27.10.2014 Views

title of the thesis - Department of Geology - Queen's University

title of the thesis - Department of Geology - Queen's University

title of the thesis - Department of Geology - Queen's University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE INFLUENCES OF STRESS AND STRUCTURE ON MINING-<br />

INDUCED SEISMICITY IN CREIGHTON MINE, SUDBURY, CANADA<br />

by<br />

Paige Erin Snelling<br />

A <strong>the</strong>sis submitted to <strong>the</strong> <strong>Department</strong> <strong>of</strong> Geological Sciences and Geological Engineering<br />

In conformity with <strong>the</strong> requirements for<br />

<strong>the</strong> degree <strong>of</strong> Master <strong>of</strong> Science (Engineering)<br />

Queen’s <strong>University</strong><br />

Kingston, Ontario, Canada<br />

(September, 2009)<br />

Copyright © Paige Erin Snelling, 2009


Abstract<br />

The Creighton Mine is a structurally complex and seismically active mining environment.<br />

Microseismic activity occurs daily and increases with depth, complicating downward mine<br />

expansion. Larger magnitude events occur less frequently but can damage mine infrastructure,<br />

interrupt operations and threaten worker safety. This <strong>the</strong>sis explores <strong>the</strong> relationships between<br />

geological structure and mining-induced seismicity through geological, seismological and<br />

numerical modelling investigations in an area known as <strong>the</strong> Creighton Deep, with concentration<br />

on <strong>the</strong> 7400 Level (2255 m).<br />

Geological features within <strong>the</strong> Creighton Deep have a reported association with seismic activity.<br />

Four families <strong>of</strong> shear zones were identified during field investigations, <strong>the</strong> most prominent<br />

striking SW and steeply dipping NW.<br />

Seismicity from 2006-2007 is analyzed. Spatial and temporal trends and seismic event<br />

parameters show little correlation to shear zone geometry. Instead, seismic event parameters<br />

correlate to spatial clusters <strong>of</strong> events. A remote cluster <strong>of</strong> events to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong><br />

excavation exhibits anomalously high seismic parameter values. This area <strong>of</strong> <strong>the</strong> mine continues<br />

to be a source <strong>of</strong> elevated seismicity.<br />

Fault plane solutions are utilized to compare shear zone geometry with active slip surfaces.<br />

Solutions for macroseismic events are inconsistent, while microseismic event focal mechanisms<br />

have similar pressure, tension and null axes. The resulting solutions do not align with shear-zone<br />

orientations. A stress inversion using microseismic focal mechanism information yields a stress<br />

tensor that is comparable to <strong>the</strong> regional stress tensor.<br />

Universal Distinct Element Code numerical models demonstrate that a yield zone exists<br />

immediately surrounding <strong>the</strong> excavation. SW-striking shear zones modify <strong>the</strong> stress field,<br />

ii


esulting in increased stress to <strong>the</strong> sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation. These high-stress zones are areas<br />

<strong>of</strong> preferred seismic activity. Slip is induced on select SW-striking shear zones to <strong>the</strong> south <strong>of</strong> <strong>the</strong><br />

excavation as well as localized yielding.<br />

The characteristics <strong>of</strong> mining-induced seismicity do not correlate to shear zones. Seismicity does<br />

compare to modelled stress: <strong>the</strong> yielded rock mass adjacent to <strong>the</strong> excavation has little<br />

seismicity; areas <strong>of</strong> high stress are areas <strong>of</strong> rock mass damage and dense seismic activity. It is<br />

thus proposed that seismicity in <strong>the</strong> Creighton Deep results from stress-induced rock mass<br />

degradation ra<strong>the</strong>r than fault-slip.<br />

iii


Acknowledgements<br />

First and foremost I would like to thank Laurent Godin and Steve McKinnon for <strong>the</strong>ir guidance,<br />

discussions and revisions throughout <strong>the</strong> duration <strong>of</strong> this project. I am grateful for having been<br />

given <strong>the</strong> opportunity to explore my varied interests.<br />

I would like to acknowledge Vale Inco and Creighton Mine for financially supporting this<br />

project. I am very appreciative <strong>of</strong> <strong>the</strong> hospitality provided by <strong>the</strong> staff at Creighton Mine. I would<br />

like to thank Dave Andrews and John Townend for coordinating this project, Keith Seidler for his<br />

direction (and sense <strong>of</strong> direction) underground, Chris Meandro and <strong>the</strong> o<strong>the</strong>rs in <strong>the</strong> <strong>Geology</strong><br />

<strong>Department</strong> as well as those in Ground Control.<br />

I would also like to acknowledge <strong>the</strong> Engineering Seismology Group (ESG Solutions) for kindly<br />

donating <strong>the</strong> s<strong>of</strong>tware necessary to complete my studies.<br />

I am thankful to friends, staff and colleagues in <strong>the</strong> <strong>Department</strong> <strong>of</strong> Geological Engineering and<br />

Geological Sciences.<br />

In particular I would like to thank Alan Baird who provided help with<br />

UDEC and FISH and many valuable discussions on stress and seismicity; Savka Dineva who<br />

<strong>of</strong>fered seismological discussions, revisions and help with stress inversion; and Mark Diederichs<br />

for modelling discussions and advice.<br />

I <strong>of</strong>fer a special thanks to my mom, Barb Halyk, and to my family who worried about me while I<br />

was kilometers underground. I’m ok.<br />

iv


Table <strong>of</strong> Contents<br />

Abstract..........................................................................................................................................ii<br />

Acknowledgements ......................................................................................................................iv<br />

Table <strong>of</strong> Contents .......................................................................................................................... v<br />

List <strong>of</strong> Figures...............................................................................................................................ix<br />

List <strong>of</strong> Tables ............................................................................................................................... xv<br />

Table <strong>of</strong> Symbols and Abbreviations .......................................................................................xvi<br />

Chapter 1: Introduction .............................................................................................................. 1<br />

1.1 Background ........................................................................................................................ 1<br />

1.2 Organization <strong>of</strong> Thesis ....................................................................................................... 4<br />

Chapter 2: Geological Assessment <strong>of</strong> Creighton Mine ............................................................. 5<br />

2.1 Regional <strong>Geology</strong> <strong>of</strong> <strong>the</strong> Sudbury Basin ............................................................................ 5<br />

2.1.1 Evolution <strong>of</strong> <strong>the</strong> Sudbury Basin................................................................................ 6<br />

2.1.2 Dykes ........................................................................................................................ 8<br />

2.1.3 Regional Faults ......................................................................................................... 8<br />

2.2 Local <strong>Geology</strong> <strong>of</strong> Creighton Mine ................................................................................... 11<br />

2.3 Mine-Scale Faults............................................................................................................. 14<br />

2.3.1 Footwall Shear Zone............................................................................................... 18<br />

2.3.2 1290 Shear Zone ..................................................................................................... 20<br />

2.3.3 400-East Shear Zone............................................................................................... 22<br />

2.3.4 Northwest Shear Zone............................................................................................. 23<br />

2.3.5 Return Air Raise Shear Zone .................................................................................. 24<br />

2.3.6 402 Shear Zone ....................................................................................................... 26<br />

2.3.7 Plum Shear Zone .................................................................................................... 26<br />

2.3.8 Fresh Air Raise Shear Zone .................................................................................... 28<br />

2.3.9 Fresh Air Raise-type Shear Zone............................................................................ 29<br />

2.3.10 Splays and minor shear zones ............................................................................... 31<br />

2.3.11 Late-Stage Fractures ............................................................................................. 33<br />

2.4 Discussion: Fault Reactivation........................................................................................ 34<br />

2.4.1 Geometric and kinematic summary ........................................................................ 34<br />

2.4.2 Evolving Stress Systems in <strong>the</strong> Sudbury Basin ...................................................... 36<br />

v


Chapter 3: Mining-induced Seismicity .................................................................................... 40<br />

3.1 Creighton Mine Seismic Monitoring System ................................................................... 40<br />

3.2 Event Characterization and Classification........................................................................ 41<br />

3.2.1 Seismic Event Parameters....................................................................................... 42<br />

3.2.1.1 Moment Magnitude (M)............................................................................. 43<br />

3.2.1.2 Seismic Energy (E o ) and Seismic Moment (M o )........................................ 45<br />

3.2.1.3 Energy Ratio, E s /E p .................................................................................... 46<br />

3.2.1.4 Stress Parameters ....................................................................................... 47<br />

3.2.1.5 Source Dimensions .................................................................................... 47<br />

3.2.1.6 Peak Acceleration Parameter, Velocity Parameter and<br />

Maximum Displacement ........................................................................................ 48<br />

3.2.2 Spatial and Temporal Event Clustering .................................................................. 48<br />

3.2.3 Cluster Analysis for <strong>the</strong> 7400 Level ....................................................................... 52<br />

3.2.4 Seismicity and Rockmass Degradation................................................................... 55<br />

3.3 Focal Mechanisms............................................................................................................ 58<br />

3.3.1 Fault Plane Solutions .............................................................................................. 58<br />

3.3.1.1 Fault plane solutions for macroseismic events........................................... 60<br />

3.3.1.2 Fault plane solutions for microseismic events ........................................... 62<br />

3.3.1.3 Fault Plane Solution Discussion................................................................. 66<br />

3.4 Stress Tensor Inversion .................................................................................................... 70<br />

3.4.1 Stress Tensor Discussion ........................................................................................ 74<br />

Chapter 4: Modelling Stress in <strong>the</strong> Creighton Deep............................................................... 78<br />

4.1 Introduction ...................................................................................................................... 78<br />

4.2 Numerical Methods .......................................................................................................... 79<br />

4.3 Model Input Parameters ................................................................................................... 80<br />

4.3.1 Elastic and Plastic Models ...................................................................................... 80<br />

4.3.2 Model Constituents and Input Parameters .............................................................. 81<br />

4.4 Modelling with a Homogeneous Stress Field................................................................... 85<br />

4.4.1 Case 1: Variable Fault Parameters......................................................................... 85<br />

4.4.2 Case 2: Variable Fault Strength by Shear Zone Family......................................... 89<br />

4.4.3 Case 3: Increase Principal Stress Ratio.................................................................. 92<br />

4.5 Tectonic Loading Model .................................................................................................. 94<br />

4.6 Modelling Rock Mass Degradation.................................................................................. 96<br />

vi


4.6.1 Fracture Reactivation.............................................................................................. 97<br />

4.6.2 Crack Initiation ....................................................................................................... 99<br />

4.7 Modelling Summary and Discussion.............................................................................. 101<br />

4.7.1 Syn<strong>the</strong>sis: Stress, Seismicity and Structure ......................................................... 102<br />

4.7.2 Model Limitations................................................................................................. 104<br />

Chapter 5: Conclusions and Recommendations ................................................................... 106<br />

5.1 Summary ........................................................................................................................ 106<br />

5.2 Conclusions .................................................................................................................... 107<br />

5.3 Recommendations .......................................................................................................... 109<br />

References.................................................................................................................................. 111<br />

Appendix A: Geological Maps and Sample Locations........................................................... 117<br />

A.1: Site Locations.............................................................................................................. 117<br />

A.2: Level Plans with Sample Locations ............................................................................ 119<br />

Appendix B: Seismic Event Parameters ................................................................................ 126<br />

B.1: Event Population Statistics for <strong>the</strong> Creighton Deep .................................................... 126<br />

B.2: Spatial Distribution <strong>of</strong> Seismic Event Parameters for <strong>the</strong> 7400 Level ........................ 131<br />

B.3: Cluster Statistics .......................................................................................................... 138<br />

B.4: Temporal Distribution <strong>of</strong> Seismic Event Parameters .................................................. 140<br />

Appendix C: Fault Plane Solutions ........................................................................................ 154<br />

C.1: Fault Plane Solution Data for 7400 and 7530 Levels,<br />

January 1, 2006 – December 31............................................................................................ 154<br />

Appendix D: Phase 2 Models..................................................................................................... 162<br />

D.1: UDEC Modelling Results............................................................................................ 162<br />

D.1.1: Case 1 Models...................................................................................................... 163<br />

D.1.2: Case 2 Models...................................................................................................... 171<br />

D.1.3: Case 3 Models...................................................................................................... 173<br />

D.1.4: Tectonic Loading Models .................................................................................... 175<br />

D.1: Discussion <strong>of</strong> Phase 2 Models....................................................................................... 177<br />

D.1.1: Model Constituents ............................................................................................. 177<br />

D.1.2: Boundary Conditions .......................................................................................... 178<br />

D.2: Phase 2 Modelling Results............................................................................................ 179<br />

vii


D.3 Comparison <strong>of</strong> Phase 2 and UDEC Modelling Results.................................................. 184<br />

D.3.1 Similarities ........................................................................................................... 184<br />

D.3.2 Differences........................................................................................................... 185<br />

Appendix E: UDEC Code........................................................................................................ 186<br />

E.1: Case 1: Variable fault strength parameters (Elastic model)........................................ 186<br />

E.2: Case 1: Variable fault strength parameters (Plastic model)........................................ 188<br />

E.3: Case 2: Variable Fault Strength by Shear Zone Family (Elastic Model).................... 190<br />

E.4: Case 2: Variable Fault Strength by Shear Zone Family (Plastic Model).................... 192<br />

E.5: Case 3: Increased Principal Stress Ratio (Elastic Model)........................................... 194<br />

E.6: Case 3: Increased Principal Stress Ratio (Plastic Model)........................................... 196<br />

E.7: Tectonic Loading Model (Elastic Model).................................................................... 198<br />

E.8: Tectonic Loading Model (Plastic Model) .................................................................... 200<br />

E.9: S3:S1 Model for fracture reactivation.......................................................................... 203<br />

E.9.1: FISH Routine: ratio s3s1.fis ............................................................................... 205<br />

Appendix F: Fracture Reactivation........................................................................................ 206<br />

F.1: Derivation <strong>of</strong> Minimum-to-Maximum Principal Stress Ratio ..................................... 206<br />

F.2: Definitions for Deviatoric and Differential Stress ....................................................... 208<br />

viii


List <strong>of</strong> Figures<br />

Figure 1.1: Location <strong>of</strong> Sudbury and Creighton Mine...................................................................3<br />

Figure 2.1: (A) Location map <strong>of</strong> Sudbury in Ontario, Canada (B); <strong>the</strong> location <strong>of</strong> <strong>the</strong><br />

Sudbury and surrounding tectonic provinces ............................................................5<br />

Figure 2.2: Local geology map. ...................................................................................................10<br />

Figure 2.3: Horizontal view <strong>of</strong> a fault jog in proximity to Creighton Fault.................................10<br />

Figure 2.4:Cross-section <strong>of</strong> Creighton Mine showing geometry <strong>of</strong> footwall and<br />

hangingwall rocks as well as orebodies....................................................................12<br />

Figure 2.5: Representative level plan for <strong>the</strong> Creighton Deep....................................................15<br />

Figure 2.6: Images <strong>of</strong> <strong>the</strong> Footwall Shear...................................................................................19<br />

Figure 2.7: (A) The 1290 Shear Zone fabric; (B) 1290 Shear Zone on <strong>the</strong> 6400 Level;<br />

and (C) biotite, quartz and calcite fabric <strong>of</strong> <strong>the</strong> 1290 shear zone. ............................21<br />

Figure 2.8: Images <strong>of</strong> <strong>the</strong> 400-East Shear Zone..........................................................................23<br />

Figure 2.9: (A) Photograph <strong>of</strong> <strong>the</strong> cracked concrete pad floor along <strong>the</strong> Return Air Raise<br />

Shear Zone on 7530L; (B) cracked shotcrete on wall <strong>of</strong> 7530L; (C) thin<br />

section <strong>of</strong> shear zone fabric on 7680L; (D) thin section <strong>of</strong> shear zone fabric<br />

on 7400 <strong>the</strong> Level.....................................................................................................25<br />

Figure 2.10: Reactivated structures in proximity to <strong>the</strong> Plum Shear Zone ..................................27<br />

Figure 2.11: Thin sections <strong>of</strong> <strong>the</strong> Fresh Air Raise Shear .............................................................29<br />

Figure 2.12: Images <strong>of</strong> <strong>the</strong> Fresh Air Raise-Type Shear..............................................................30<br />

Figure 2.13: Images <strong>of</strong> <strong>the</strong> Grizzly Splay. ...................................................................................32<br />

Figure 2.14: Shallow shear fractures in Creighton Deep. ............................................................33<br />

Figure 2.15: Block model depicting paleokinematics <strong>of</strong> mine-scale faults in <strong>the</strong> Creighton<br />

Deep .........................................................................................................................34<br />

Figure 2.16: Riedel Model <strong>of</strong> 1290 and 118-System shear zones................................................38<br />

Figure 2.17: NW-SE Penokean compression...............................................................................38<br />

Figure 3.1: Plan view <strong>of</strong> events related to development blasts production blast-induced<br />

events........................................................................................................................42<br />

Figure 3.2: Distribution <strong>of</strong> Microseismic Event Magnitudes between January 1, 2006 and<br />

December 31, 2007 recorded between 7000 and 7600 feet depth............................44<br />

ix


Figure 3.3: Frequency Magnitude Relation for events recorded between 7000 and 7600<br />

feet during <strong>the</strong> January 2006-December 2007 period ..............................................44<br />

Figure 3.4: Map <strong>of</strong> <strong>the</strong> 7400 Level showing <strong>the</strong> distribution microseismic event energy...........45<br />

Figure 3.5: Es/Ep ratios measured for events and blasts. The cut-<strong>of</strong>f <strong>of</strong> 5 is shown by <strong>the</strong><br />

dashed line................................................................................................................46<br />

Figure 3.6: (A) Distribution <strong>of</strong> macroseismic events surrounding 7400 Level. (B)<br />

Distribution <strong>of</strong> microseismic events surrounding 7400 Level. ...............................50<br />

Figure 3.7: Seismicity corresponding to levels 7200, 7400 and 7530 respectively.....................51<br />

Figure 3.8: Three clusters are isolated for events between January 1, 2006 and December<br />

31, 2007 located about <strong>the</strong> 7400 Level.....................................................................54<br />

Figure 3.9: Schematic depicting location <strong>of</strong> (A) Yield Zone, (B) Damage Zone and (C)<br />

Intact Zone................................................................................................................56<br />

Figure 3.10: Block model <strong>of</strong> a shear-slip event and corresponding focal mechanism and<br />

waveforms. ...............................................................................................................59<br />

Figure 3.11: Coupled forces along fault and auxiliary planes; paired force couples<br />

(double-couple); and resultant fault plane solution. .................................................59<br />

Figure 3.12: Lower hemisphere equal area stereonet diagram depicting <strong>the</strong> orientation <strong>of</strong><br />

(A) P-axes for macroseismic fault plane solutions; (B) T-axes for <strong>the</strong> same<br />

events........................................................................................................................61<br />

Figure 3.13: Lower hemisphere equal area stereonet diagram depicting (A) Possible fault<br />

planes and (B) poles to planes for 93 mechanisms (186 planes and poles) for<br />

<strong>the</strong> 7400 Level..........................................................................................................61<br />

Figure 3.14: Sample fault plane solutions for macroseismic events corresponding to <strong>the</strong><br />

7400 Level, January – December 2007... .................................................................62<br />

Figure 3.15: Contoured focal mechanism axes for <strong>the</strong> 7400 and 7530 Level..............................64<br />

Figure 3.16: Classification <strong>of</strong> principal event mechanism type, levels 7400 and 7530...............65<br />

Figure 3.17: Approximate representative focal plane solution and corresponding fault<br />

plane solution kinematics based on average P- and T-axis orientations. .................65<br />

Figure 3.18: Contoured P-axis, B-axis and T-axis orientations for events within Cluster 1. ......67<br />

Figure 3.19: Contoured P-axis, B-axis and T-axis orientations for events within Cluster 2. ......68<br />

Figure 3.20: Distribution <strong>of</strong> event mechanism types ...................................................................69<br />

Figure 3.21: Results <strong>of</strong> focal mechanism stress inversion. ..........................................................72<br />

Figure 3.22: Stress inversion for Cluster 2 focal mechanisms.....................................................72<br />

x


Figure 3.23: Preliminary stress inversion for Cluster 1 focal mechanisms..................................73<br />

Figure 3.24: Secondary stress inversion for Cluster 1 focal mechanisms....................................73<br />

Figure 3.25: Equal area stereonet showing proximity <strong>of</strong> principal stress orientations<br />

calculated from fault plane solutions to stress orientations derived from<br />

measured and calculated stresses .............................................................................75<br />

Figure 3.26: Equal area stereonet showing stress measurements. ...............................................75<br />

Figure 3.27: Principal stress orientations derived from stress inversion superimposed on<br />

contoured axis measurements...................................................................................77<br />

Figure 4.1: Schematic diagram <strong>of</strong> elements and nodes. ..............................................................79<br />

Figure 4.2: The stress-strain model for an elastic, perfectly plastic material...............................81<br />

Figure 4.3: Complete model geometry.. ......................................................................................82<br />

Figure 4.4: Mohr circle and Mohr-Coulomb failure envelope defined by cohesion and<br />

angle <strong>of</strong> internal friction...........................................................................................83<br />

Figure 4.5: Model for tectonic loading. .......................................................................................85<br />

Figure 4.6: Model <strong>of</strong> maximum stress for Case 1........................................................................88<br />

Figure 4.7: Model <strong>of</strong> differential stress for Case 1 ......................................................................88<br />

Figure 4.8: Model <strong>of</strong> fault slip for Case 1....................................................................................88<br />

Figure 4.9: Model <strong>of</strong> yielding for Case 1.....................................................................................89<br />

Figure 4.10: Model <strong>of</strong> maximum stress for Case 2......................................................................90<br />

Figure 4.11: Model <strong>of</strong> differential stress for Case 2. ...................................................................91<br />

Figure 4.12: Model <strong>of</strong> fault slip for Case 2..................................................................................91<br />

Figure 4.13: Model <strong>of</strong> yielding for Case 2...................................................................................91<br />

Figure 4.14: Model <strong>of</strong> maximum stress for Case 3......................................................................93<br />

Figure 4.15: Model <strong>of</strong> differential stress for Case 3. ...................................................................93<br />

Figure 4.16: Model <strong>of</strong> fault slip for Case 3..................................................................................93<br />

Figure 4.17: Model <strong>of</strong> yielding for Case 3...................................................................................94<br />

Figure 4.18: Maximum stress for tectonic model. .......................................................................95<br />

Figure 4.19: Differential stress for tectonic model .....................................................................95<br />

xi


Figure 4.20: Modelled slip for tectonic model.............................................................................95<br />

Figure 4.21: Tectonic model <strong>of</strong> yielding......................................................................................96<br />

Figure 4.22: Ratio <strong>of</strong> minimum-to-maximum principal stress.....................................................98<br />

Figure 4.23: Contoured domains <strong>of</strong> slip on cohesionless fractures at different angles <strong>of</strong><br />

internal friction.........................................................................................................99<br />

Figure 4.24: Fracture initiation thresholds mapped using maximum and differential stress<br />

conditions. ..............................................................................................................101<br />

Figure 4.25: Comparison <strong>of</strong> stress and seismicity. ....................................................................104<br />

Figure A1: Plan view <strong>of</strong> 7000 Level..........................................................................................119<br />

Figure A2: Plan view <strong>of</strong> 7200 Level..........................................................................................120<br />

Figure A3: Plan view <strong>of</strong> 7400 Level..........................................................................................121<br />

Figure A4: Plan view <strong>of</strong> 7530 Level..........................................................................................122<br />

Figure A5: Plan view <strong>of</strong> 7680 Level..........................................................................................123<br />

Figure A6: Plan view <strong>of</strong> 7810 Level..........................................................................................124<br />

Figure A7: Plan view <strong>of</strong> 7940 Ramp .........................................................................................125<br />

Figure B1: Energy-Moment relation..........................................................................................128<br />

Figure B2: Magnitude-frequency relation..................................................................................128<br />

Figure B3: Events within Creighton Mine increase with Depth................................................129<br />

Figure B4: Events within <strong>the</strong> Creighton Deep study area consists <strong>of</strong> mostly microseismic<br />

events (89.4%), blasts (9.4%) and few macroseismic events (1.2%).....................129<br />

Figure B5: Event frequency by month.......................................................................................130<br />

Figure B6: Event Frequency is plotted by hour.. .......................................................................130<br />

Figure B7: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by magnitude ...........................................................................................131<br />

Figure B8: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by <strong>the</strong> number <strong>of</strong> phones used in recording.............................................131<br />

Figure B9: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by Seismic Energy (Log scale used). ......................................................132<br />

Figure B10: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by Seismic Moment (Log scale used). ....................................................132<br />

xii


Figure B11: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by dynamic stress drop (Log scale used).................................................133<br />

Figure B12: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by static stress drop (Log scale used)......................................................133<br />

Figure B13: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by static stress drop (Log scale used)......................................................134<br />

Figure B14: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by peak particle velocity (Log scale used). .............................................134<br />

Figure B15: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by peak particle acceleration (Log scale used)........................................135<br />

Figure B16: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by maximum particle displacement (Log scale used). ............................135<br />

Figure B17: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by source radius ......................................................................................136<br />

Figure B18: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level,<br />

coloured by asperity radius ....................................................................................136<br />

Figure B19: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level<br />

coloured by location error. Events that locate outside <strong>the</strong> network to <strong>the</strong><br />

north have a greater location error. ........................................................................137<br />

Figure B20: Magnitude-Frequency relations for (A) Cluster 1; (B) Cluster 2; and (C)<br />

Cluster 3. ................................................................................................................153<br />

Figure D1: Case 1, elastic models showing maximum stress. ..................................................163<br />

Figure D2: Case 1, elastic models showing differential stress...................................................164<br />

Figure D3: Case 1, elastic models shear displacement along discontinuities ............................165<br />

Figure D4: Case 1, plastic models showing major principal stress............................................166<br />

Figure D5: Case 1, plastic models showing differential stress ..................................................167<br />

Figure D6: Case 1, plastic model showing yielding ..................................................................168<br />

Figure D7: Case 1, plastic models showing shear displacement along discontinuities .............169<br />

Figure D8: Stress distribution <strong>of</strong> elastic model..........................................................................170<br />

Figure D9: Stress distribution <strong>of</strong> plastic model .........................................................................170<br />

Figure D10: Case 2, elastic models for C=0, Φ =35º.................................................................171<br />

Figure D11: Case 2, plastic models for C=0, Φ =35º ................................................................172<br />

xiii


Figure D12: Case 3 (k=2), elastic models for C=0, Φ =35º.......................................................173<br />

Figure D13: Case 3 (k=2), plastic models for C=0, Φ =35º.......................................................174<br />

Figure D14: Tectonic model, elastic models for C=0, Φ =35º...................................................175<br />

Figure D15: Tectonic model, plastic model for C=0, Φ =35º....................................................176<br />

Figure D16: Phase2 model depicting model and boundary conditions......................................178<br />

Figure D17: Elastic models for <strong>the</strong> 7200 Level. ........................................................................181<br />

Figure D18: Elastic models for <strong>the</strong> 7400 Level. .......................................................................182<br />

Figure D19: Elastic models for <strong>the</strong> 7530 Level. .......................................................................183<br />

Figure D20: Rock mass states <strong>of</strong> degradation, as modelled for <strong>the</strong> 7400 Level in Phase2. ......184<br />

Figure F1: Mohr-Coulomb failure envelope with Mohr circle depicting angles and<br />

quantities used in derivation...................................................................................206<br />

xiv


List <strong>of</strong> Tables<br />

Table 2.1: Geological Events in <strong>the</strong> Sudbury Area.......................................................................7<br />

Table 2.2: Fault systems within <strong>the</strong> Creighton Deep ..................................................................15<br />

Table 2.3: Summary <strong>of</strong> Fault Characteristics..............................................................................17<br />

Table 2.4: Summary <strong>of</strong> Proterozoic tectonic events ...................................................................37<br />

Table 3.1: Event characteristics in an intact and fractured rock mass ........................................53<br />

Table 3.2: Spatial cluster positions .............................................................................................54<br />

Table 3.3: Summary <strong>of</strong> relevant parameter mean values and standard.......................................55<br />

Table 3.4: Comparison <strong>of</strong> maximum principal stress orientations from various sources ...........74<br />

Table 4.1: Rock mass and discontinuity model properties .........................................................84<br />

Table 4.2: Fault parameters tested for Case 1.............................................................................86<br />

Table 4.3: Strength parameters assigned to shear families for Case 2........................................90<br />

Table A1: Summary <strong>of</strong> site visit locations, oriented samples and thin sections .......................117<br />

Table B1: Summary Statistics for microseismic, macroseismic and blast events ....................126<br />

Table B2: Summary Statistics for microseismic event clusters. .............................................138<br />

Table C1: Fault Plane Solution Data for 7400 and 7530 Levels...............................................154<br />

xv


Table <strong>of</strong> Symbols and Abbreviations<br />

Symbol Explanation<br />

∆σ Static stress drop (Pa)<br />

μ Shear modulus (microseismic analysis)<br />

υ Poisson’s ratio<br />

Ø Angle <strong>of</strong> internal friction (°)<br />

ρ Density (kg/m 3 )<br />

σ 1 Maximum principal stress<br />

σ 2 Intermediate principal stress<br />

σ 3 Minimum principal stress<br />

σ a Apparent stress (Pa)<br />

σ d Dynamic stress drop (Pa)<br />

σ n Normal stress (MPa)<br />

σ UCS Uniaxial compressive strength<br />

τ Shear stress (MPa)<br />

Bt Biotite<br />

C Cohesion<br />

Cal Calcite<br />

Chl Chlorite<br />

Cpx Clinopyroxene<br />

E Young’s Modulus (GPa)<br />

E o Seismic Energy (J)<br />

E s /E p S-wave to P-wave energy ratio<br />

FAR Fresh Air Raise<br />

G Shear modulus (geomechanics)<br />

Ga Billion years<br />

K Bulk modulus<br />

Kfs K-Feldspar<br />

M Moment magnitude<br />

M o Seismic moment (Nm)<br />

m N Nuttli Magnitude<br />

NW Northwest<br />

OB Orebody<br />

Opx Orthopyroxene<br />

Pl Plagioclase<br />

Qtz Quartz<br />

RAR Return Air Raise<br />

R o Source radius (m)<br />

R a Asperity radius (m)<br />

SIC Sudbury Igneous Complex<br />

SRSZ South Range Shear Zone<br />

SZ Shear zone<br />

xvi


Chapter 1<br />

Introduction<br />

1.1 Background<br />

The stress system in <strong>the</strong> mining environment is a result <strong>of</strong> <strong>the</strong> superposition <strong>of</strong> pre-mining and<br />

mining-induced stresses. When this stress exceeds <strong>the</strong> strength <strong>of</strong> <strong>the</strong> rock mass, failure occurs.<br />

In <strong>the</strong> dynamic mine environment, impulsive changes in <strong>the</strong> stress field caused by blasting or<br />

more gradual stress perturbations, from excavation for example, can result in failure. The<br />

excavation process in hard rock mines results in stress concentrations in which strain energy is<br />

accumulated (Beck et al., 1997). Strain energy in a rock mass can be dissipated by local rock<br />

fracture or plastic yield, transferred to support, retained as elastic strain, or less favourably,<br />

radiated as seismic waves emanating from unstable failures such a fault slip, crushing and<br />

cracking (Beck et al., 1997).<br />

Seismic monitoring is used to observe this last category <strong>of</strong> strain release and has become an<br />

integral part <strong>of</strong> <strong>the</strong> mining process. It is <strong>of</strong> primary importance for <strong>the</strong> safety <strong>of</strong> underground<br />

workers and for uninterrupted mine operation. Monitoring seismicity can also help track <strong>the</strong><br />

physical state <strong>of</strong> <strong>the</strong> rock mass over <strong>the</strong> long term (Alcott et al, 1998; Szwedzicki, 2003; Coulson<br />

and Bawden, 2008). The onset <strong>of</strong> seismicity can signal <strong>the</strong> commencement <strong>of</strong> rock mass damage<br />

and yield (Falmagne, 2001) and high event rates and dense event spacing suggest progressive<br />

damage <strong>of</strong> <strong>the</strong> rock mass (Vasak et al., n.d.; Falmagne, 2001).<br />

Seismicity that is located remote to mining is <strong>of</strong>ten attributed to geological structure. Structures<br />

with high elastic parameters as compared to <strong>the</strong> host rock are capable <strong>of</strong> storing more strain<br />

1


energy (McGarr et al., 1975). Stiff and strong materials such as dykes have been linked to higher<br />

rates <strong>of</strong> seismicity (Gay et al, 1984).<br />

The pre-mining stress tensor can be altered significantly in disturbed ground (Jager and Ryder,<br />

1999). Rates <strong>of</strong> seismicity in South African gold mines are noted to be higher when <strong>the</strong> rock mass<br />

contains significant structure such as faults, dykes and bedding (Durrheim et al, 2006). Faults can<br />

provide <strong>the</strong> large slip surfaces necessary to produce large magnitude events when affected by<br />

mining activity (Durrheim et al, 2006). Many large events occur in proximity to both faults and<br />

<strong>the</strong> advancing excavation face (Gay, 1984).<br />

There exists a need for a better understanding <strong>of</strong> <strong>the</strong> relationship between structure, stress and<br />

seismicity (Kaiser et al., 2005). This relationship is crucial for seismic hazard assessment and<br />

mitigation, re-entry protocols, improved mine design, planning <strong>of</strong> mine geometry, and adequate<br />

support design. Creighton Mine is used as a study site to explore possible relationships between<br />

structure and seismicity.<br />

Creighton Mine, located west <strong>of</strong> Sudbury, Ontario (Fig. 1.1), is a nickel and copper mine operated<br />

by Vale Inco. Mining-induced seismicity is a normal part <strong>of</strong> <strong>the</strong> mining process at Creighton and<br />

occurs regularly as <strong>the</strong> rock mass adjusts to stresses imposed by blasts, development and rock<br />

extraction. The mine hosts numerous shear zones, making it <strong>the</strong> ideal candidate for studying <strong>the</strong><br />

relationship between shear zones or local rock anisotropies and seismicity. Large magnitude<br />

events in <strong>the</strong> mine are commonly attributed to fault slip without verification. Seismicity related to<br />

shear zones in Creighton Mine as well as interactions between structures are not well understood.<br />

Seismicity is frequently linked to geological structure only after large events occur (Kaiser et al.,<br />

2005).<br />

2


Figure 1.1: Location <strong>of</strong> Sudbury and Creighton Mine in Ontario and within <strong>the</strong> Sudbury Basin.<br />

Creighton Mine experiences increasing seismicity with depth as <strong>the</strong> mine is being deepened to<br />

