01.09.2013 Views

Ilko K. Ilev, Ph.D. - Washington Academy of Sciences

Ilko K. Ilev, Ph.D. - Washington Academy of Sciences

Ilko K. Ilev, Ph.D. - Washington Academy of Sciences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Ilko</strong> K. <strong>Ilev</strong>, <strong>Ph</strong>.D.<br />

Optical Therapeutics and Medical Nanophotonics Lab (OTMN Lab)<br />

Division <strong>of</strong> <strong>Ph</strong>ysics, Office <strong>of</strong> Science and Engineering Laboratories<br />

Center for Devices and Radiological Health (CDRH)<br />

U.S. Food and Drug Administration (FDA)<br />

New CDRH Labs<br />

March 27, 2010<br />

Capital Science 2010 Conference: 50th Anniversary <strong>of</strong> the Discovery <strong>of</strong> the Laser


PHOTONICS – to – BIOPHOTONICS – to – NANOBIOPHOTONICS<br />

PHOTONICS<br />

PHOTONICS<br />

►laser physics<br />

►electro-optics<br />

►fiber optics<br />

►sensors<br />

►imaging<br />

OPTICAL<br />

THERAPEUTICS<br />

BIOPHOTONICS<br />

BIOPHOTONICS<br />

►optical diagnostics/therapeutics<br />

►biosensing/bioimaging<br />

►tissue engineering<br />

►cell manipulation<br />

MEDICAL<br />

NANOPHOTONICS<br />

(NANOBIOPHOTONICS)<br />

►sizes/distances


Interest in Bioimaging/Microscopy: History <strong>of</strong> Microscopy<br />

Ernst Ruska<br />

Invented the first Electron<br />

Microscope<br />

It is a Transmission Electron<br />

Microscope (TEM)<br />

Imaging <strong>of</strong> objects as small as<br />

the diameter <strong>of</strong> an atom<br />

1668 1932 1981<br />

1931 1957<br />

Antony van Leeuwenhoek<br />

(1632-1723)<br />

The first man who make<br />

and use a real one lens<br />

light microscope<br />

Marvin Minsky<br />

Invented the Confocal<br />

Microscope<br />

Based on the rejection <strong>of</strong><br />

out-<strong>of</strong>-focus information<br />

Three-dimensional and sharp<br />

imaging <strong>of</strong> thick specimens<br />

Frits Zernike<br />

Invented the <strong>Ph</strong>ase-Contrast<br />

Microscope (PCM)<br />

PCM allows the study <strong>of</strong><br />

colorless and transparent<br />

biological materials<br />

He won the Nobel Prize in<br />

<strong>Ph</strong>ysics in 1953<br />

Gerd Binning &<br />

Heinrich Rohrer<br />

Invented the Scanning<br />

Tunneling Microscope (STM)<br />

Three-dimensional imaging<br />

<strong>of</strong> objects down to the atomic<br />

level


MOTIVATION: Why the Interest in Optical Bioimaging/Microscopy?<br />

PUBLIC HEALTH AND REGULATORY IMPACT<br />

optical bioimaging and microscopy remain the most widespread<br />

imaging techniques with important public health impact<br />

optical diagnostics/therapeutic techniques are potential alternatives<br />

to conventional medical methods for diagnosis and therapy<br />

ADVANTAGES OF OPTICAL IMAGING/MICROSCOPY<br />

non-ionizing radiation<br />

non-invasive or minimally invasive imaging, microscopy and<br />

biosensing<br />

high resolution in micron, submicron and nanometric range<br />

MRI - sub-mm; Ultrasound - 150 µm; X-ray - 0.1-1 mm<br />

Electron, Atomic Force and Tunneling Microscopy - nm/sub-nm<br />

limited to specimen surface<br />

not compatible with live cells<br />

require a detrimental sample preparation and vacuum<br />

bulk and expensive equipment<br />

the only imaging method for probing live tissue with subcellular<br />

resolution; potential for imaging and spectroscopic diagnostics


CUTTING EDGE OPTICAL IMAGING DEVICES<br />

Based primarily on confocal microscopy and optical<br />

coherence tomography (OCT)<br />

Cutting edge applications include:<br />

scanning confocal microscope for skin monitoring and diagnostics*<br />

confocal microscope for tissue monitoring and diagnostics*<br />

scanning confocal microscope for corneal diagnostics*<br />

OCT ophthalmology monitoring device*<br />

endoscopic confocal microscope for in vivo imaging *<br />

early cancer detection<br />

intravascular monitoring<br />

human brain function imaging<br />

cellular/intracellular monitoring gene mapping<br />

*FDA Approved


TYPICAL CONFOCAL AND OCT IMAGES<br />

Confocal image <strong>of</strong> neuron growth in mouse brain<br />

[Science, 300 (2003) 76]<br />

Laser scanning confocal image <strong>of</strong> optic disk<br />

OCT image <strong>of</strong> intravascular plaques in human<br />

coronary artery<br />

OCT cellular image in a living African frog<br />

[Science, 298 (2002) 1360]


