18.02.2014 Views

主成分分析における固有値・固有ベクトルの信頼区間 -漸近理論および ...

主成分分析における固有値・固有ベクトルの信頼区間 -漸近理論および ...

主成分分析における固有値・固有ベクトルの信頼区間 -漸近理論および ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

[1] P84 3 <br />

<br />

<br />

mvrnorm <br />

<br />

<br />

[5] <br />

[2][3][6]t [4] <br />

<br />

2 <br />

M2007MM016 <br />

<br />

l <br />

S <br />

a S λ k α k <br />

λ k = E(l k ) α k = E(a k ) z α <br />

100α% <br />

2.1 <br />

<br />

⎧<br />

⎨ 2λ 2 k<br />

k = k ′<br />

cov(l k , l k ′) = n − 1<br />

⎩<br />

0 k ≠ k ′<br />

l k <br />

l k ∼ N(λ k ,<br />

<br />

l k − λ k<br />

N(0, 1)<br />

λ k [2/(n − 1)]<br />

1/2<br />

2λ 2 k<br />

n − 1 ) (1)<br />

τ 2 = 2/(n − 1) λ k <br />

(1 − 2α) <br />

l k<br />

l k<br />

≤ λ k ≤<br />

(2)<br />

1 + τz α 1 − τz α<br />

n <br />

τz α ≤ 1 <br />

log l k <br />

(1) <br />

log l k ∼ N(log λ k ,<br />

2<br />

n − 1 ) (3)<br />

λ k <br />

1 − α <br />

log λ k log l k ± τz α <br />

λ k <br />

l k e −τzα ≤ λ k ≤ l k e τzα (4)<br />

<br />

l k λ k <br />

<br />

(2) (4) <br />

<br />

2.2 <br />

α kj <br />

cov(a kh , a k ′ j ′) = ⎧⎪ ⎨<br />

⎪ ⎩<br />

λ k<br />

n − 1<br />

p∑<br />

l=1,l≠k<br />

λ l α lj α lj ′<br />

(λ l − λ k ) 2 k = k ′<br />

− λ kλ k ′α kj α k′ j ′<br />

(n − 1)(λ k − λ k ′) 2 k ≠ k ′<br />

a kj <br />

λ k a kj <br />

α kj <br />

a k <br />

<br />

a k N(α k , T k )<br />

<br />

T k =<br />

λ k<br />

n − 1<br />

p∑<br />

l=1,l≠k<br />

λ l<br />

(λ l − λ k ) 2 α lα ′ l<br />

T k a k 1 <br />

(p − 1) <br />

<br />

(n − 1)α ′ k(l k S −1 + l −1<br />

k S − 2I p)α k ≤ χ 2 (p−1);α (5)


a ki ∼ N(α ki , T k(i,i) ) (2) <br />

√<br />

√<br />

a ki − T k(i,i) z α ≤ α ki ≤ a ki + T k(i,i) z α (6)<br />

T k(i,i) a k T k i<br />

<br />

3 <br />

<br />

<br />

<br />

t <br />

<br />

<br />

BCa <br />

<br />

<br />

<br />

<br />

3.1 <br />

[3] <br />

<br />

P r{ √ n(ˆθ − θ)/ˆσ ≤ t} = Φ(t) + O(n −1/2 ) (7)<br />

t BCa <br />

P r{θ ∈ I L } − (1 − α) = O(n −1 ) (8)<br />

<br />

(7) 1 (8)<br />

2 <br />

3.2 <br />

<br />

<br />

α <br />

B <br />

Bα <br />

3.2.1 <br />

(i). 1 y 1 , . . . , y n <br />

n y ∗ 1, . . . , y ∗ n <br />

<br />

(ii). ˆθ ∗ = θ(Y ∗<br />

1 , . . . , Y ∗ n ) <br />

B ˆθ ∗ 1, . . . , ˆθ ∗ B <br />

(iii). ˆθα = ˆθ (Bα) ∗ Bα ˆθ (Bα) ∗ <br />

ˆθ 1, ∗ . . . , ˆθ B ∗ Bα <br />

(ˆθ α , ˆθ 1−α ) θ <br />

1 − 2α <br />

3.3 t <br />

<br />

ˆθ <br />

1 <br />

<br />

<br />

t <br />

ˆθ <br />

ˆσ/ √ n (7) <br />

T = √ n(ˆθ − θ)/ˆσ <br />

1 <br />

T ∗ T 2 <br />

<br />

(ˆθ − n −1/2ˆσw 1−α , ˆθ − n −1/2ˆσw α )<br />

2 1 − 2α <br />

3.3.1 <br />

t <br />

<br />

[4] <br />

˜θ n,i = nˆθ n − (n − 1)ˆθ (i)<br />

n−1 ,<br />

i = 1, . . . , n<br />

ˆθ (i)<br />

n−1 <br />

i ˆθ <br />

˜θ n,i , i = 1, . . . , n <br />

˜θ n,i √ nˆθ n <br />

V ( √ nˆθ n )<br />

<br />

1<br />

n∑<br />

(˜θ n,i − 1 n∑<br />

˜θ n,j ) 2<br />

n − 1 n<br />

i=1<br />

j=1<br />

V (ˆθ n ) = V ( √ nˆθ n )/n <br />

V JACK =<br />

1<br />

n(n − 1)<br />

= n − 1<br />

n<br />

n∑<br />

i=1<br />

n∑<br />

(˜θ n,i − 1 n<br />

i=1<br />

(ˆθ (i)<br />

n−1 − 1 n<br />

n∑<br />

˜θ n,j ) 2 (9)<br />

j=1<br />

n∑<br />

j=1<br />

ˆθ (j)<br />

n−1 )2 (10)