10,000 feet (3048 m; Vale Inco). Events in Creighton Mine are closely monitored by an array <strong>of</strong><br />

uniaxial and triaxial accelerometers to observe trends and prevent injury. Dense clusters <strong>of</strong><br />

microseismic events occur to <strong>the</strong> south <strong>of</strong> <strong>the</strong> 400 Orebody, <strong>the</strong> main orebody in <strong>the</strong> lowermost<br />

levels Creighton Mine, where important infrastructure (ventilation and refuge stations, for<br />

example) exists.<br />

To investigate <strong>the</strong> relationship between structure and seismicity, geological investigations,<br />

seismological studies and numerical modelling focusing on shear zones were carried out for <strong>the</strong><br />

lower portion <strong>of</strong> <strong>the</strong> Creighton Deep, which extends from <strong>the</strong> 6600 foot level (2012 m, 6600L) to<br />

<strong>the</strong> bottom <strong>of</strong> <strong>the</strong> mine. Joint characteristics are not considered in this study. For fur<strong>the</strong>r<br />

information <strong>the</strong> reader is referred to Coulson (1996). Studies were conducted for levels on and<br />

below 7400 feet (2255 m), with emphasis on <strong>the</strong> 7400 Level (7400L). The results <strong>of</strong> <strong>the</strong>se studies<br />

are presented in this <strong>the</strong>sis.<br />

3


1.2 Organization <strong>of</strong> Thesis<br />

Chapter 2 presents <strong>the</strong> regional and local geology <strong>of</strong> Creighton Mine, a brief history <strong>of</strong> tectonic<br />

events that affected <strong>the</strong> Sudbury region, and a summary <strong>of</strong> regional-scale structural features. The<br />

geology <strong>of</strong> <strong>the</strong> Creighton Deep is described in terms <strong>of</strong> its rock units and shear zones. Mine-scale<br />

shear zones are discussed in terms <strong>of</strong> macroscopic and microscopic features, and kinematics.<br />

Chapter 3 presents an analysis <strong>of</strong> mining-induced seismic events at Creighton Mine. Events are<br />

assessed in terms <strong>of</strong> spatial and temporal trends and in terms <strong>of</strong> seismic event parameters. Fault<br />

plane solutions are generated to explore event mechanisms and assess <strong>the</strong> relationship between<br />

faults and seismicity. Lastly, a stress inversion using focal plane solution data is presented and<br />

compared to regional stresses.<br />

In Chapter 4 <strong>the</strong> results <strong>of</strong> finite and distinct element stress modelling are discussed. Models<br />

simulate <strong>the</strong> response <strong>of</strong> <strong>the</strong> rock mass to stresses imposed by mining and <strong>the</strong> influence <strong>of</strong> <strong>the</strong><br />

Creighton Deep structural system. Results from distinct element models are presented with<br />

various boundary conditions and geomechanical conditions applied to faults. The general<br />

response <strong>of</strong> <strong>the</strong> rock mass and <strong>the</strong> influence <strong>of</strong> faults on stress distribution are discussed. This<br />

chapter presents a proposed explanation <strong>of</strong> rock degradation induced by <strong>the</strong> geometry <strong>of</strong> <strong>the</strong><br />

excavation.<br />

Chapter 5 presents a summary <strong>of</strong> geological work, seismic investigations and stress modelling.<br />

Seismicity is discussed in terms <strong>of</strong> a damage process and recommendations for future work are<br />

<strong>of</strong>fered.<br />

4


Chapter 2<br />

Geological Assessment <strong>of</strong> Creighton Mine<br />

2.1 Regional <strong>Geology</strong> <strong>of</strong> <strong>the</strong> Sudbury Basin<br />

The Sudbury Basin (Fig. 2.1), formed at 1.85 Ga by a meteorite impact (Dietz, 1964), is a 27 km x<br />

60 km elliptical structure located between <strong>the</strong> sou<strong>the</strong>rn margin <strong>of</strong> <strong>the</strong> Superior Province and <strong>the</strong><br />

nor<strong>the</strong>rn margin <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn Province, approximately eight kilometers northwest <strong>of</strong> <strong>the</strong><br />

Grenville Deformation Front (Brocoum and Dalziel, 1974). The Superior Province consists <strong>of</strong><br />

Archean granite and gneiss, while <strong>the</strong> Sou<strong>the</strong>rn Province comprises metavolcanic and rift margin<br />

sedimentary rocks including greywacke, greenstone and quartzite.<br />

Figure 2.1 (A) Location map <strong>of</strong> Sudbury in Ontario, Canada (B); <strong>the</strong> location <strong>of</strong> <strong>the</strong> Sudbury and<br />

surrounding tectonic provinces. Modified from Ames et al., 2005. SRSZ = South Range Shear<br />

Zone.<br />

5


2.1.1 Evolution <strong>of</strong> <strong>the</strong> Sudbury Basin<br />

The Sudbury Basin has been shaped by numerous tectonic events since <strong>the</strong> early Paleoproterozoic.<br />

Events that have affected <strong>the</strong> Sudbury region are listed in Table 2.1. The Archean hinterland <strong>of</strong><br />

<strong>the</strong> Superior Province rifted at ca. 2.46 Ga, leading to <strong>the</strong> establishment <strong>of</strong> a passive margin at <strong>the</strong><br />

sou<strong>the</strong>rn edge <strong>of</strong> <strong>the</strong> Superior Craton (Mungall and Hanley, 2004). Passive margin rocks<br />

comprise <strong>the</strong> Sou<strong>the</strong>rn Province. In <strong>the</strong> Sudbury area, Sou<strong>the</strong>rn Province rocks include<br />

metasedimentary and metavolcanic rocks <strong>of</strong> <strong>the</strong> Huronian Supergroup.<br />

The proposed 2.40-2.20 Ga Blezardian Orogeny (Stockwell, 1982) may represent <strong>the</strong> first<br />

Proterozoic compressional deformation event affecting <strong>the</strong> Sudbury area. Blezardian deformation<br />

is thought to be responsible for <strong>the</strong> development <strong>of</strong> an early tectonic foliation in Huronian rocks<br />

and large-wavelength, non-cylindrical thick-skinned folds (Riller et al., 1999).<br />

The Penokean Orogeny (Van Schmus, 1976) initiated at ca. 1.88 Ga with <strong>the</strong> oblique collision <strong>of</strong><br />

an island arc system with <strong>the</strong> Superior Craton (Schulz and Cannon, 2007). Before <strong>the</strong> bulk <strong>of</strong> <strong>the</strong><br />

Penokean deformation terminated, <strong>the</strong> Sudbury region was impacted by a meteorite (Dietz, 1964)<br />

at 1.85 Ga (Krogh et al, 1984). Impact melting and impact induced-melting formed <strong>the</strong> Sudbury<br />

Igneous Complex (SIC), characterized by a differentiated pool <strong>of</strong> norite, gabbro and granophyre,<br />

lined by a Sublayer Norite, which hosts <strong>the</strong> bulk <strong>of</strong> <strong>the</strong> basin’s rich ore deposits (Dressler and<br />

Reimold, 2001; Jones, 2005).<br />

Post-impact deformation features during <strong>the</strong> Penokean Orogeny are restricted to <strong>the</strong> sou<strong>the</strong>rn<br />

margin <strong>of</strong> <strong>the</strong> Sudbury Basin and include folds, faults and shear zones (Cochrane, 1991), which<br />

are responsible for <strong>of</strong>fsetting and folding <strong>the</strong> Sudbury Igneous Complex into a doubly plunging<br />

synform (Brocoum and Dalziel, 1974; Mungall and Hanley, 2004). The Sudbury Igneous<br />

Complex is filled by <strong>the</strong> Whitewater Group, which consists <strong>of</strong> impact-related rocks such as fall-<br />

6


ack breccia and sediments later deposited in <strong>the</strong> Penokean foreland basin (Dressler and Reimold,<br />

2001; Long, 2004). The impact culminated in <strong>the</strong> emplacement <strong>of</strong> rich nickel and copper sulfides<br />

and platinum group metals.<br />

Table 2.1: Geological Events in <strong>the</strong> Sudbury Area<br />

Event Age Reference<br />

Grenville Orogeny 1.30-.1.00 Ga Van Breemen and Davidson,<br />

1988<br />

Intrusion <strong>of</strong> olivine-diabase Sudbury<br />

Dykes<br />

1.238 Ga Krogh et al, 1987<br />

Intrusion <strong>of</strong> hornblende-diabase<br />

Trap Dykes<br />

1.4 Ga<br />

Dressler, 1984<br />

Cochrane, 1991<br />

Deposition <strong>of</strong> Whitewater Group 1.85- 1.7 Ga Hemming et al., 1996<br />

Intrusion <strong>of</strong> quartz-diorite aplitic<br />

dykes (Offset dykes)<br />

Sudbury Event meteorite impact and<br />

SIC emplacement<br />

1.850 Ga Krogh et al, 1984<br />

1.850 Ga Dietz, 1964<br />

Krogh et al, 1984<br />

Penokean Orogeny 1.88-1.83 Ga Van Schmus, 1976<br />

Schulz and Cannon, 2007<br />

Intrusion <strong>of</strong> Nipissing Gabbro dykes<br />

and sills<br />

2.22 Ga Corfu and Andrews, 1986<br />

Blezardian Orogeny 2.40-2.20 Ga Stockwell, 1982<br />

Riller et. al, 1999<br />

Deposition <strong>of</strong> Huronian Supergroup 2.45-2.42 Ga Mungall and Hanley, 2004<br />

Rifting <strong>of</strong> Superior Province 2.46 Ga Mungall and Hanley, 2004<br />

Matachewan Dyke Swarm 2.476 Ga Heaman, 1997<br />

7


2.1.2 Dykes<br />

The Sudbury Region has been intruded by many generations <strong>of</strong> dyke swarms. The earliest <strong>of</strong><br />

<strong>the</strong>se is <strong>the</strong> Matachewan swarm (2.45 Ga; Heaman, 1997; Rousell et al, 1997), which predates<br />

rifting <strong>of</strong> <strong>the</strong> Archean basement. Quartz-diorite dykes (1.85-1.74 Ga), also known as Offset<br />

Dykes, are composed <strong>of</strong> impact-related melt rock and sulphides that fill impact-induced fractures<br />

oriented radially to <strong>the</strong> Sudbury Igneous Complex (Grant and Bite, 1984). Such dykes constitute<br />

important metal resources within <strong>the</strong> Sudbury Basin. Post-basin dyke intrusions include <strong>the</strong> ca.<br />

1.4 Ga (Cochrane, 1991) east-west striking hornblende-diabase swarm, known as Trap Dykes<br />

(Dressler, 1984), and <strong>the</strong> northwest striking olivine-diabase Sudbury Dykes (ca. 1.24 Ga; Krogh et<br />

al, 1987).<br />

All dykes occur in proximity to or in <strong>the</strong> Creighton Mine. A quartz-diorite Offset Dyke extends<br />

from <strong>the</strong> 800 Level to <strong>the</strong> 6200 Level where it pinches out (Coulson, 1996). Coulson (1996) also<br />

notes that below <strong>the</strong> 6600 Level hornblende-diabase and olivine-diabase dykes do not constitute<br />

important structural elements. At shallower levels and at surface shearing occurs along dykes, as<br />

shown in geological mapping (Vale Inco). All dykes are also intersected and <strong>of</strong>fset by late-stage<br />

faults and fractures (Cochrane, 1991).<br />

2.1.3 Regional faults<br />

The Murray Fault system strikes east-nor<strong>the</strong>ast and extends 300 km from Sault Ste. Marie to<br />

Sudbury (Fig. 2.1). Zolnai et al. (1984) propose that <strong>the</strong> Murray Fault System initiated as<br />

extensional ductile faults, overprinted by steepening <strong>of</strong> <strong>the</strong> faults and brittle thrusting during <strong>the</strong><br />

Penokean Orogeny, and fur<strong>the</strong>r reactivated as strike-slip during <strong>the</strong> Grenville Orogeny. The<br />

8


Murray Fault, <strong>the</strong> principal fault <strong>of</strong> <strong>the</strong> system, shows evidence <strong>of</strong> right-lateral displacement with<br />

a total estimated lateral displacement <strong>of</strong> 1 kilometer (Cochrane, 1991).<br />

The Creighton Fault, part <strong>of</strong> <strong>the</strong> Murray Fault System, extends 48 km from Drury Township, west<br />

<strong>of</strong> <strong>the</strong> Sudbury Basin, east to Coniston where it intersects <strong>the</strong> Grenville Front (Fig. 2.1; Cochrane,<br />

1991). It trends east to east-nor<strong>the</strong>ast and dips steeply north between 75 and 90 degrees<br />

(Cochrane, 1991). Previous work by Cochrane (1991) found that <strong>the</strong> Creighton fault has a net<br />

slip <strong>of</strong> 560 metres. The north side is displaced 540 metres eastward and 150 metres downward<br />

relative to <strong>the</strong> south side. The Creighton fault truncates <strong>of</strong>fset dykes, olivine-diabase dykes, as<br />

well as <strong>the</strong> sou<strong>the</strong>rn tip <strong>of</strong> <strong>the</strong> Creighton embayment, leading Cochrane (1991) to suggest that <strong>the</strong><br />

Creighton Fault is younger than 1.24 Ga. Akin to Zolnai et al. (1984), Rousell et al. (1997)<br />

propose that <strong>the</strong> cumulative slip <strong>of</strong> <strong>the</strong> Creighton fault reflects an early normal movement during<br />

<strong>the</strong> deposition <strong>of</strong> <strong>the</strong> Huronian Supergroup, followed by repeated reverse-sense reactivation<br />

during <strong>the</strong> Penokean Orogeny, and dextral-oblique faulting in <strong>the</strong> Neoproterozoic.<br />

The Creighton Fault diverges from <strong>the</strong> Creighton embayment at depth. Because <strong>the</strong> fault dips<br />

more steeply than <strong>the</strong> embayment, which dips at 60 degrees, <strong>the</strong> Creighton Fault does not intersect<br />

mine excavations. A splay between Murray and Creighton Faults, termed <strong>the</strong> Murray-Creighton<br />

Splay bounds <strong>the</strong> eastern margin <strong>of</strong> <strong>the</strong> Creighton Embayment and is intersected on levels above<br />

<strong>the</strong> Creighton Deep as <strong>the</strong> 118 Shear Zone (Hodder, 2002). Parallel features to both <strong>the</strong> Creighton<br />

Fault and Murray Creighton Splay fault are reflected in structures within <strong>the</strong> Creighton Deep<br />

(Tulk, 2001; Hodder, 2002).<br />

The Creighton Fault was observed at surface along HWY 144, west <strong>of</strong> Creighton Mine (Fig. 2.2).<br />

Rock in proximity to <strong>the</strong> Creighton fault is jointed and veined. Brittle jogs in rock in proximity to<br />

<strong>the</strong> fault and <strong>of</strong>fset veins and dykes confirm a dextral sense <strong>of</strong> motion (Fig. 2.3).<br />

9


Figure 2.2: Local geology map modified from Ames et al. (2005). Corresponding sections are represented<br />

by Figure 2.4A and B.<br />

Figure 2.3: Horizontal view <strong>of</strong> a fault jog in proximity to Creighton Fault. The fault was observed at<br />

surface, west <strong>of</strong> Creighton Mine along highway 144, as shown by <strong>the</strong> black dot in Figure 2.2. Card used for<br />

scale is 9 cm in length.<br />

10


2.2 Local <strong>Geology</strong> <strong>of</strong> Creighton Mine<br />

Creighton Mine is located approximately 18 km SW <strong>of</strong> downtown Sudbury. It is situated on <strong>the</strong><br />

sou<strong>the</strong>rn rim <strong>of</strong> <strong>the</strong> Sudbury Igneous Complex in an embayment <strong>of</strong> sublayer norite, called <strong>the</strong><br />

Creighton Embayment (Fig. 2.2).<br />

Fieldwork conducted in summer 2008 at Creighton Mine targeted shears zones exposed<br />

underground as well as faults exposed at <strong>the</strong> surface surrounding <strong>the</strong> mine. The underground<br />

study was concentrated between 6600 feet (2012 m) and 7940 feet (2420 m) deep, coinciding with<br />

<strong>the</strong> 6600 Level (6600L) and <strong>the</strong> 7940 ramp at <strong>the</strong> base <strong>of</strong> <strong>the</strong> mine. This portion <strong>of</strong> <strong>the</strong> mine is<br />

known as <strong>the</strong> Creighton Deep. Emphasis was placed on levels below 7400 feet (2256 m).<br />

Development is ongoing as <strong>the</strong> mine strives to reach a depth <strong>of</strong> 10,000 feet (3048 m; Vale Inco),<br />

as shown in Figure 2.4. In <strong>the</strong> study area <strong>the</strong> 400-Orebody is <strong>the</strong> main mining target (Fig. 2.4A,<br />

2.4B). Above 6600L <strong>the</strong> orebody follows <strong>the</strong> footwall-hangingwall contact, which is defined by<br />

<strong>the</strong> limits <strong>of</strong> <strong>the</strong> embayment. In <strong>the</strong> lowermost levels, <strong>the</strong> main orebody diverges from <strong>the</strong><br />

footwall-hangingwall contact such that it is nearly encased in <strong>the</strong> footwall (Fig. 2.4A).<br />

Footwall rocks surrounding <strong>the</strong> embayment (Fig. 2.2; 2.4A) consist <strong>of</strong> <strong>the</strong> Creighton Pluton<br />

granite and metavolcanics <strong>of</strong> <strong>the</strong> Elsie Mountain Formation (Ames et al., 2005). Granitic footwall<br />

units are medium-grained to coarse-grained, having variable alkali feldspar content and are<br />

massive to weakly foliated. Main mineral constituents include alkali feldspar (50%), <strong>of</strong>ten with<br />

alteration to sericite, quartz (40%) and biotite (10%).<br />

Metagabbro is massive and fine to medium-grained (1 mm). It consists primarily <strong>of</strong> chlorite and<br />

biotite (80%) with quartz (5-10%), plagioclase feldspar (5-10%) and minor amounts (5%) <strong>of</strong><br />

11


opaque minerals and o<strong>the</strong>r mineral constituents. Specimens from high-strain areas exhibit a fabric<br />

expressed as preferential alignment <strong>of</strong> biotite and/or chlorite.<br />

O<strong>the</strong>r rock units found interspersed in footwall rocks include alkali feldspar granite porphyry<br />

(locally termed black porphyry) and Sudbury breccia. The black porphyry has a matrix composed<br />

<strong>of</strong> biotite and chlorite and has quartzo-feldspathic porphyroclasts. This unit is locally strained;<br />

metre-wide strain localizations are expressed as elongated porphyroclasts in <strong>the</strong> vertical plane.<br />

Figure 2.4A: Vertical cross-section <strong>of</strong> Creighton Mine showing geometry <strong>of</strong> footwall and hangingwall<br />

rocks as well as orebodies. Approximate section line is shown in Figure 2.2. Level numbers correspond to<br />

depth in feet; depth in metres is shown at <strong>the</strong> far right. Study area is shown between two dashed lines.<br />

Plum Orebody is referred to 6100 in this diagram. No vertical exaggeration. Figure modified from Vale<br />

Inco composite section, Creighton Mine.<br />

12


B West East B’<br />

Figure 2.4B: Longitudinal section <strong>of</strong> Creighton Mine showing idealized geometry orebodies.<br />

Approximate section line is shown in Figure 2.2. Level numbers correspond to depth in feet. Plum<br />

Orebody is referred to 6100 in this diagram. No vertical exaggeration. Figure modified from Vale Inco<br />

idealized longitudinal section for Creighton Mine.<br />

13


Sudbury breccia occurs as sub-rounded clasts <strong>of</strong> footwall units <strong>of</strong> variable size, contained in a<br />

dark matrix.<br />

Norite is found in <strong>the</strong> hanging wall within <strong>the</strong> embayment and is <strong>the</strong> basal unit <strong>of</strong> <strong>the</strong> Sudbury<br />

Igneous Complex. The norite unit is massive and medium-grained (up to 4 mm) and contains<br />

euhedral to subhedral grains <strong>of</strong> biotite and orthopyroxene with chlorite alteration, hosted in a<br />

matrix <strong>of</strong> plagioclase.<br />

2.3 Mine-Scale Faults<br />

The Creighton Deep contains four families <strong>of</strong> faults: south-west striking shear zones <strong>of</strong> <strong>the</strong> 118<br />

Shear System, Footwall family shear zones, east-west-striking shear zones and splays between<br />

faults <strong>of</strong> <strong>the</strong> 118 Shear System (Table 2.2, Fig. 2.5). All orientations, except where stated, are<br />

expressed in ‘8-Shaft’ coordinates in which grid north is subject to a 25-degree clockwise rotation<br />

from geographic north.<br />

Shear zones are typically schistose with biotite mineral lineations. Composite foliation planes and<br />

mylonite textures are also common but difficult to discern in underground conditions. Quartz<br />

veins with minor calcite are frequently associated with shear zones in <strong>the</strong> Creighton Deep. Shear<br />

zones dissect all rock types and can be found within rock units, at <strong>the</strong> contact between two<br />

lithological units, at ore-rock contacts or along dykes. Within granitic units, shear zones are<br />

biotite-rich, strongly foliated and <strong>of</strong>ten display near-vertical biotite mineral lineation in <strong>the</strong><br />

foliation plane, whereas <strong>the</strong>y are more chlorite-rich within metagabbro. Shear zones <strong>of</strong> <strong>the</strong> 118<br />

Shear System have a consistent inter-shear spacing <strong>of</strong> approximately 200 feet, as shown in Figure<br />

2.5.<br />

14


Table 2.2: Fault systems within <strong>the</strong> Creighton Deep<br />

System Orientation Shear Zones<br />

118 Strikes SW between 230°-260°<br />

Dips NW between 75°-85°<br />

Footwall Strikes NW ~313°,<br />

Dips NE 55°<br />

Northwest<br />

Return Air Raise<br />

402 Shear<br />

Plum Shear<br />

Fresh Air Raise Shear<br />

Fresh Air Raise-Type Shear<br />

Footwall Shear<br />

Footwall-Type Shear<br />

EW<br />

Splays<br />

East-west striking with opposite<br />

dips between 70° and 80°<br />

Steeply-dipping<br />

Link SW-striking shears<br />

1290 Shear<br />

400-East Shear<br />

Grizzly Splay<br />

461 Splay<br />

Figure 2.5: Level plan for <strong>the</strong> 7400 Level in <strong>the</strong> Creighton Deep showing excavated drifts and sills, shear<br />

zones and approximate shape <strong>of</strong> <strong>the</strong> 400 Orebody. Map modified from Vale Inco 7400 Level Plan. NW =<br />

Northwest; RAR = Return Air Raise; FAR = Fresh Air Raise. The 400-East Shear Zone is found on <strong>the</strong><br />

7810 Level.<br />

15


Thin sections were made from collected oriented specimens. These were cut parallel to lineation<br />

and perpendicular to foliation as well as perpendicular to both lineation and foliation. Thin<br />

sections were examined for fabrics and microstructures.<br />

Shear zone kinematics are <strong>of</strong> economic interest as many <strong>of</strong> <strong>the</strong> shear zones in Creighton Mine<br />

control <strong>the</strong> shape and distribution <strong>of</strong> orebodies. Shear-sense indicators in this <strong>the</strong>sis are <strong>of</strong> interest<br />

for establishing <strong>the</strong> tectonic heredity <strong>of</strong> <strong>the</strong> shear zones in <strong>the</strong> Creighton Deep. Microstructural<br />

analysis is used to characterize faults and deformation mechanisms. A summary <strong>of</strong> faults and<br />

fault characteristics is presented in Table 2.3.<br />

For consistency with current mapping and because its strike, dip and shear zone spacing are<br />

conformable to o<strong>the</strong>r shear zones observed within <strong>the</strong> 118 System within <strong>the</strong> study area, <strong>the</strong> Plum<br />

Shear Zone is assigned to <strong>the</strong> 118 Shear System. The Plum Shear Zone is described as its own<br />

shear system by Seidler (2008) because <strong>of</strong> its association with <strong>the</strong> Plum Orebody (referred to as<br />

6100 Orebody in Fig. 2.4A and 2.4B). In previous structural work by Tulk, (2001) <strong>the</strong> Plum<br />

Shear Zone is described as a prominent NNE-striking splay fault.<br />

Shear zones have been mapped by Vale Inco staff as planar and continuous features, though shear<br />

zones can vary in attitude and thickness and are not always continuous in <strong>the</strong>ir extent. The 1290<br />

and Footwall Shear Zones seem to be continuous features while 118 System shear zones and<br />

splays cannot always be traced level-to-level.<br />

16


Table 2.3: Summary <strong>of</strong> Fault Characteristics<br />

Shear Name<br />

Approximate<br />

Strike/Dip<br />

Rock Type<br />

Features<br />

Footwall Shear<br />

Zone<br />

N 313/55° NE Biotite/chlorite schist • 0.3-0.6 m width<br />

• Strongly developed schistosity<br />

• Sub-vertical mineral lineations,<br />

• Near horizontal crenulation<br />

• C-S-C’ fabrics<br />

• Associated damage to shotcrete<br />

• Predominant reverse sense-<strong>of</strong>-shear<br />

1290 Shear Zone N 270/80° N Biotite schist with<br />

concordant quartz veins<br />

• Greater than 6 m<br />

• Strongly developed schistosity<br />

• Biotite mineral lineation<br />

• Abundant concordant veins<br />

• Unknown sense-<strong>of</strong>-shear, reported strike-slip <strong>of</strong>fset<br />

400-East Shear<br />

Zone<br />

Grizzly Shear<br />

Zone (splay)<br />

Northwest Shear<br />

Zone<br />

Return Air Raise<br />

Shear Zone<br />

N 090/70° S Biotite-rich phyllonite • Weak schistosity<br />

• Sub-vertical biotite mineral lineation<br />

• Quartz-carbonate veins<br />

• Sub-horizontal slickenlines<br />

• Strike-slip overprinting<br />

N 053/75° WNW Biotite schist • 0.5 m width<br />

• Sharp contact with host rock<br />

• Strongly developed schistosity<br />

• Biotite mineral lineation<br />

• Near-horizontal crenulation<br />

• Apparent reverse sense-<strong>of</strong>-shear<br />

N 247/75° NW Biotite schist (VI)* • 3 m in width<br />

• Strongly developed schistosity (VI)<br />

• Limited exposure and exposure restricted by<br />

shotcrete<br />

• Unknown Sense <strong>of</strong> Shear<br />

N 244/85° NW Ultramylonite • Strongly developed foliation,<br />

• Sharp contacts with ore/host rock<br />

• Associated damage to shotcrete<br />

• Unknown Sense <strong>of</strong> Shear<br />

402 Shear Zone N 241/85° NW Biotite schist (VI) • 1.2 m in width<br />

• Strongly developed schistosity (VI)<br />

• Exposure restricted by shotcrete<br />

• Reverse sense-<strong>of</strong>-shear (Siddorn, 2006)<br />

Plum Shear Zone N 235/80° NW Biotite schist (VI) • 3 m in width (variable)<br />

• Strongly developed schistosity<br />

• Concordant quartz-carbonate veins (VI)<br />

• Unknown sense-<strong>of</strong>-shear<br />

Fresh Air Raise<br />

Shear Zone<br />

N 258/80° NW<br />

Mylonite/<br />

ultramylonite<br />

• 1.5 m in width (7400L)<br />

• Strong/weak schistosity (location dependent)<br />

• Apparent reverse sense-<strong>of</strong>-shear<br />

Fresh Air Raisetype<br />

Shear Zone<br />

N 249/80° NW Quartz-metagabbro • Well-foliated, defined by quartz and biotite.<br />

• Weak mineral alignment; No mineral lineation<br />

• Foliation-parallel quartz veins<br />

• Unknown sense-<strong>of</strong>-shear<br />

*(VI) indicates information ga<strong>the</strong>red from Vale Inco digital geological maps<br />

17


2.3.1 Footwall Shear Zone<br />

The Footwall Shear Zone strikes northwest (N313°) and dips to <strong>the</strong> nor<strong>the</strong>ast, with an average dip<br />

<strong>of</strong> 55° (Fig. 2.5). It is recognized on all levels in <strong>the</strong> study area as a strongly developed, biotite<br />

and/or chlorite-rich schistose zone <strong>of</strong> localized deformation (Fig. 2.6A, B). The shear measures<br />

0.3 m - 0.6 m wide, <strong>of</strong>ten with ~1 m damage zones to ei<strong>the</strong>r side that are defined by shear-parallel,<br />

closely spaced joints and localized damage to mine-support, including breaking <strong>of</strong> wire mesh and<br />

cracking and failure <strong>of</strong> shotcrete (Fig. 2.6A). Near-vertical biotite mineral lineations are <strong>of</strong>ten<br />

visible on foliation planes. The Footwall Shear Zone is not an ore-controlling shear, but dissects<br />

footwall and hangingwall rocks.<br />

In thin section <strong>the</strong> Footwall Shear has a variable composition. It is <strong>of</strong>ten composed <strong>of</strong><br />

predominantly quartz and biotite with plagioclase, microcline, chlorite and minor sericite, calcite,<br />

opaque minerals and minor amounts <strong>of</strong> o<strong>the</strong>r mineral constituents; however in some locations, it is<br />

almost wholly composed <strong>of</strong> chlorite. The variable composition <strong>of</strong> <strong>the</strong> Footwall Shear is thought to<br />

reflect <strong>the</strong> lithological differences <strong>of</strong> <strong>the</strong> host rock.<br />

In samples with abundant quartz, quartz grains have a bimodal grain size distribution (Fig. 2.6C):<br />

larger grains are found in quartz ribbons with sub-grain boundaries and smaller grains are found in<br />

shear bands. The quartz ribbons and preferential alignment <strong>of</strong> biotite creates a discontinuous<br />

fabric. In some samples, biotite forms an anastomosing fabric with C, S and C’ planes,<br />

compatible with top-to-<strong>the</strong>-SW shear sense (Fig. 2.6D).<br />

18


Figure 2.6: (A) Damage to shotcrete and mesh along <strong>the</strong> Footwall Shear Zone; (B) localized shearing along<br />

<strong>the</strong> Footwall Shear Zone; (C) Quartz ribbons; (D) S-C’ fabrics in thin section; (E) Shear-sense indicator in<br />

thin section. Minerals shown in white are quartz. Bt, Biotite; Chl, Chlorite’ Kfs, K feldspar; Qtz, Quartz.<br />

Where observed underground, an apparent reverse-sense, top-to <strong>the</strong>-southwest component <strong>of</strong><br />

motion is inferred from <strong>the</strong> development <strong>of</strong> C’ shear bands. In thin section, C-S fabrics formed by<br />

19


iotite grains, fish structures and rotated clasts (Fig. 2.6D, E) indicate a dominant reverse<br />

component <strong>of</strong> shear with a possible dextral component. Fewer shear-sense indicators and fabric<br />

alignment in thin sections cut perpendicular to lineation suggest that <strong>the</strong> major shear component<br />

occurred in <strong>the</strong> direction <strong>of</strong> lineation. This supports Tulk’s (2001) suggestion <strong>of</strong> reverse-sense<br />

motion on <strong>the</strong> Footwall Shear Zone. Apparent <strong>of</strong>fset <strong>of</strong> <strong>the</strong> 1290 Shear Zone by <strong>the</strong> Footwall<br />

Shear Zone supports a dextral component <strong>of</strong> motion and suggests that <strong>the</strong> Footwall Shear Zone is<br />

younger than <strong>the</strong> 1290 Shear Zone.<br />

Shears with similar orientations to <strong>the</strong> Footwall Shear Zone have been inferred from ore shapes<br />

below 8000 feet depth (Seidler, 2008), suggesting that <strong>the</strong> Footwall Shear Zone may be part <strong>of</strong> a<br />

system <strong>of</strong> parallel shear zones.<br />

2.3.2 1290 Shear Zone<br />

The 1290 Shear Zone strikes east-west and dips steeply 80° to <strong>the</strong> north (Fig. 2.5). It is observed<br />

on <strong>the</strong> 6400 Level (Fig. 2.7A, B) and in <strong>the</strong> back (ceiling <strong>of</strong> <strong>the</strong> drift) on <strong>the</strong> 7810 Level but has<br />

been mapped as shallow as <strong>the</strong> 5600 Level. Its width is reported to be greater than 6 m wide<br />

(Seidler, 2008) and is characterized by a strongly developed biotite-rich schistosity, near-vertical<br />

biotite mineral lineation and abundant quartz-carbonate (quartz with minor calcite) veins, oriented<br />

parallel to <strong>the</strong> foliated schist. The 1290 Shear Zone is ore-controlling and is associated with <strong>the</strong><br />

1290 Orebody.<br />

In thin section, <strong>the</strong> 1290 Shear Zone is composed <strong>of</strong> biotite, quartz, K-feldspar and calcite (Fig.<br />

2.7C). The preferential alignment <strong>of</strong> biotite defines a strong fabric. Grain-size reduction is<br />

observed in quartz shear bands and larger elongate calcite grains align with <strong>the</strong> shear fabric (Fig.<br />

2.7C). Larger grains are formed by multi-granular K-feldspar.<br />

20


Figure 2.7: (A) The 1290 Shear Zone fabric; (B) 1290 Shear Zone on <strong>the</strong> 6400 Level; and (C) biotite,<br />

quartz and calcite fabric <strong>of</strong> <strong>the</strong> 1290 shear zone in thin section, from <strong>the</strong> 6400 Level. Bt, biotite; Cal,<br />

Calcite; Qtz, Quartz.<br />

No clear shear-sense indicators are observed. Galkin and Mungall (1995) report that <strong>the</strong> 1290<br />

Shear Zone has a dextral sense and as such could be related to late dextral-sense movement along<br />

Creighton Fault System (Rousell et al., 1997; Cochrane, 1991).<br />

21


The orientation <strong>of</strong> <strong>the</strong> 1290 Shear is parallel to that <strong>of</strong> <strong>the</strong> Creighton Fault but is <strong>of</strong>fset by <strong>the</strong><br />

Footwall Shear Zone (Seidler, 2008). This implies that <strong>the</strong> 1290 Shear Zone predates <strong>the</strong> last<br />

episode <strong>of</strong> movement along <strong>the</strong> Footwall Shear Zone.<br />

2.3.3 400-East Shear Zone<br />

The 400-East Shear Zone (Fig. 2.8A, B) is observed on <strong>the</strong> 7810 Level only. The 7810 Level plan<br />

can be found in Appendix A (Fig. A6). This shear zone strikes east-west and dips to <strong>the</strong> south at<br />

approximately 70°. The width <strong>of</strong> this shear zone and its associated damage zone is not defined<br />

due to <strong>the</strong> proximity <strong>of</strong> <strong>the</strong> 1290 Shear Zone and <strong>the</strong> drift boundaries. The shear zone is composed<br />

<strong>of</strong> biotite-rich phyllonite with sub-vertical biotite mineral lineations and minor quartz veining.<br />