From Biophotonics to Nanobiophotonics:<br />

From Microscopy To Nanoscopy and Nanobiosensing<br />

in the Subwavelength Nanoscale Spatial Range<br />

MOTIVATION: Why the Interest in Nanobiophotonics?<br />

noninvasive imaging/sensing in subwavelenght (


Diffraction Rayleigh Barrier:<br />

A Fundamental Resolution Limit in Nanobiophotonics<br />

LASER BEAM<br />

LENS<br />

Ultrahigh-Resolution (10000x)<br />

Digital Microscope<br />

Rayleigh Diffraction Resolution Limit<br />

theoretically about one-half<br />

<strong>of</strong> the laser wavelength<br />

d lateral<br />

× λ<br />

=<br />

NA<br />

61 . 0<br />

the highest achievable resolution with objective:<br />

about 180 nm lateral (x-y) resolution<br />

about 500 nm axial (z) resolution<br />

Airy Patterns and the Resolution<br />

Limit


How to Break the Theoretical Diffraction<br />

Barrier in Nanobiophotonics?<br />

RECENTLY DEVELOPED ALTERNATIVE NANOSCOPY<br />

APPROACHES<br />

ULTRAHIGH-RESOLUTION CONFOCAL FIBER-OPTIC<br />

NANOSCOPY AND BIOMEDICAL APPLICATIONS<br />

NOVEL COMBINED BIOPHOTONICS AND<br />

NANOBIOPHOTONICS SENSOR AND IMAGING<br />

APPROACHES


How to Break the Theoretical Diffraction<br />

Barrier in Nanobiophotonics?<br />

RECENTLY DEVELOPED ALTERNATIVE NANOSCOPY<br />

APPROACHES:<br />

Fluorescent Nanoscopy Based on Stimulated Emission<br />

Depletion (STED) Microscopy<br />

[Hell S., Nature Methods 4, 915-918 (2007)]<br />

Near-Field Scanning Optical Microscopy<br />

[Lewis A., Nature Biotechnology 21, pp. 1378-1386 (2003)]<br />

[Betzig E., Science 251, pp. 1468-1470 (1991)]<br />

Widefield Topography<br />

[Lichtman J., Nature Methods 2, pp. 920-931 (2005)]<br />

Dynamic Light Scattering<br />

[EYE, Nature Publishing Group, 16, pp. 429-439 (2002)]


FLUORESCENT NANOSCOPY BASED ON STIMULATED<br />

EMISSION DEPLETION (STED) MICROSCOPY<br />

mitochondrial matrix <strong>of</strong> a live yeast cell<br />

Spatial resolution smaller than 30 nm<br />

Stefan Hell, “Toward Fluorescence Nanoscopy”, Nature Biotechnology 21, 1347 (2003).


