14.02.2013 Views

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Proof. (i)⇒(ii) It is sufficient to show the following:<br />

2 <strong>Convex</strong> Functions of Several Variables 33<br />

(1) Let x, y ∈ C, x �= y. Then (y − x) T H(x)(y − x) ≥ 0.<br />

Let g be the convex function defined by g(t) = f � (1 − t)x + ty � for t ∈ R such that<br />

(1 − t)x + ty = x + t(y − x) ∈ C. Since f <strong>and</strong> thus g is of class C 2 , the chain rule<br />

for functions of d variables yields the following:<br />

g ′ (t) exists <strong>and</strong> equals<br />

g ′′ (t) exists <strong>and</strong> equals<br />

d�<br />

i=1<br />

d�<br />

i,k=1<br />

fxi<br />

� x + t(y − x) � (yi − xi),<br />

fxi ,xk<br />

� x + t(y − x) � (yi − xi)(yk − xk).<br />

Since g is convex <strong>and</strong> of class C 2 , Corollary 1.1 implies that, in particular, g ′′ (0) ≥ 0<br />

<strong>and</strong> thus<br />

1<br />

2 (y − x)T H(x)(y − x) = 1<br />

2<br />

d�<br />

i,k=1<br />

fxi ,xk (x)(yi − xi)(yk − xk) = 1<br />

2 g′′ (0) ≥ 0,<br />

concluding the proof of (1).<br />

(ii)⇒(i) By Theorem 2.4, it is sufficient to show the following:<br />

(2) Let x ∈ C. Then f has an affine support at x.<br />

Since f is of class C 2 , Taylor’s theorem, for functions of d variables, implies that<br />

f (y) = f (x) + u · (y − x) + 1<br />

2<br />

d�<br />

i,k=1<br />

fxi ,xk<br />

� x + ϑ(y − x) � (yi − xi)(yk − xk)<br />

= f (x) + u · (y − x) + 1<br />

2 (y − x)T H � x + ϑ(y − x) � (y − x)<br />

≥ f (x) + u · (y − x) for y ∈ C,<br />

where u = grad f (x), 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!