Lineations along a number <strong>of</strong> shear-parallel, persistent fractures are overprinted by near-horizontal<br />

slickenlines. The 400-East Shear is ore-controlling and is associated with <strong>the</strong> 400-East Orebody<br />

(Fig. 2.4).<br />

In thin section, <strong>the</strong> 400-East Shear Zone consists mainly <strong>of</strong> quartz with lesser amounts <strong>of</strong> biotite,<br />

microcline, plagioclase and calcite (Fig. 2.8C). Light coloured minerals have variable grain size<br />

distributions with biotite composing a discontinuous fabric. Biotite anastomoses around larger<br />

grains <strong>of</strong> quartz and feldspar and sometimes outlines multi-granular fish-type structures.<br />

Extensional cracks are filled with calcite and fibrous quartz (Fig. 2.8C, D). Calcite twins are bent<br />

(Fig. 2.8B).<br />

A drag fold (Fig. 2.8A) along a shear-parallel fracture in <strong>the</strong> face <strong>of</strong> <strong>the</strong> 6646 Sill suggests a<br />

normal top-to-<strong>the</strong>-south component <strong>of</strong> motion. Slickenlines along fractures indicate a more recent<br />

lateral component <strong>of</strong> movement, which postdates ductile shearing.<br />

22


Figure 2.8: Images <strong>of</strong> (A) <strong>the</strong> 400-East Shear showing a normal-sense drag fold; (B) schematic diagram <strong>of</strong><br />

fold in A on <strong>the</strong> curving transition from <strong>the</strong> face to <strong>the</strong> back (top) <strong>of</strong> <strong>the</strong> drift, (C) shear zone fabric<br />

including a calcite vein; and (D) horizontal view <strong>of</strong> deformed calcite crystals in thin section. Bt, biotite;<br />

Cal, calcite; Qtz, quartz.<br />

2.3.4 Northwest Shear Zone<br />

The Northwest Shear Zone strikes N247° and dips 75° to <strong>the</strong> NW (Fig. 2.5). Access to this shear<br />

zone is restricted due to extensive shotcrete. The shear zone is not visible in its projected location<br />

23


on <strong>the</strong> 7680 Level but parallel features are mapped, including a tectonic foliation and veining.<br />

The shear zone is described in Vale Inco mapping as strongly biotitic and up to 3 m wide. This<br />

shear is not ore controlling and is parallel o<strong>the</strong>r shears in <strong>the</strong> 118 Shear System and to <strong>the</strong> Murray-<br />

Creighton Splay fault.<br />

2.3.5 Return Air Raise Shear Zone<br />

The Return Air Raise Shear Zone is observed on Levels 7400, 7530 and 7680. The shear zone<br />

strikes N244° and dips 85° to <strong>the</strong> NW (Fig. 2.5). On <strong>the</strong> 7400 Level, The Return Air Raise Shear<br />

Zone occurs as a series <strong>of</strong> closely set, parallel, brittle joints in a zone 40 cm wide. The shear zone<br />

is divided at <strong>the</strong> base <strong>of</strong> <strong>the</strong> drift and straddles massive sulphides. One strand <strong>of</strong> <strong>the</strong> shear zone is<br />

expressed as a 5 cm wide ultramylonite zone that forms a more cohesive and sharp boundary with<br />

both ore and footwall rocks. Wall rock within a few metres <strong>of</strong> <strong>the</strong> shear zone is brecciated and<br />

hosts a stockwork <strong>of</strong> carbonate veins. Although rock exposure is covered on <strong>the</strong> 7530 Level, <strong>the</strong><br />

shotcrete (Fig. 2.9A) and concrete pad (Fig. 2.9B) is damaged by cracks that align with <strong>the</strong> strike<br />

<strong>of</strong> <strong>the</strong> Return Air Raise Shear Zone.<br />

In thin section, <strong>the</strong> Return Air Raise Shear Zone contains variably-sized biotite, chlorite, lesser<br />

amounts <strong>of</strong> quartz and minor amounts <strong>of</strong> plagioclase, some with sericite alteration. In some<br />

locations minor amphibole and calcite occur. The strong foliation is defined by preferentially<br />

oriented quartz and chlorite (Fig. 2.9C, D). Calcite pressure shadows occur on larger amphibole<br />

grains. Quartz ribbons with sub-grain boundaries are also oriented along foliation, which is<br />

defined by elongate biotite and chlorite. Quartz grains contain many sub-grain boundaries.<br />

No sense-<strong>of</strong>-shear was ascertained from hand sample or thin section, nor is a sense-<strong>of</strong>-shear for<br />

this shear zone reported in previous studies.<br />

24


Figure 2.9: (A) Photograph <strong>of</strong> <strong>the</strong> cracked concrete pad floor along <strong>the</strong> Return Air Raise Shear Zone on<br />

7530L; tip <strong>of</strong> boots for scale; (B) cracked shotcrete on wall <strong>of</strong> 7530L, same location as A; (C) thin section<br />

<strong>of</strong> shear zone fabric on 7680L; (D) thin section <strong>of</strong> shear zone fabric on <strong>the</strong> 7400 Level. Bt, biotite; Cal,<br />

calcite; Chl, chlorite; Qtz, Quartz.<br />

25


2.3.6 402 Shear Zone<br />

The 402 Shear Zone strikes N241° and dips 85° to <strong>the</strong> NW (Fig. 2.5). Access to this shear zone is<br />

restricted due to extensive shotcrete with no visible damage and <strong>the</strong> shear zone is not well mapped<br />

below <strong>the</strong> 7400 Level. The shear zone reportedly has a strong biotite-rich schistosity and<br />

measures approximately 1.2 m in width (Vale Inco). This shear zone is parallel to <strong>the</strong> regional<br />

Murray-Creighton Splay Fault and thus belongs to <strong>the</strong> 118 System.<br />

2.3.7 Plum Shear Zone<br />

The Plum Shear Zone strikes N235° and dips 80° NW (Fig. 2.5). Access to this shear zone is<br />

restricted due to extensive shotcrete and enhanced support. No damage to shotcrete was observed.<br />

This shear zone is reported to be 3 m in width, widening in <strong>the</strong> Creighton Deep, and has a strong<br />

biotite schistosity and concordant quartz-carbonate veining (Vale Inco). Previous mapping<br />

suggests that <strong>the</strong> shape <strong>of</strong> <strong>the</strong> 461 orebody reflects <strong>the</strong> presence <strong>of</strong> <strong>the</strong> Plum Shear (Vale Inco).<br />

Nearby faults were observed to have clear reverse-sense kinematics as shown by quartz sigmaporphyroclasts<br />

within minor biotitic shear zones (Fig. 2.10 A, B) as well as <strong>the</strong> development <strong>of</strong> a<br />

foliation in <strong>the</strong> granite that rotates into <strong>the</strong> plane <strong>of</strong> shear (Fig. 2.10 C, D). Normal-sense brittle<br />

overprinting along shear planes is shown by <strong>the</strong> displacement <strong>of</strong> granitic dykes (Fig. 2.10E-H).<br />

26


Figure 2.10 (A) Shear foliation, indicating reverse ductile movement; (B) Sketch <strong>of</strong> fabric in A. Dashed<br />

lines show foliation; (C) quartz sigma porphyroclasts showing ductile reverse-sense movement; and (D)<br />

Sketch <strong>of</strong> sigma porphyroclasts; (E) Rock face with brittle fractures and <strong>of</strong>fset granitic dykes; (F) sketch <strong>of</strong><br />

displaced dyke (G) foliation showing a reverse, ductile sense-<strong>of</strong>-shear overprinted by brittle normal-sense<br />

movement marked by an <strong>of</strong>fset granite dyke; (H) sketch <strong>of</strong> overprinting relationships in G. Offset is marked<br />

by displaced dyke. Dashed lines indicate foliation.<br />

27


2.3.8 Fresh Air Raise Shear Zone<br />

The Fresh Air Raise Shear Zone strikes N258° and dips 80° to <strong>the</strong> NW (Fig. 2.5) and is parallel to<br />

<strong>the</strong> orientation <strong>of</strong> <strong>the</strong> Murray-Creighton Splay fault. It is observed on 7400 and 7200 Levels with<br />

variable grain size and texture. The shear zone on 7200 Level is hosted in cohesive, highly<br />

strained granite and exhibits a well-defined quartz and biotite foliation. Some quartz-rich veins<br />

oriented parallel to <strong>the</strong> shear zone are present in this location.<br />

On <strong>the</strong> 7400 Level, <strong>the</strong> Fresh Air Raise Shear Zone is expressed as a 1.5 m wide zone <strong>of</strong><br />

ultramylonite with a fine-grained biotite-rich fabric. The shear zone contains deformed inclusions<br />

<strong>of</strong> granitic material and is hosted in strained porphyritic alkali feldspar granite. The Fresh Air<br />

Raise Shear Zone in this location is associated with localized damage to wire mesh.<br />

In thin section <strong>the</strong> Fresh Air Raise Shear Zone is composed <strong>of</strong> bimodal-sized microcline, quartz<br />

and biotite and contains minor calcite and sericite (Fig. 2.11A-D). Chlorite is present in <strong>the</strong><br />

ultramylonite specimen in addition to <strong>the</strong>se minerals. Biotite forms discrete bands that<br />

anastomose around coarse K-feldspar grains. K-feldspar shows reduction in grain size in finegrained<br />

bands. Ribbons <strong>of</strong> anhedral quartz also anastomose around <strong>the</strong> coarser grains. Calcite is<br />

found in strain shadows adjacent to multi-granular K-feldspar clasts (Fig. 2.11A) and as subhedral<br />

grains that are elongated along foliation.<br />

In <strong>the</strong> ultramylonitic sample (Fig. 2.11B-D) <strong>the</strong>re is a distinct reduction in grain size, a welldeveloped<br />

foliation, quartz ribbons and rotation <strong>of</strong> angular clasts (Fig 2.11C, D). Shear-sense<br />

indicators (eg. Fig. A) suggest a possible reverse component <strong>of</strong> motion.<br />

28


Figure 2.11: Thin sections <strong>of</strong> <strong>the</strong> Fresh Air Raise Shear Zone showing (A) Shear and C’ planes; (B)<br />

ultramylonite textures; (C) Detail <strong>of</strong> thin section in (B); and (D) detail <strong>of</strong> thin section in (B). Bt, biotite;<br />

Cal, calcite; Chl, chlorite; Cpx, clinopyroxene; Opx, orthopyroxene; Qtz, quartz.<br />

2.3.9 Fresh Air Raise-type Shear Zone<br />

The Fresh Air Raise-Type Shear Zone is observed at <strong>the</strong> lowermost point <strong>of</strong> <strong>the</strong> mine on <strong>the</strong> 7940<br />

ramp. The shear zone strikes N249° and dips 80° to <strong>the</strong> NW and persists beyond <strong>the</strong> width <strong>of</strong> <strong>the</strong><br />

drift and may extend to <strong>the</strong> Fresh Air Raise Shear Zone (Fig. 2.5). This shear zone displays a<br />

29


strong foliation defined by biotite and quartz. Quartz-rich veins are oriented parallel to <strong>the</strong><br />

foliation plane.<br />

Shear fractures overprint <strong>the</strong> shear zone at a high angle to <strong>the</strong> foliation as evidenced by quartz-rich<br />

veins. Such veins mark several cm-scale reverse shear-sense displacements along fractures,<br />

though no slickenlines were observed (Fig. 2.12A).<br />

Figure 2.12: Images <strong>of</strong> <strong>the</strong> Fresh Air Raise-Type Shear (A) in situ on <strong>the</strong> 7940 ft. ramp and (B) in thin<br />

section. Bt, biotite; Chl, chlorite, Kfs, K feldspar.<br />

In thin section, <strong>the</strong> Fresh Air Raise-type Shear Zone contains a high proportion <strong>of</strong> quartz, biotite<br />

and microcline and a lesser amount <strong>of</strong> plagioclase, chlorite, amphibole and opaque minerals.<br />

Biotite grains show a preferential alignment and create an intermittent fabric within <strong>the</strong> specimen<br />

30


(Fig. 2.12B). Reduction <strong>of</strong> quartz grain size occurs in shear bands. Within <strong>the</strong> Fresh Air Raisetype<br />

Shear Zone <strong>the</strong>re is evidence <strong>of</strong> high strain but little evidence <strong>of</strong> shearing, though this has<br />

been named a shear zone by mine staff. As a result, sense-<strong>of</strong>-shear was not determined for <strong>the</strong><br />

Fresh Air Raise-Type Shear Zone.<br />

2.3.10 Splays and Minor Shear Zones<br />

The best-exposed splay fault between shears <strong>of</strong> <strong>the</strong> 118-System is <strong>the</strong> Grizzly Shear Zone,<br />

exposed on <strong>the</strong> 7400 Level (Fig. 2.5). It is a minor shear zone, adjacent to mapped splays and<br />

links <strong>the</strong> Plum Shear Zone and Fresh Air Raise Shear Zone. The Grizzly Shear Zone strikes<br />

nor<strong>the</strong>ast, dips steeply 75° to <strong>the</strong> sou<strong>the</strong>ast and measures approximately 50 cm in width. It has a<br />

well-developed biotite schistosity with biotite mineral lineations that trend to <strong>the</strong> southwest and<br />

plunge approximately 55°. Near-horizontal crenulations deform <strong>the</strong> shear zone foliation. The<br />

Grizzly Shear Zone forms a sharp contact with its hosting granite and contains boudinaged wall<br />

rock.<br />

The shear zone is cohesive but a 2-3 mm aperture occurs at <strong>the</strong> easternmost schist-granite<br />

boundary. This extension may not necessarily represent tectonic extension but ra<strong>the</strong>r unclamping<br />

<strong>of</strong> <strong>the</strong> confining rock due to <strong>the</strong> close proximity <strong>of</strong> <strong>the</strong> shear zone to an excavation (a drift).<br />

In thin section <strong>the</strong> Grizzly Shear Zone contains biotite, chlorite and plagioclase with minor<br />

amounts <strong>of</strong> quartz, calcite and K-feldspar. The shear zone fabric is defined by biotite that weaves<br />

around larger plagioclase grains (Fig. 2.13A). Chlorite found within <strong>the</strong> Grizzly Shear Zone does<br />

not contribute to <strong>the</strong> specimen fabric.<br />

Reverse-sense top-to-<strong>the</strong>-northwest displacement is interpreted from sheared granite boudins (Fig.<br />

2.13B, C), as well as <strong>of</strong>fset granite veins.<br />

31


Figure 2.13 (A) The Grizzly Splay shown in thin section. Bt, biotite; Chl, chlorite; Pl, plagioclase; (B) The<br />

Grizzly Splay as observed on <strong>the</strong> 7400 Level. Shearing <strong>of</strong> granitic boudins indicates reverse-sense<br />

displacement; (C) sketch <strong>of</strong> boudins within <strong>the</strong> Grizzly Splay.<br />

The 461 Shear Zone is ano<strong>the</strong>r splay fault and links <strong>the</strong> 402 Shear Zone and <strong>the</strong> Return Air Raise<br />

Shear Zone (Fig. 2.5). This splay is no longer visible due to limited access and shotcrete, but has<br />

been previously mapped as a 0.6 – 1.2 m wide zone <strong>of</strong> well-developed biotite-rich schistosity<br />

(Vale Inco). The shear zone is ore-controlling and hosts <strong>the</strong> 461 Orebody. Minor shear zones in<br />

<strong>the</strong> vicinity <strong>of</strong> <strong>the</strong> 461 Shear are described as having reverse sense-<strong>of</strong>-shear (Siddorn, 2006).<br />

Minor centimetre-scale shear zones occur parallel to <strong>the</strong> 118-Shear System and at locations <strong>of</strong><br />

competency contrasts such as lithological contacts or along dyke margins.<br />

32


2.3.11 Late-Stage Fractures<br />

The youngest features in Creighton Mine are late-stage fractures (Cochrane, 1991). These<br />

fractures crosscut steeper-dipping foliation and fault fabrics, postdating shear zone formation.<br />

Subhorizontal shear fractures (apparent orientation in face) and fractures filled with quartzcarbonate<br />

material show evidence <strong>of</strong> small centimetre-scale displacement. Slickenlines are<br />

observed along fractures found between <strong>the</strong> 402 and Return Air Raise Shear Zones on <strong>the</strong> 7810<br />

Level, though direction <strong>of</strong> motion cannot be discerned. Reverse <strong>of</strong>fset was noted along filled<br />

fractures in this location (Fig. 2.14A, B). Displacement along shallow fractures, such as those<br />

shown in Figures 2.14C and D, are observed in many locations throughout <strong>the</strong> mine. Sense <strong>of</strong><br />

displacement can not always be discerned (Fig. 2.14D).<br />

Figure 2.14: Shallow shear fractures in Creighton Deep. (A) Secondary fractures and displacement occur<br />

oblique to shear zone foliation; (B) oblique relationships are shown in sketch <strong>of</strong> photograph in A; (C)<br />

shallow-dipping fractures truncate veins; (D) feature orientations are depicted in a sketch <strong>of</strong> photograph in<br />

C. Direction <strong>of</strong> displacement is unknown.<br />

33


2.4 Discussion: Fault Reactivation<br />

Identifying shear zone paleokinematics is <strong>of</strong> great importance to understanding ore distribution for<br />

mine planning and establishing tectonic heredity and fault character; neokinematic relationships,<br />

however, are <strong>of</strong> importance for studying mining-induced fault reactivation and seismicity.<br />

Significant differences in <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> shear zones in <strong>the</strong> Creighton Deep at <strong>the</strong> time <strong>of</strong><br />

<strong>the</strong>ir formation and in <strong>the</strong>ir present state are discussed in this section.<br />

2.4.1 Geometric and kinematic summary<br />

Faults in Creighton Mine were formed as ductile shear zones. This is demonstrated by <strong>the</strong><br />

development <strong>of</strong> a strong foliation, mylonite and ultramylonite textures, mineral elongation<br />

lineations and rotation <strong>of</strong> inclusions. The Footwall Shear Zone, shear zones <strong>of</strong> <strong>the</strong> 118 System<br />

and splays between <strong>the</strong> 118 System shear zones have ductile, reverse-sense component <strong>of</strong> shear<br />

(Fig 2.15).<br />

Figure 2.15: Block model depicting geometry and paleokinematics <strong>of</strong> mine-scale faults in <strong>the</strong> Creighton<br />

Deep, with respect to grid-north and possible paleo-reactivation sense <strong>of</strong> faults.<br />

Seismogenic mining-induced reactivation <strong>of</strong> shear zones occurs as brittle failures, releasing<br />

energy through <strong>the</strong> breaking <strong>of</strong> asperities and frictional sliding (Scholz, 2002: p. 43-52).<br />

Examination <strong>of</strong> microstructures shows that shear zones are healed with little evidence <strong>of</strong> brittle<br />

34


overprinting (Cochrane, 1991; Coulson 1996). Observed examples <strong>of</strong> brittle reactivation within<br />

<strong>the</strong> shear zones include:<br />

<br />

Horizontal slickensides along <strong>the</strong> 400-East Shear Zone. These indicate lateral movement,<br />

overprinting previous vertical displacement.<br />

<br />

Brittle fracturing <strong>of</strong> shotcrete along <strong>the</strong> strike <strong>of</strong> <strong>the</strong> Return Air Raise (2.9A, B) and<br />

Footwall Shear Zones.<br />

<br />

Extension in proximity to <strong>the</strong> Grizzly Shear Zone. This is likely <strong>the</strong> result <strong>of</strong> unloading<br />

induced by excavation <strong>of</strong> a nearby drift.<br />

<br />

Normal-sense movement along fractures in proximity to <strong>the</strong> Plum Shear Zone, as<br />

indicated by displaced dykes and slickensides along <strong>the</strong> fracture surface (2.10A-H). This<br />

overprints previous ductile, reverse-sense motion along <strong>the</strong> fracture as indicated by rock<br />

shear-sense indicators.<br />

<br />

Late-stage brittle fractures that intersect and displace shear zones (Fig 2.14). Offset<br />

fractures are observed in <strong>the</strong> Fresh Air Raise-type Shear Zone (Fig. 2.12B).<br />

The geometry <strong>of</strong> brittle features is incompatible within a single stress regime, requiring a change<br />

in far-field stresses to have occurred. Previous work by Cochrane (1991) on levels above <strong>the</strong><br />

Creighton Deep indicates that late-stage faults in Creighton Mine have strike-slip displacement,<br />

overprinting earlier reverse-sense displacement that is recorded by ductile features within <strong>the</strong><br />

shear zones. This is supported by near-horizontal slickenlines along late-stage features, similar to<br />

those are observed along <strong>the</strong> 400-East Shear Zone. Sense-<strong>of</strong>-shear along late-stage faults was not<br />

determined by Cochrane (1991).<br />

35


2.4.2 Evolving Stress System in <strong>the</strong> Sudbury Basin<br />

The geometry and kinematics <strong>of</strong> <strong>the</strong> shear zones in <strong>the</strong> Creighton Deep are not compatible with<br />

ei<strong>the</strong>r <strong>the</strong> Andersonian (Anderson, 1951) or Riedel faulting model (Freund, 1974), particularly <strong>the</strong><br />

reverse sense along <strong>the</strong> NW-trending Footwall Shear Zone.<br />

Fault geometry and kinematics<br />

within Creighton Mine are best explained by an evolving stress system. Table 2.4 summarizes<br />

tectonic events that have affected <strong>the</strong> Sudbury Basin.<br />

Changes in <strong>the</strong> stress tensor are recorded in <strong>the</strong> tectonic history <strong>of</strong> regional-scale faults. The<br />

Creighton Fault was formed as a normal fault and was reactivated as a reverse fault during <strong>the</strong><br />

Penokean Orogeny and subsequently reactivated as a strike-slip fault in <strong>the</strong> Neoproterozoic<br />

(Zolnai et al., 1984; Rousell et al., 1997; Table 2.4). Such changes along regional-scale faults<br />

may provide insight into <strong>the</strong> faulting history <strong>of</strong> mine-scale shear zones in <strong>the</strong> Creighton Deep, as<br />

shown in Table 2.4, though ages for mine-scale shear zones in Creighton Mine are unknown. An<br />

age <strong>of</strong> 1.7-1.6 Ga was determined by Bailey et al. (2004) for steeply-dipping reverse-sense shear<br />

zones in <strong>the</strong> Thayer Lindsley mine, also located on <strong>the</strong> sou<strong>the</strong>rn rim <strong>of</strong> <strong>the</strong> Sudbury Igneous<br />

Complex. Similar to shear zones in <strong>the</strong> Creighton Deep, <strong>the</strong> Thayer Lindsley shear zones are<br />

steeply-dipping, strongly-foliated, and biotite-rich and have mineral lineations with steep rakes.<br />

The Thayer Lindsley shear zones are associated with <strong>the</strong> South Range Shear Zone (Fig. 2.1),<br />

whose formation has been linked to <strong>the</strong> Mazatzal and Labradorian Orogenies (Bailey et al., 2004)<br />

and Penokean Orogeny (Shanks and Schwerdtner 1991).<br />

36


Table 2.4: Summary <strong>of</strong> Proterozoic tectonic events, modified from Rousell et al., 1997<br />

37


The 1290 Shear Zone and <strong>the</strong> 118 System shear zones were fit to a Riedel model in previous work<br />

based on ductile shear-sense indicators observed in <strong>the</strong> Creighton Deep (Siddorn, 2006; Fig. 2.16).<br />

Figure 2.16: Riedel Model <strong>of</strong> 1290 and 118-System shear zones, modified from Siddorn (2006).<br />

In this model, shortening along shear zones <strong>of</strong> <strong>the</strong> 118 Shear System and lateral motion along <strong>the</strong><br />

1290 Shear Zone are accounted for by NW-SE directed compression. This is compatible with <strong>the</strong><br />

maximum principal stress direction and regional fault style during <strong>the</strong> Penokean Orogeny and<br />

during <strong>the</strong> formation <strong>of</strong> <strong>the</strong> South Range Shear Zone (Fig. 2.17).<br />

Figure 2.17: NW-SE Penokean compression, possibly responsible for forming 1290 and 118 System<br />

shear zones, as shown in <strong>the</strong> top left Riedel model.<br />

Oblique-reverse motion along <strong>the</strong> Footwall Shear does not fit <strong>the</strong> Riedel configuration, suggesting<br />

multiple periods <strong>of</strong> fault activity. The apparent <strong>of</strong>fset 1290 Shear Zone by <strong>the</strong> Footwall Shear<br />

Zone fur<strong>the</strong>r supports this. Late-stage lateral-sense motion along steeply-dipping faults is<br />

compatible with a maximum principal stress direction oriented NNW-SSE (Cochrane, 1991).<br />

38


Both <strong>of</strong> <strong>the</strong>se inferred stress directions differ from <strong>the</strong> current stress tensor in which <strong>the</strong> maximum<br />

principal stress is oriented E-W and <strong>the</strong> minimal principal stress is near-vertical (Cochrane, 1991;<br />

Coulson, 1996; Malek et al., 2008). According to Anderson (1951), this configuration <strong>of</strong><br />

maximum principal stresses should produce reverse faults. In <strong>the</strong> absence <strong>of</strong> high pore fluid<br />

pressure, it is unlikely that <strong>the</strong> steeply-dipping SW-striking shear zones in Creighton Mine could<br />

be reactivated in a reverse sense (Sibson, 1988).<br />

The medium and intermediate stresses at Creighton Mine are similar in magnitude (Coulson,<br />

1996). Inversion <strong>of</strong> <strong>the</strong> intermediate and minimum stresses would favor strike slip failure, which<br />

is possible if faults are in a state <strong>of</strong> critical stability, as proposed by McKinnon (2006). Mininginduced<br />

perturbations to <strong>the</strong> regional stress tensor are likely to produce ei<strong>the</strong>r extensional failures<br />

via reduction <strong>of</strong> normal force on shear zones (unclamping) incurred by rock extraction or stressinduced<br />

strike-slip faulting. Failure mechanisms are explored through microseismic analysis<br />

presented in <strong>the</strong> Chapter 3.<br />

39


Chapter 3<br />

Mining-induced Seismicity<br />

3.1 Creighton Mine Seismic Monitoring Systems<br />

Seismic monitoring <strong>of</strong>fers <strong>the</strong> best insight into current rock mass damage processes and failure<br />

related to mining-induced fault reactivation. Brittle failures can be recorded in real-time as<br />

seismic events. These can be located within an array <strong>of</strong> sensors, and source parameters can be<br />

calculated for each event.<br />

The Creighton Mine currently experiences high rates <strong>of</strong> seismicity, averaging over 70 events per<br />

day. Two seismic systems are in operation at Creighton Mine to detect <strong>the</strong>se events: The<br />

Engineering Seismology Group (ESG) Hyperion Microseismic System (HMS), and a strong<br />

motion Hyperion Digital Drum Recorder (HDDR) system.<br />

The microseismic system consists <strong>of</strong> 88 channels occupied by 10 triaxial accelerometers<br />

(consuming 3 channels each) and 49 uniaxial accelerometers, leaving 9 channels free for<br />

expansion. The HMS sensors are distributed mine-wide. The system records full waveforms,<br />

allowing for <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> hypocenter location, magnitude and o<strong>the</strong>r source parameters.<br />

The HDDR system is a strong motion system and consists <strong>of</strong> one geophone on <strong>the</strong> earth surface.<br />

This system is reserved for <strong>the</strong> detection <strong>of</strong> larger magnitude events, above 0 m N on <strong>the</strong> Nuttli<br />

Scale used by <strong>the</strong> Geological Survey <strong>of</strong> Canada, which saturate <strong>the</strong> microseismic system. The<br />

HDDR system is used to obtain a magnitude for such events. Three triaxial geophones on surface<br />

40


are, at this time, in <strong>the</strong> process <strong>of</strong> being calibrated with <strong>the</strong> HDDR, which will allow for source<br />

parameters to be calculated for each macroseismic event in <strong>the</strong> future.<br />

3.2 Event Characterization and Classification<br />

Seismic events can be simply described in terms <strong>of</strong> location, time <strong>of</strong> occurrence and magnitude.<br />

The events can be classified as microseismic events, macroseismic events or blasts. Microseismic<br />

events have magnitudes less than 0 m N . Macroseismic events have magnitudes greater than 0 m N .<br />

Such events are ei<strong>the</strong>r large seismic events or rockbursts that are detected by <strong>the</strong> HDDR system.<br />

Mining-induced events (microseismic and macroseismic) can be fur<strong>the</strong>r classified by <strong>the</strong>ir<br />

triggering mechanisms. Within <strong>the</strong> study area, two types <strong>of</strong> microseismic events are observed. 1)<br />

Blast-induced events can be categorized as development or production-related events. Events<br />

related to development cluster around drifts and progress in time and space with <strong>the</strong> development<br />

<strong>of</strong> mine infrastructure (Fig. 3.1A). Events related to production are more energetic and cluster<br />

spatially and temporally around blast sites (Fig. 3.1B). Blast-induced events occur immediately<br />

following a blast and dissipate quickly. 2) Stress-induced events are more randomly distributed.<br />

They occur at larger time delays following blasts, <strong>of</strong>ten hours or days. Such events are generally<br />

located remote from excavations and are <strong>of</strong>ten associated with geological structure though <strong>the</strong>y<br />

need not be related. It is this second category that is <strong>of</strong> interest since <strong>the</strong> time and location <strong>of</strong> such<br />

events are not predictable. Within Creighton Mine such events occur in a distinct zone<br />

surrounding <strong>the</strong> main excavation.<br />

41


Figure 3.1 (A) Plan view <strong>of</strong> events related to development blasts (blasts not shown) along <strong>the</strong> 7810<br />

exploration drift; and (B) production blast-induced events related to blasting in <strong>the</strong> 4247 Sill.<br />

Full waveform recording allows for <strong>the</strong> calculation <strong>of</strong> additional seismic event parameters from<br />

waveforms recorded in <strong>the</strong> time domain or from spectra in <strong>the</strong> frequency domain (Gibowicz and<br />

Kijko, 1994; Mendecki, 1997). At Creighton Mine, parameter calculation is <strong>of</strong>ten automated but<br />

occasionally done manually (by selecting first arrivals). Calculated parameters include source<br />

radius, asperity radius, energy released, apparent stress and stress drop. The maximum particle<br />

displacement, velocity and acceleration can also be calculated from each waveform.<br />

3.2.1 Seismic Event Parameters<br />

A subset <strong>of</strong> 11,541 microseismic events that occurred between January 1, 2006 and December 31,<br />

2007 and between 7000 and 7600 feet depth was used to establish background seismic parameter<br />

values. This depth range eliminates dense activity related to development on deeper levels.<br />

Events having location errors greater than 30 feet were filtered from <strong>the</strong> dataset to avoid intrinsic<br />

error in calculated source parameters. Within this block, seismicity pertaining to <strong>the</strong> 7200 Level,<br />

7400 Level and 7530 Level was examined for spatial and temporal trends. Trends in seismic<br />

event parameters were also assessed.<br />

42


Microseismic events <strong>of</strong> this subset have an average location error <strong>of</strong> 18 feet. Events were<br />

recorded on average by 22 sensors (15 uniaxial and 6 triaxial sensors triggered on average) with<br />

<strong>the</strong> minimum condition <strong>of</strong> 8 sensors needed for an event to be recorded. Complete population<br />

statistics, including those for magnitude events and events identified as blasts can be found in<br />

Appendix B. These parameters are automatically calculated by <strong>the</strong> mine using ESG s<strong>of</strong>tware, and<br />

first arrivals for microseismic events are usually automated. Statistics for macroseismic events<br />

that are derived from <strong>the</strong> underground array may not reflect <strong>the</strong> true magnitude <strong>of</strong> <strong>the</strong> parameters<br />

because <strong>of</strong> waveform clipping for stronger events.<br />

3.2.1.1 Moment Magnitude (M)<br />

Three magnitude estimates are made for microseismic events: uniaxial magnitude, as determined<br />

from uniaxial sensors, triaxial magnitude and moment magnitude. Magnitudes in this <strong>the</strong>sis for<br />

microseismic events make reference to <strong>the</strong> moment magnitudes.<br />

Detected microseismic events within <strong>the</strong> study area range in magnitude from M = -2.3 to M = 0.8<br />

with a mean <strong>of</strong> M = - 1.09. The distribution <strong>of</strong> magnitudes peaks at M = -1.3 (Fig. 3.2). Below<br />

this magnitude a higher proportion <strong>of</strong> events is expected but events are not recorded due to <strong>the</strong><br />

detection threshold <strong>of</strong> <strong>the</strong> sensors and <strong>the</strong> minimum sensor requirement for recording events. The<br />

magnitude range can also be examined with <strong>the</strong> frequency-magnitude relation (Fig. 3.3). The<br />

shallow slope at low magnitudes demonstrates that events below M = -1.3 are infrequently<br />

recorded, though <strong>the</strong>se are expected to occur. Beyond M = 0.4 <strong>the</strong> relation breaks down due to <strong>the</strong><br />

relative infrequency <strong>of</strong> larger events as well as <strong>the</strong> recording limitations <strong>of</strong> <strong>the</strong> sensors. At high<br />

magnitudes, sensors become saturated and recorded waveforms clipped. The effective range <strong>of</strong><br />

microseismic coverage is <strong>the</strong>refore between M = -1.3 and M = 0.4. Spatially, high-magnitude<br />

microseismic events do not show preferential clustering except near blast sites.<br />

43


Distribution <strong>of</strong> Microseismic Event<br />

Magnitudes<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-2.5<br />

-2.1<br />

-1.7<br />

-1.3<br />

-0.9<br />

-0.5<br />

-0.1<br />

0.3<br />

0.7<br />

Frequency<br />

Moment Magnitude<br />

Figure 3.2: Distribution <strong>of</strong> Microseismic Event Magnitudes between January 1, 2006 and December 31,<br />

2007 recorded between 7000 and 7600 feet depth.<br />

Magnitude-Frequency Relation<br />

4.5<br />

4.0<br />

Log(Cumulative Frequency/yr.)<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

N = -1.12M + 2.53<br />

N = -1.77M + 2.27<br />

0.5<br />

0.0<br />

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0<br />

Magnitude (M)<br />

Figure 3.3: Frequency Magnitude Relation for microseismic events recorded between 7000 and 7600 feet<br />

during <strong>the</strong> January 2006-December 2007 period. N = cumulative number <strong>of</strong> events (logarithm). Trend lines<br />

have been added to show relation slope.<br />

44


3.2.1.2 Seismic Energy (E o ) and Seismic Moment (M o )<br />

The seismic moment (M o ) is a measure <strong>of</strong> event size and strength. Seismic energy, E o , is a<br />

measure <strong>of</strong> <strong>the</strong> total elastic energy radiated during fracture and frictional sliding (Gibowicz and<br />