How to Break the Theoretical Diffraction<br />

Barrier in Nanobiophotonics?<br />

RECENTLY DEVELOPED ALTERNATIVE NANOSCOPY<br />

APPROACHES<br />

ULTRAHIGH-RESOLUTION CONFOCAL FIBER-OPTIC<br />

NANOSCOPY AND BIOMEDICAL APPLICATIONS<br />

NOVEL COMBINED BIOPHOTONICS AND<br />

NANOBIOPHOTONICS SENSOR AND IMAGING<br />

APPROACHES


ADVANCED BIOPHOTONICS IMAGING TECHNIQUES<br />

CONFOCAL MICROSCOPY<br />

FLUORESENCE REFLECTANCE MULTIPHOTON<br />

PINHOLE-BASED FIBER-OPTIC-BASED<br />

ADVANTAGES:<br />

three-dimensional<br />

sharp<br />

sub-µm resolution<br />

SINGLE-MODE<br />

FIBER<br />

imaging and sensing<br />

<strong>of</strong> thick specimens<br />

MULTI-MODE<br />

FIBER<br />

FIBER BUNDLE<br />

by rejection <strong>of</strong><br />

out-<strong>of</strong>-focus<br />

information<br />

OCT<br />

OPTICAL COHERENCE<br />

TOMOGRAPHY<br />

NFM<br />

NEAR FIELD<br />

MICROSCOPY<br />

DM<br />

DIFFUSED<br />

MICROSCOPY<br />

ODT<br />

OPTICAL DOPPLER<br />

TOMOGRAPHY<br />

OIM<br />

OPTICAL INTERFERENCE<br />

MICROSCOPY


Single-Mode Optical Fiber<br />

Why the Interest in Fiber-Optic Biomedical Technologies<br />

(2 - 9 µm core-diameter)<br />

Advanced Optical Fiber Features<br />

non-invasive or minimally invasive precise delivery <strong>of</strong><br />

non-ionizing laser irradiation<br />

non-invasive or minimally invasive imaging and sensing with<br />

ultrahigh-resolution in micron, sub-micron and nanorange<br />

low attenuation losses at long interaction length (km)<br />

SMF: 3-µm Single hair: 100-µm<br />

small core diameter - micron, sub-micron and nanometer size<br />

flexibility, compactness, scanning potential<br />

Gaussian Laser Beam Intensity Distribution<br />

free <strong>of</strong> gases, dyes, solvents, immunity to external interference<br />

electro-magnetic passive operation (MRI, X-ray compatible)<br />

near-to-the-theoretical paraxial conditions<br />

optimum collimated/focused laser beam<br />

Fiber Tapered Nanoprobes<br />

(20 nm - 1 µm tip-diameter)<br />

biosensing and nanobiosesing: high sensitivity, large dynamic<br />

range and multiparameter sesnsor measurements<br />

point light source<br />

point light receiver<br />

multimodality endoscopic system: imaging, sensing, diagnostics,<br />

and therapeutics<br />

advantages in imaging/sensing designs


Single-Mode Optical Fiber<br />

Why the Interest in Fiber-Optic Biomedical Technologies<br />

(2 - 9 µm core-diameter)<br />

Advanced Optical Fiber Features<br />

non-invasive or minimally invasive precise delivery <strong>of</strong><br />

non-ionizing laser irradiation<br />

non-invasive or minimally invasive imaging and sensing with<br />

ultrahigh-resolution in micron, sub-micron and nanorange<br />

low attenuation losses at long interaction length (km)<br />

SMF: 3-µm Single hair: 100-µm<br />

small core diameter - micron, sub-micron and nanometer size<br />

flexibility, compactness, scanning potential<br />

Gaussian Laser Beam Intensity Distribution<br />

free <strong>of</strong> gases, dyes, solvents, immunity to external interference<br />

near-to-the-theoretical paraxial conditions<br />

Fiber Tapered Nanoprobes<br />

(20 nm - 1 µm tip-diameter)<br />

electro-magnetic passive operation (MRI, X-ray compatible)<br />

optimum collimated/focused laser beam<br />

biosensing and nanobiosesing: high sensitivity, large dynamic<br />

range and multiparameter sesnsor measurements<br />

point light source<br />

point light receiver<br />

multimodality endoscopic system: imaging, sensing, diagnostics,<br />

and therapeutics<br />

advantages in imaging/sensing designs


FIBER-OPTIC-BASED vs CONVENTIONAL PINHOLE-BASED<br />

CONFOCAL MICROSCOPY<br />

CONVENTIONAL PINHOLE-BASED CONFOCAL MICROSCOPE<br />

L<br />

DISADVANTAGES:<br />

HIGH SIGNAL ATTENUATION<br />

DIFFRACTION AND ABERRATION EFFECTS<br />

MISALIGNMENT PROBLEMS<br />

INFLEXIBLE<br />

Ain<br />

BS<br />

D<br />

Aout<br />

O<br />

OBJECT


OUR SUGGESTION<br />

A SIMPLE SUBMICRON CONFOCAL FIBER-OPTIC-BASED<br />

MICROSCOPE<br />

<strong>Ilev</strong>, EYE, 21, 2007, pp. 818-823, Nature Publishing Group<br />

Kim, Kang, <strong>Ilev</strong>, Optics Letters, 33, pp. 425-427, 2008<br />

<strong>Ilev</strong>, Waynant, Gannot, Gandjbakhche, RSI, 78, 2007<br />

<strong>Ilev</strong>, Pending Patent, March 2006<br />

<strong>Ilev</strong>, Waynant, Gannot, Gandjbakhche, Pending Patent, Apr 2006<br />