3.3.2 <br />

(i). 1 y 1 , . . . , y n <br />

n y ∗ 1, . . . , y ∗ n <br />

<br />

(ii). (i) ˆθ ˆσ<br />

ˆθ ∗ ˆσ ∗ <br />

<br />

(iii). t T ∗ = √ n(ˆθ ∗ − ˆθ)/ˆσ ∗ <br />

B T ∗ 1 , . . . , T ∗ B <br />

(iv). w α = T ∗ (Bα) Bα T ∗ (Bα) <br />

<br />

(ˆθ − n −1/2ˆσw 1−α , ˆθ − n −1/2ˆσw α ) <br />

1 − 2α <br />

3.4 BCa <br />

ˆθ ˆθ <br />

<br />

ˆθ ˆθ ∗ <br />

<br />

<br />

<br />

<br />

BCa <br />

<br />

z 0 a <br />

<br />

ˆθ ∗ <br />

ˆθ ˆθ ∗ <br />

<br />

ˆθ ∗ ˆθ z 0 = Φ −1 (P r[ˆθ ∗ ≤<br />

ˆθ]) ˆθ θ <br />

Φ <br />

ˆθ ∗ ˆθ <br />

P r[ˆθ ∗ ≤ ˆθ] 0.5 z 0 = 0 z 0 <br />

ˆθ ∗ = θ(Y ∗<br />

1 , . . . , Y ∗ n ) <br />

3.4.1 <br />

(i). 1 y 1 , . . . , y n <br />

n y ∗ 1, . . . , y ∗ n <br />

<br />

(ii). ˆθ ∗ = θ(Y ∗<br />

1 , . . . , Y ∗ n ) <br />

B ˆθ ∗ 1, . . . , ˆθ ∗ B <br />

(iii). ẑ 0 â (11)<br />

(12) <br />

(iv). (ˆθ α , ˆθ 1−α ) = (ˆθ ∗ (B ̂α) , ˆθ ∗ (B̂1−α) ) θ <br />

1−2α α(0 ≤<br />

α ≤ 1) ˆα <br />

ˆα = Φ(ẑ 0 +<br />

ẑ 0 + z α<br />

1 − â(ẑ 0 + z α ) ) (13)<br />

̂1 − α (13) z α z 1−α <br />

<br />

4 <br />

[1] P84 3 <br />

<br />

[1] <br />

mvrnorm <br />

50<br />

200500 3 <br />

<br />

<br />

149 38.7 72.23333 79.36667<br />

<br />

53.51724 40.79310 27.58621 28.75862<br />

40.79310 41.73448 29.83103 24.35517<br />

27.58621 29.83103 26.52989 17.22184<br />

28.75862 24.35517 17.22184 18.24023<br />

1 <br />

ẑ 0 = Φ −1 (#{ˆθ ∗ b ≤ ˆθ}/B) (11)<br />

<br />

ẑ 0 <br />

(11) B B <br />

<br />

a <br />

<br />

ˆθ <br />

ˆθ (i) i y i <br />

ˆθ ˆθ () =<br />

n −1 ∑ n<br />

i=1 ˆθ (i) â <br />

<br />

â =<br />

∑ n<br />

i=1 (ˆθ () − ˆθ (i) ) 3<br />

6{ ∑ n<br />

i=1 (ˆθ () − ˆθ (i) ) 2 } 3/2 (12)<br />

<br />

124.814224 10.848728 2.495491 1.863396<br />

<br />

-0.6240226 0.6455638 0.22363789 -0.37924835<br />

-0.5591912 -0.3456392 -0.74576837 -0.10801960<br />

-0.4083340 -0.6604700 0.62447014 -0.08414179<br />

-0.3621661 0.1660133 0.06206998 0.91510798<br />

2 <br />

5


5.1 <br />

2 1 (1,1) <br />

<br />

1 124.814224<br />

(1,1) −0.6240226 <br />

<br />

+1 2 <br />

1000 <br />

<br />

<br />

<br />

.945 .964 .969 .949<br />

.943 .956 .973 .940<br />

4 <br />

<br />

.946 .959 .919 .967<br />

.952 .941 .820 .915<br />

.954 .949 .857 .913<br />

.960 .954 .908 .981<br />

5 <br />

<br />

.957 .938 .956 .877<br />

<br />

.941 .947 .948 .953<br />

.944 .939 .905 .944<br />

.934 .949 .917 .945<br />

.935 .949 .948 .827<br />

6 <br />

<br />

.952 .940 .912 .903<br />

<br />

.940 .946 .957 .939<br />

.943 .938 .885 .949<br />

.936 .947 .938 .937<br />

.934 .946 .930 .858<br />

7 BCa <br />

2 1 (1,1) <br />

<br />

112.6412 157.1251<br />

111.2681 154.7389<br />

103.6404 158.4347<br />

t 110.3003 174.1243<br />

BCa 106.2877 160.8743<br />

3 1 <br />

3 1 1 <br />

n 200 <br />

95% t BCa <br />

1000 <br />

5.2 <br />

<br />

<br />

<br />

t <br />

<br />

t <br />

6 <br />

1000 <br />

n=200 1000 <br />

7 <br />

<br />

n <br />

n <br />

<br />

<br />

8 <br />

<br />

<br />

BCa t <br />

<br />

<br />

<br />

[1] , <br />

(1983).<br />

[2] 21 3:<br />

, (2008).<br />

[3] <br />

11-, <br />

(2003).<br />

[4] , <br />

(2001).<br />

[5] I.T. JolliffePrincipal Component Analysis (Springer<br />

Series in Statistics) , Springer(2002).<br />

[6] Efron.B,Tibshirani,R.J.An Introduction to the<br />

Bootstrap. Chapman & Hall,New York(1993).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!