Kijko, 1994; Mendecki, 1997).<br />

Microseismic events have lower energies and seismic moments compared to blasts or<br />

macroseismic events. This is also a spatial trend: events immediately west <strong>of</strong> <strong>the</strong> excavation in<br />

proximity to production blasts have high event energies and seismic moments (Fig. 3.4). Events<br />

located to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation have lower energies compared to blast-related events<br />

but higher energies as compared to <strong>the</strong> remaining events south to sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation.<br />

Figure 3.4: Map <strong>of</strong> <strong>the</strong> 7400 Level showing <strong>the</strong> distribution microseismic event energy. The excavated<br />

area is outlined in black. The colour <strong>of</strong> <strong>the</strong> event epicenters corresponds to event energy. The colour scale<br />

is logarithmic and represents energy in Joules.<br />

45


3.2.1.3 Energy Ratio, E s /E p<br />

The ratio <strong>of</strong> S-wave to P-wave energy (E s /E p ) is commonly used to identify source mechanisms.<br />

Events with high E s /E p ratios are most likely caused by shear failure along a geological structure<br />

while lower ratios may have a complex or dilational component <strong>of</strong> failure (Gibowicz and Kijko,<br />

1994). While traditionally <strong>the</strong> cut<strong>of</strong>f for E s /E p is 10 (Gibowicz et. al, 1991) for discriminating<br />

between extensional blast events (E s /E p 10), this value is too<br />

large to discriminate between shear and extensional microseismic events. A cut-<strong>of</strong>f <strong>of</strong> E s /E p = 5 is<br />

deemed appropriate for Creighton Mine because <strong>the</strong> mean E s /E p <strong>of</strong> microseismic events is 8.6, for<br />

macroseismic events is 16.3, and for blasts is 6.2 (Fig. 3.5). Previous work in Creighton Mine by<br />

Vasak (n.d.) also deems an E s /E p ratio <strong>of</strong> 5 to be appropriate for Creighton Mine. Microseismic<br />

events having high E s /E p are randomly distributed, ra<strong>the</strong>r than being located along large<br />

discontinuities as would be expected from fault slip. No spatial trends were identified for events<br />

between <strong>the</strong> 7200 and 7530 Levels and thus no correlations between E s /E p and geological structure<br />

are made. Spatial distributions <strong>of</strong> detected E s/ E p events can be found in Appendix B.<br />

Frequency (% <strong>of</strong> total)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

2006 Blast and Event Distribution (% <strong>of</strong> Total)<br />

Blasts<br />

Events<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30<br />

Es/Ep<br />

Figure 3.5: Es/Ep ratios measured for 2006 events and blasts. The cut-<strong>of</strong>f <strong>of</strong> 5 is shown by <strong>the</strong> dashed line.<br />

46


3.2.1.4 Stress Parameters<br />

Stress parameters quantified from event spectra (Mendecki, 1997) include static stress drop,<br />

dynamic stress drop and apparent stress. Static stress drop,<br />

, is defined as <strong>the</strong> average<br />

difference between <strong>the</strong> initial and final stress levels over a fault plane (Gibowicz and Kijko,<br />

1994). Dynamic stress drop, <br />

d<br />

, is <strong>the</strong> effective stress representing <strong>the</strong> difference between <strong>the</strong><br />

initial stress and <strong>the</strong> kinetic friction level on a fault (Gibowicz and Kijko, 1994). The apparent<br />

stress, is proportional to both <strong>the</strong> seismic energy and <strong>the</strong> seismic moment:<br />

a<br />

, (Equation 3.1)<br />

where μ is <strong>the</strong> shear modulus <strong>of</strong> <strong>the</strong> source medium, E is <strong>the</strong> seismic energy and M o is <strong>the</strong> seismic<br />

moment. The distribution <strong>of</strong> event stress parameters displays similar spatial trends as energy and<br />

seismic moment with low parameter magnitudes to <strong>the</strong> south and south east <strong>of</strong> <strong>the</strong> excavation,<br />

higher parameter magnitudes to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation, and elevated values where<br />

mining took place in <strong>the</strong> easternmost stopes during <strong>the</strong> time span under analysis (Appendix B).<br />

3.2.1.5 Source Dimensions<br />

Calculated source dimensions include source radius, r o , and asperity radius r a . These values are<br />

derived from spectral parameters and based on a dynamic circular fault model (Madariaga, 1976).<br />

Such calculations are thus highly dependent on modeled spectra (Gibowicz and Kijko, 1994).<br />

Large source radii occur to <strong>the</strong> west <strong>of</strong> <strong>the</strong> excavation. Clustered events to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong><br />

excavation have small source radii while low to intermediate values exist to <strong>the</strong> south and<br />

sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation. Asperity radii are largest to <strong>the</strong> east <strong>of</strong> <strong>the</strong> excavation and more<br />

variable south <strong>of</strong> <strong>the</strong> excavation away from blasting.<br />

47


3.2.1.6 Peak Acceleration Parameter, Velocity Parameter and Maximum Displacement<br />

Calculated motion parameters include peak acceleration, peak velocity and maximum<br />

displacement. The spatial distribution <strong>of</strong> stress parameters shows <strong>the</strong> same trends as <strong>the</strong> stress and<br />

source dimension parameters: low parameter values are observed to <strong>the</strong> south and sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong><br />

excavation; while higher parameter values are found to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation, and<br />

elevated values directly east <strong>of</strong> <strong>the</strong> excavation where blasting occurs.<br />

3.2.2 Spatial and Temporal Event Clustering<br />

Microseismic events tend to cluster spatially and temporally. Events that cluster in space and time<br />

can result from a localized increase in differential stress (Mendecki, 1997). Clusters <strong>of</strong><br />

microseismic events typically follow a large event, such as a rockburst or a blast.<br />

Spatial and temporal trends were studied in data surrounding <strong>the</strong> 7200, 7400 and 7530 levels.<br />

Levels below <strong>the</strong> 7530 Level were omitted from analysis since microseismic activity reflected<br />

development, making it difficult to distinguish between blast-induced and stress-induced events.<br />

Event frequency is observed to increase with depth, including <strong>the</strong> number <strong>of</strong> macroseismic events.<br />

Exceptionally high rates <strong>of</strong> seismicity on and below <strong>the</strong> 7680 Level reflect active level<br />

development in <strong>the</strong> Deep.<br />

Analysis is concentrated on events to <strong>the</strong> south <strong>of</strong> <strong>the</strong> 400 Orebody excavation (shown previously<br />

in Figure 2.5). This population has good sensor coverage, exhibits low location error and occurs<br />

away from blasts. Dense event clusters directly to <strong>the</strong> east and west <strong>of</strong> <strong>the</strong> excavation are<br />

attributed to production blasts from outward excavation (Fig. 3.6A). Events to <strong>the</strong> north <strong>of</strong> <strong>the</strong><br />

excavation are located outside <strong>the</strong> network, resulting in high location errors (Fig. 3.6A). Poorly<br />

48


located events were removed from clustering analyses by filtering events by error using a cut-<strong>of</strong>f<br />

<strong>of</strong> 30 feet. The distribution <strong>of</strong> macroseismic events is shown in Fig. 3.6B for comparison.<br />

Seismicity that is not directly related to blasting and extraction tends to occur south <strong>of</strong> and remote<br />

to <strong>the</strong> excavation. Microseismic events are mostly restricted to a distinct zone extending from <strong>the</strong><br />

sou<strong>the</strong>astern corner <strong>of</strong> <strong>the</strong> excavation to approximately 300 feet south <strong>of</strong> <strong>the</strong> excavation. Very<br />

little seismic activity occurs directly south, southwest and north <strong>of</strong> <strong>the</strong> excavation. These trends in<br />

seismicity pertaining to <strong>the</strong> 7200 Level, 7400 Level and 7530 Level are shown in Figure 3.7.<br />

Events do not tend to align with mapped geological structures but ra<strong>the</strong>r occur in proximity to<br />

both shears and openings. Events on <strong>the</strong> 7200 Level appear to align with <strong>the</strong> 402 Shear Zone but<br />

also occur in close proximity to excavations. Macroseismic events are <strong>of</strong>ten attributed to fault<br />

movement by mine staff. Macroseismic events within <strong>the</strong> study area appear randomly distributed<br />

and do not cluster or conform to geological structure (Fig. 3.6B). Areas <strong>of</strong> dense microseismic<br />

activity are generally related to <strong>the</strong>se events; spatial and temporal clustering <strong>of</strong> microseismic<br />

events tends to occur following a macroseismic event. Macroseismic events tend to have little to<br />

no precursory seismicity followed by high rates <strong>of</strong> seismicity that decay to background levels over<br />

a matter <strong>of</strong> hours or days, sometimes including additional macroseismic events. A review <strong>of</strong><br />

rockbursting in Creighton mine by Blake and Hedley (2003) agrees that macroseismic events in<br />

Creighton that are expressed as rockbursts are almost always unexpected; events do not occur at<br />

regular intervals and do not have seismic precursors.<br />

49


Figure 3.6: (A) Distribution <strong>of</strong> detected microseismic events during 2006-2007 surrounding 7400 Level.<br />

Colour scaling represents location error with warm colours indicating increased error. The 400 Orebody is<br />

located within <strong>the</strong> excavation and is outlined in Figure 2.5. The skew <strong>of</strong> production-related events reflects<br />

<strong>the</strong> position <strong>of</strong> events relative to microseismic network. Events having a high error are fur<strong>the</strong>r removed<br />

from <strong>the</strong> network; (B) Distribution <strong>of</strong> macroseismic events surrounding 7400 Level.<br />

50


Figure 3.7: Detected seismicity corresponding to levels 7200, 7400 and 7530 respectively. Events have<br />

been filtered by location error (< 30 ft.) and by depth and are restricted 50 feet above and below <strong>the</strong> level.<br />

Colour scaling represents moment magnitudes between M= -1.5 and M= 0.5.<br />

51


A dense event cluster occurs in <strong>the</strong> vicinity <strong>of</strong> <strong>the</strong> 461 orebody (orebody shown in Fig. 2.4A, B),<br />

which is hosted in <strong>the</strong> 461 Splay that connects <strong>the</strong> 402 and Return Air Raise shear zones. This is<br />

represented by clustering about <strong>the</strong> 461 Orebody on <strong>the</strong> 7530 level and is also reflected on <strong>the</strong><br />

7400 Level (Fig. 3.7). 461-related seismicity does not cluster temporally but occurs sporadically<br />

throughout <strong>the</strong> 2006-2007 time interval, contemporaneously with events to <strong>the</strong> east in <strong>the</strong> active<br />

zone. Seismicity in this vicinity has also intensified from 2002-2007. This cluster is discussed in<br />

<strong>the</strong> following sections.<br />

3.2.3 Cluster Analysis for <strong>the</strong> 7400 Level<br />

The degree <strong>of</strong> damage in a rock mass can have a dramatic effect on <strong>the</strong> properties <strong>of</strong> <strong>the</strong> seismic<br />

waves emitted from microseismic sources, notably on wave velocity and attenuation (Feustel,<br />

1998). Such changes have been used to describe <strong>the</strong> rock mass character. Lower velocity and<br />

higher attenuation is recorded in a heavily fractured rock mass as compared to a homogeneous and<br />

unfractured rock mass (Feustel, 1998). Given this, it is expected that <strong>the</strong> state <strong>of</strong> damage in <strong>the</strong><br />

rock mass would also have a noticeable effect on source parameters, most <strong>of</strong> which are calculated<br />

directly or indirectly from <strong>the</strong> recorded waveforms. Temporal trends in seismic event parameters<br />

can approximate loading curves similar to those traced in acoustic emission tests (Coulson and<br />

Bawden, 2008). Such curves indicate that at <strong>the</strong> point <strong>of</strong> fracture initiation, <strong>the</strong> moment<br />

magnitude, seismic moment, seismic energy and apparent stress increase until <strong>the</strong> point <strong>of</strong> yield,<br />

at which point fractures coalesce and <strong>the</strong>re is a significant drop in parameter values (Coulson and<br />

Bawden, 2008). The source radius and source complexity (ratio <strong>of</strong> dynamic stress drop to static<br />

stress drop) show a decrease in parameter values during loading and a sudden increase as <strong>the</strong> rock<br />

mass yields. Following this, characteristics <strong>of</strong> events in an intact and fractured rockmass are<br />

summarized in Table 3.1.<br />

52


Table 3.1: Event characteristics in an intact and fractured rock mass<br />

Events in intact rock mass (loading)<br />

• High moment magnitude, M • Low M<br />

• High seismic energy, E o • Low E o<br />

• High seismic moment, M o • Low M o<br />

• High apparent stresses, σ a • Low σ a<br />

• Low source radius, R o • High R o<br />

• Comparable dynamic and static stress drop<br />

values (low complexity)<br />

Events in yielded rock mass (post-peak)<br />

• High dynamic stress drop as compared to static<br />

stress drop (high complexity)<br />

Spatial and temporal analysis <strong>of</strong> microseismic event parameters was conducted to identify trends<br />

and assess rockmass properties on levels 7200, 7400 and 7530. Temporal analysis <strong>of</strong> levels and<br />

clustered events on <strong>the</strong> 7400 Level did not reveal any significant trends (temporal parameter<br />

results can be found in Appendix B) but did reveal comparable spatial event distributions: dense<br />

seismicity extends from <strong>the</strong> sou<strong>the</strong>astern corner <strong>of</strong> <strong>the</strong> excavation to an area southwest <strong>of</strong> <strong>the</strong><br />

excavation (Fig. 3.7). Events in this area occur sporadically during <strong>the</strong> two-year time period. It is<br />

postulated that in <strong>the</strong> Creighton Deep <strong>the</strong> microseismic event distribution as well as <strong>the</strong> event<br />

parameters reflect both local stress conditions and <strong>the</strong> physical state <strong>of</strong> <strong>the</strong> rock mass; heavily<br />

damaged rock is expected to be aseismic, whereas a actively yielding rock mass will result in<br />

denser seismic activity.<br />

Seismicity on 7400 Level is separated into three distinct clusters (Table 3.2, Fig. 3.8). The first<br />

cluster (Cluster 1) is located to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation. Cluster 1 is <strong>the</strong> densest cluster and<br />

has a markedly different seismic character from <strong>the</strong> o<strong>the</strong>r clusters. Cluster 1 contains elevated<br />

source parameter values for seismic moment, energy, apparent stress, stress drop as well as<br />

particle motion parameters that are well above background levels (Table 3.3).<br />

53


Clusters 2 and 3 are located to <strong>the</strong> south and sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation and generally have lower<br />

source parameter values that are nearer to background levels. The implications <strong>of</strong> this are<br />

discussed in section 3.2.4.<br />

Table 3.2: Spatial cluster positions<br />

Range Cluster 1 Cluster 2 Cluster 3<br />

Northing (ft.) 6090-6273 6155-6270 6130-6225<br />

Easting (ft.) 4250-4440 4560-4670 4685-4810<br />

Depth (ft.) 7350-7450 7350-7450 7350-7450<br />

Figure 3.8: Three clusters are isolated for events between January 1, 2006 and December 31, 2007 located<br />

about <strong>the</strong> 7400 Level. Events cluster spatially but not temporally.<br />

54


Table 3.3: Summary <strong>of</strong> relevant parameter mean values and standard error for each cluster as compared to<br />

background parameter values. An asterisk (*) indicates <strong>the</strong> log <strong>of</strong> <strong>the</strong> values for scaling purposes.<br />

Parameter (Mean) Cluster 1 Cluster 2 Cluster 3 7400 Level Background<br />

Moment Magnitude (M) -1.11 ± 0.01 -1.28 ± 0.02 -1.37 ± 0.03 -1.11 ± 0.01 -1.09 ± 0.00<br />

Seismic Moment* (Nm) 7.70 ± 0.02 7.37 ± 0.03 7.23 ± 0.05 7.81 ± 0.02 7.79 ± 0.01<br />

Seismic Energy*, (J) 3.38 ± 0.04 1.73 ± 0.07 1.31 ± 0.08 2.63 ± 0.03 2.51 ± 0.01<br />

Source Radius (m) 2.10 ± 0.02 2.24 ± 0.04 2.55 ± 0.07 2.64 ± 0.02 2.71 ± 0.01<br />

Asperity Radius (m) 0.60 ± 0.01 0.59 ± 0.01 0.49 ± 0.01 0.66 ± 0.01 0.71 ± 0.00<br />

Es/Ep 8.89 ± 0.20 7.52 ± 0.28 9.42 ± 0.32 8.21 ± 0.18 8.62 ± 0.07<br />

Static Stress Drop* (Pa) 6.84 ± 0.02 6.11 ± 0.03 5.86 ± 0.04 6.05 ± 0.35 6.24 ± 0.09<br />

Dynamic Stress Drop* (Pa) 7.12 ± 0.02 6.50 ± 0.02 6.49 ± 0.03 6.88 ± 0.01 6.80 ± 0.01<br />

Apparent Stress* (Pa) 6.05 ± 0.02 4.92 ± 0.04 4.64 ± 0.05 5.37 ± 0.02 5.27 ± 0.01<br />

Maximum Displacement (m) -3.56 ± 0.02 -4.21 ± 0.03 -4.30 ± 0.04 -3.79 ± 0.01 -3.84 ± 0.01<br />

Peak Velocity Parameter (m/s) -1.36 ± 0.02 -2.01 ± 0.03 -2.09 ± 0.04 -1.59 ± 0.01 -1.62 ± 0.01<br />

Peak Acceleration Parameter<br />

(m/s 2 )<br />

6.02 ± 0.02 5.40 ± 0.02 5.39 ± 0.03 5.77 ± 0.01 5.70 ± 0.01<br />

3.2.4 Seismicity and Rockmass Degradation<br />

In <strong>the</strong> mine environment, high event rates and dense event spacing suggest progressive damage <strong>of</strong><br />

<strong>the</strong> rock mass and increased seismic hazard (Vasak et al., n.d.). The occurrence and<br />

characteristics <strong>of</strong> seismic events can be used as an indication <strong>of</strong> <strong>the</strong> physical state <strong>of</strong> <strong>the</strong> rock<br />

mass. Temporal trends in seismic event parameters indicate that <strong>the</strong> rockmass passes through five<br />

phases in <strong>the</strong> degradation process (Coulson and Bawden 2008):<br />

1. Crack closure and fracture initiation<br />

2. Fracture interaction<br />

3. Fracture coalescence (yield)<br />

4. Fracture localization (peak)<br />

5. Disassociation (post peak behaviour approaching <strong>the</strong> residual rockmass strength).<br />

Observations by Coulson and Bawden (2008) in several mines in Nor<strong>the</strong>rn Ontario demonstrate<br />

that <strong>the</strong> rock mass immediately surrounding an excavation is in a state <strong>of</strong> permanent strain<br />

(disassociation) and is aseismic. The rock mass fur<strong>the</strong>r from <strong>the</strong> excavation is continually<br />

55


fractured and behaves as a rock mass under pre-peak conditions. Similarly, <strong>the</strong> rock mass in <strong>the</strong><br />

Creighton Deep can be divided into three zones based on <strong>the</strong> characteristics <strong>of</strong> seismicity (Fig.<br />

3.9):<br />

Figure 3.9: Sketch depicting location<br />

<strong>of</strong> (A) Yield Zone, (B) Damage Zone<br />

and (C) Intact Zone. Major principal<br />

stress is oriented East-West<br />

a) Yield Zone<br />

The yield zone occurs adjacent to <strong>the</strong> excavation to <strong>the</strong> north and south. It is <strong>the</strong> result <strong>of</strong> damage<br />

directly incurred by mining. Here <strong>the</strong> rock mass has undergone seismic s<strong>of</strong>tening (sustained<br />

degradation through seismic activity) and is heavily fractured. Progressive damage has resulted in<br />

permanent strain, low stress and has rendered this zone aseismic. The shape <strong>of</strong> <strong>the</strong> damage zone<br />

reflects both <strong>the</strong> shape <strong>of</strong> <strong>the</strong> excavation and <strong>the</strong> stress tensor, in which <strong>the</strong> maximum principal<br />

stress is near-horizontal and oriented east-west.<br />

Little to no seismicity occurs immediately north or south <strong>of</strong> <strong>the</strong> excavation. The rock mass in this<br />

area is less confined and is expected to have been degraded by mining activity, classifying it as <strong>the</strong><br />

Yield Zone. Gravity-driven failure (fall <strong>of</strong> ground) occurs in this region and results from seismic<br />

shaking (Vale Inco, pers. comm., 2009).<br />

56


) Damage Zone<br />

The rock mass in <strong>the</strong> Damage Zone has been progressively weakened by continued seismicity.<br />

This area is subject to high stress and is a zone <strong>of</strong> fracture growth and localization. Rock<br />

undergoing strain s<strong>of</strong>tening has slow rupture velocities and results in small stress releases (small<br />

stress drops), low seismic moments as compared to failure, small energy releases (E o ) and small<br />

apparent stresses (Mendecki, 1997).<br />

Clusters 2 and 3 have seismic event parameters comparable to those expected in <strong>the</strong> Damage<br />

Zone. The rock mass in <strong>the</strong> vicinity <strong>of</strong> clusters 2 and 3 has been progressively degraded by<br />

seismic activity and is assigned to this zone. A series <strong>of</strong> rockbursts associated with unsupported<br />

ground surrounding old ventilation infrastructure contributes to seismicity in Cluster 3 (Vale Inco,<br />

pers. comm., 2009). This approximates post-peak conditions described by Coulson and Bawden<br />

(2008).<br />

c) Intact Zone<br />

The Intact Zone is remote from mining and <strong>the</strong> stress influence <strong>of</strong> <strong>the</strong> excavation. This zone is<br />

subject to background stresses and experiences low rates <strong>of</strong> seismic activity (<strong>the</strong> presence <strong>of</strong><br />

drifts, ramps etc. is not considered in this simplified model). Events occurring beyond <strong>the</strong><br />

nucleation zone have faster rupture velocities and are more energetic (Mendecki, 1997).<br />

Cluster 1 exhibits high seismic parameter values, as expected for <strong>the</strong> Intact Zone. Sustained<br />

seismicity (2000 through 2008) in this area corresponds to mining <strong>of</strong> <strong>the</strong> Plum Orebody (shown as<br />

<strong>the</strong> 6100 Orebody in Figure 2.4) on upper mine levels. An increase in event density in Cluster 1<br />

during <strong>the</strong> 2006-2007 time period corresponds to <strong>the</strong> onset <strong>of</strong> mining in <strong>the</strong> 461 Orebody (shown<br />

in Figure 2.4), which was mined in stopes from <strong>the</strong> 7680 Level to <strong>the</strong> 7755 Sublevel.<br />

57


The increase in event parameter values as compared to background values is associated with <strong>the</strong><br />

state <strong>of</strong> <strong>the</strong> rock mass. It is assumed that <strong>the</strong> rock mass in <strong>the</strong> vicinity <strong>of</strong> Cluster 1 prior to mining<br />

<strong>of</strong> <strong>the</strong> 461 Orebody was in an intact state and is now subject to stress loading. Induced stresses<br />

from <strong>the</strong> onset <strong>of</strong> mining in <strong>the</strong> 461 Orebody (Fig. 2.4A, B) stimulated fracture nucleation, growth<br />

and rupture. Seismicity in this zone represents an active transition from an intact rock mass to a<br />

damaged rock mass. Since this rock mass is remote to <strong>the</strong> main excavation, it has not been<br />

exposed to <strong>the</strong> prolonged induced stress <strong>of</strong> <strong>the</strong> excavation and thus has not yet degraded to <strong>the</strong><br />

state <strong>of</strong> <strong>the</strong> rock mass hosting clusters 2 and 3. This area continues to be a source <strong>of</strong> macroseismic<br />

events.<br />

3.3 Focal Mechanisms<br />

Recorded waveforms from mining-induced events can be utilized to characterize <strong>the</strong> failure mode<br />

at <strong>the</strong> source, known as <strong>the</strong> focal mechanism. Simple shear events can be characterized using<br />

fault plane solutions and more complex events can be described by <strong>the</strong> moment tensor.<br />

Information ga<strong>the</strong>red from <strong>the</strong>se methods can <strong>the</strong>n be used to estimate <strong>the</strong> stress tensor.<br />

3.3.1 Fault Plane Solutions<br />

Fault plane solutions are a graphical representation <strong>of</strong> a fault-slip event and integrate geological<br />

knowledge and seismic signals. Solutions are dependent on <strong>the</strong> polarity <strong>of</strong> P-wave first arrivals<br />

that are recorded at a number <strong>of</strong> stations. The focal mechanism can be represented on a stereonet<br />

(Fig. 3.10) by plotting first arrival polarities and fitting nodal planes to define compressional and<br />

dilatational quadrants. If <strong>the</strong> fault plane is unknown, <strong>the</strong> fault plane solution is ambiguous as two<br />

solution planes exist. Pressure axes (P-axes) are oriented in <strong>the</strong> direction <strong>of</strong> maximum<br />

compression, tension axes (T-axes) are orientated in <strong>the</strong> direction <strong>of</strong> maximum tension and null<br />

axes (B-axes) are oriented along <strong>the</strong> intersection <strong>of</strong> <strong>the</strong> nodal planes. P- and T-axes plot in <strong>the</strong><br />

58


quadrants <strong>of</strong> dilatation and compression, respectively) and are oriented orthogonal to each o<strong>the</strong>r<br />

and 45° to <strong>the</strong> nodal planes (Fig. 3.11; Stein and Wysession, 2003. P- and T-axes approximate<br />

maximum principal stresses, though <strong>the</strong>se can differ significantly if failure occurs along preexisting<br />

structure (Gephart and Forsyth, 1984).<br />

Figure 3.10: Block model <strong>of</strong> a shear-slip event and corresponding focal mechanism and waveforms,<br />

modified from Stein and Wysession, (2003).<br />

Solutions are limited to pure shear event mechanisms only, that is, mechanisms with doublecouple<br />

sources. Double couple (DC) sources have source radiation patterns that can be described<br />

by coupled forces with no net torque (Fig. 3.11; Stein and Wysession, 2003).<br />

Figure 3.11: (Left) coupled forces along fault and auxiliary planes; (middle) paired force couples (doublecouple);<br />

(right) resultant fault plane solution, where shaded quadrants are in compression. Modified from<br />

Stein and Wysession, (2003).<br />

Events involving interaction between more than one fracture, volume change and those having<br />

mixed mechanisms cannot be represented using <strong>the</strong> fault plane solution method (Miller et al.,<br />

1998; Stein and Wysession, 2003). Voids created by mining <strong>of</strong>ten cause extension and thus non-<br />

59


double couple events. As a result, a large number <strong>of</strong> events within <strong>the</strong> mine environment cannot<br />

be characterized with this method but are better represented as a moment tensor. A poor fit <strong>of</strong><br />

fault planes to plotted first arrivals may also arise as a result <strong>of</strong> <strong>the</strong> event being detected by a low<br />

number <strong>of</strong> sensors, poor first polarity picks, source location error or <strong>the</strong> homogeneous velocity<br />

model used by <strong>the</strong> mine. To relate microseismicity to structure, fault plane solutions for<br />

macroseismic and microseismic events corresponding to <strong>the</strong> 7400 Level were generated and<br />

analyzed for common faulting mechanisms.<br />

3.3.1.1 Fault plane solutions for macroseismic events<br />

Although macroseismic events saturate <strong>the</strong> underground network, first arrivals are well recorded<br />

and <strong>the</strong>ir polarities preserved, allowing for fault plane analysis. P-axes, T-axes and nodal planes<br />

were estimated for 93 events with adequate statistical and visual double-couple solutions. Fault<br />

plane solutions and calculated fits were generated using <strong>the</strong> grid search algorithm in <strong>the</strong> program<br />

VFps by <strong>the</strong> Engineering Seismology Group. This method returns <strong>the</strong> best fit (between 0 and<br />

100%) which has <strong>the</strong> least error. Events are located between <strong>the</strong> 7400 Level and 7810 Level but<br />

are mostly confined to <strong>the</strong> south <strong>of</strong> <strong>the</strong> main excavation on <strong>the</strong> 7400 and 7530 Levels. These<br />

occurred during <strong>the</strong> 2006-2007 time span. Plotted P- and T-axes and nodal planes for <strong>the</strong>se events<br />

do not show consistent axes or mechanism types (Fig. 3.12); poles to nodal planes do not form<br />

distinct clusters and no common axes are revealed (Fig. 3.13). A sample <strong>of</strong> fault plane solutions<br />

for macroseismic events corresponding to <strong>the</strong> 7400 Level is shown in Figure 3.14.<br />

60


Figure 3.12: Lower hemisphere equal area stereonet diagram depicting <strong>the</strong> orientation <strong>of</strong> (A) P-axes for<br />

macroseismic fault plane solutions; (B) T-axes for <strong>the</strong> same 96 events.<br />

Figure 3.13: Lower hemisphere equal area stereonet diagram depicting (A) Possible fault planes and (B)<br />

poles to planes for 93 mechanisms (186 planes and poles) for <strong>the</strong> 7400 Level.<br />

61


Figure 3.14: Sample fault plane solutions for macroseismic events corresponding to<br />

<strong>the</strong> 7400 Level, January – December 2007. Grey quadrants represent compression and<br />

white quadrants represent dilatation. Each triangle represents <strong>the</strong> polarity <strong>of</strong> <strong>the</strong> first<br />

arrival at a sensor.<br />

3.3.1.2 Fault plane solutions for microseismic events<br />

Fault plane solutions were generated for 196 microseismic events during <strong>the</strong> 2006 time period,<br />

belonging to <strong>the</strong> 7400 and 7530 Levels. Solution planes and axes for individual events can be<br />

found in Appendix C. The chosen events have low location errors (less than 30 feet), good<br />

statistical fits for fault planes as well as adequate visual fits. Fault plane solutions have an average<br />

fit <strong>of</strong> 77%. Fault plane solutions and calculated fits were generated using <strong>the</strong> program VFps by<br />

<strong>the</strong> Engineering Seismology Group. Discarded events include those that do not fit a doublecouple<br />

solution, events with poor focal sphere coverage and events with poor first polarity picks.<br />

P-axis, T-axis and B-axis attitudes (as shown on Fig. 3.11) plotted on a lower hemisphere<br />

stereonet form broad clusters (Fig. 3.15). Classification <strong>of</strong> failure modes using <strong>the</strong> focal<br />

62


mechanism shows that over 57% <strong>of</strong> <strong>the</strong> events have predominant strike-slip mechanisms (Fig.<br />

3.16) while <strong>the</strong> remaining mechanisms represent ei<strong>the</strong>r primarily reverse, dip-slip or strike-slip<br />

failures. Though fault mechanism types have little meaning in <strong>the</strong> underground environment, mechanism<br />

types show consistency. Strike-slip mechanisms share similar P- and T-axis orientations and have<br />

similar axis clusters as those plotted in Figure 3.15, suggesting slip along favourably oriented<br />

fractures. For such events, P-axes plunge shallowly to <strong>the</strong> west; T-axes trend plunge shallowly to<br />

<strong>the</strong> north; while B-axes are near vertical.<br />

The similarity in axis orientation suggests that while some slip occurs on randomly oriented<br />

fractures, lateral slip preferentially occurs on steeply dipping NNW or ENE striking<br />

discontinuities. No absolute discrimination between <strong>the</strong> fault plane and auxiliary plane can be<br />

made. The strike <strong>of</strong> <strong>the</strong> ENE-oriented fault plane solution is similar to <strong>the</strong> strike <strong>of</strong> <strong>the</strong> 118 Fault<br />

System, though <strong>the</strong> dip direction is opposite. If movement should occur along this ideal fault<br />

plane, <strong>the</strong> solution suggests that motion would be dextral. If strike-slip movement were to occur<br />

along <strong>the</strong> NNW-trending plane, motion would be sinistral. The representative mechanism, plotted<br />

using average P-, B- and T-axis orientations, is shown in Figure 3.17.<br />

63


Figure 3.15: Contoured focal mechanism axes for <strong>the</strong> 7400 and 7530 Level. Lower Hemisphere, Equal<br />

angle plots contain 196 points. (A) Contoured P-axes; (B) contoured B-axes; (C) and contoured T- axes.<br />

64


Figure 3.16: Classification <strong>of</strong> principal event mechanism type, levels 7400 and 7530.<br />

Figure 3.17: Approximate representative focal plane solution and corresponding fault plane solution<br />

kinematics based on average P-, B- and T-axis orientations. Shaded quadrants represent compression and<br />

white quadrants represent dilatation.<br />

65


Axes for event clusters 1 and 2 are presented for comparison in Figures 3.18 and 3.19. T-axes for<br />

Cluster 1 events have similar trends but steeper dips, while B-axis trends vary in orientation from<br />

NNE-trending and with shallow plunges to near-vertical.<br />

3.3.1.3 Fault Plane Solution Discussion<br />

Event mechanisms do not show a direct correlation to mine-scale faults. Event mechanism types<br />

are distributed over <strong>the</strong> study area (Fig. 3.20) and do not cluster or align with individual faults.<br />

The distribution <strong>of</strong> event mechanism types thus does not allow <strong>the</strong> neokinematics <strong>of</strong> specific faults<br />

to be determined and does not suggest fault activity.<br />

Microseismic event mechanisms show consistency in P- and T-axis orientations, suggesting<br />

reactivation <strong>of</strong> preferentially oriented fractures. Lack <strong>of</strong> consistency in macroseismic event<br />

solutions suggests that failure does not localize along shear zones in <strong>the</strong> Creighton Deep. This<br />

inconsistency instead indicates more variation in <strong>the</strong> geometry <strong>of</strong> failure surfaces. Alternatives to<br />

fault-slip are proposed:<br />

<br />

Macroseismic events may embody <strong>the</strong> breaking <strong>of</strong> asperities between existing fractures or<br />

weak zones. This can occur along variably oriented pathways and in different faulting<br />

styles.<br />

<br />

Joints and preexisting fractures in <strong>the</strong> rock mass may interact to form a slip radius<br />

sufficiently large to accommodate large magnitude events.<br />

Coulson (1996) postulated that slip between <strong>the</strong> 6600 and 7200 Levels in Creighton Mine<br />

occurred along networked joint planes ra<strong>the</strong>r than on faults. Coulson (1996) concluded that<br />

seismicity in <strong>the</strong> Creighton Deep is related to <strong>the</strong> rock mass joint fabric and is <strong>the</strong> result <strong>of</strong><br />

mining-induced stresses.<br />

66


Figure 3.18: Contoured P-axis, B-axis and T-axis orientations for events within Cluster 1.<br />

67


Figure 3.19: Contoured P-axis, B-axis and T-axis orientations for events within Cluster 2.<br />

68


Figure 3.20: Distribution <strong>of</strong> double-couple event mechanism types on <strong>the</strong> 7400 Level.<br />

In conducting fault plane solution analysis, a number <strong>of</strong> events were discarded that did not have<br />

adequate statistical or visual fits. Failure to fit a double-couple solution can be a result <strong>of</strong> ei<strong>the</strong>r<br />