<strong>Ilev</strong>, Waynant, Byrnes, Anders, Opt. Lett., 27, 1693, 2002<br />

Operating Confocal<br />

Principle<br />

an aperturless reflection<br />

confocal design<br />

no diffraction effects<br />

a regime <strong>of</strong> high output<br />

power is achieved<br />

high sensitivity to spatial<br />

displacements<br />

submicron/nanometric<br />

spatial resolution


How to get over the theoretical diffraction<br />

limit in the Confocal Microscopy?<br />

Signal Power [ µ W]<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

approach A:<br />

B<br />

conventional confocal approach<br />

around the maximum <strong>of</strong> the confocal<br />

response curve<br />

diffraction limited confocal imaging<br />

200-500 nm diffraction limited resolution<br />

A<br />

-12 -8 -4 0 4 8 12<br />

Axial Displacement [ µ m]<br />

approach B:<br />

ultrahigh-resolution confocal fiber-optic<br />

nanoimaging<br />

use <strong>of</strong> the sharp diffraction-free slope <strong>of</strong><br />

the confocal response curve<br />

diffraction-free confocal nanoimaging


ULTRAHIGH-RESOLUTION CONFOCAL FIBER-OPTIC IMAGING<br />

BEYOND THE DIFFRACTION LIMIT IN THE NANOMETRIC SCALE<br />

PRINCIPLE EXPERIMENTAL DESIGN<br />

LASER<br />

POWER<br />

METER<br />

ISO<br />

O1<br />

SINGLE-MODE<br />

FIBER COUPLER<br />

D<br />

Single-mode fiber coupler confocal design: high sensitivity, no diffraction/aberration,<br />

flexibility, scanning potential, point light source/receiver, Gaussian distribution<br />

Combining the advantages <strong>of</strong> the fiber-optic confocal design and the differential<br />

confocal pinhole microscope: working in the subwavelength nanometric range<br />

The use <strong>of</strong> tools and detecting techniques with high signal-to-noise potential<br />

<strong>Ilev</strong>, Waynant, Gannot and Gandjbakhche, PCT International Pending Patent, April 14, 2006<br />

<strong>Ilev</strong>, Waynant, Gannot, Gandjbakhche, Review <strong>of</strong> Scientific Instruments 78, 2007<br />

<strong>Ilev</strong>, Waynant, Gannot, Gandjbakhche, Virtual Journal <strong>of</strong> Nanoscale Science & Technology 16, 2007<br />

<strong>Ilev</strong>, Waynant, Gannot, Gandjbakhche, Virtual Journal <strong>of</strong> Biological <strong>Ph</strong>ysics Research 14, 2007<br />

Small, <strong>Ilev</strong>, Chernomordik, Gandjbakhche, Optics Express, v. 14, 3195 (2006)<br />

O2<br />

S<br />

PZT


Signal Power [mW]<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

SPATIAL RESOLUTION OF THE CONFOCAL FIBER-OPTIC<br />

NANOIMAGING SYSTEM<br />

Signal Power [mW]<br />

875<br />

850<br />

825<br />

800<br />

775<br />

750<br />

725<br />

700<br />

ultrahigh-resolution<br />

fiber-optic<br />

confocal approach<br />

conventional<br />

diffraction limited<br />

confocal approach<br />

An experimental axial<br />

confocal response curve<br />

showing the diffraction-free<br />

slope on the left side <strong>of</strong> the<br />

confocal maximum<br />

100 nm 50 nm 10 nm 2 nm<br />

500<br />

675<br />

750<br />

772<br />

1200 1300 1400 1500 1600 1700 1800 1900 1450 1500 1550 1600 1650 1700 1750 1570 1580 1590 1600 1610 1620 1630 1594 1596 1598 1600 1602 1604 1606<br />

Axial Displacement [nm]<br />

Axial Displacement [nm]<br />

Axial Displacement [nm]<br />

Axial Displacement [nm]<br />

Experimental confocal responses obtained using the ultrahigh-resolution fiber-optic confocal microscope for<br />

achieving a subwavelength depth resolution <strong>of</strong> 100 nm (a), 50 nm (b), 10 nm (c), and 2 nm (d), respectively.<br />

