24.05.2018 Views

integration

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

368 INTEGRAL CALCULUS<br />

Table 37.1<br />

Standard integrals<br />

∫<br />

(i) ax n dx = axn+1<br />

n + 1 + c<br />

(except when n =−1)<br />

∫<br />

(ii) cos ax dx = 1 sin ax + c<br />

a<br />

∫<br />

(iii) sin ax dx =− 1 cos ax + c<br />

a<br />

∫<br />

(iv) sec 2 ax dx = 1 tan ax + c<br />

a<br />

∫<br />

(v) cosec 2 ax dx =− 1 cot ax + c<br />

a<br />

∫<br />

(vi) cosec ax cot ax dx =− 1 cosec ax + c<br />

a<br />

∫<br />

(vii) sec ax tan ax dx = 1 sec ax + c<br />

a<br />

∫<br />

(viii) e ax dx = 1 a eax + c<br />

∫ 1<br />

(ix) dx = ln x + c<br />

x<br />

Problem 1.<br />

Determine (a) ∫ 5x 2 dx (b) ∫ 2t 3 dt.<br />

The standard integral, ∫ ax n dx = axn+1<br />

n + 1 + c<br />

(a) When a = 5 and n = 2 then<br />

∫<br />

5x 2 dx = 5x2+1<br />

2 + 1 + c = 5x3<br />

3 + c<br />

(b) When a = 2 and n = 3 then<br />

∫<br />

2t 3 dt = 2t3+1<br />

3 + 1 + c = 2t4<br />

4 + c = 1 2 t4 + c<br />

Each of these results may be checked by differentiating<br />

them.<br />

Problem 2. Determine<br />

∫ (4 + 3 )<br />

7 x − 6x2 dx.<br />

∫<br />

(4 +<br />

3<br />

7<br />

x − 6x 2 )dx may be written as<br />

∫<br />

4dx +<br />

∫ 37<br />

x dx − ∫ 6x 2 dx, i.e. each term is<br />

integrated separately. (This splitting up of terms only<br />

applies, however, for addition and subtraction.)<br />

∫<br />

Hence<br />

(4 + 3 )<br />

7 x − 6x2 dx<br />

( 3 x<br />

1+1<br />

= 4x +<br />

7)<br />

1 + 1<br />

− (6)<br />

x2+1<br />

2 + 1 + c<br />

( 3 x<br />

2<br />

= 4x +<br />

7)<br />

2 − (6)x3 3 + c<br />

= 4x + 3<br />

14 x2 − 2x 3 + c<br />

Note that when an integral contains more than one<br />

term there is no need to have an arbitrary constant<br />

for each; just a single constant at the end is sufficient.<br />

Problem 3. Determine<br />

∫ 2x 3 ∫<br />

− 3x<br />

(a)<br />

dx (b) (1 − t) 2 dt<br />

4x<br />

(a) Rearranging into standard integral form gives:<br />

∫ 2x 3 − 3x<br />

dx<br />

4x<br />

∫ 2x<br />

3<br />

=<br />

4x − 3x ∫ x<br />

2<br />

4x dx = 2 − 3 4 dx<br />

( 1 x<br />

2+1<br />

=<br />

2)<br />

2 + 1 − 3 4 x + c<br />

( 1 x<br />

3<br />

=<br />

2)<br />

3 − 3 4 x + c = 1 6 x3 − 3 4 x + c<br />

∫<br />

(b) Rearranging (1 − t) 2 dt gives:<br />

∫<br />

(1 − 2t + t 2 )dt = t − 2t1+1<br />

1 + 1 + t2+1<br />

2 + 1 + c<br />

= t − 2t2<br />

2 + t3 3 + c<br />

= t − t 2 + 1 3 t3 + c<br />

This problem shows that functions often have to be<br />

rearranged into the standard form of ∫ ax n dx before<br />

it is possible to integrate them.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!