(or both) <strong>the</strong> fault plane solution method or <strong>the</strong> physical failure process. Poor solution fits can be<br />

a result <strong>of</strong> poor focal sphere coverage, poor first arrival picks, uncertainty in first arrival polarities<br />

or insufficient polarity information (Urbancic and Young, 1995).<br />

Poor solution fits can also be obtained if <strong>the</strong> solutions do not have a double-couple solution. Nondouble-couple<br />

solutions are a result <strong>of</strong> <strong>the</strong> physical failure process and occur when <strong>the</strong> moment<br />

tensor contains components o<strong>the</strong>r than pure shear, such as volume change. Blasts, for example,<br />

cause large volumetric changes and result in non-double-couple mechanisms. Deviations from <strong>the</strong><br />

double-couple solution are expected in <strong>the</strong> mining environment since a number <strong>of</strong> free surfaces<br />

exist along which fractures can interact during failure. Intersections <strong>of</strong> fractures and openings,<br />

complex interactions between fractures as well as closely spaced failures in time and space are<br />

69


expected to be responsible for a large number <strong>of</strong> non-double-couple mechanisms observed in<br />

Creighton Mine.<br />

3.4 Stress Tensor Inversion<br />

P-, T- and B-axes derived from focal mechanisms can be used as a crude approximation to<br />

principal stress orientations. Axes represent <strong>the</strong> ideal stress orientations for a given solution. In<br />

<strong>the</strong> presence <strong>of</strong> preexisting fractures, <strong>the</strong> maximum principal stresses may differ significantly<br />

from P- and T-axes and be oriented elsewhere in compressional and dilatational quadrants<br />

(Gephart and Forsyth, 1984). Indeed in Creighton Mine faults and fractures are oriented obliquely<br />

to principal stress directions, which may cause <strong>the</strong> P-, T- and B-axes to differ from principal stress<br />

orientations.<br />

One way to resolve <strong>the</strong> local stress tensor is through stress tensor inversion. Inversion was done<br />

with s<strong>of</strong>tware developed by Gephart (1990). Details <strong>of</strong> <strong>the</strong> inversion method are described in<br />

Gephart and Forsyth (1984) and <strong>the</strong> program is presented in Gephart (1990). The s<strong>of</strong>tware makes<br />

use <strong>of</strong> P- and T-axis measurements and compares different solutions to find <strong>the</strong> best fit between<br />

<strong>the</strong> predicted model and actual data with minimal error.<br />

P- and T-axes from 95 focal mechanisms for events located in proximity to <strong>the</strong> 7400 Level were<br />

used for inversion. Results from this inversion indicate that <strong>the</strong> maximum principal stress is near<br />

horizontal and oriented E-W and <strong>the</strong> minimum principal stress trends SSE and has a moderate<br />

plunge (Fig. 3.20). The best model was that with a minimum misfit <strong>of</strong> 10.62º (Fig. 3.21). The<br />

parameter R ranges between 0 and 1 and is defined as:<br />

<br />

<br />

2 1<br />

R (Gephart and Forsyth, 1984). (Equation 3.2)<br />

3<br />

1<br />

70


This parameter reflects <strong>the</strong> magnitude <strong>of</strong> intermediate principal stress relative to <strong>the</strong> maximum or<br />

minimum principal stress (Bellier and Zoback, 1995). As <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong> intermediate<br />

principal stress approaches that <strong>of</strong> <strong>the</strong> maximum principal stress, R approaches 0 and is indicative<br />

<strong>of</strong> an extensional stress regime; as it approaches <strong>the</strong> minimum principal stress, R approaches 1 and<br />

<strong>the</strong> rock is increasingly confined, indicative <strong>of</strong> a compressional regime (Bellier and Zoback, 1995;<br />

Bellier et al., 1997). Inversion for events on <strong>the</strong> 7400 Level yields R = 0.5 which indicates pure<br />

strike-slip failure.<br />

Stress orientations are comparable to <strong>the</strong> regional stress tensor, discussed in section 3.4.1. Stress<br />

inversion was also performed for localized clusters <strong>of</strong> events, Cluster 1 and Cluster 2, as<br />

previously defined. This was conducted using <strong>the</strong> exact solution method (described in Gephart<br />

and Forsyth, 1984) and a two-degree grid to identify perturbations in <strong>the</strong> local stress field where<br />

dense seismicity occurs. Cluster 3 was omitted from analysis due to insufficient data. Principal<br />

stresses for Cluster 2 approximate those for <strong>the</strong> 7400 Level stress inversion and <strong>the</strong> regional stress<br />

(Fig. 3.22). Principal stresses for Cluster 1, however, differ significantly from <strong>the</strong> regional stress.<br />

The inversion results with <strong>the</strong> minimal misfit identify a steeply-plunging maximum principal<br />

stress and a near-horizontal minimum principal stress (Fig. 3.23). An additional minimum<br />

principal stress axis that trends north is also identified. A second stress inversion for Cluster 1<br />

events (Fig. 3.24) shows two distinct stress orientations, though this solution has a slightly higher<br />

misfit from <strong>the</strong> previous solution (8.12 o , as compared to 7.63 o ). R parameter values for Cluster 1<br />

<strong>of</strong> 0.05 and 0.10, respectively, demonstrate that <strong>the</strong> rock mass is under extension (uniaxial<br />

eccentric compression). Rotation <strong>of</strong> <strong>the</strong> stress tensor in proximity to Cluster 1 may be responsible<br />

for high magnitude, high energy events, though <strong>the</strong> cause for this change is unclear.<br />

71


Figure 3.21: Results <strong>of</strong> focal mechanism stress inversion for 95 events around <strong>the</strong> 7400 Level. Numbered<br />

results correspond to maximum principal stresses (1 = sigma 1).<br />

Figure 3.22: Stress inversion for Cluster 2 focal mechanisms.<br />

72


Figure 3.23: Preliminary stress inversion for Cluster 1 focal mechanisms.<br />

Figure 3.24: Secondary stress inversion for Cluster 1 focal mechanisms.<br />

73


3.4.1 Stress Tensor Discussion<br />

The estimated maximum principal stress orientations are comparable to regional stress<br />

orientations as measured in Creighton Mine (Cochrane, 1991) and to <strong>the</strong> calculated stress tensor<br />

(Coulson, 1996; Bawden and Coulson, 1993). A comparison <strong>of</strong> stress orientations is shown in<br />

Table 3.4 and spatial relationships are displayed in Figure 3.25.<br />

Table 3.4: Comparison <strong>of</strong> maximum principal stress orientations from various sources<br />

Source<br />

σ-1 σ-2 σ-3<br />

Trend Plunge Trend Plunge Trend Plunge<br />

Calculated Stress Tensor 281 20 018 17 145 63<br />

Coulson, 1996<br />

Measured Stress, 7000 L, 270 20 013 32 152 51<br />

Cochrane, 1991<br />

Inversion Results<br />

265 18 007 33 151 51<br />

(7400 L, Misfit 10.62)<br />

The close proximity <strong>of</strong> principal stress orientations indicates that <strong>the</strong> local stress tensor<br />

responsible for induced failures within Creighton Mine is compatible with <strong>the</strong> regional stress<br />

tensor. Individual stress measurements however show considerable variation in orientation (Fig.<br />

3.26). The exception is <strong>the</strong> events located in Cluster 1.<br />

74


Figure 3.25: Equal area stereonet showing proximity <strong>of</strong> principal stress<br />

orientations calculated from fault plane solutions to stress orientations derived<br />

from measured and calculated stresses, as summarized in Table 3.4.<br />

Figure 3.26: Stress measurements as reported by Bawden and Coulson (1993). Data is taken from levels<br />

6800 and 7000 and includes 3 CSIR (Council for Scientific and Industrial Research) triaxial cell<br />

measurements; 3 CSIRO (Commonwealth Scientific and Industrial Research Organization) hollow<br />

inclusion cell measurements; 1 biaxial strain rosette (doorstopper) measurement.<br />

75


Although principal stress axes can vary significantly from P-, B- and T-axes, similarities exist<br />

between axis orientations.<br />

The maximum principal stress orientation agrees with P-axis<br />

orientations (Fig. 3.27A). The intermediate and minimum principal stresses also align with focal<br />

mechanism T- and B-axes. The intermediate stress, however, corresponds to <strong>the</strong> orientation <strong>of</strong> <strong>the</strong><br />

T-axis, and <strong>the</strong> minimum principal stress with null axis (Fig. 3.27B, C).<br />

A near-horizontal maximum principal stress and near-vertical minimum principal stress should, by<br />

Andersonian fault <strong>the</strong>ory (Anderson, 1951), produce reverse faults. New failures would be<br />

expected to exhibit reverse-sense kinematics. Indeed shallow fractures were observed to have<br />

reverse displacement along later fractures that intersect or displace shear zones and zones <strong>of</strong> high<br />

strain (as discussed in Chapter 2). However, strike-slip mechanisms predominate, producing<br />

mechanisms with different axis orientations. Strike-slip ruptures are also much more favourable<br />

given <strong>the</strong> steep fault geometry and attitude with respect to <strong>the</strong> stress tensor. Strike slip failures<br />

along steeply-dipping faults in Creighton Mine have been noted by Cochrane (1991).<br />

Strike-slip failures in Sudbury mines in a reverse regime were also observed by McKinnon<br />

(2006), who proposed that late stage faults subject to seismicity are in a state <strong>of</strong> critically stability.<br />

Minor perturbations (e.g., mining-induced stress changes such as blasts) can cause instabilities<br />

remote to openings. Given <strong>the</strong> variability in principal stress orientation and close proximity<br />

between measured intermediate and minimum stress magnitudes, small perturbations (reduction in<br />

sigma-2, increase in sigma 3 or both) could indeed cause strike-slip failure in an overall reverse,<br />

pre-mining stress regime.<br />

76


Figure 3.27: (A) Maximum principal stress orientations derived from stress inversion superimposed on<br />

contoured P-axis measurements for all 7400 Level events; (B) Sigma-2 orientations, superimposed on<br />

contoured B-axis measurements; and (C) orientations for Sigma-3, superimposed on contoured T-axis<br />

measurements for <strong>the</strong> same events.<br />

77


Chapter 4<br />

Modelling Stress in <strong>the</strong> Creighton Deep<br />

4.1 Introduction<br />

Stress in <strong>the</strong> mine environment results from a superposition <strong>of</strong> regional tectonic stresses, local<br />

stress induced by mining geometry and material extraction and is also influenced by <strong>the</strong> presence<br />

<strong>of</strong> geological structures and differences in material properties. It is impossible to model exact<br />

stress conditions within a mine because <strong>of</strong> <strong>the</strong> complex nature <strong>of</strong> rock and <strong>the</strong> unknown state <strong>of</strong><br />

<strong>the</strong> pre-mining stress conditions. However, simplified constitutive models with specified material<br />

properties, initial and boundary conditions allow for insight into more complex rock mass and<br />

fault behaviour.<br />

Numerical stress analysis models <strong>of</strong> <strong>the</strong> 7400 Level at Creighton Mine were used to provide<br />

insight into:<br />

<br />

<br />

<br />

<strong>the</strong> influences <strong>of</strong> mining geometry and structure on stress distribution in <strong>the</strong> mine;<br />

<strong>the</strong> extent <strong>of</strong> <strong>the</strong> yield zone surrounding <strong>the</strong> excavation;<br />

and <strong>the</strong> amount <strong>of</strong> induced displacement along faults.<br />

The sensitivity <strong>of</strong> modelled results was assessed by varying <strong>the</strong> fault strength, selectively<br />

weakening faults based on geological insight and by changing boundary stress conditions. In<br />

doing so, constraints were placed on existing stress conditions. The ultimate goal <strong>of</strong> <strong>the</strong> numerical<br />

modelling is to compare modelled stress with observed seismicity and integrate geological<br />

knowledge <strong>of</strong> <strong>the</strong> rock mass, in order to develop an understanding <strong>of</strong> <strong>the</strong> influence <strong>of</strong> <strong>the</strong><br />

structural system in <strong>the</strong> Creighton Deep on seismic behaviour.<br />

78


4.2 Numerical Methods<br />

Phase 2 and Universal Distinct Element Code (UDEC) are two numerical stress analysis packages<br />

that were used to model and simulate stress on <strong>the</strong> 7400 Level. Phase 2 , developed by Rocscience<br />

(Rocscience Inc., 2005), is a continuum code that employs <strong>the</strong> finite element method. Using this<br />

program <strong>the</strong> model is discretized into a mesh <strong>of</strong> triangular elements and nodes (Fig. 4.1). When<br />

boundary conditions are applied, displacements are computed at each node. The displacements<br />

within elements are used to calculate strains for each element. Strain is <strong>the</strong>n translated into stress,<br />

integrating rockmass properties (Pande et al., 1990). The behaviour <strong>of</strong> both <strong>the</strong> continuum and<br />

discontinuities in this <strong>the</strong>sis is assumed to be governed by Mohr-Coulomb failure criteria.<br />

UDEC, developed by Itasca Consulting Group, Inc. (2000), is a<br />

discontinuum code that employs <strong>the</strong> distinct element method. A<br />

discontinuum model differs from <strong>the</strong> continuum model in that <strong>the</strong><br />

Figure 4.1: Schematic<br />

diagram <strong>of</strong> triangular<br />

elements and nodes.<br />

model is defined by contacts and interfaces that separate rigid and/or<br />

deformable blocks (Cundall and Hart, 1992; Hart, 2003). UDEC<br />

models use a continuum mesh inside blocks. Contacts are allowed to<br />

interact and deform (Jing, 2003).<br />

Unlike <strong>the</strong> finite element method, <strong>the</strong> UDEC model allows for<br />

evolving contact conditions. The model proceeds through a series <strong>of</strong> time steps – a feed-forward<br />

process where results from <strong>the</strong> previous iterations are used for <strong>the</strong> next. UDEC works by applying<br />

<strong>the</strong> force-displacement law at contacts and formulating and solving equations <strong>of</strong> motion<br />

(Newton’s second law) for <strong>the</strong> defined blocks (Hart, 2003). Using block properties, forces and<br />

displacements are translated into stress and strain for each bock. As strain is accumulated, <strong>the</strong>se<br />

quantities are recalculated and used as inputs for <strong>the</strong> next time step. As <strong>the</strong> model progresses, it<br />

recognizes block rotation, sliding contacts, block detachment and new interfaces between blocks<br />

79


(Cundall and Hart, 1992). This allows for <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> medium as well as <strong>the</strong><br />

discontinuities to be modelled. Like Phase 2 , unbalanced forces must be reduced for <strong>the</strong> model to<br />

reach equilibrium. In this study, rock mass and fault behaviour is represented by a Mohr-<br />

Coulomb constitutive model. Since <strong>the</strong> Creighton Deep is pervasively faulted, discontinuum<br />

models were used in preference to continuum models and are discussed in this chapter. A<br />

discussion <strong>of</strong> Phase 2 models can be found in Appendix D.<br />

4.3 Model Input Parameters<br />

Pre-mining stress and model geometry are <strong>the</strong> main factors that influence <strong>the</strong> elastic model<br />

response. In plastic models, this and rock strength are an integral part <strong>of</strong> <strong>the</strong> rock mass response.<br />

Accurate geometry, stresses and strength parameters are thus required for models. The<br />

determination <strong>of</strong> <strong>the</strong>se parameters is outlined in this section.<br />

4.3.1 Elastic and Plastic Models<br />

Both elastic and plastic models were developed for <strong>the</strong> 7400 Level. Elastic models have a linear<br />

response to stress such that deformation is recoverable (Fig. 4.2). Beyond <strong>the</strong> elastic limit, plastic<br />

models cannot accommodate additional stress. At this point, tractions are reduced until <strong>the</strong> rock<br />

mass responds by deforming in a non-recoverable manner (yields) and stress is transferred to<br />

surrounding rock (Duncan Fama, 1993; Falmagne, 2001, Wiles, 2006). This behaviour cannot be<br />

simulated using elastic models and thus elasto-plastic models are required. In such models, this<br />

behaviour is achieved through rock mass yielding or slip on faults, if <strong>the</strong>y are present. In <strong>the</strong><br />

numerical modeling packages, when stress within an element exceeds <strong>the</strong> failure criteria, <strong>the</strong><br />

element yields and stress is transferred to surrounding elements (Duncan Fama, 1993; Wiles,<br />

2006).<br />

80


Stress-strain relationships are useful for describing <strong>the</strong> rock mass response on <strong>the</strong> 7400 Level.<br />

Remote to <strong>the</strong> excavation, rock is confined and considered to respond elastically to loading stress.<br />

In proximity to <strong>the</strong> main excavation where low confinement conditions exist, <strong>the</strong> rock is expected<br />

to behave as a plastic material when subject to continued loading. This process is nearly aseismic.<br />

The transition from an elastic to a plastic state is determined by <strong>the</strong> material or fault constitutive<br />

model, based on <strong>the</strong> relationship between stress, strain and <strong>the</strong> failure criteria.<br />

Figure 4.2: The stress versus strain model for an elastic, perfectly plastic material.<br />

4.3.2 Model Constituents and Input Parameters<br />

The model geometry is based on <strong>the</strong> 7400 Level geometry obtained from plans provided by<br />

Creighton Mine and consists <strong>of</strong> three parts (Fig. 4.3):<br />

1. An excavation;<br />

2. <strong>the</strong> rock mass surrounding <strong>the</strong> excavation; and<br />

3. faults intersecting <strong>the</strong> rock mass.<br />

81


A<br />

B<br />

Figure 4.3: (A) Complete model geometry; (B) excavation and fault geometry within inner box in (A) is<br />

shown with labeled discontinuities and excavation. The area outside <strong>the</strong> inner box in (A) is subject to<br />

boundary effects. SZ = shear zone.<br />

The excavation on <strong>the</strong> 7400 Level consists <strong>of</strong> backfilled and unfilled stopes and sills. These are<br />

modelled as one large void. This can be done under <strong>the</strong> assumption that backfill has little loadbearing<br />

capacity and stiffness compared to <strong>the</strong> surrounding rock mass and thus can be ignored in<br />

<strong>the</strong> models. Drifts and small excavations remote from <strong>the</strong> main excavation have been omitted to<br />

simplify <strong>the</strong> level model, as <strong>the</strong>y have negligible effect on <strong>the</strong> mine-scale stress field.<br />

Strength parameters for <strong>the</strong> medium surrounding <strong>the</strong> excavation reflect rock mass quantities ra<strong>the</strong>r<br />

than laboratory values for intact rock, which overestimate strength (Pande et al., 1990; Schultz,<br />

1996). These rock mass parameters (summarized in Table 4.1), except where noted, were taken or<br />

calculated from estimates made by Coulson (1996) for footwall rocks in Creighton Mine. Values<br />

for normal and shear stiffness have been increased from calculated values to prevent contact<br />

overlap. The boundaries <strong>of</strong> <strong>the</strong> model, and thus <strong>the</strong> medium, are created far from <strong>the</strong> excavation.<br />

This ensures that modelled stress around <strong>the</strong> excavation is free from edge effects that result from<br />

<strong>the</strong> modelling process.<br />

82


Rock mass failure is governed by <strong>the</strong> Mohr-Coulomb failure envelope (Fig. 4.4). The envelope is<br />

defined by <strong>the</strong> equation,<br />

τ = σ n tan(Ф) + C, (Equation 4.1)<br />

where<br />

τ = <strong>the</strong> resolved shear stress,<br />

σ n = <strong>the</strong> normal stress,<br />

C = <strong>the</strong> cohesion, and<br />

Ф = <strong>the</strong> angle <strong>of</strong> internal friction.<br />

Both cohesion and <strong>the</strong> angle <strong>of</strong> internal friction are specified in each model. Parameters are<br />

consistent for <strong>the</strong> rock mass and are varied for <strong>the</strong> discontinuities.<br />

Field <strong>of</strong><br />

Failure<br />

Field <strong>of</strong><br />

Stability<br />

Figure 4.4: Mohr circle and Mohr-Coulomb failure envelope defined by cohesion and angle <strong>of</strong> internal<br />

friction (Ф).<br />

Shear zones, which dissect <strong>the</strong> rock mass, are generally schistose as compared to <strong>the</strong>ir granitic<br />

host rock. These are modeled as discontinuities with lower strength than <strong>the</strong> surrounding rock<br />

mass (Table 4.1). The geometry <strong>of</strong> <strong>the</strong> shear zones is simplified. The model assumes that shear<br />

83


zones are planar in geometry, are <strong>of</strong> uniform strength and are laterally continuous beyond <strong>the</strong><br />

limits <strong>of</strong> <strong>the</strong> mine, though in reality shears may be discontinuous and have variable orientations<br />

and properties.<br />

Table 4.1: Rock mass and discontinuity model properties<br />

Rock mass Properties<br />

Discontinuity Properties<br />

Property Value Property Value Range<br />

Cohesion (C) 10 MPa Cohesion (C) 0-10 MPa<br />

Friction Angle (Φ) 35° Friction Angle (Φ) 10-35°<br />

Density † (ρ) 2965 kg/m 3 Normal Stiffness †† 700,000 MPa/m<br />

Young’s Modulus (E) 35 GPa Shear Stiffness †† 99,400 MPa/m<br />

Poisson Ratio (υ) 0.263 Tensile Strength 0-10 MPa<br />

Bulk Modulus * (K) 24,613 MPa<br />

Shear Modulus * (G) 13,856 MPa σ 1 (E-W) ††† –102.7 MPa<br />

σ 3 (N-S) †††<br />

–73.4 MPa<br />

*<br />

Calculated<br />

†<br />

Density from Tulk (2001)<br />

††<br />

Stiffness values increased to prevent contact overlap in UDEC<br />

†††<br />

Maximum and minimum stresses (in plane) calculated from overcoring measurements<br />

Two different approaches are used to load <strong>the</strong> model once <strong>the</strong> geometry, properties <strong>of</strong> <strong>the</strong> material<br />

and discontinuities are specified<br />

1. A homogeneous stress field was initiated within <strong>the</strong> model and at <strong>the</strong> boundaries<br />

2. Incremental displacements were used to syn<strong>the</strong>size tectonic loading<br />

Methods and results for both loading methods are discussed in <strong>the</strong> following sections. Boundary<br />

conditions for both models are depicted in Figure 4.5.<br />

Staged models were also created to better understand <strong>the</strong> effect <strong>of</strong> mining on <strong>the</strong> stress field and<br />

induced fault slip. This allowed <strong>the</strong> rock mass and faults to come to equilibrium without an<br />

excavation. UDEC code for <strong>the</strong> models used in this research can be found in Appendix E.<br />

84


Figure 4.5: (A) Model for tectonic loading. North, south and eastern boundaries are constrained such that<br />

motion perpendicular to <strong>the</strong> plane is restricted. A small eastward boundary velocity, ∆v, is applied to <strong>the</strong><br />

western model boundary. (B) A homogeneous stress field is applied at <strong>the</strong> boundaries. All sides are<br />

restrained such that motion perpendicular to <strong>the</strong> plane is restricted.<br />

4.4 Modelling with a Homogeneous Stress Field<br />

When a homogeneous stress field is applied, boundary stresses are specified such that σ 1 is<br />

oriented east-west and σ 3 is oriented north-south. Models were initiated with internal stresses set<br />

equal to <strong>the</strong> boundary stress conditions. Three cases are presented for <strong>the</strong> same model geometry to<br />

test <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> solution to changes in fault strength and boundary conditions.<br />

4.4.1 Case 1: Variable fault strength parameters<br />

In <strong>the</strong> first case, all faults within <strong>the</strong> model are considered to have <strong>the</strong> same properties regardless<br />

<strong>of</strong> geology. Four fault strength conditions are tested (Table 4.2). 1) The locked condition<br />

indicates that faults are strong, healed and inactive; 2) <strong>the</strong> strong fault condition indicates that<br />

faults are strong and cohesive, yet still weaker than <strong>the</strong> rock mass; 3) <strong>the</strong> moderately strong<br />

condition implies that faults have previously slipped and have lost cohesion; 4) and lastly, <strong>the</strong><br />

85


weak fault condition represents a reasonable failure band fault strength used to examine <strong>the</strong> effect<br />

<strong>of</strong> very weak faults.<br />

Both elastic and plastic models are tested under <strong>the</strong>se conditions. For all fault conditions, <strong>the</strong><br />

model is subjected to a compressive stress field where σ 1 = –102.7 MPa and σ 3 = –73.4 MPa.<br />

Stress magnitudes are based on stress estimates for <strong>the</strong> 7400 Level, derived from overcoring stress<br />

measurements made by Creighton Mine. The negative sign convention in UDEC indicates<br />

compressive stress.<br />

Table 4.2: Fault parameters tested for Case 1.<br />

Fault Condition<br />

Cohesion Friction<br />

(MPa) Angle (º)<br />

Locked 50 50<br />

Strong 5 35<br />

Moderately Strong 0 35<br />

Weak 0 20<br />

Both elastic and plastic models for maximum stress, differential stress, slip, and yielding produce<br />

similar results. The locked fault condition produces low maximum and differential stresses<br />

immediately to <strong>the</strong> north and south <strong>of</strong> <strong>the</strong> excavation. Fur<strong>the</strong>r from <strong>the</strong> excavation, high stresses<br />

form a ring around <strong>the</strong> excavation. As <strong>the</strong> cohesion is lowered at a constant friction angle, from<br />

<strong>the</strong> strong to <strong>the</strong> moderately strong model, maximum stress (Fig. 4.6) and differential stress (Fig.<br />

4.7) is enhanced to <strong>the</strong> south and sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation and diminished to <strong>the</strong> southwest <strong>of</strong><br />

<strong>the</strong> excavation. When <strong>the</strong> friction angle is very low (<strong>the</strong> weak fault case), stress is diminished to<br />

<strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation and high stresses are pushed far<strong>the</strong>r outwards away from <strong>the</strong><br />

excavation. Yielding in <strong>the</strong> plastic models aligns with <strong>the</strong> strike <strong>of</strong> <strong>the</strong> 118 System shear zones<br />

and fur<strong>the</strong>r slip is induced along shear zones in proximity to <strong>the</strong> excavation.<br />

86


The zero cohesion and low friction value (20°) condition is considered too weak to produce a<br />

realistic stress distribution. In this instance, <strong>the</strong> shear zones are weak enough to accommodate slip<br />

but <strong>the</strong> resulting magnitude <strong>of</strong> stress to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation is diminished, whereas high<br />

stress is expected based on <strong>the</strong> occurrence <strong>of</strong> seismicity.<br />

East-west striking shear zones as well as <strong>the</strong> Footwall Shear Zone have negligible influence on<br />

stress distribution. The 1290 Shear Zones (and 400-East Shear Zone which is not represented in<br />

<strong>the</strong> model) strikes parallel to <strong>the</strong> far field stress and is thus not favourably aligned with <strong>the</strong> stress<br />

field to slip. Southwest-striking shear zones have <strong>the</strong> greatest impact on stress distribution; this<br />

system acts to redirect stress such that trends <strong>of</strong> high stress to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation show<br />

alignment with <strong>the</strong> strike <strong>of</strong> <strong>the</strong> shear zones. This effect is enhanced with lower fault strength,<br />

though <strong>the</strong> magnitude <strong>of</strong> stress surrounding <strong>the</strong> excavation is reduced when faults are very weak.<br />

Displacement occurs along <strong>the</strong> Plum and Return Air Raise Shear Zones as right-lateral slip and is<br />

enhanced at low friction angles (Fig. 4.8). The plastic model exhibits tensile failure <strong>of</strong> <strong>the</strong> rock<br />

mass in proximity to <strong>the</strong> excavation with past and current yielding far<strong>the</strong>r from <strong>the</strong> excavation<br />

(Fig. 4.9). In <strong>the</strong> strong and moderately strong cases yielding begins to localize along<br />

discontinuities. This effect is enhanced with lower fault strength. Stress trajectories for elastic<br />

and plastic models show a flow <strong>of</strong> stress around <strong>the</strong> excavation with little disturbance in <strong>the</strong> stress<br />

field near faults (see Appendix D). Stress orientations to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation are<br />

conformable to <strong>the</strong> regional stress inversion presented in <strong>the</strong> previous chapter.<br />

87


Figure 4.6: Model <strong>of</strong> maximum principal stress for Case 1 for (A) elastic model and (B) plastic model.<br />

Faults are assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.7: Model <strong>of</strong> differential stress for Case 1 for (A) elastic model and (B) plastic model. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.8: Model <strong>of</strong> fault slip for Case 1 for (A) elastic model and (B) plastic model. Faults are assigned<br />

a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

88


Figure 4.9: Model <strong>of</strong> yielding for Case 1 for (A) elastic model and (B) plastic model. Faults are assigned a<br />

cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

4.4.2 Case 2: Variable Fault Strength by Shear Zone Family<br />

Case 2 considers families <strong>of</strong> structures that have different strength parameters based on<br />

underground observation (Table 4.3). Shear zones that are associated with increased seismicity<br />

and increased reinforcement with visible damage to mesh and/or shotcrete, indicating<br />

displacement, are assigned low strength parameters. Shear zones that are exposed with visible<br />

damage but have seemingly little seismic influence are assigned intermediate strength parameters<br />

and those with no visible damage or association with seismicity are assigned high strength<br />

parameters.<br />

The model is subjected to <strong>the</strong> standard compressive stress field where<br />

σ 1 = -102.7 MPa, oriented E–W, and σ 3 = –73.4 MPa, oriented N–S. As in Case 1, stress<br />

magnitudes are based on estimates for <strong>the</strong> 7400 Level from overcoring stress measurements made<br />

by Creighton Mine.<br />

89


Fault Family<br />

Table 4.3: Strength parameters assigned to shear families for Case 2.<br />

Cohesion<br />

(MPa)<br />

Friction<br />

Angle (º)<br />

Geological Description<br />

E–W-striking shears 5 35 No seismicity or damage<br />

and splays<br />

Footwall Shear 0 35 No Seismicity but visible<br />

damage<br />

SW-striking shears 0 20 Associated seismicity,<br />

damage and/or reinforcement<br />

necessary<br />

The southwest-striking fault system is interpreted to be <strong>the</strong> weakest (Table 4.3). As found in Case<br />

1, this fault system has <strong>the</strong> most influence on <strong>the</strong> stress field; <strong>the</strong> east-west striking shear zones<br />

and <strong>the</strong> Footwall Shear Zone show little influence.<br />

There is little difference between <strong>the</strong> modelled results for Case 2 and Case 1. Model results can<br />

be found in Appendix D. The moderately strong fault condition produces a realistic stress<br />

distribution. In both plastic and elastic models, low stresses occur adjacent to <strong>the</strong> excavation and<br />

high stresses (Fig. 4.10) and high differential stresses (Fig. 4.11) align with SW-striking shear<br />

zones to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation. Right-lateral displacement is induced along <strong>the</strong> Plum and<br />

<strong>the</strong> Return Air Raise Shear Zones in this area (Fig. 4.12). In <strong>the</strong> plastic model, damage shows<br />

some alignment with <strong>the</strong> SW-striking shear zones to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation (Fig. 4.13).<br />

Figure 4.10: Model <strong>of</strong> maximum stress for Case 2 for (A) elastic model and (B) plastic model. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

90


Figure 4.11: Model <strong>of</strong> differential stress for Case 2 for (A) elastic model and (B) plastic model. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.12: Model <strong>of</strong> fault slip for Case 2 for (A) elastic model and (B) plastic model. Faults are assigned<br />

a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

Figure 4.13: Model <strong>of</strong> yielding for Case 2 for (A) elastic model and (B) plastic models. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

91


4.4.3 Case 3: Increased Principal Stress Ratio<br />

Case 3 considers <strong>the</strong> effect <strong>of</strong> increasing <strong>the</strong> principal stress ratio, k = σ 1 /σ 3 . The minimum<br />

principal stress, σ 3 , was lowered such that <strong>the</strong> far-field stress was increased from k=1.4 to k=2<br />

(note that σ 2 is oriented out-<strong>of</strong>-plane). This was done to test <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> faults to<br />

boundary conditions, by increasing <strong>the</strong> shear loading on faults to induce slip. Both elastic and<br />

plastic models under this condition are assigned <strong>the</strong> variable properties summarized in Table 4.2.<br />

Modifying <strong>the</strong> principal stress ratio has <strong>the</strong> effect <strong>of</strong> only slightly modifying <strong>the</strong> stress distribution<br />

from that observed in Case 1. The moderately strong fault model is shown in Figures 4.17 and<br />

4.18. Observations from Case 3 include:<br />

• High maximum and differential stresses align with SW-striking shear zones to <strong>the</strong> south <strong>of</strong> <strong>the</strong><br />

excavation (Figs. 4.14 and 4.15).<br />

• Right-lateral displacement is induced along <strong>the</strong> Plum and Return Air Raise Shear Zones to <strong>the</strong><br />

south <strong>of</strong> <strong>the</strong> excavation in <strong>the</strong> elastic case and solely along <strong>the</strong> Plum Shear Zone in <strong>the</strong> plastic<br />

case (Fig. 4.16).<br />

• Plastic yielding occurs along SW-striking shear zones and is enhanced along splay structures,<br />

linking <strong>the</strong> Fresh Air Raise and Plum Shear Zones in <strong>the</strong> plastic model (Fig. 4.17).<br />

92


Figure 4.14: Model <strong>of</strong> maximum stress for Case 3 for (A) elastic model and (B) plastic model. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.15: Model <strong>of</strong> differential stress for Case 3 for (A) elastic model and (B) plastic model. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.16: Model <strong>of</strong> fault slip for Case 3 for (A) elastic model and (B) plastic model. Faults are assigned<br />

a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

93


Figure 4.17: Model <strong>of</strong> yielding for Case 3 for (A) elastic model and (B) plastic models. Faults are<br />

assigned a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

4.5 Tectonic Loading Model<br />

In <strong>the</strong> case <strong>of</strong> <strong>the</strong> tectonically loaded model, elements are assigned a hydrostatic stress field with a<br />

value between <strong>the</strong> far-field maximum and minimum principal stresses, σ 1 and σ 3 . The north, south<br />

and east sides <strong>of</strong> <strong>the</strong> model are restrained, preventing movement normal to <strong>the</strong> boundary. It is<br />

loaded by applying an infinitesimal inward velocity to <strong>the</strong> free boundary to simulate tectonic<br />

loading, as depicted in Figure 4.5. The advantage <strong>of</strong> <strong>the</strong> tectonic model is that <strong>the</strong>re is a continual<br />

source <strong>of</strong> boundary stress, whereas <strong>the</strong> model initiated with both boundary and internal stresses<br />

may experience relaxation when <strong>the</strong> excavation is introduced. The tectonic loading model was<br />

constructed to examine <strong>the</strong> effect <strong>of</strong> this type <strong>of</strong> loading on stress and slip along faults.<br />