800<br />

790<br />

780<br />

770<br />

760<br />

782<br />

780<br />

778<br />

776<br />

774


How to Break the Theoretical Diffraction<br />

Barrier in Nanobiophotonics?<br />

RECENTLY DEVELOPED ALTERNATIVE NANOSCOPY<br />

APPROACHES<br />

ULTRAHIGH-RESOLUTION CONFOCAL FIBER-OPTIC<br />

NANOSCOPY AND BIOMEDICAL APPLICATIONS<br />

NOVEL COMBINED BIOPHOTONICS AND<br />

NANOBIOPHOTONICS SENSOR AND IMAGING<br />

APPROACHES


HIGH-RESOLUTION CONFOCAL FIBER-OPTIC-BASED<br />

BIOSENSING/IMAGING APPLICATIONS<br />

CONFOCAL FIBER-OPTIC TESTING OF REGULATORY IOL SAMPLES<br />

LASER<br />

ISO O in<br />

PM<br />

Single-Mode Fiber Coupler<br />

(2×1, 50/50)<br />

DUAL-CONFOCAL FIBER-OPTIC BIOSENSOR<br />

LASER<br />

DETECTOR<br />

50/50 FIBER<br />

COUPLER<br />

O c<br />

L test<br />

M total<br />

<strong>Ilev</strong>, “Confocal Fiber-Optic Laser Method for Measuring The Focal<br />

Length <strong>of</strong> Focusing Optics”, Pending Patent, March 3, 2006<br />

<strong>Ilev</strong>, EYE 21, pp. 818-823, 2007, Nature Publishing Group<br />

O1<br />

O2<br />

<strong>Ilev</strong>, Waynant, Byrnes, Anders, Opt. Lett., 27, 1693, 2002


Development <strong>of</strong> Independent Test Methods for Preclinical<br />

Evaluation <strong>of</strong> Fundamental Optical Properties <strong>of</strong> IOLs<br />

Examples<br />

Motivation<br />

Three-piece Mon<strong>of</strong>ocal IOL<br />

6 mm<br />

13 mm<br />

An estimated 20.5 million Americans over age 40 have<br />

cataracts in at least one eye<br />

>3 million surgeries/year in US, >3 billion USD/year cost<br />

Critical importance <strong>of</strong> precise preclinical IOL optical<br />

testing for evaluating the safety and effectiveness<br />

Conventional test methods have specific limitations:<br />

high accuracy both +/- IOL testing, spatial alignment and<br />

subjective imaging<br />

λ=546 nm IOL<br />

refractive-index<br />

IOL<br />

central<br />

thickness<br />

P 1<br />

IOL Fundamental Optical Properties<br />

dioptric power: D IOL = 1/f fl<br />

refractive-index <strong>of</strong> the IOL material<br />

IOL central thickness<br />

reflected glare<br />

light scattering characteristics<br />

imaging quality<br />

spectral transmittance<br />

f fl<br />

F 1


CONFOCAL FIBER-OPTIC LASER METHOD (CFOLM) FOR<br />

MEASURING THE FOCAL LENGTH OF FOCUSING OPTICS<br />

LASER<br />

ISO O in<br />

PM<br />

Single-Mode Fiber Coupler<br />

(2×1, 50/50)<br />

O c<br />

IOL test<br />

Input Gaussian<br />

Laser Beam<br />

CONFOCAL MICROSCOPY FIBER-OPTIC SENSORS AUTOCOLLIMATION METHOD<br />

high-magnification imaging<br />

out-<strong>of</strong>-focus signal rejection<br />

non-contact optical sectioning<br />

sub-µm resolution<br />

high sensing resolution<br />

micrometer size core diameter<br />

compact, flexible<br />

scanning potential<br />

f t<br />

M total<br />

<strong>Ilev</strong>, “Confocal Fiber-Optic Laser Method for Measuring The Focal<br />

Length <strong>of</strong> Focusing Optics”, Pending Patent, March 3, 2006<br />

<strong>Ilev</strong>, EYE 21, 818, 2007, Nature Publishing Group<br />

H<strong>of</strong>fer, Calogero, Faaaland, <strong>Ilev</strong>, J Cataract Refract Surg, 35, Nov 2009<br />

double increased accuracy<br />

simple and compact design


Development <strong>of</strong> Independent Method for Precise IOL Power Testing<br />

