. He is<br />

currently working as a <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> process engineer for<br />

Infine<strong>on</strong> Technologies.<br />

Hans Hirscher received his PhD in Physics at <strong>the</strong> University<br />

Tübingen (Germany) with a <strong>the</strong>sis regarding <strong>the</strong> development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a high resoluti<strong>on</strong> STEM at 100 kV. He is currently<br />

working as senior process development engineer for<br />

thin wafer processing for Unaxis .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!