This method <strong>of</strong> loading produces a modified stress distribution from <strong>the</strong> homogeneous stress field<br />

model (Fig. 4.18). Higher stresses and larger zones <strong>of</strong> high stress are concentrated to <strong>the</strong> east and<br />

west <strong>of</strong> <strong>the</strong> excavation. Concentration <strong>of</strong> stresses also occurs to <strong>the</strong> sou<strong>the</strong>ast <strong>of</strong> <strong>the</strong> excavation<br />

and aligns with SW-striking shear zones. This effect is less pronounced when examining <strong>the</strong><br />

distribution <strong>of</strong> differential stress values (Fig. 4.19). The difference may be a result <strong>of</strong> stress<br />

accumulation in <strong>the</strong> tectonic loading model, as opposed to stress relaxation in <strong>the</strong> homogeneous<br />

94


stress field model. There is little difference in modelled fault stability; <strong>the</strong> model shows similar<br />

modelled fault slip (Fig. 4.20) and rock mass yielding (Fig. 4.21) as compared to models subjected<br />

to a homogeneous stress field (Figs. 4.6 to 4.9).<br />

Figure 4.18: Tectonic model for (A) elastic model and (B) plastic model. Faults are assigned a cohesion <strong>of</strong><br />

0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.19: Tectonic model for (A) elastic model and (B) plastic model. Faults are assigned a cohesion <strong>of</strong><br />

0 MPa and a friction angle <strong>of</strong> 35 degrees. Scale is in MPa.<br />

Figure 4.20: Tectonic model for (A) elastic model and (B) plastic model. Faults are assigned a cohesion <strong>of</strong><br />

0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

95


Figure 4.21: Tectonic model <strong>of</strong> yielding for (A) elastic model and (B) plastic models. Faults are assigned<br />

a cohesion <strong>of</strong> 0 MPa and a friction angle <strong>of</strong> 35 degrees.<br />

4.6 Modelling Rock Mass Degradation<br />

Seismic events occur as a result <strong>of</strong> slip on existing fractures or through <strong>the</strong> creation <strong>of</strong> new<br />

fractures when stress exceeds <strong>the</strong> strength <strong>of</strong> <strong>the</strong> rock mass. Seismicity can thus signal <strong>the</strong> onset<br />

<strong>of</strong> rock mass damage and degradation. Damage begins as a process <strong>of</strong> fracture initiation and<br />

progresses to a state <strong>of</strong> fracture growth and interaction as <strong>the</strong> rock mass progressively yields.<br />

Thresholds for both rock mass damage and yield in brittle rock can be defined by stress and<br />

through seismic monitoring (Falmagne, 2001). This is <strong>the</strong> same process defined using acoustic<br />

emission monitoring at <strong>the</strong> lab scale (Eberhardt et al., 1999). The onset <strong>of</strong> microseismicity<br />

indicates that stress exceeds <strong>the</strong> damage threshold and that fracture initiation has commenced;<br />

continued emission signals fracture propagation (Falmagne, 2001). When seismic events begin to<br />

cluster, this denotes that stress levels exceed <strong>the</strong> yield threshold <strong>of</strong> <strong>the</strong> rock mass. At this stage,<br />

fractures are numerous and long enough to interact and coalesce, causing an overall change in<br />

rock mass strength properties (Falmagne, 2001). High event rates as well as dense event<br />

96


clustering are indications <strong>of</strong> rock mass yielding and increased hazard (Vasak, n.d.). Progressive<br />

yielding and tensile failure will eventually render <strong>the</strong> rock mass aseismic, as <strong>the</strong> rock begins to<br />

behave in a plastic manner, transferring stress to <strong>the</strong> surrounding, more intact rock.<br />

Similar to <strong>the</strong> degradation process described by seismic event parameters in Chapter 3, <strong>the</strong><br />

distribution <strong>of</strong> stress around <strong>the</strong> excavation is suggestive <strong>of</strong> a progressive damage process. In <strong>the</strong><br />

yield zone, in situ strength reduction <strong>of</strong> <strong>the</strong> rock mass occurs as a result <strong>of</strong> unloading from a loss<br />

<strong>of</strong> confinement, stress rotation, crack-surface interaction and rock mass heterogeneity (Diederichs,<br />

2003). Rockmass failures caused by stress and marked by seismicity can occur along existing<br />

fractures or through <strong>the</strong> creation <strong>of</strong> new fractures in <strong>the</strong> damage zone beyond <strong>the</strong> yield zone. Both<br />

failure mechanisms are explored in <strong>the</strong> following sections by mapping slip conditions and rock<br />

mass degradation stress.<br />

4.6.1 Fracture Reactivation<br />

The reactivation <strong>of</strong> favourably oriented fractures is mechanically preferable to <strong>the</strong> creation <strong>of</strong> new<br />

fractures; when failure occurs, cohesion is lost. This lowers <strong>the</strong> Mohr-Coulomb failure envelope<br />

and field <strong>of</strong> stability, outlined in Figure 4.4, and allows rock to fail at lower shear and normal<br />

stress values. In Creighton, <strong>the</strong> rock mass in proximity to <strong>the</strong> excavation is assumed to be<br />

fractured, as inferred from both stress modelling and <strong>the</strong> distribution <strong>of</strong> seismicity. Fracture<br />

reactivation is thus a likely candidate for seismic emission. Zones subject to fracture reactivation<br />

can be mapped using Mohr-Coulomb failure conditions:<br />

<br />

n<br />

tan C<br />

(Equation 4.2)<br />

and <strong>the</strong> definitions <strong>of</strong> maximum normal and shear stresses,<br />

<br />

max<br />

1<br />

2<br />

<br />

and <br />

<br />

1<br />

3<br />

max<br />

1<br />

<br />

1 3<br />

. (Equations 4.3 and 4.4)<br />

2<br />

97


The ratio <strong>of</strong> maximum principal stresses can be expressed in terms <strong>of</strong> <strong>the</strong> angle <strong>of</strong> internal friction,<br />

<br />

<br />

3<br />

1<br />

1<br />

2<br />

2<br />

(tan 1)<br />

tan<br />

, (Equation 4.5)<br />

1<br />

2<br />

2<br />

(tan 1)<br />

tan<br />

when cohesion is zero (McKinnon, pers. comm., 2009; see Appendix F for derivation). This<br />

allows for zones <strong>of</strong> eligible fracture reactivation to be mapped regardless <strong>of</strong> fracture orientation.<br />

Minimum-to-maximum principal stress ratios computed for plastic and elastic models in UDEC<br />

are shown in Figure 4.22. Such figures allow fields <strong>of</strong> fault reactivation to be contoured as a<br />

function <strong>of</strong> <strong>the</strong> internal angle <strong>of</strong> friction (Fig. 4.23). This demonstrates that, based on <strong>the</strong><br />

minimum-to-maximum principal stress ratio, <strong>the</strong>re is a large area to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation,<br />

extending to <strong>the</strong> Return Air Raise Shear Zone where cohesionless fractures in any orientation can<br />

be reactivated, even at high friction angles. This is modelled in both elastic and plastic models.<br />

Based on stress conditions, slip is possible even in <strong>the</strong> yield zone, though seismogenic slip is not<br />

expected.<br />

Figure 4.22: Ratio <strong>of</strong> minimum-to-maximum principal stress for (A) elastic model; (B) plastic model.<br />

98


Figure 4.23: Contoured domains <strong>of</strong> slip on cohesionless fractures at different angles <strong>of</strong> internal friction for<br />

(A) elastic model; (B) plastic model.<br />

4.6.2 Crack Initiation<br />

The initiation <strong>of</strong> new brittle failure is possible at stress levels much lower than <strong>the</strong> peak strength<br />

<strong>of</strong> <strong>the</strong> rock mass (Schultz, 1996). Crack initiation can be expected at levels from 0.3-0.5 σ UCS (Cai<br />

et al., 2004) and yield is modelled to occur between 0.4-0.5σ UCS for <strong>the</strong> Creighton granite<br />

(Diederichs, 2003). Fracture coalescence can occur from 0.7-0.8 σ UCS (Falmagne, 2001). Such<br />

thresholds have been applied to <strong>the</strong> 7400 Level using modelled stresses and <strong>the</strong> uniaxial<br />

compressive strength <strong>of</strong> footwall rocks to explore crack initiation as a mechanism for<br />

microseismicity in <strong>the</strong> Creighton Deep. The limits for fracture initiation and coalescence are<br />

shown in Figure 4.24.<br />

Crack initiation can also be described by differential stress, when its magnitude is a fraction <strong>of</strong> <strong>the</strong><br />

peak strength. Differential stress threshold for <strong>the</strong> Lac du Bonnet granite is measured in <strong>the</strong> range<br />

<strong>of</strong> (σ 1 – σ 3 ) = 0.3 to 0.4σ UCS to (Falmagne, 2001). This threshold is used as an analogue to <strong>the</strong><br />

Creighton granite. Differential stress plots outline zones <strong>of</strong> potential crack initiation (Fig. 4.24).<br />

99


Damage zones produced using maximum stress and differential stress outline similar areas <strong>of</strong><br />

fracture initiation. Areas <strong>of</strong> active excavation during <strong>the</strong> 2006-2007 time period as well as a zone<br />

<strong>of</strong> high-stress between <strong>the</strong> Return Air Raise Shear Zone and Plum Shear Zone are identified as<br />

areas <strong>of</strong> possible fracture initiation under both maximum stress and differential conditions. This<br />

demonstrates that fracturing <strong>of</strong> intact rock is a possible mechanism for seismicity to <strong>the</strong> south <strong>of</strong><br />

<strong>the</strong> excavation where seismicity is observed, but <strong>the</strong> crack coalescence threshold is not surpassed.<br />

Fracture contours identify <strong>the</strong> area south <strong>of</strong> <strong>the</strong> excavation as a region that is in a state <strong>of</strong> damage<br />

but not yield (Fig. 4.24). This is a lower state <strong>of</strong> degradation than was found in Chapter 3 using<br />

seismic source parameters, where <strong>the</strong> rock mass to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation was hypo<strong>the</strong>sized<br />

to be in post-peak conditions.<br />

Figure 4.24 shows that cracking is not possible immediately to <strong>the</strong> north and south <strong>of</strong> <strong>the</strong><br />

excavation, based on <strong>the</strong> final state <strong>of</strong> models produced for Case 1 (Φ=30 o , C=0 MPa). This is<br />

because yielding has already occurred and high stress cannot be accommodated by <strong>the</strong><br />

disintegrated rock mass in this state. UDEC code and routines can be found in Appendix E.<br />

100


Figure 4.24: Fracture initiation thresholds mapped using maximum and differential stress conditions.<br />

4.7 Modelling Summary and Discussion<br />

The distribution <strong>of</strong> stress on <strong>the</strong> 7400 Level in Creighton Mine is strongly dependent on both <strong>the</strong><br />

excavation geometry and <strong>the</strong> strength <strong>of</strong> <strong>the</strong> discontinuities. UDEC models demonstrate that<br />

cohesion and <strong>the</strong> friction angle <strong>of</strong> <strong>the</strong> discontinuities modify <strong>the</strong> flow <strong>of</strong> stress around <strong>the</strong><br />

excavation. Faults must have sufficiently low friction values for shear slip to occur. Under <strong>the</strong><br />

current stress field, faults must have some residual friction as low values produced unrealistic<br />

stress distributions.<br />

Models demonstrate that stress is substantially reduced in a yield zone adjacent to an excavation.<br />

Tensile and shear failure associated with <strong>the</strong> yield zone is directly incurred by <strong>the</strong> presence <strong>of</strong> <strong>the</strong><br />

excavation. Diederichs (2003) states that this is an area <strong>of</strong> tensile fracture accumulation and<br />

101


propagation as confining stresses are relaxed. Beyond this exists a damage zone where yielding<br />

occurs with some localization along failure planes. High stresses occur on <strong>the</strong> periphery <strong>of</strong> <strong>the</strong><br />

yield zone as <strong>the</strong> rock transitions from a fractured rock mass into a stronger, more intact rock<br />

mass. This parallels <strong>the</strong> rock mass model <strong>of</strong> an inner yield zone, damage zone and outer intact<br />

zone as discussed in Chapter 3.<br />

When <strong>the</strong> faults are weaker than <strong>the</strong> rock mass, right-lateral slip is induced on <strong>the</strong> Plum Shear<br />

Zone and <strong>of</strong>ten on <strong>the</strong> Return Air Raise Shear Zone to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation. Remote to <strong>the</strong><br />

excavation, no slip occurs along <strong>the</strong>se or o<strong>the</strong>r discontinuities. The deflection <strong>of</strong> stress around <strong>the</strong><br />

excavation may act to enhance <strong>the</strong> normal stress, and thus <strong>the</strong> frictional resistance, along<br />

discontinuities remote from <strong>the</strong> excavation, preventing slip. Closer to <strong>the</strong> excavation maximum<br />

principal stresses are reduced but oriented at a low angle to <strong>the</strong> Plum Shear Zone, increasing <strong>the</strong><br />

shear stress on <strong>the</strong> fault and instigating slip in both plastic and elastic models. This, however,<br />

occurs within <strong>the</strong> yield zone and may not contribute to seismogenic slip.<br />

4.7.1 Syn<strong>the</strong>sis: Stress, Seismicity and Structure<br />

The relationship between structure and seismicity in <strong>the</strong> Creighton Deep is intimately linked to<br />

stress. The spatial distribution <strong>of</strong> seismicity closely corresponds to zones <strong>of</strong> high stress. A<br />

comparison <strong>of</strong> seismicity and stress is shown in Figure 4.25. This similar distribution supports <strong>the</strong><br />

idea <strong>of</strong> <strong>the</strong> presence <strong>of</strong> a yield zone in proximity to <strong>the</strong> excavation where low stress and no<br />

seismicity occurs; a damage zone <strong>of</strong> high stress where dense seismicity occurs, and beyond this an<br />

intact zone where low to intermediate stress is associated with little seismicity, as discussed in<br />

Chapter 3. Both <strong>the</strong> distribution <strong>of</strong> stress and seismicity appear to be modified to align with <strong>the</strong><br />

strike <strong>of</strong> <strong>the</strong> 118-System shear zones, but not within <strong>the</strong> shear zones <strong>the</strong>mselves. The exception is<br />

102


seismic Cluster 1, which corresponds to an area <strong>of</strong> elevated modelled differential stress but with<br />

background levels <strong>of</strong> modelled maximum stress (Fig. 4.25).<br />

Geological evidence <strong>of</strong> degradation is difficult to observe in underground conditions due to<br />

limited access and enhanced support in proximity to <strong>the</strong> excavation. However, drilling supports<br />

this degradation process. Drill cores in proximity to <strong>the</strong> main excavation (in <strong>the</strong> proposed yield<br />

zone) are heavily fractured and highly degraded (Dave Andrews; pers. comm., 2009). The<br />

damage zone has already extended below <strong>the</strong> base <strong>of</strong> <strong>the</strong> mine at <strong>the</strong> 7940 ramp, which is also<br />

evident from drilling and excavation as <strong>the</strong> mine is progressively deepened (Dave Andrews; pers.<br />

comm., 2009).<br />

Slip along mine-scale shear zones has not been identified as a failure mechanism during seismic<br />

or stress analysis. Instead, slip along existing fractures and cracking <strong>of</strong> intact rock have been<br />

demonstrated to be plausible alternative mechanisms to fault slip. Mapping zones <strong>of</strong> fracture<br />

reactivation and crack initiation using modelled stresses suggests that existing fractures without<br />

cohesion may be reactivated and new cracks can form in zones <strong>of</strong> high stress. Though modelled<br />

stresses are not elevated enough to lead to fracture interaction and coalescence, clustering <strong>of</strong><br />

seismic events signifies <strong>the</strong> onset <strong>of</strong> yield as <strong>the</strong> rock mass is seismically weakened, which<br />

supports observations made using seismic event parameters in Chapter 2.<br />

103


Figure 4.25: Comparison <strong>of</strong> stress and seismicity. (A) Distribution <strong>of</strong> seismicity on <strong>the</strong> 7400 Level; (B)<br />

highlighted areas <strong>of</strong> dense seismicity; (C) maximum stress distribution and (D) differential stress for<br />

comparison. Faults have C = 0 MPa and Ø= 35°.<br />

4.7.2 Model Limitations<br />

Mining is a three-dimensional process; blasting and material extraction occur on multiple levels<br />

simultaneously. Mining-induced stress on any given level is <strong>the</strong> result <strong>of</strong> stress flow around <strong>the</strong><br />

excavation as well as contributions from mining above and below. Two-dimensional models thus<br />

are a simplification <strong>of</strong> <strong>the</strong> three-dimensional problem.<br />

Models <strong>of</strong> <strong>the</strong> 7400 Level suffer from this problem, limiting <strong>the</strong> comparison <strong>of</strong> stress on<br />

individual levels with seismicity. The westernmost cluster, (Cluster 1, as defined in Chapter 3)<br />

104


contains energetic events and is not wholly accounted for by stress models. In this area models<br />

show elevated differential stress as compared to background stress but lower maximum stress as<br />

compared to o<strong>the</strong>r seismically active areas. Influences external to <strong>the</strong> 7400 Level may play an<br />

important role in generating seismicity in this area. During <strong>the</strong> 2006-2007 time period, two<br />

orebodies may contribute to stress changes: <strong>the</strong> 461 Orebody, mined from 7680 to 7755 Level and<br />

<strong>the</strong> Plum Orebody, which is mined on levels above (Vale Inco, pers. comm., 2009). A threedimensional<br />

model incorporating <strong>the</strong>se orebody geometries would allow for a more<br />

comprehensive analysis <strong>of</strong> stress distribution in <strong>the</strong> Deep.<br />

105


Chapter 5<br />

Conclusions and Recommendations<br />

5.1 Summary<br />

The goal <strong>of</strong> this study was to examine <strong>the</strong> relationship between <strong>the</strong> structures in <strong>the</strong> Creighton<br />

Deep and mining-induced seismicity. This was accomplished through geological investigations,<br />

seismic analysis and numerical modelling <strong>of</strong> stress.<br />

Geological investigations identified four principal systems <strong>of</strong> structures: <strong>the</strong> Footwall Shear Zone,<br />

E–W-striking shear zones, SW-striking shear zones (<strong>the</strong> 118 System) and splays between SWstriking<br />

shear zones. Numerical stress modelling demonstrates that <strong>the</strong>se structures constitute<br />

weak zones within <strong>the</strong> rock mass and underground investigations indicate that such structures are<br />

healed. The Footwall Shear Zone and 1290 Shear Zone are laterally and vertically continuous but<br />

have little impact on stress or seismicity. SW-striking shear zones do not have a consistent<br />

composition and <strong>of</strong>ten do not correlate level-to-level. Small displacements were noted along<br />

younger fractures that cross-cut shear zones and foliation ra<strong>the</strong>r than along <strong>the</strong> shear zones<br />

<strong>the</strong>mselves, fur<strong>the</strong>r suggesting that shear zones are healed.<br />

Analysis <strong>of</strong> seismic events within <strong>the</strong> Creighton Deep did not reveal a relationship between<br />

structure and seismicity. Microseismic events do not spatially correspond to <strong>the</strong> mapped fault<br />

geometry. Fur<strong>the</strong>rmore, analysis <strong>of</strong> seismic event parameters does not reveal any spatial<br />

correlation to shear zones but does reveal areas <strong>of</strong> preferred seismic activity. Focal mechanisms<br />

<strong>of</strong> <strong>the</strong>se microseismic events do not indicate any spatial correlation with structure. Consistency in<br />

focal plane solution axes for microseismic events, however, suggests that slip occurs on<br />

106


preferentially oriented fracture planes but fracture orientations do not conform to mine-scale shear<br />

zone orientations. Macroseismic event focal mechanisms are inconsistent and fault plane<br />

solutions do not have coherent nodal planes or pressure and tension axes. A stress inversion <strong>of</strong> P-<br />

and T-axes from microseismic events on <strong>the</strong> 7400 Level indicates that mine-scale stress<br />

orientations are consistent with far-field stresses.<br />

An anomalous cluster <strong>of</strong> microseismic and macroseismic events, referred to as Cluster 1 in this<br />

<strong>the</strong>sis, exhibits unusual seismic event parameter values and stress inversion results. Influences<br />

external to <strong>the</strong> 7400 Level, including mining <strong>of</strong> <strong>the</strong> Plum Orebody and 461 Orebody, may create a<br />

complex stress environment, complicating analysis <strong>of</strong> <strong>the</strong> 7400 Level.<br />

Numerical modelling <strong>of</strong> stress on <strong>the</strong> 7400 Level shows that stress flows around <strong>the</strong> excavation,<br />

forming a ring <strong>of</strong> high stress. In this two-dimensional analysis, <strong>the</strong>re is little deflection in stress<br />

trajectories in proximity to faults. This suggests that faults are strong and brittle. High stresses<br />

align parallel to SW-striking structures to <strong>the</strong> south <strong>of</strong> <strong>the</strong> excavation, lowering stresses to <strong>the</strong><br />

southwest. Comparison <strong>of</strong> modelling results with seismicity shows an agreement between areas<br />

<strong>of</strong> high stress and areas <strong>of</strong> dense seismicity, as well as between areas <strong>of</strong> low modelled stress and<br />

areas <strong>of</strong> little to no seismicity. Numerical models that allow for non-recoverable deformation<br />

show yielding around <strong>the</strong> excavation and along SW-striking shear zones and both elastic and<br />

plastic models demonstrate slip along <strong>the</strong> Plum Shear Zone and <strong>of</strong>ten along <strong>the</strong> Return Air Raise<br />

Shear Zone in proximity to <strong>the</strong> excavation, though this occurs where <strong>the</strong> rockmass has yielded.<br />

5.2 Conclusions<br />

Given that large-magnitude events require large slip surfaces, it would be expected that mine-scale<br />

shear zones would provide <strong>the</strong> area necessary to produce macroseismic events in <strong>the</strong> Creighton<br />

107


Deep. Little evidence, however, has been found in this <strong>the</strong>sis to support displacements along<br />

mine-scale discontinuities as a source <strong>of</strong> seismicity in <strong>the</strong> footwall region to <strong>the</strong> south <strong>of</strong> <strong>the</strong><br />

excavation. Results indicate that seismicity in <strong>the</strong> Creighton Deep is <strong>the</strong> product <strong>of</strong> a degradation<br />

process. As stress flows around <strong>the</strong> excavation, zones <strong>of</strong> high stress are created that coincide with<br />

zones <strong>of</strong> preferential seismic activity. Shear zones slightly modify <strong>the</strong> stress field to <strong>the</strong> south <strong>of</strong><br />

<strong>the</strong> excavation by realigning high stresses with <strong>the</strong> strike <strong>of</strong> major structures and reducing stress to<br />

<strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation where little seismicity is observed. Shear zones in Creighton<br />

Deep thus only play a secondary role in <strong>the</strong> production <strong>of</strong> seismicity by modifying <strong>the</strong> stress state.<br />

Seismicity on mine levels in <strong>the</strong> Creighton Deep can be explained by <strong>the</strong> diffusion <strong>of</strong> rock mass<br />

degradation. Immediately to <strong>the</strong> north and south <strong>of</strong> <strong>the</strong> excavation, rock is heavily fractured and<br />

permanently strained in a yield zone. The rock mass in this zone cannot accommodate high stress<br />

and this stress is transferred to <strong>the</strong> peripheral damage zone. Little to no seismicity is recorded<br />

within <strong>the</strong> yield zone and this area is modelled as having yielded and as having low stress and low<br />

differential stress.<br />

The damage zone has been demonstrated to be an area <strong>of</strong> damage accumulation, where crack<br />

initiation and fracture reactivation are possible seismic sources. This zone contains <strong>the</strong> highest<br />

modelled stresses and hosts <strong>the</strong> densest seismic activity. It is recognized as a zone <strong>of</strong> increased<br />

seismic hazard. Rock is intact beyond <strong>the</strong> damage zone and little seismicity occurs remote to<br />

mine drifts. Stress levels in <strong>the</strong> damage zone are near background levels.<br />

Large events are <strong>of</strong>ten associated with structure, and in many instances fault slip is <strong>the</strong> source <strong>of</strong><br />

high magnitude seismic events. While seismic and stress analyses conducted in this <strong>the</strong>sis have<br />

not revealed any significant relationship between mining-induced seismicity and structure, <strong>the</strong><br />

108


methodologies employed are <strong>of</strong> value to o<strong>the</strong>r underground environments excavating in disturbed<br />

ground, and may show more positive results in cases where faults are geologically weak.<br />

5.3 Recommendations for Future Work<br />

Based on <strong>the</strong> results <strong>of</strong> this study, <strong>the</strong> following recommendations are made:<br />

<br />

Continued monitoring <strong>of</strong> seismic event parameters should be carried out in order to identify<br />

signs <strong>of</strong> fur<strong>the</strong>r rock mass degradation. Extra caution should be given to <strong>the</strong> area identified as<br />

Cluster 1. This is identified as an area <strong>of</strong> increased hazard and continues to be a source <strong>of</strong><br />

energetic events. Fur<strong>the</strong>r studies <strong>of</strong> events in this area may help characterize and understand<br />

anomalous activity in this area.<br />

<br />

Additional triaxial sensors are recommended to improve location accuracy and to facilitate<br />

fur<strong>the</strong>r seismic studies in <strong>the</strong> Creighton Deep. Denser spacing in key areas <strong>of</strong> interest may<br />

also facilitate studies.<br />

A comparison <strong>of</strong> fault plane solutions for microseismic events with joint fabric on <strong>the</strong> 7400<br />

Level is suggested as future work. A correlation with joint planes may explain <strong>the</strong> deviation<br />

<strong>of</strong> estimated fault plane orientations from mapped fault orientations.<br />

<br />

Moment tensor inversion for microseismic events is recommended to study <strong>the</strong> damage<br />

process and characterize seismicity. Mechanisms such as crack dilation and closure could be<br />

identified using this method. Moment tensor inversion may also be a suitable method for<br />

studying events in Cluster 1.<br />

<br />

Fur<strong>the</strong>r analysis <strong>of</strong> macroseismic events is recommended once <strong>the</strong> triaxial strong ground<br />

motion system is calibrated. Waveforms recorded by <strong>the</strong> calibrated triaxial system will allow<br />

109


for <strong>the</strong> calculation <strong>of</strong> seismic event parameters, which will aid in characterizing large events in<br />

<strong>the</strong> Creighton Deep.<br />

<br />

Mine personnel should recognize <strong>the</strong> role <strong>of</strong> faults in influencing <strong>the</strong> flow <strong>of</strong> stress when<br />

monitoring established levels.<br />

<br />

Three-dimensional models are recommended in order to gain insight into stress migration<br />

from sources external to <strong>the</strong> 7400 Level. The 461 Orebody and Plum Orebody seem to have<br />

an effect on stress distribution and have a large impact on seismicity in Cluster 1.<br />

<br />

Lastly, diligent structural mapping and shear characterization is highly recommended to<br />

fur<strong>the</strong>r develop and refine <strong>the</strong> existing structural model. Knowledge <strong>of</strong> geological<br />

environment is essential to understand <strong>the</strong> response <strong>of</strong> <strong>the</strong> rock mass to mining. It is<br />

recommended that structures encountered during excavation be thoroughly described and<br />

documented before applying shotcrete or support that inhibits future analysis. Descriptions<br />

should include dimensions <strong>of</strong> high strain zones and damage zones as well as incidences <strong>of</strong><br />

fault gauge, slickenlines, brittle failure and brittle kinematic indicators.<br />

110


References<br />

Alcott, J. M., Kaiser, P. K., & Simser, B. P. (1998). Use <strong>of</strong> microseismic source parameters for<br />

rockburst hazard assessment. Pure and Applied Geophysics, 153(1), 41-65.<br />

Ames, D.E., Davidson, A., Buckle, J.L., and Card, K.D. (2005). <strong>Geology</strong>, Sudbury bedrock<br />

compilation, Ontario: Geological Survey <strong>of</strong> Canada, Open File 4570, scale: 1:50 000.<br />

Anderson, E. (1951). The dynamics <strong>of</strong> faulting: London. Oliver and Boyd, 206.<br />

Bailey, J., Lafrance, B., McDonald, A. M., Fedorowich, J. S., Kamo, S., & Archibald, D. A.<br />

(2004). Mazatzal–Labradorian-age (1.7–1.6 Ga) ductile deformation <strong>of</strong> <strong>the</strong> south range<br />

Sudbury impact structure at <strong>the</strong> Thayer Lindsley mine, Ontario. Canadian Journal <strong>of</strong> Earth<br />

Sciences, 41(12), 1491-1505.<br />

Bawden, W.F., Coulson, A.L. (1993). Structural and Geochemical Study <strong>of</strong> Creighton Mine with<br />

Increased Attention Focused on <strong>the</strong> Levels Below <strong>the</strong> 6600 Level. Report prepared for<br />

INCO Mines Research, Sudbury, Ontario by <strong>the</strong> <strong>Department</strong> <strong>of</strong> Mining Engineering,<br />

Queen’s <strong>University</strong>, Kingston, Canada.<br />

Beck, D. A., Brady, B. H. G., & Grant, D. R. (1997). Induced stress and microseismicity in <strong>the</strong><br />

3000 Orebody, Mount Isa. Geotechnical and Geological Engineering, 15(3), 221-233.<br />

Bellier, O., Over, S., Poisson, A., & Andrieux, J. (1997). Recent temporal change in <strong>the</strong> stress<br />

state and modern stress field along <strong>the</strong> North Anatolian Fault Zone (Turkey). Geophysical<br />

Journal International, 131(1), 61-86.<br />

Bellier, O., & Zoback, M. L. (1995). Recent state <strong>of</strong> stress change in <strong>the</strong> Walker Lane zone,<br />

western Basin and Range province, United States. Tectonics, 14(3), 564-593.<br />

Blake, W., & Hedley, D. G. F. (2003). Rockbursts: Case studies from North American hard-rock<br />

mines. USA: society for Mining, Metallurgy and Exploration Inc..<br />

Brocoum, S. J., & Dalziel, I. W. D. (1974). The Sudbury Basin, <strong>the</strong> Sou<strong>the</strong>rn Province, <strong>the</strong><br />

Grenville Front, and <strong>the</strong> Penokean Orogeny. Bulletin <strong>of</strong> <strong>the</strong> Geological Society <strong>of</strong> America,<br />

85(10), 1571-1580.<br />

Cai, M., Kaiser, P. K., Tasaka, Y., Maejima, T., Morioka, H., & Minami, M. (2004). Generalized<br />

crack initiation and crack damage stress thresholds <strong>of</strong> brittle rock masses near underground<br />

excavations. International Journal <strong>of</strong> Rock Mechanics and Mining Sciences, 41(5), 833-847.<br />

Cochrane, L. B. (1991). Analysis <strong>of</strong> <strong>the</strong> structural and tectonic environments associated<br />

with rockmass failures in <strong>the</strong> mines <strong>of</strong> <strong>the</strong> Sudbury District. Ph.D. Thesis, Queen’s<br />

<strong>University</strong>, Kingston.<br />

111


Corfu, F., & Andrews, A. J. (1986). A U-Pb age for mineralized Nipissing diabase, Gowganda,<br />

Ontario. Canadian Journal <strong>of</strong> Earth Sciences, 23(1), 107-109.<br />

Coulson, A.L. (1996). Mine induced Seismicity in highly stressed ground: a case study –<br />

Creighton Mine Inco Ltd., Sudbury. Ph.D. Thesis, Queen’s <strong>University</strong>, Kingston.<br />

Coulson, A. L., & Bawden, W. F. (2008). Observation <strong>of</strong> <strong>the</strong> spatial and temporal changes <strong>of</strong><br />

microseismic source parameters and locations, used to identify <strong>the</strong> state <strong>of</strong> <strong>the</strong> rock mass in<br />

relation to <strong>the</strong> peak and post-peak strength conditions. The 42nd US Rock Mechanics<br />

Symposium and 2nd US-Canada Rock Mechanics Symposium, San Francisco, 2008.<br />

Cundall, P. A., & Hart, R. D. (1992). Numerical modelling <strong>of</strong> discontinua. Engineering<br />

Computations, 9(2), 101-113.<br />

Diederichs, M. S. (2003). Rock fracture and collapse under low confinement conditions. Rock<br />

Mechanics and Rock Engineering, 36(5), 339-381.<br />

Dietz, R. S. (1964). Sudbury structure as an astrobleme. The Journal <strong>of</strong> <strong>Geology</strong>, 72(4), 412-434.<br />

Dressler, B. O. (1984). General geology <strong>of</strong> <strong>the</strong> Sudbury area. The <strong>Geology</strong> and Ore Deposits <strong>of</strong><br />

<strong>the</strong> Sudbury Structure, Edited by EG Pye, AJ Naldrett, and PE Giblin. Ontario Geological<br />

Survey, Special Volume, 1, 57–82.<br />

Dressler, B. O., & Reimold, W. U. (2001). Terrestrial impact melt rocks and glasses. Earth<br />

Science Reviews, 56(1-4), 205-284.<br />

Duncan Fama, M. E. (1993). Numerical modelling <strong>of</strong> yield zones in weak rocks. Comprehensive<br />

Rock Engineering, 2, 49–75. Oxford: Pergamon Press.<br />

Durrheim, R. J., Anderson, R. L., Cichowicz, A., Ebrahim-Trolloped, R., Hubert, G., Kijko, A., et<br />

al. (2006). The risks to miners, mines, and <strong>the</strong> public posed by large seismic events in <strong>the</strong> gold<br />

mining districts <strong>of</strong> South Africa. In J. Hadjigeorgiou, M. Grenon (Eds.), Proceedings <strong>of</strong> <strong>the</strong><br />

Third International Seminar on Deep and High Stress Mining, 2-4 October 2006, Quebec<br />

City, Université Laval, Canada.<br />

Eberhardt, E., Stead, D. & Stimpson, B. (1999). Quantifying progressive pre-peak brittle fracture<br />

damage in rock during uniaxial compression. International Journal <strong>of</strong> Rock Mechanics and<br />

Mining Sciences, 36, 361-380.<br />

Falmagne, V. (2001). Quantification <strong>of</strong> Rock Mass Degradation using Microseismic Monitoring<br />

and Applications for Mine Design, Ph. D. Thesis, <strong>Department</strong> <strong>of</strong> Mining Engineering,<br />

Queen’s <strong>University</strong>, Kingston, Canada.<br />

Feustel, A. J. (1998). Seismic attenuation in underground mines: A comparative evaluation <strong>of</strong><br />

methods and results. Tectonophysics, 289(1-3), 31-49.<br />

Freund, R. (1974). Kinematics <strong>of</strong> transform and transcurrent faults. Tectonophysics, 21, 93-134.<br />

112


Galkin, V., Mungall, J. (2005). Structural and Chemical Controls on Mineralization at <strong>the</strong><br />