Confocal Laser Method (CLM) for IOL Dioptric Power Testing<br />

E4<br />

E3<br />

E2<br />

E1<br />

hν<br />

hν<br />

hν<br />

(develop testing protocols, guidance, standard)<br />

Basic Advantages <strong>of</strong> the Laser Confocal Method<br />

Improved positive and negative power range<br />

Previous: typical – from 5 D to 20 D<br />

New Method: from 0 D to > ±30 D<br />

Greater Accuracy<br />

Previous: typical – several tens <strong>of</strong> microns<br />

New Method:


E4<br />

E3<br />

E2<br />

E1<br />

Development <strong>of</strong> Independent Method for Testing/Identifying the<br />

Source <strong>of</strong> Unwanted Glare Resulting from Implanted IOLs<br />

hν<br />

hν<br />

(pro<strong>of</strong>-<strong>of</strong>-concept and stakeholder contacts)<br />

Glare Simulation Images for Testing/Identifying the Source <strong>of</strong><br />

Unwanted Glare<br />

Landry, <strong>Ilev</strong>, Pfefer, Wolffe, Alpar, EYE, 21, pp.1083-1086, 2007, Nature<br />

Publishing Group


E4<br />

E3<br />

E2<br />

E1<br />

Development <strong>of</strong> Independent Test Method for Precise IOL<br />

Refractive-Index and Thickness Measurement<br />

Non-Contact Dual-Confocal Laser Caliper (pro<strong>of</strong>-<strong>of</strong>-concept)<br />

hν<br />

Signal Power [arb. un.]<br />

260<br />

250<br />

240<br />

230<br />

220<br />

210<br />

200<br />

190<br />

180<br />

F1<br />

LASER<br />

DETECTOR<br />

d<br />

F2<br />

170<br />

0 200 400 600 800 1000 1200 1400 1600<br />

t s<br />

Axial Displacement [µm]<br />

Operating Principle<br />

S1 S2<br />

d = 0.780 mm<br />

t s = 1.219 mm<br />

n s = 1.416<br />

50/50 FIBER<br />

COUPLER<br />

O1<br />

O2<br />

Direct measurement <strong>of</strong> the IOL thickness<br />

in absolute units as well as the thickness <strong>of</strong><br />

nontransparent or highly scattered<br />

biological and human tissue<br />

Determination <strong>of</strong> the IOL refractive-index<br />

Direct measurement <strong>of</strong> local changes in<br />

the refractive index <strong>of</strong> cancer and noncancer<br />

tissue


Fiber-Optic Laser Delivery and Tissue Ablation<br />

Mid-IR On-The-Spot Goldfish Brain Ablation for Parkinson Disease Simulation<br />

α t<br />

MID-IR Er:YAG<br />

LASER<br />

/λ=2.94 μm/<br />

Hollow Taper<br />

hollow taper/smart fiber principle<br />

θ 1<br />

θi<br />

n 0=1<br />

n s>1<br />

θ 2<br />

smart<br />

tissue-activated<br />

fiber tip<br />

Mid-IR Delivery<br />

Hollow Fiber<br />

Smart<br />

Fiber Tip<br />

grazing-incidence<br />

uncoated hollow<br />

optical funnel<br />

laser taper/fiber parameters<br />

Pulse Er:YAG, λ=2.94 μm<br />

150 μm pulse duration, 20 mJ energy<br />

Pyrex-glass uncoated taper<br />

2 mm/600 µm input/output diameter<br />

Mid-IR Hollow fiber<br />

600 µm diameter, 600 mm length


All-Hollow-Fiber Laser Delivery<br />

A Novel Approach for High-Peak Power Homogenous Laser<br />

Delivery in Digital Particle Image Velocimetry (DPIV)<br />

PRINCIPAL OPTICAL ARRANGEMENT<br />

Nd:YAG<br />

LASER<br />

/2ω, λ=532 nm/<br />

Hollow Tapered<br />

Funnel<br />

Delivery Hollow<br />

Waveguide<br />

Powell Lens<br />

<strong>Ilev</strong>, Robinson, Waynant, U.S. Pending Patent, October 30, 2006<br />

O<br />

Laser Sheet<br />

IR IR


(a)<br />

NANOBIOSENSOR FIBER-OPTIC PROBES<br />

Fiber tapered nanobiosensor probes with subwavelength scale<br />

tips (< 100 nm), metal coated and uncoated tips<br />

Design and drawing techniques: precise pulling and chemical<br />

etching<br />

Goals: high reproducibility, maximum light transmission, and<br />

minimum leakage <strong>of</strong> light<br />

(c)<br />

(d)


NANO-PROBES FOR LASER-STIMULATED NEURON GROUTH<br />

illuminating nano-probe Illumination <strong>of</strong> axon (λ=810 nm)<br />

Illumination <strong>of</strong> nucleus (λ=810 nm) Illumination <strong>of</strong> nucleus (λ=632.8 nm)


GRIN<br />

lens<br />

Input fiber<br />

Output fiber<br />

Single Cell/Intracellular Nanoprobing<br />

Input-output fiber<br />

Nano-tip<br />

• Fiber tapered nanoprobes with<br />

subwavelength nanoscale tips (< 100 nm)<br />

• Near-field microscopy combining with<br />

confocal microscopy<br />

• Direct chemical analysis and spectroscopy<br />

<strong>of</strong> single cell components using absorption,<br />

fluorescence and Raman spectroscopy<br />

•Optical stimulation <strong>of</strong> single neurons<br />

• Fiber-optic advantages<br />

– Nano-probe attached/fabricated on a single optical fiber<br />

– Confocal/multi-photon microscope using optical fiber(s)<br />

• Endoscopic advantages<br />

– Easier access to single cells<br />

– One device can be used for imaging, sensing and light delivery


NEAR-FIELD SCANNING OPTICAL MICROSCOPY (NSOM)<br />

NSOM Principle<br />

A light source or detector (or<br />

aperture) with dimensions<br />

much smaller than the<br />

wavelength (λ) <strong>of</strong> light is<br />

placed in close proximity (<<br />

λ/50) to a sample, and then<br />

scanning the aperture or the<br />

sample relative to each other<br />

at a distance much smaller<br />

than a wavelength an image<br />

with spatial resolution better<br />

than the diffraction limit is<br />

generated (


NOVEL CONFOCAL/COMBINED BIOIMAGING/SENSING APPROACHES<br />

(Dr. Do-Hyun Kim, Pr<strong>of</strong>. Jin Kang, Dr. Amir Gandjbakhche, Pr<strong>of</strong>. Juanita Anders)<br />

LASER<br />

BS<br />

OL1<br />

Optical Fibre<br />

ALL-HOLLOW-WAVEGUIDE<br />

CONFOCAL MICROSCOPY<br />

POWER<br />

METER<br />

OL2 OL3<br />

Object<br />

z<br />

Hollow-core photonic bandgap<br />

fiber<br />

Any operating UV, VIS and IR<br />

wavelength can be achieved<br />

Single-mode operation<br />

Small effective area (core<br />

diameter ~ 5 µm)<br />

Wavelength independent<br />

confocal microscopy<br />

Mid-IR confocal microscopy<br />

COMBINED CONFOCAL/OCT<br />

INTERFERENCE MICROSCOPY<br />

SLED<br />

Detector<br />

Kim, Kang, <strong>Ilev</strong>, Electronics Letters, 43, pp. 608-609, 2007<br />

50:50 Coupler<br />

y<br />

x<br />

z<br />

Reference Arm<br />

Object<br />

Sample Arm<br />

Fiber Stretchers<br />

L1<br />

Mirror<br />

Rotating<br />

Mirror<br />

Improved axial CM and lateral OCT resolution<br />

Improved SNR, intensity measurement <strong>of</strong> interference CM<br />

Low coherent light source, reduced unwanted interference<br />

Higher fiber stretcher –frequency (15 kHz), higher NA<br />

Kim, <strong>Ilev</strong>, Kang, IEEE JSTQE, 14, pp. 82-87, 2008<br />

hν e<br />

hν e<br />

Ion-1<br />

UPCONVERSION FLUORESCENCE<br />

CONFOCAL MICROSCOPY<br />

hν f<br />

One-photon process<br />

Energy<br />

transfer<br />

hν e<br />

hν e<br />

hν e<br />

Ion-2<br />

hν f<br />

Two-photon process<br />

hν f<br />

Multiple photons: Excited-state<br />

absorption<br />

Multiple ions: Upconversion by<br />

energy transfer<br />

Unlike the two-photon<br />

microscope, high-efficiency<br />

upconversion fluorophore<br />

enabled the confocal imaging<br />

without using pulse laser and<br />

photo-multiplier tube<br />

SMART, TISSUE-ACTICVATED AND<br />

NANOBIOSENSOR FIBER PROBES<br />

SMART FIBER PROBES<br />

θi<br />

n 0=1<br />

n s>1<br />

NANOBIOSENSOR<br />

FIBER PROBES<br />

Kim, Kang, <strong>Ilev</strong>, Opt. Lett, 33, 427, 2008<br />

Backreflectance Power [uW]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

A B<br />

C D<br />

0<br />

0 4 8 12 16 20<br />

Fiber Displacement [um]