Creighton Mine, Sudbury. Vale Inco Limited Internal Report.<br />

Gay, N. C., Spencer, D., Van Wyk, J. J., & Van Der Heever, P. K. (1984). The control <strong>of</strong><br />

geological and mining parameters on seismicity in <strong>the</strong> Klerksdorp gold mining district. Proc.<br />

1st Int. Congr. Rockbursts and Seismicity in Mines. S. Afr. Inst. Min. Metall., Johannesburg,<br />

107–120.<br />

Gephart, J. W. (1990). FMSI: A FORTRAN program for inverting fault/slickenside and<br />

earthquake focal mechanism data to obtain <strong>the</strong> regional stress tensor. Computers &<br />

Geosciences, 16(7), 953-989.<br />

Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining <strong>the</strong> regional stress<br />

tensor using earthquake focal mechanism data: Application to <strong>the</strong> San Fernando earthquake<br />

sequence. Journal <strong>of</strong> Geophysical Research-Solid Earth, 89(B11).<br />

Gibowicz, S. J., Kijko, A., & McGarr, A. (1994). An introduction to mining seismology. USA:<br />

Academic Press.<br />

Gibowicz, S. J., Young, R. P., Talebi, S., & Rawlence, D. J. (1991). Source parameters <strong>of</strong> seismic<br />

events at <strong>the</strong> underground research laboratory in Manitoba, Canada: Scaling relations for<br />

events with moment magnitude smaller than-2. Bulletin <strong>of</strong> <strong>the</strong> Seismological Society <strong>of</strong><br />

America, 81(4), 1157-1182.<br />

Grant, R. W., & Bite, A. (1984). Sudbury quartz diorite <strong>of</strong>fset dikes. In E.G. Pye, A.J. Naldrett,<br />

P.E. Giblin (eds.), The geology and ore deposits <strong>of</strong> <strong>the</strong> Sudbury Structure (275–301). Ontario<br />

Geological Survey Special Volume 1.<br />

Hart, R.D. (1993). An introduction to distinct element modeling for rock engineering in weak<br />

rock. In J.A. Hudston (Ed.), Comprehensive rock engineering, 2 (p. 245–261). Oxford,<br />

England: Pergamon Press.<br />

Heaman, L. M. (1997). Global mafic magmatism at 2.45 Ga; remnants <strong>of</strong> an ancient large igneous<br />

province? <strong>Geology</strong>, 25(4), 299-302.<br />

Hemming, S. R., McDaniel, D. K., McLennan, S. M., & Hanson, G. N. (1996). Pb isotope<br />

constraints on <strong>the</strong> provenance and diagenesis <strong>of</strong> detrital feldspars from <strong>the</strong> Sudbury Basin,<br />

Canada. Earth and Planetary Science Letters, 142(3-4), 501-512.<br />

Hodder, D. 2002. Major structural trends <strong>of</strong> <strong>the</strong> Creighton Embayment and related exploration<br />

targets along <strong>the</strong> South Range. Vale Inco Technical Services Internal Report.<br />

Itasca Consulting Group, Inc. 2000. UDEC (Universal Distinct Element Code), Version 3.10,<br />

Minneapolis : ICG.<br />

Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. W. (2007). Fundamentals <strong>of</strong> rock mechanics (4 th<br />

ed.). London: Blackwell Publishers, 38-41.<br />

113


Jager, A. J., & Ryder, J. A. (1999). A handbook on rock engineering practice for tabular hard<br />

rock mines. Safety in Mines Research Advisory Committee, Johannesburg.<br />

Jing, L. (2003). A review <strong>of</strong> techniques, advances and outstanding issues in numerical modelling<br />

for rock mechanics and rock engineering. International Journal <strong>of</strong> Rock Mechanics and<br />

Mining Sciences, 40(3), 283-353.<br />

Jones, A. P. (2005). Meteorite Impacts as Triggers to Large Igneous Provinces. Elements, 1, 277-<br />

281.<br />

Kaiser, P. K., Vasak, P., Suorineni, F. T., & Thibodeau, D. (2005). New dimensions in seismic<br />

data interpretation with 3-D virtual reality visualization for burst-prone mines. RaSiM6-Sixth<br />

International Symposium on Rock Burst and Seismicity in Mines Proceedings. Australia:<br />

Australian Centre for Geomechanics, 33-45<br />

Krogh, T. E., Corfu, F., Davis, D. W., Dunning, G. R., Heaman, L. M., Kamo, S. L., et al. (1987).<br />

Precise U–Pb isotopic ages <strong>of</strong> diabase dykes and mafic to ultramafic rocks using trace<br />

amounts <strong>of</strong> baddeleyite and zircon. In H.C. Halls, W.F. Fahrig (eds.). Mafic dyke swarms<br />

(147–152). Geological Association <strong>of</strong> Canada Special Paper 34.<br />

Krogh, T. E., Davis, D. W., & Corfu, F. (1984). Precise U-pb zircon and baddeleyite ages for <strong>the</strong><br />

sudbury area: Ontario geological survey special volume 1. In Pye, E.G., Naldrett, A.J., Giblin,<br />

P.E. (eds.) The geology and ore deposits <strong>of</strong> <strong>the</strong> Sudbury Structure. 431–446.<br />

Long, D. G. F. (2004). The tectonostatigraphic evolution <strong>of</strong> <strong>the</strong> Huronian basement and <strong>the</strong><br />

subsequent basin fill: Geological constraints on impact models <strong>of</strong> <strong>the</strong> Sudbury event.<br />

Precambrian Research, 129(3-4), 203-223.<br />

Madariaga, R. (1976). Dynamics <strong>of</strong> an expanding circular fault. Bulletin <strong>of</strong> <strong>the</strong> Seismological<br />

Society <strong>of</strong> America, 66(3), 639-666.<br />

Malek, F., Espley, S., Yao, M., Trifu, C., & Suorineni, F. T. (2008). Management <strong>of</strong> high stress<br />

and seismicity at Vale Inco Creighton mine. The 42nd US Rock Mechanics Symposium and<br />

2nd US-Canada Rock Mechanics Symposium, San Francisco, 2008.<br />

McGarr, A., Spottiswoode, S. M., & Gay, N. C. (1975). Relationship <strong>of</strong> mine tremors to induced<br />

stresses and to rock properties in <strong>the</strong> focal region. Bulletin <strong>of</strong> <strong>the</strong> Seismological Society <strong>of</strong><br />

America, 65(4), 981-993.<br />

McKinnon, S. D. (2006). Triggering <strong>of</strong> seismicity remote from active mining excavations. Rock<br />

Mechanics and Rock Engineering, 39(3), 255-279.<br />

Mendecki, A. J. (1997). Seismic monitoring in mines. London: Chapman & Hall.<br />

Miller, A. D., Foulger, G. R., & Julian, B. R. (1998). Non-double-couple earthquakes. 2.<br />

observations. Reviews <strong>of</strong> Geophysics, 36(4), 551–568.<br />

114


Mungall, J. E., & Hanley, J. J. (2004). Origins <strong>of</strong> outliers <strong>of</strong> <strong>the</strong> Huronian Supergroup within <strong>the</strong><br />

Sudbury Structure. The Journal <strong>of</strong> <strong>Geology</strong>, 112(1), 59-70.<br />

Pande, G. N., Beer, G., & Williams, J. R. (1990). Numerical methods in rock mechanics. England:<br />

John Wiley & Sons.<br />

Riller, U., Schwerdtner, W. M., Halls, H. C., & Card, K. D. (1999). Transpressive tectonism in <strong>the</strong><br />

eastern penokean orogen, canada-consequences for proterozoic crustal kinematics and<br />

continental fragmentation. Precambrian Research, 93(1), 51-70.<br />

Rocscience Inc. 1998, Dips Version 5.0 - Graphical and Statistical Analysis <strong>of</strong> Orientation Data.<br />

www.rocscience.com, Toronto, Ontario, Canada.<br />

Rocscience Inc. 2005, Phase2 Version 6.0 - Finite Element Analysis for Excavations and Slopes.<br />

www.rocscience.com, Toronto, Ontario, Canada.<br />

Rousell, D. H., Gibson, H. L., & Jonasson, I. R. (1997). The tectonic, magmatic and<br />

mineralization history <strong>of</strong> <strong>the</strong> Sudbury Structure. Exploration and Mining <strong>Geology</strong>, 6(1), 1-<br />

22.<br />

Scholz, C. H. (2002). The mechanics <strong>of</strong> earthquakes and faulting (2nd ed.). New York:<br />

Cambridge <strong>University</strong> Press.<br />

Schultz, R. A. (1996). Relative scale and <strong>the</strong> strength and deformability <strong>of</strong> rock masses. Journal <strong>of</strong><br />

Structural <strong>Geology</strong>, 18(9), 1139-1149.<br />

Schulz, K. J., & Cannon, W. F. (2007). The penokean orogeny in <strong>the</strong> lake superior region.<br />

Precambrian Research, 157(1-4), 4-25.<br />

Seidler, J.K. 2008. Creighton Deep Mine Structural Review. Vale Inco Limited Internal Report.<br />

Sibson, R. H., Robert, F., & Poulsen, K. H. (1988). High-angle reverse faults, fluid-pressure<br />

cycling, and meso<strong>the</strong>rmal gold-quartz deposits. <strong>Geology</strong>, 16(6), 551-555.<br />

Siddorn, J. 2006. Memo to Creighton Mine: 7680 Level visit. SRK Consulting Engineers and<br />

Scientists<br />

Stein, S., & Wysession, M. (2003). An introduction to seismology, earthquakes, and earth<br />

structure. Oxford: Wiley-Blackwell.<br />

Stockwell, C.H. (1982). Proposals for <strong>the</strong> time classification and correlation <strong>of</strong> Precambrian<br />

rocks and events in Canada and adjacent areas <strong>of</strong> <strong>the</strong> Canadian Shield. Geological Survey <strong>of</strong><br />

Canada Paper 80-19, 135 pp.<br />

Szwedzicki, T. (2003). Rock mass behaviour prior to failure. International Journal <strong>of</strong> Rock<br />

Mechanics and Mining Sciences, 40(4), 573-584.<br />

115


Tulk, L. 2001. Creighton Deep structural study. Unpublished report prepared for INCO Limited<br />

Mines Research.<br />

Urbancic, T. I., & Young, R. P. (1995). Structural characterization <strong>of</strong> highly stressed rock masses<br />

using microseismic fault: Plane solutions. In L.R. Myer, N.G.W. Cook, R.E. Goodman, C.F.<br />

Tsang (eds.), Proc. Fractured and Jointed Rock Masses. Balkema, Rotterdam.<br />

Vale Inco Limited, MineCad map G_17_7200, accessed 2009<br />

Vale Inco Limited, MineCad map G_17_7400, accessed 2009<br />

Vale Inco Limited, MineCad map G_17_7530, accessed 2009<br />

Vale Inco Limited, MineCad map G_17_7680, accessed 2009<br />

Vale Inco Limited, MineCad map G_17_7810, accessed 2009<br />

Vale Inco Limited, MineCad map G_17_7940, accessed 2009<br />

Van Breemen, O., & Davidson, A. (1988). Nor<strong>the</strong>ast extension <strong>of</strong> proterozoic terrances <strong>of</strong> midcontinental<br />

north america. Bulletin <strong>of</strong> <strong>the</strong> Geological Society <strong>of</strong> America, 100(5), 630-638.<br />

Van Schmus, W. R. (1976). Early and middle proterozoic history <strong>of</strong> <strong>the</strong> great lakes area, north<br />

america. Philosophical Transactions for <strong>the</strong> Royal Society <strong>of</strong> London.Series A, Ma<strong>the</strong>matical<br />

and Physical Sciences, 280, 605-628.<br />

Vasak, P., Suorineni, F., Verma, A.. N.D. Identification <strong>of</strong> seismically active structures for<br />

hazard assessment at Creighton Mine. Report prepared for <strong>the</strong> INCO Technology Centre by<br />

MIRARCO/Geomechancis Research Centre: Laurentian <strong>University</strong>, Sudbury, Ontario,<br />

Canada.<br />

Wiles, T. D. (2006). Reliability <strong>of</strong> numerical modelling predictions. International Journal <strong>of</strong> Rock<br />

Mechanics and Mining Sciences, 43(3), 454-472.<br />

Zolnai, A. I., Price, R. A., & Helmstaedt, H. (1984). Regional cross section <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn<br />

Province adjacent to Lake Huron, Ontario: Implications for <strong>the</strong> tectonic significance <strong>of</strong> <strong>the</strong><br />

Murray fault zone. Canadian Journal <strong>of</strong> Earth Sciences, 21(4), 447-456.<br />

116


Appendix A<br />

Geological Maps and Sample Locations<br />

A.1 Site Locations<br />

Site locations, samples and thin sections are summarized in Table A1.<br />

<br />

<br />

<br />

<br />

A denotes cut along lineation, perpendicular to foliation<br />

B denotes cut perpendicular to lineation and foliation<br />

C denotes cut along slickenlines, perpendicular to foliation<br />

No assigned letter indicates cut along lineation, perpendicular to foliation (A)<br />

Table A1: Summary <strong>of</strong> site visit locations, oriented samples and thin sections<br />

Location Level Feature<br />

Oriented<br />

Sample<br />

Thin Section<br />

29-1 7680 6730 Sill -- --<br />

29-2 7810 Isoclinally folded breccia -- --<br />

29-3 7810 Isoclinally folded breccia -- --<br />

02-1 7940 Fresh Air Raise-Type Shear Zone Yes 02-1<br />

02-2 7940 Fresh Air Raise-Type Shear Zone Yes (02-2) 02-2A, 02-2B, 02-2L<br />

02-3 7400 Footwall Shear Zone Yes (02-3) 02-3<br />

02-4 7400 Footwall Shear Zone Yes (02-4) 02-4<br />

02-5 7400 RAR Shear Zone Yes (02-5) 02-5A<br />

02-6 7400 Grizzly Splay Shear Zone Yes (02-6) 02-6A, 02-6B<br />

03-1 7940 Fresh Air Raise-Type Shear Zone Yes --<br />

03-2 7530 Footwall Shear Zone -- --<br />

03-3 7530 Minor shear along dyke Not oriented --<br />

03-4 7530 Cracked shotcrete along RAR Shear Zone -- --<br />

04-1 7680 Return Air Raise Shear Zone -- --<br />

04-2A, B 7680 Near projected Northwest Shear Zone -- --<br />

04-3 7680 Near projected Northwest Shear Zone -- --<br />

04-5 7680 Projected Plum Shear Zone location -- --<br />

04-6 7680 Shear zone parallel to Footwall Shear Zone Not oriented 04-6<br />

04-7 7680 Footwall Shear Zone Yes 04-7A, 04-7B<br />

117


05-1A-D 7810 400-East Shear Zone and 1290 Shear Zone Yes 05-1D A, 05-1D B, 05-<br />

1D A1, 05-1D C<br />

05-2A-J 7810 Isoclinally folded breccia -- --<br />

05-3 7810 -- --<br />

05-4 7810 Minor shear zone -- --<br />

05-5 7810 Veins in projected Plum Shear location -- --<br />

05-6 7810 Face exposure -- --<br />

05-7 7810 Face exposure -- --<br />

09-1 7680 Footwall Shear Zone (same as 04-7) Not oriented --<br />

09-2 7400 Grizzly Splay Shear Zone (same as 02-6) Yes 02-6A, 02-6B<br />

09-3 7200 Persistent joints marked as ‘Shear Zone’ -- --<br />

09-4 7200 FAR Shear Zone Yes 09-4A, 09-4B<br />

09-5 7200 Projected Plum Shear Zone location -- --<br />

09-6 7200 Projected 1290 Shear location -- --<br />

09-7 7200 Strained but cohesive granite and gabbro -- --<br />

10-2 6600 Footwall Shear Zone Yes 10-2A, 10-2B<br />

10-3 6600 Deformed quartz boudins -- --<br />

10-4 6600 Localized failure and overbreak -- --<br />

10-5 7000 Projected Plum Shear location -- --<br />

10-6 7000 Near Projected Plum Shear location Yes 10-6A<br />

10-7 7810 400-East Shear Zone (same as 05-1) -- --<br />

11-1 7680 Large parallel quartz veins -- --<br />

11-2 7680 Folded dykelet (?) -- --<br />

11-3 7680 Near projected NW shear Yes --<br />

11-4 7680 RAR Shear Zone Yes 12-4A<br />

11-5 7680 Veins and brittle fractures -- --<br />

11-6 7680 RAR Shear Zone -- --<br />

11-7 7680 Near projected NW shear -- --<br />

16-1 7810 Minor shear in Face -- --<br />

17-1 7400 FAR Shear Zone Yes 17-1A, 17-1B<br />

17-2 7400 Minor shear at lithological contact -- --<br />

17-3 7150 Pinched out vein near projected 402 Shear<br />

Zone location<br />

118<br />

-- --<br />

17-4 7150 Pinched out vein -- --<br />

17-5 6900 Zone <strong>of</strong> high strain -- --<br />

18-1 6400 1290 Shear Zone Yes 18-1


A.2 Level Plans with Sample Locations<br />

Figure A1: 7000 Level, modified form Vale Inco. RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

119


Figure A2: 7200 Level, modified form Vale Inco. NW= Northwest; RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

120


Figure A3: 7400 Level, modified form Vale Inco. NW= Northwest; RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

121


Figure A4: 7530 Level, modified form Vale Inco. NW= Northwest; RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

122


Figure A5: 7680 Level, modified form Vale Inco. NW= Northwest; RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

123


Figure A6: 7810 Level, modified form Vale Inco. RAR = Return Air Raise; FAR = Fresh Air Raise.<br />

124


Figure A7: 7940 Ramp, modified from Vale Inco. FAR = Fresh Air Raise.<br />

125


Appendix B<br />

Seismic Event Parameters<br />

B.1 Event Population Statistics for <strong>the</strong> Creighton Deep<br />

Table B1: Summary Statistics for microseismic, macroseismic and blast events below 7000 feet with<br />

location errors less than 30 feet.<br />

MICROSEISMIC<br />

EVENTS Error Ns Nu uMag Nt tMag<br />

Mom.<br />

Mag.<br />

LOG<br />

M<br />

LOG<br />

E Es/Ep<br />

Mean 18.31 21.91 14.95 -2.70 5.23 -1.85 -1.04 7.87 2.51 8.62<br />

Standard Error 0.05 0.07 0.04 0.01 0.02 0.01 0.00 0.01 0.02 0.06<br />

Median 18.00 21.00 15.00 -2.70 5.00 -1.90 -1.10 7.64 2.30 7.60<br />

Mode 16.00 20.00 15.00 -2.80 6.00 -2.10 -1.30 7.01 2.03 5.50<br />

Standard Dev. 4.80 5.89 3.83 0.54 1.49 0.70 0.44 0.84 1.61 5.14<br />

Sample Variance 23.01 34.68 14.65 0.29 2.23 0.49 0.19 0.70 2.58 26.47<br />

Kurtosis -0.28 -0.16 -0.16 0.97 -0.49 8.83 82.21 0.21 -0.45 32.91<br />

Skewness 0.38 0.37 0.05 0.57 -0.05 -0.10 -3.34 0.94 0.51 3.61<br />

Range 24.00 35.00 27.00 4.90 9.00 11.40 10.70 4.18 8.27 92.20<br />

Minimum 6.00 8.00 3.00 -4.60 0.00 -9.90 -9.90 6.49 -0.63 0.10<br />

Maximum 30.00 43.00 30.00 0.30 9.00 1.50 0.80 10.68 7.64 92.30<br />

Count 8066 8066 8066 8066 8066 8066 8066 8061 8061 8061<br />

MACROSEISMIC<br />

EVENTS Error Ns Nu uMag Nt tMag<br />

Es/Ep<br />

Mean 19.48 33.47 14.96 -1.17 6.70 -0.08 0.12 9.69 5.73 17.17<br />

Standard Error 0.41 0.43 0.45 0.05 0.13 0.06 0.03 0.05 0.10 1.50<br />

Median 18.00 34.00 15.00 -1.20 7.00 0.00 0.10 9.74 5.84 13.55<br />

Mode 18.00 34.00 19.00 -1.10 6.00 0.50 0.20 9.55 6.53 8.40<br />

Standard Dev. 4.07 4.24 4.48 0.47 1.27 0.63 0.27 0.46 1.03 14.84<br />

Sample Variance 16.60 17.98 20.10 0.22 1.61 0.40 0.07 0.21 1.07 220.26<br />

Kurtosis 0.05 -0.38 -0.58 0.53 0.76 -0.28 -0.34 -0.31 -0.28 9.46<br />

Skewness 0.70 -0.26 -0.03 0.21 -0.50 -0.05 0.10 -0.40 -0.53 2.69<br />

Range 18.00 20.00 20.00 2.70 6.00 3.10 1.20 2.10 4.55 91.20<br />

Minimum 12.00 23.00 5.00 -2.40 3.00 -1.60 -0.40 8.58 3.09 1.10<br />

Maximum 30.00 43.00 25.00 0.30 9.00 1.50 0.80 10.68 7.64 92.30<br />

Count 98 98 98 98 98 98 98 98 98 98<br />

BLASTS Error Ns Nu uMag Nt tMag<br />

Mean 21.16 25.79 16.44 -1.69 5.36 -1.07 -0.38 9.07 4.54 5.44<br />

Standard Error 0.37 0.58 0.44 0.05 0.10 0.05 0.04 0.07 0.14 0.30<br />

Median 21.00 27.00 17.00 -1.60 6.00 -1.00 -0.30 9.30 5.05 4.30<br />

Mode 18.00 30.00 19.00 -1.50 6.00 -1.00 -0.20 8.14 5.17 2.30<br />

Standard Dev. 4.50 6.95 5.33 0.66 1.19 0.66 0.45 0.89 1.68 3.60<br />

Sample Variance 20.22 48.36 28.40 0.44 1.43 0.43 0.20 0.79 2.84 12.96<br />

Kurtosis -0.46 -0.03 0.18 0.32 0.24 0.74 0.12 -0.17 -0.20 1.48<br />

Skewness -0.09 -0.44 -0.29 -0.45 -0.45 -0.68 -0.84 -0.88 -0.80 1.38<br />

Range 23.00 36.00 27.00 3.50 6.00 3.50 1.90 3.66 7.29 16.50<br />

Minimum 7.00 8.00 3.00 -3.60 2.00 -3.20 -1.50 6.86 0.15 0.60<br />

Maximum 30.00 44.00 30.00 -0.10 8.00 0.30 0.40 10.51 7.43 17.10<br />

Count 145 145 145 145 145 145 145 145 145 145<br />

126<br />

Mom.<br />

Mag.<br />

Mom.<br />

Mag.<br />

LOG<br />

M<br />

LOG<br />

M<br />

LOG<br />

E<br />

LOG<br />

E<br />

Es/Ep


MICROSEISMIC<br />

EVENTS<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 2.89 0.72 6.27 5.20 6.81 -3.82 -1.62 5.71<br />

Standard Error 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01<br />

Median 2.77 0.62 6.24 5.16 6.70 -3.94 -1.74 5.60<br />

Mode 2.46 1.06 6.00 5.03 7.03 -3.92 -1.95 5.09<br />

Standard Deviation 0.75 0.36 0.64 0.86 0.58 0.69 0.69 0.58<br />

Sample Variance 0.56 0.13 0.41 0.74 0.34 0.47 0.47 0.34<br />

Kurtosis 1.26 6.65 -0.47 -0.75 0.14 -0.05 -0.05 0.14<br />

Skewness 0.87 2.10 0.12 0.11 0.78 0.69 0.69 0.78<br />

Range 7.92 3.52 3.83 4.75 3.39 3.92 3.92 3.39<br />

Minimum 1.08 0.23 4.55 3.08 5.40 -5.44 -3.24 4.30<br />

Maximum 9.00 3.75 8.38 7.83 8.79 -1.52 0.69 7.69<br />

Count 8061 8061 8061 8061 8061 8061 8061 8061<br />

REPORTABLE<br />

EVENTS<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 4.38 1.69 7.37 6.60 7.79 -2.43 -0.23 6.69<br />

Standard Error 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05<br />

Median 4.50 1.65 7.44 6.61 7.85 -2.34 -0.13 6.75<br />

Mode 4.13 1.68 7.89 6.30 8.26 -2.87 -0.67 7.16<br />

Standard Deviation 0.63 0.48 0.50 0.63 0.47 0.45 0.45 0.47<br />

Sample Variance 0.39 0.23 0.25 0.39 0.22 0.20 0.20 0.22<br />

Kurtosis -0.05 1.37 -0.49 -0.23 -0.04 -0.45 -0.45 -0.05<br />

Skewness -0.56 0.85 -0.40 -0.38 -0.65 -0.39 -0.39 -0.65<br />

Range 2.85 2.50 2.13 2.81 2.12 1.90 1.90 2.12<br />

Minimum 2.65 0.67 6.25 5.02 6.67 -3.42 -1.21 5.57<br />

Maximum 5.50 3.17 8.38 7.83 8.79 -1.52 0.69 7.69<br />

Count 98 98 98 98 98 98 98 98<br />

BLASTS<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 4.13 1.94 6.92 6.03 7.21 -3.04 -0.84 6.11<br />

Standard Error 0.09 0.09 0.05 0.07 0.05 0.06 0.06 0.05<br />

Median 4.33 1.88 7.03 6.29 7.26 -2.90 -0.69 6.15<br />

Mode 4.94 3.14 6.08 6.48 6.68 -3.23 -0.51 5.58<br />

Standard Deviation 1.13 1.02 0.65 0.85 0.65 0.71 0.71 0.65<br />

Sample Variance 1.27 1.05 0.42 0.73 0.42 0.50 0.50 0.42<br />

Kurtosis -0.80 -0.94 -0.26 0.00 -0.83 -0.04 -0.04 -0.83<br />

Skewness -0.36 0.29 -0.61 -0.70 -0.06 -0.54 -0.53 -0.06<br />

Range 4.63 4.01 3.07 4.38 2.72 3.36 3.37 2.72<br />

Minimum 1.63 0.33 5.02 3.47 5.74 -4.99 -2.79 4.64<br />

Maximum 6.26 4.34 8.09 7.84 8.46 -1.63 0.58 7.36<br />

Count 145 145 145 145 145 145 145 145<br />

127


Log E<br />

10<br />

8<br />

6<br />

4<br />

Energy-Moment Relataion<br />

LogE = 2.13 LogM - 14.90<br />

LogE = 1.84 LogM - 12.17<br />

LogE = 1.75 LogM - 11.28<br />

Events<br />

Blasts<br />

Reportable<br />

Linear (Reportable)<br />

Linear (Blasts)<br />

Linear (Events)<br />

2<br />

0<br />

-2<br />

0 2 4 6 8 10 12<br />

Log M<br />

Figure B1: Energy-Moment relation showing distribution <strong>of</strong> events, blasts and large magnitude events.<br />

Well-located events (


2006 Event Frequency with Depth<br />

6000<br />

5000<br />

Frequency<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500<br />

Depth (feet)<br />

Figure B3: Events within Creighton Mine increase with Depth. This is shown in this event frequency<br />

histogram. This trend is noted over many years, though some increase on lower levels reflects level<br />

development.<br />

Distribution <strong>of</strong> Recorded Events (2006 Data,<br />

Below 7300 ft.)<br />

123<br />

979<br />

e<br />

r<br />

b<br />

9317<br />

Figure B4: Events within <strong>the</strong> Creighton Deep study area consists <strong>of</strong> mostly microseismic events (89.4%),<br />

blasts (9.4%) and few macroseismic events (1.2%)<br />

129


Frequency <strong>of</strong> 2006 Events by Month<br />

1600<br />

1400<br />

1200<br />

Frequency<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Month<br />

Figure B5: Event frequency by month reveals some seasonality to events. Higher event rates occur in<br />

November to January, while low rates occur after a late summer shut-down.<br />

Event frequency by hour, 2006 events<br />

700<br />

600<br />

500<br />

Frequency<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1 3 5 7 9 11 13 15 17 19 21 23<br />

Time (Hour)<br />

Figure B6: Event Frequency is plotted by hour. High event rates in early morning hours reflect blasting<br />

schedules for <strong>the</strong> Creighton Deep.<br />

130


B.2 Spatial Distribution <strong>of</strong> Seismic Event Parameters for <strong>the</strong> 7400 Level<br />

Figure B7: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

magnitude.<br />

Figure B8: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by <strong>the</strong><br />

number <strong>of</strong> phones used in recording, a relative measure <strong>of</strong> magnitude.<br />

131


Figure B9: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

Seismic Energy (Log scale used).<br />

Figure B10: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

Seismic Moment (Log scale used).<br />

132


Figure B11: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

dynamic stress drop (Log scale used).<br />

Figure B12: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by static<br />

stress drop (Log scale used).<br />

133


Figure B13: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by static<br />

stress drop (Log scale used).<br />

Figure B14: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by peak<br />

particle velocity (Log scale used).<br />

134


Figure B15: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by peak<br />

particle acceleration (Log scale used).<br />

Figure B16: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

maximum particle displacement (Log scale used).<br />

135


Figure B17: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

source radius<br />

Figure B18: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

asperity radius<br />

136


Figure B19: Events between Jan 1, 2006 and Dec 31 2007 pertaining to <strong>the</strong> 7400 Level, coloured by<br />

location error. Events that locate outside <strong>the</strong> network to <strong>the</strong> north have a greater location error.<br />

137


B.3 Cluster Statistics<br />

Table B2: Summary Statistics for microseismic event clusters about <strong>the</strong> 7400 Level with location errors<br />

less than 30 feet.<br />

Cluster 1 Error Ns Nu uMag Nt tMag<br />

Mom.<br />

Mag.<br />

LOG<br />

M<br />

LOG<br />

E<br />

Es/Ep<br />

Mean 17.06 21.89 15.57 -2.67 6.32 -1.61 -1.11 7.79 3.28 8.89<br />

Standard Error 0.16 0.15 0.13 0.02 0.04 0.02 0.01 0.02 0.04 0.20<br />

Median 17.00 22.00 16.00 -2.70 6.00 -1.70 -1.20 7.67 3.20 7.70<br />

Mode 18.00 24.00 17.00 -2.80 6.00 -2.00 -1.20 7.49 3.11 6.30<br />

Standard Dev. 4.01 3.72 3.26 0.48 1.11 0.50 0.30 0.57 0.97 5.04<br />

Sample Variance 16.10 13.81 10.63 0.23 1.22 0.25 0.09 0.32 0.94 25.36<br />

Kurtosis 0.13 0.06 0.13 0.47 -0.45 1.20 2.01 1.29 0.74 29.63<br />

Skewness 0.54 -0.39 -0.34 0.54 -0.27 0.92 0.99 1.00 0.49 3.85<br />

Range 21.00 22.00 20.00 3.00 5.00 3.00 2.00 3.74 6.34 62.30<br />

Minimum 9.00 9.00 5.00 -3.90 3.00 -2.70 -1.90 6.19 0.37 2.60<br />

Maximum 30.00 31.00 25.00 -0.90 8.00 0.30 0.10 9.93 6.71 64.90<br />

Count 619 619 619 619 619 619 619 619 619 619<br />

Cluster 2 Error Ns Nu uMag Nt tMag<br />

Mom.<br />

Mag.<br />

LOG<br />

M<br />

LOG<br />

E<br />

Es/Ep<br />

Mean 15.88 22.96 15.04 -2.92 6.46 -2.04 -1.28 7.37 1.73 7.52<br />

Standard Error 0.21 0.30 0.18 0.03 0.08 0.04 0.02 0.03 0.07 0.28<br />

Median 15.00 23.00 15.00 -3.00 7.00 -2.20 -1.30 7.26 1.58 6.70<br />

Mode 16.00 19.00 17.00 -2.80 8.00 -2.40 -1.50 7.23 1.38 4.70<br />

Standard Dev. 3.67 5.19 3.05 0.48 1.39 0.62 0.32 0.57 1.18 4.83<br />

Sample Variance 13.45 26.95 9.33 0.23 1.95 0.39 0.10 0.33 1.40 23.30<br />

Kurtosis 1.83 -0.38 0.26 1.20 -0.70 0.05 1.23 1.14 -0.34 120.14<br />

Skewness 1.11 0.09 -0.29 0.79 -0.50 0.78 0.75 0.73 0.55 9.00<br />

Range 21.00 27.00 18.00 3.30 5.00 3.10 1.90 3.47 5.21 71.40<br />

Minimum 9.00 10.00 5.00 -4.10 3.00 -3.10 -2.10 5.85 -0.19 2.40<br />

Maximum 30.00 37.00 23.00 -0.80 8.00 0.00 -0.20 9.32 5.02 73.80<br />

Count 297 297 297 297 297 297 297 297 297 297<br />

Cluster 3 Error Ns Nu uMag Nt tMag<br />

138<br />

Mom.<br />

Mag.<br />

LOG<br />

M<br />

LOG<br />

E<br />

Es/Ep<br />

Mean 14.78 21.55 14.13 -3.10 5.84 -2.22 -1.37 7.23 1.31 9.42<br />

Standard Error 0.24 0.38 0.22 0.03 0.10 0.04 0.03 0.05 0.08 0.32<br />

Median 15.00 20.50 14.00 -3.10 6.00 -2.35 -1.40 7.12 0.98 8.60<br />

Mode 15.00 20.00 14.00 -3.10 5.00 -2.80 -1.50 7.01 0.31 8.60<br />

Standard Dev. 3.60 5.67 3.29 0.49 1.44 0.65 0.38 0.68 1.22 4.72<br />

Sample Variance 12.97 32.19 10.83 0.24 2.06 0.42 0.14 0.46 1.48 22.24<br />

Kurtosis 0.75 -0.29 -0.30 -0.22 -0.43 0.71 2.34 1.11 0.40 19.43<br />

Skewness 0.46 0.52 -0.16 0.24 -0.22 0.97 0.84 0.68 0.94 3.24<br />

Range 22.00 28.00 17.00 2.60 6.00 3.70 2.40 3.94 6.13 44.30<br />

Minimum 6.00 9.00 5.00 -4.20 2.00 -3.50 -2.20 5.73 -0.57 2.00<br />

Maximum 28.00 37.00 22.00 -1.60 8.00 0.20 0.20 9.67 5.56 46.30<br />

Count 220 220 220 220 220 220 220 220 220 220


Cluster 1<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 2.10 0.60 6.84 6.05 7.12 -3.56 -1.36 6.02<br />