Optical Coherence Tomography (OCT): More than Imaging<br />

Optical Simulation <strong>of</strong> Neurons<br />

Stimulation<br />

Laser<br />

SLED Source<br />

Spectrometer<br />

Computer<br />

( )<br />

Coupler<br />

Mechanical<br />

Module<br />

Offset<br />

SMF<br />

MMF<br />

SMF<br />

dOCT<br />

A<br />

d α<br />

Nerve tissue<br />

(b)<br />

MMF


NANOBIOSENSORS: Rear-Earth Nanoparticle Enhanced Up-<br />

/Down-Conversion Nanobiosensing<br />

rear-earth nanoparticles: can be<br />

tuned to emit at specific optical<br />

wavelengths (VIS, NIR, MIR) via<br />

frequency up-conversion or downconversion<br />

effects<br />

Nanoimaging<br />

Nanobiosensing<br />

Optical Therapeutics (PDT)<br />

Kim, Kang, <strong>Ilev</strong>, “Upconversion fiber-optic confocal<br />

microscopy under near-infrared pumping”, Optics<br />

Letters, 33, 2008<br />

10 nm 50 nm 100 nm 150 nm<br />

hν e<br />

Ion-1<br />

Energy<br />

transfer<br />

hν e<br />

Ion-2<br />

hν f


NANOBIOSENSORS: Plasmonic Nanobiosensor Probes<br />

LSPR (localized surface plasmon resonance): Light incident on the nanoparticles<br />

induces the conduction electrons in them to oscillate collectively with a resonant<br />

frequency that depends on the nanoparticles' size, shape and composition. As a result <strong>of</strong><br />

these LSPR modes, the nanoparticles absorb and scatter light so intensely that single<br />

nanoparticles are easily observed and detected<br />

Noble metal nanoparticles exhibit a strong UV–VIS extinction (absorption and Rayleigh<br />

scattering) band, and that the wavelength <strong>of</strong> maximum extinction is red-shifted by an<br />

increase in the dielectric constant and thickness <strong>of</strong> the material surrounding<br />

the nanoparticles.<br />

Biochemical nanosensors<br />

Surface-enhanced spectroscopies<br />

(SERS and SEFS)<br />

Labels <strong>of</strong> immunoassays<br />

<strong>Ph</strong>otonics Institute, Duke University<br />

Pr<strong>of</strong>. T. Vo-Dinh


From Microscopy To Nanoscopy and Nanobiosensing:<br />

The Future<br />

non-invasive 3D nanoimaging in subwavelenght (


ACKNOWLEDGEMENTS:<br />

OTMNLab Members<br />

Dr. Ron Waynant<br />

Dr. Darrell Tata<br />

Dr. Do-Hyun Kim<br />

Dr. S<strong>of</strong>ia Tan<br />

Robert James<br />

Robert Landry<br />

Outside Collaborators<br />

FDA/CDRH Collaborators<br />

Don Calogero, ODE/CDRH<br />

Richard Weiblinger, ODE/CDRH<br />

Dr. Victor Krauthamer, OSEL/CDRH<br />

Dr. Elizabeth Katz, OSEL/CDRH<br />

Ron Robinson, OSEL/CDRH<br />

Dr. Josh Pfefer, OSEL/CDRH<br />

Dr. Amir H. Gandjbakhche, NIH<br />

Pr<strong>of</strong>. Juanita Anders, USUHS<br />

Pr<strong>of</strong>. Jin Kang, JHU<br />

Pr<strong>of</strong>. Yu Chen, UMD<br />

Pr<strong>of</strong>. Lihong Wang, <strong>Washington</strong> University, UWStL<br />

Pr<strong>of</strong>. Tuan-Vo Dihn, Duke University<br />

Pr<strong>of</strong>. Esen Ekpek, Wilmer Eye Institute, JHU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!