Standard Error 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02<br />

Median 2.12 0.57 6.85 6.09 7.09 -3.59 -1.39 5.99<br />

Mode 2.03 0.53 7.01 6.24 7.01 -3.92 -1.72 5.98<br />

Standard Deviation 0.56 0.18 0.37 0.50 0.40 0.46 0.46 0.40<br />

Sample Variance 0.31 0.03 0.14 0.25 0.16 0.21 0.21 0.16<br />

Kurtosis 0.49 2.94 0.67 1.35 0.25 0.68 0.69 0.24<br />

Skewness -0.32 1.40 -0.28 -0.57 0.57 0.67 0.67 0.57<br />

Range 3.14 1.23 2.47 3.71 2.28 2.81 2.81 2.28<br />

Minimum 0.73 0.30 5.39 3.79 6.19 -4.67 -2.47 5.09<br />

Maximum 3.87 1.53 7.86 7.51 8.47 -1.87 0.34 7.37<br />

Count 619 619 619 619 619 619 619 619<br />

Cluster 2<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 2.24 0.59 6.11 4.92 6.50 -4.21 -2.01 5.40<br />

Standard Error 0.04 0.01 0.03 0.04 0.02 0.03 0.03 0.02<br />

Median 2.34 0.55 6.14 4.93 6.43 -4.30 -2.10 5.33<br />

Mode 1.99 0.45 6.14 4.50 6.12 -4.45 -1.97 5.02<br />

Standard Deviation 0.68 0.19 0.53 0.73 0.40 0.49 0.49 0.40<br />

Sample Variance 0.46 0.04 0.29 0.53 0.16 0.24 0.24 0.16<br />

Kurtosis -0.23 1.02 -0.45 -0.79 -0.13 -0.11 -0.11 -0.13<br />

Skewness -0.60 1.00 0.08 -0.03 0.64 0.68 0.68 0.65<br />

Range 3.19 1.13 2.83 3.39 1.99 2.29 2.29 1.99<br />

Minimum 0.70 0.25 5.05 3.52 5.82 -5.03 -2.83 4.72<br />

Maximum 3.89 1.38 7.88 6.91 7.80 -2.74 -0.53 6.70<br />

Count 297 297 297 297 297 297 297 297<br />

Cluster 3<br />

Source<br />

Radius<br />

Asp.<br />

Radius<br />

LOG<br />

Static<br />

SD<br />

LOG<br />

App.<br />

Stress<br />

LOG<br />

Dynamic<br />

SD.<br />

LOG<br />

Max.<br />

Displ.<br />

LOG<br />

Peak<br />

Vel.<br />

LOG<br />

Peak<br />

Acc.<br />

Mean 2.55 0.49 5.86 4.64 6.49 -4.30 -2.09 5.39<br />

Standard Error 0.07 0.01 0.04 0.05 0.03 0.04 0.04 0.03<br />

Median 2.66 0.45 5.84 4.58 6.40 -4.46 -2.26 5.30<br />

Mode 2.46 0.38 5.35 5.31 6.10 -4.53 -2.47 5.00<br />

Standard Dev. 1.03 0.16 0.63 0.76 0.42 0.53 0.53 0.42<br />

Sample Variance 1.06 0.03 0.39 0.58 0.18 0.28 0.28 0.18<br />

Kurtosis -0.74 3.23 -0.83 -0.93 -0.07 0.15 0.15 -0.08<br />

Skewness -0.35 1.54 0.18 0.22 0.71 0.86 0.86 0.71<br />

Range 3.96 0.95 2.70 3.37 2.15 2.68 2.68 2.15<br />

Minimum 0.66 0.26 4.66 3.08 5.66 -5.28 -3.07 4.56<br />

Maximum 4.62 1.21 7.36 6.45 7.81 -2.60 -0.39 6.71<br />

Count 220 220 220 220 220 220 220 220<br />

139


B.4 Temporal Distribution <strong>of</strong> Seismic Event Parameters<br />

Events belonging to Clusters 1, 2 and 3, as identified in Chapter 3 are plotted to assess temporal<br />

variation. Events are shown in grey; a moving average <strong>of</strong> 50 events is shown in black. Events are as<br />

labeled. Bottom axis represents local time.<br />

Parameter units are summarized here:<br />

Seismic moment, Nm<br />

Energy, J<br />

Source radius, m<br />

Asperity radius, m<br />

Static stress drop, Pa<br />

Apparent stress drop, Pa<br />

Dynamic Stress drop, Pa<br />

Maximum displacement (m)<br />

Peak velocity, m/s<br />

Peak acceleration, m/s 2<br />

B.4.1 Temporal Distribution <strong>of</strong> Cluster 1 Events<br />

Moment Magnitude<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

04/01/2006<br />

04/03/2006<br />

04/05/2006<br />

04/07/2006<br />

04/09/2006<br />

04/11/2006<br />

04/01/2007<br />

04/03/2007<br />

04/05/2007<br />

04/07/2007<br />

04/09/2007<br />

04/11/2007<br />

140


Seismic Moment<br />

10.0<br />

9.5<br />

9.0<br />

8.5<br />

8.0<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

04/01/2006<br />

04/03/2006<br />

04/05/2006<br />

04/07/2006<br />

04/09/2006<br />

04/11/2006<br />

04/01/2007<br />

04/03/2007<br />

04/05/2007<br />

04/07/2007<br />

04/09/2007<br />

04/11/2007<br />

141


142<br />

Energy<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

6.0<br />

7.0<br />

8.0<br />

04/01/2006<br />

04/02/2006<br />

04/03/2006<br />

04/04/2006<br />

04/05/2006<br />

04/06/2006<br />

04/07/2006<br />

04/08/2006<br />

04/09/2006<br />

04/10/2006<br />

04/11/2006<br />

04/12/2006<br />

04/01/2007<br />

04/02/2007<br />

04/03/2007<br />

04/04/2007<br />

04/05/2007<br />

04/06/2007<br />

04/07/2007<br />

04/08/2007<br />

04/09/2007<br />

04/10/2007<br />

04/11/2007<br />

04/12/2007<br />

Apparent Stress<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

04/01/2006<br />

04/02/2006<br />

04/03/2006<br />

04/04/2006<br />

04/05/2006<br />

04/06/2006<br />

04/07/2006<br />

04/08/2006<br />

04/09/2006<br />

04/10/2006<br />

04/11/2006<br />

04/12/2006<br />

04/01/2007<br />

04/02/2007<br />

04/03/2007<br />

04/04/2007<br />

04/05/2007<br />

04/06/2007<br />

04/07/2007<br />

04/08/2007<br />

04/09/2007<br />

04/10/2007<br />

04/11/2007<br />

04/12/2007<br />

Dynamic Stress Drop<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

8.5<br />

04/01/2006<br />

04/02/2006<br />

04/03/2006<br />

04/04/2006<br />

04/05/2006<br />

04/06/2006<br />

04/07/2006<br />

04/08/2006<br />

04/09/2006<br />

04/10/2006<br />

04/11/2006<br />

04/12/2006<br />

04/01/2007<br />

04/02/2007<br />

04/03/2007<br />

04/04/2007<br />

04/05/2007<br />

04/06/2007<br />

04/07/2007<br />

04/08/2007<br />

04/09/2007<br />

04/10/2007<br />

04/11/2007<br />

04/12/2007


143<br />

Peak Velocity Parameter<br />

-2.5<br />

-2.0<br />

-1.5<br />

-1.0<br />

-0.5<br />

0.0<br />

0.5<br />

04/01/2006<br />

04/03/2006<br />

04/05/2006<br />

04/07/2006<br />

04/09/2006<br />

04/11/2006<br />

04/01/2007<br />

04/03/2007<br />

04/05/2007<br />

04/07/2007<br />

04/09/2007<br />

04/11/2007<br />

Es/Ep<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

04/01/2006<br />

04/03/2006<br />

04/05/2006<br />

04/07/2006<br />

04/09/2006<br />

04/11/2006<br />

04/01/2007<br />

04/03/2007<br />

04/05/2007<br />

04/07/2007<br />

04/09/2007<br />

04/11/2007<br />

Source Radius<br />

0.5<br />

1.0<br />

1.5<br />

2.0<br />

2.5<br />

3.0<br />

3.5<br />

4.0<br />

04/01/2006<br />

04/02/2006<br />

04/03/2006<br />

04/04/2006<br />

04/05/2006<br />

04/06/2006<br />

04/07/2006<br />

04/08/2006<br />

04/09/2006<br />

04/10/2006<br />

04/11/2006<br />

04/12/2006<br />

04/01/2007<br />

04/02/2007<br />

04/03/2007<br />

04/04/2007<br />

04/05/2007<br />

04/06/2007<br />

04/07/2007<br />

04/08/2007<br />

04/09/2007<br />

04/10/2007<br />

04/11/2007<br />

04/12/2007


144<br />

Static Stress Drop<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

04/01/2006<br />

04/02/2006<br />

04/03/2006<br />

04/04/2006<br />

04/05/2006<br />

04/06/2006<br />

04/07/2006<br />

04/08/2006<br />

04/09/2006<br />

04/10/2006<br />

04/11/2006<br />

04/12/2006<br />

04/01/2007<br />

04/02/2007<br />

04/03/2007<br />

04/04/2007<br />

04/05/2007<br />

04/06/2007<br />

04/07/2007<br />

04/08/2007<br />

04/09/2007<br />

04/10/2007<br />

04/11/2007<br />

04/12/2007<br />

Complexity (DySD:StSD)<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

6.0<br />

7.0<br />

8.0<br />

9.0<br />

10.0<br />

04/01/2006<br />

04/03/2006<br />

04/05/2006<br />

04/07/2006<br />

04/09/2006<br />

04/11/2006<br />

04/01/2007<br />

04/03/2007<br />

04/05/2007<br />

04/07/2007<br />

04/09/2007<br />

04/11/2007


B.4.2 Temporal Distribution <strong>of</strong> Cluster 2 Events<br />

Moment Magnitude<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

-2.5<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Seismic Moment<br />

9.5<br />

9.0<br />

8.5<br />

8.0<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

5.5<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

145


146<br />

Energy<br />

-1.0<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

6.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Es/Ep<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Source Radius<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007


147<br />

Static Stress Drop<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Apparent Stress<br />

3.0<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Dynamic Stress Drop<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007


Peak Velocity Parameter<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

Complexity (DySD:StSD)<br />

12.0<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

02/01/2006<br />

02/03/2006<br />

02/05/2006<br />

02/07/2006<br />

02/09/2006<br />

02/11/2006<br />

02/01/2007<br />

02/03/2007<br />

02/05/2007<br />

02/07/2007<br />

02/09/2007<br />

02/11/2007<br />

148


B.4.3 Temporal Distribution <strong>of</strong> Cluster 3 Events<br />

Moment Magnitude<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

-2.5<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Seismic Moment<br />

10.0<br />

9.0<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

149


150<br />

Energy<br />

-1.0<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

6.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Es/Ep<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Source Radius<br />

0.0<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007


151<br />

Static Stress Drop<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Apparent Stress<br />

3.0<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Dynamic Stress Drop<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.0<br />

7.5<br />

8.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007


Peak Velocity Parameter<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

-2.5<br />

-3.0<br />

-3.5<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

Com pexity (DySD:StSD)<br />

30.0<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

17/01/2006<br />

17/03/2006<br />

17/05/2006<br />

17/07/2006<br />

17/09/2006<br />

17/11/2006<br />

17/01/2007<br />

17/03/2007<br />

17/05/2007<br />

17/07/2007<br />

17/09/2007<br />

17/11/2007<br />

152


Frequency-Magnitude Relation<br />

for Cluster 1<br />

3.0<br />

Magnitude-Frequency Relation for Cluster 2<br />

2.5<br />

y = -1.62x + 0.71<br />

2.5<br />

LOG Cumulative Frequency<br />

2.0<br />

1.5<br />

1.0<br />

Log Cumulative Frequency<br />

2<br />

1.5<br />

1<br />

y = -1.27x + 0.53<br />

y = -2.17x + 0.07<br />

0.5<br />

0.5<br />

0.0<br />

-1.5 -1.0 -0.5 0.0 0.5<br />

0<br />

-1.5 -1 -0.5 0 0.5<br />

A<br />

Moment Magnitude<br />

B<br />

Moment Magnitude<br />

Magnitude-Frequency Relation for Cluster 3<br />

2.0<br />

LOG Cumulative Frequency<br />

1.5<br />

1.0<br />

0.5<br />

y = -1.30x + 0.10<br />

0.0<br />

-1.5 -1.0 -0.5 0.0 0.5<br />

C<br />

Moment Mangitude<br />

Figure B20: Magnitude-Frequency relations for (A) Cluster 1; (B) Cluster 2; and (C) Cluster 3.<br />

153


Appendix C<br />

Fault Plane Solutions<br />

Table C1 Fault Plane Solution Data for 7400 and 7530 Levels, January 1, 2006 – December 31, 2006<br />

154<br />

P-axis B-axis T-axis<br />

Fault Plane<br />

1<br />

Fault Plane<br />

2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

1 18/01/2006 5:10:49 7400 6153 4353 7371 226.0 33.0 324.0 12.0 72.0 54.0 147.0 79.0 276.0 17.0 84<br />

2 01/01/2006 6:30:27 7400 6231 4698 7325 92.0 4.0 190.0 64.0 0.0 26.0 43.0 75.0 139.0 69.0 80<br />

3 05/01/2006 11:05:48 7400 6238 4841 7372 244.0 68.0 358.0 10.0 92.0 20.0 354.0 66.0 199.0 26.0 78<br />

4 18/01/2006 20:11:40 7400 6182 4482 7341 306.0 32.0 50.0 21.0 168.0 50.0 347.0 24.0 238.0 80.0 81<br />

5 17/01/2006 3:38:14 7400 6222 4301 7417 250.0 8.0 150.0 49.0 347.0 40.0 125.0 69.0 20.0 56.0 77<br />

7 27/01/2006 4:12:13 7400 6548 4136 7386 354.0 19.0 259.0 17.0 129.0 64.0 251.0 66.0 110.0 30.0 88<br />

8 01/02/2006 2:26:41 7400 6187 4697 7348 247.0 15.0 135.0 55.0 346.0 31.0 119.0 79.0 22.0 57.0 77<br />

9 13/02/2006 3:18:51 7400 6276 4459 7445 298.0 16.0 90.0 72.0 205.0 8.0 341.0 73.0 72.0 84.0 77<br />

10 14/02/2006 6:12:52 7400 6096 4374 7306 227.0 13.0 327.0 38.0 121.0 49.0 165.0 68.0 279.0 46.0 75<br />

11 02/02/2006 13:30 7400 6150 4409 7352 219.0 75.0 125.0 1.0 34.0 15.0 123.0 30.0 305.0 60.0 84<br />

12 15/02/2006 17:33:06 7400 6134 4800 7348 294.0 9.0 44.0 66.0 201.0 22.0 204.0 81.0 340.0 68.0 81<br />

13 13/02/2006 3:56:38 7400 6327 4171 7294 244.0 65.0 127.0 12.0 33.0 21.0 312.0 67.0 102.0 26.0 83<br />

14 07/02/2006 17:59:48 7400 6005 4579 7351 53.0 10.0 146.0 19.0 298.0 68.0 339.0 57.0 121.0 39.0 82<br />

15 29/03/2006 13:23:26 7400 6160 4503 7347 307.0 40.0 156.0 46.0 50.0 15.0 353.0 74.0 97.0 50.0 81<br />

16 08/03/2006 18:51:35 7400 6137 4446 7300 221.0 25.0 327.0 31.0 100.0 49.0 155.0 76.0 266.0 34.0 83<br />

17 06/03/2006 13:30:48 7400 231.0 13.0 23.0 75.0 139.0 7.0 275.0 76.0 6.0 85.0 81<br />

18 19/03/2006 16:46:50 7400 6771 4867 7341 139.0 52.0 27.0 16.0 286.0 33.0 210.0 80.0 329.0 19.0 80<br />

19 01/04/2006 1:54:25 7400 6168 4421 7376 98.0 85.0 323.0 4.0 233.0 4.0 319.0 41.0 146.0 49.0 83<br />

20 21/04/2006 2:49:56 7400 6285 4472 7437 257.0 56.0 120.0 26.0 19.0 20.0 310.0 70.0 73.0 34.0 74<br />

21 21/04/2006 2:35:13 7400 6239 4498 7420 267.0 84.0 122.0 5.0 31.0 4.0 306.0 49.0 116.0 42.0 86<br />

22 30/05/2006 7:02:55 7400 6172 4318 7353 237.0 15.0 332.0 17.0 108.0 67.0 161.0 62.0 304.0 34.0 75


P-axis B-axis T-axis<br />

155<br />

Fault Plane<br />

1<br />

Fault Plane<br />

2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

23 22/05/2006 2:21:29 7400 6185 4787 7433 86.0 40.0 338.0 21.0 228.0 42.0 337.0 89.0 244.0 21.0 80<br />

24 23/05/2006 8:30:33 7400 6275 4878 7376 52.0 2.0 321.0 36.0 145.0 54.0 293.0 57.0 173.0 53.0 76<br />

25 30/05/2006 7:02:55 7400 6172 4318 7353 239.0 18.0 335.0 16.0 103.0 65.0 162.0 65.0 305.0 30.0 75<br />

26 03/05/2006 8:25:31 7400 6170 4609 7315 291.0 20.0 121.0 70.0 22.0 3.0 335.0 79.0 68.0 74.0 74<br />

27 25/06/2006 10:19:17 7400 6066 4692 7379 241.0 21.0 137.0 34.0 356.0 48.0 125.0 74.0 14.0 39.0 88<br />

28 23/06/2006 5:34:19 7400 6342 4752 7442 225.0 79.0 29.0 10.0 120.0 3.0 221.0 43.0 20.0 49.0 75<br />

29 20/06/2006 4:47:23 7400 6372 4445 7455 92.0 2.0 186.0 64.0 1.0 26.0 44.0 74.0 140.0 71.0 68<br />

30 22/06/2006 14:44:03 7400 6205 4482 7307 140.0 12.0 246.0 52.0 41.0 35.0 86.0 75.0 187.0 56.0 83<br />

31 19/06/2006 9:38:09 7400 6246 4491 7424 5.0 82.0 123.0 4.0 312.0 7.0 120.0 52.0 307.0 38.0 75<br />

32 19/06/2006 12:32:56 7400 6085 4377 7346 87.0 6.0 356.0 7.0 217.0 81.0 350.0 51.0 185.0 40.0 75<br />

33 19/06/2006 2:19:03 7400 6115 4366 7330 306.0 1.0 214.0 68.0 36.0 22.0 173.0 75.0 79.0 74.0 77<br />

34 19/06/2006 14:38:09 7400 6149 4331 7332 229.0 50.0 135.0 3.0 43.0 40.0 316.0 85.0 104.0 6.0 80<br />

35 27/06/2006 7:41:46 7400 6291 4319 7451 165.0 3.0 258.0 46.0 73.0 44.0 110.0 63.0 219.0 59.0 83<br />

36 08/07/2006 11:18:25 7400 6390 4953 7399 215.0 58.0 9.0 29.0 106.0 11.0 227.0 42.0 353.0 62.0 77<br />

37 01/07/2006 13:07:24 7400 6321 4700 7459 36.0 69.0 274.0 12.0 180.0 17.0 100.0 63.0 253.0 30.0 89<br />

38 13/07/2006 23:50:42 7400 6331 4544 7451 166.0 31.0 50.0 36.0 284.0 39.0 47.0 85.0 310.0 37.0 83<br />

39 19/07/2006 20:56:36 7400 6315 4145 7325 116.0 10.0 207.0 9.0 337.0 76.0 33.0 56.0 195.0 36.0 85<br />

40 10/07/2006 22:01:32 7400 6411 4455 7447 85.0 29.0 206.0 43.0 333.0 33.0 28.0 88.0 121.0 43.0 72<br />

41 11/07/2006 3:14:05 7400 6198 4395 7419 265.0 7.0 167.0 50.0 0.0 39.0 139.0 69.0 35.0 58.0 77<br />

42 04/07/2006 11:18:42 7400 6185 4288 7292 248.0 23.0 30.0 62.0 15.0 35.0 21.0 85.0 288.0 62.0 81<br />

43 05/07/2006 9:11:35 7400 6085 4364 7300 53.0 4.0 150.0 59.0 321.0 31.0 3.0 72.0 102.0 65.0 76<br />

44 11/07/2006 6:15:13 7400 6127 4488 7310 281.0 10.0 157.0 73.0 13.0 14.0 147.0 87.0 57.0 74.0 73<br />

45 11/07/2006 8:01:54 7400 6156 4652 7316 258.0 1.0 166.0 64.0 348.0 26.0 126.0 73.0 30.0 71.0 71<br />

46 10/07/2006 22:19:51 7400 6248 4615 7441 240.0 26.0 49.0 64.0 148.0 4.0 281.0 69.0 17.0 75.0 75<br />

47 10/07/2006 21:17:18 7400 6186 4554 7378 55.0 78.0 255.0 11.0 164.0 4.0 85.0 50.0 242.0 42.0 78<br />

48 03/07/2006 23:57:07 7400 6126 4705 7379 205.0 22.0 302.0 18.0 68.0 61.0 129.0 69.0 265.0 28.0 81<br />

49 27/07/2006 8:54:53 7400 6251 4835 7406 241.0 55.0 149.0 1.0 58.0 35.0 330.0 80.0 142.0 10.0 81


P-axis B-axis T-axis<br />

156<br />

Fault Plane<br />

1<br />

Fault Plane<br />

2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

50 10/07/2006 20:21:38 7400 6184 4580 7375 277.0 35.0 127.0 51.0 18.0 15.0 323.0 77.0 63.0 54.0 82<br />

51 10/07/2006 19:52:55 7400 6165 4553 7371 282.0 35.0 100.0 55.0 192.0 1.0 321.0 65.0 63.0 67.0 79<br />

52 11/07/2006 6:34:29 7400 6194 4638 7339 281.0 36.0 133.0 49.0 23.0 16.0 328.0 77.0 68.0 52.0 67<br />

53 15/07/2006 16:12:09 7400 6189 4674 7313 274.0 21.0 149.0 57.0 15.0 25.0 145.0 87.0 53.0 57.0 78<br />

54 11/07/2006 2:45:28 7400 6169 4613 7309 279.0 16.0 86.0 74.0 189.0 4.0 323.0 76.0 55.0 82.0 78<br />

55 06/08/2006 10:44:08 7400 6204 4737 7301 268.0 77.0 47.0 10.0 138.0 9.0 39.0 54.0 240.0 37.0 86<br />

56 04/08/2006 3:59:07 7400 6337 4815 7412 76.0 69.0 228.0 19.0 321.0 9.0 215.0 57.0 72.0 39.0 77<br />

57 04/08/2006 3:58:56 7400 6332 4837 7421 81.0 70.0 214.0 14.0 308.0 14.0 56.0 33.0 206.0 60.0 74<br />

58 06/08/2006 0:29:27 7400 6400 4914 7352 283.0 39.0 91.0 51.0 188.0 6.0 62.0 68.0 318.0 59.0 77<br />

59 02/09/2006 17:44:27 7400 6187 4648 7302 268.0 10.0 150.0 69.0 1.0 18.0 135.0 84.0 43.0 70.0 84<br />

60 05/09/2006 16:54:52 7400 6183 4621 7319 287.0 21.0 27.0 26.0 163.0 56.0 217.0 71.0 339.0 33.0 80<br />

61 29/09/2006 6:31:23 7400 6207 4561 7443 39.0 61.0 146.0 9.0 241.0 27.0 143.0 73.0 354.0 19.0 80<br />

62 26/09/2006 14:32:38 7400 6133 4497 7322 250.0 4.0 152.0 62.0 342.0 28.0 119.0 74.0 23.0 68.0 67<br />

63 01/09/2006 5:22:40 7400 6118 4425 7341 178.0 7.0 275.0 48.0 82.0 41.0 123.0 68.0 228.0 57.0 76<br />

64 01/09/2006 9:01:03 7400 6038 4343 7307 21.0 63.0 284.0 3.0 192.0 26.0 105.0 71.0 274.0 19.0 85<br />

65 04/09/2006 16:54:58 7400 6069 4337 7297 318.0 1.0 227.0 32.0 50.0 57.0 200.0 55.0 76.0 52.0 76<br />

66 11/09/2006 5:57:26 7400 6105 4359 7313 256.0 6.0 152.0 67.0 348.0 22.0 124.0 79.0 30.0 70.0 63<br />

67 01/09/2006 7:37:40 7400 6192 4296 7439 96.0 25.0 282.0 65.0 187.0 2.0 138.0 74.0 234.0 71.0 75<br />

68 17/10/2006 20:53:10 7400 6195 4617 7313 113.0 6.0 233.0 77.0 22.0 11.0 67.0 87.0 158.0 78.0 80<br />

69 02/10/2006 18:32:23 7400 6109 4324 7296 288.0 65.0 42.0 11.0 137.0 23.0 38.0 68.0 248.0 25.0 89<br />

70 28/11/2006 4:48:59 7400 6256 4562 7415 280.0 30.0 141.0 53.0 22.0 21.0 64.0 54.0 329.0 84.0 76<br />

71 29/11/2006 6:25:34 7400 6185 4553 7365 278.0 34.0 128.0 52.0 18.0 15.0 324.0 78.0 63.0 55.0 72<br />

72 19/11/2006 21:02:21 7400 6145 4347 7364 241.0 32.0 131.0 28.0 9.0 44.0 127.0 83.0 25.0 29.0 76<br />

73 19/11/2006 21:21:09 7400 6156 4384 7387 309.0 36.0 160.0 50.0 50.0 15.0 356.0 77.0 96.0 53.0 76<br />

74 29/11/2006 22:28:35 7400 6203 4309 7333 245.0 49.0 135.0 17.0 33.0 37.0 317.0 84.0 67.0 18.0 73<br />

75 29/11/2006 19:28:56 7400 6214 4677 7364 222.0 14.0 328.0 47.0 121.0 39.0 166.0 74.0 269.0 52.0 80<br />

76 29/11/2006 16:31:59 7400 6199 4656 7323 134.0 12.0 26.0 56.0 232.0 31.0 6.0 77.0 268.0 59.0 72


P-axis B-axis T-axis Fault Plane 1 Fault Plane 2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

77 29/11/2006 6:05:52 7400 6225 4648 7361 101.0 22.0 351.0 40.0 213.0 42.0 341.0 78.0 238.0 42.0 76<br />

78 29/11/2006 1:51:20 7400 6193 4640 7345 306.0 27.0 59.0 37.0 189.0 41.0 244.0 82.0 345.0 38.0 73<br />

79 28/11/2006 17:53:00 7400 6251 4561 7418 77.0 61.0 261.0 29.0 170.0 2.0 106.0 53.0 234.0 50.0 68<br />

80 28/11/2006 15:18:50 7400 6172 4601 7295 302.0 49.0 172.0 29.0 66.0 26.0 359.0 77.0 111.0 33.0 74<br />

81 28/11/2006 14:45:47 7400 6264 4662 7451 338.0 19.0 236.0 32.0 94.0 52.0 223.0 71.0 108.0 38.0 78<br />

82 28/11/2006 11:06:18 7400 6207 4602 7310 285.0 4.0 162.0 82.0 15.0 7.0 150.0 88.0 60.0 82.0 73<br />

83 28/11/2006 7:52:47 7400 6193 4594 7324 295.0 34.0 169.0 41.0 48.0 31.0 351.0 88.0 83.0 41.0 79<br />

84 23/12/2006 4:30:58 7400 6157 4365 7317 259.0 33.0 129.0 44.0 9.0 27.0 313.0 86.0 46.0 45.0 61<br />

85 18/12/2006 18:21:56 7400 6083 4327 7295 286.0 26.0 191.0 10.0 81.0 62.0 187.0 72.0 39.0 21.0 77<br />

86 12/12/2006 14:41:35 7400 6076 4380 7322 177.0 42.0 53.0 32.0 301.0 32.0 237.0 84.0 336.0 32.0 70<br />

87 02/12/2006 7:15:39 7400 6102 4410 7420 297.0 68.0 112.0 22.0 203.0 2.0 93.0 51.0 314.0 47.0 74<br />

88 01/12/2006 22:39:49 7400 6129 4387 7352 55.0 2.0 152.0 74.0 324.0 16.0 8.0 80.0 100.0 77.0 86<br />

89 20/12/2006 3:45:59 7400 6392 4418 7399 100.0 12.0 296.0 77.0 190.0 3.0 144.0 84.0 236.0 79.0 76<br />

90 02/12/2006 4:25:22 7400 6187 4512 7347 154.0 41.0 0.0 33.0 256.0 13.0 304.0 51.0 199.0 73.0 67<br />

91 19/12/2006 3:58:22 7400 6155 4608 7301 263.0 61.0 173.0 0.0 83.0 29.0 353.0 74.0 172.0 16.0 82<br />

92 19/12/2006 1:20:12 7400 6169 4538 7317 267.0 33.0 153.0 33.0 30.0 40.0 150.0 86.0 54.0 33.0 78<br />

93 18/12/2006 18:35:32 7400 6046 4544 7429 212.0 3.0 306.0 56.0 120.0 33.0 161.0 69.0 262.0 65.0 81<br />

94 11/12/2006 12:38:37 7400 6179 4619 7322 287.0 20.0 64.0 64.0 190.0 16.0 59.0 88.0 328.0 64.0 74<br />

95 09/12/2006 2:50:36 7400 6134 4574 7389 107.0 8.0 352.0 71.0 199.0 17.0 334.0 84.0 242.0 72.0 89<br />

96 27/12/2006 23:50:14 7400 6163 4790 7366 250.0 25.0 46.0 63.0 156.0 10.0 25.0 79.0 290.0 65.0 72<br />

97 24/12/2006 1:47:58 7400 6159 4722 7375 286.0 15.0 27.0 36.0 177.0 50.0 223.0 69.0 337.0 44.0 70<br />

98 30/01/2006 3:36:39 7400 5907 4522 7461 66.0 30.0 175.0 29.0 300.0 46.0 360.0 81.0 106.0 30.0 73<br />

99 21/01/2006 11:51:09 7400 6281 4361 7467 80.0 51.0 227.0 34.0 329.0 17.0 212.0 70.0 98.0 41.0 72<br />

100 20/01/2006 9:41:03 7740 6277 4369 7462 187.0 37.0 88.0 12.0 343.0 50.0 86.0 83.0 327.0 13.0 76<br />

101 20/01/2006 4:01:19 7530 6344 4486 7525 319.0 58.0 54.0 3.0 147.0 32.0 54.0 77.0 249.0 13.0 70<br />

102 18/01/2006 7:33:27 7530 6334 4477 7508 95.0 14.0 251.0 75.0 4.0 6.0 139.0 76.0 230.0 85.0 79<br />

103 17/01/2006 23:08:20 7530 6306 4615 7519 357.0 71.0 96.0 3.0 187.0 19.0 94.0 64.0 282.0 26.0 82<br />

157


P-axis B-axis T-axis Fault Plane 1 Fault Plane 2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

104 17/01/2006 19:32:24 7530 6274 4821 7461 245.0 32.0 94.0 54.0 344.0 14.0 291.0 78.0 29.0 56.0 75<br />

105 17/01/2006 11:53:10 7530 6363 4394 7481 92.0 39.0 268.0 51.0 0.0 2.0 233.0 65.0 129.0 62.0 78<br />

106 17/01/2006 5:00:25 7530 6329 4686 7592 99.0 36.0 331.0 40.0 213.0 29.0 155.0 86.0 249.0 40.0 79<br />

107 16/01/2006 22:49:22 7530 6360 4526 7520 101.0 55.0 199.0 5.0 292.0 34.0 198.0 79.0 44.0 12.0 77<br />

108 16/01/2006 22:38:10 7530 6514 4488 7534 28.0 70.0 295.0 1.0 204.0 20.0 115.0 65.0 292.0 25.0 84<br />

109 16/01/2006 21:31:24 7530 6267 4404 7486 222.0 77.0 95.0 8.0 4.0 10.0 281.0 56.0 85.0 36.0 71<br />

110 16/01/2006 21:26:25 7400 6383 4399 7465 278.0 42.0 38.0 30.0 151.0 34.0 36.0 86.0 298.0 30.0 75<br />

111 13/01/2006 19:19:15 7400 6256 4578 7495 128.0 11.0 35.0 15.0 252.0 71.0 25.0 58.0 236.0 37.0 80<br />

112 05/01/2006 21:56:42 7400 6196 4584 7496 295.0 7.0 193.0 60.0 29.0 29.0 166.0 75.0 68.0 64.0 76<br />

113 21/02/2006 8:59:38 7400 6260 4339 7408 333.0 34.0 221.0 29.0 101.0 42.0 219.0 86.0 121.0 29.0 80<br />

114 20/02/2006 5:17:21 7400 6068 4372 7323 47.0 16.0 253.0 73.0 139.0 7.0 93.0 84.0 184.0 74.0 74<br />

115 20/02/2006 2:00:36 7400 6145 4354 7310 263.0 26.0 3.0 20.0 126.0 56.0 189.0 74.0 316.0 26.0 74<br />

116 19/02/2006 10:34:47 7400 6144 4349 7352 150.0 38.0 9.0 45.0 257.0 20.0 200.0 79.0 300.0 47.0 75<br />

117 19/02/2006 6:37:37 7400 6138 4348 7358 124.0 23.0 261.0 60.0 26.0 18.0 256.0 87.0 164.0 60.0 67<br />

118 19/02/2006 3:00:18 7400 6139 4332 7345 291.0 37.0 72.0 46.0 185.0 20.0 61.0 80.0 322.0 48.0 84<br />

119 19/02/2006 1:12:08 7400 6137 4379 7390 73.0 11.0 323.0 60.0 169.0 27.0 304.0 79.0 208.0 63.0 71<br />

120 17/02/2006 17:07:49 7400 6169 4326 7433 281.0 23.0 177.0 30.0 43.0 51.0 168.0 74.0 53.0 35.0 74<br />

121 17/02/2006 0:41:20 7400 6097 4384 7293 48.0 63.0 189.0 22.0 285.0 16.0 178.0 64.0 44.0 35.0 79<br />

122 16/02/2006 13:04:46 7400 6235 4346 7402 186.0 34.0 311.0 41.0 72.0 31.0 309.0 88.0 217.0 41.0 75<br />

123 16/02/2006 1:12:18 7400 6134 4359 7371 66.0 32.0 270.0 55.0 163.0 11.0 111.0 76.0 209.0 59.0 68<br />

124 15/02/2006 11:41:18 7400 6178 4301 7301 244.0 44.0 124.0 27.0 14.0 34.0 307.0 84.0 48.0 28.0 80<br />

125 14/02/2006 6:12:52 7400 6096 4374 7306 227.0 13.0 327.0 38.0 121.0 49.0 165.0 68.0 279.0 46.0 75<br />

126 14/02/2006 3:32:57 7400 6171 4366 7344 321.0 57.0 116.0 30.0 213.0 11.0 335.0 43.0 99.0 62.0 74<br />

127 13/02/2006 3:56:38 7400 6327 4171 7294 244.0 65.0 127.0 12.0 33.0 21.0 312.0 67.0 102.0 26.0 83<br />

128 13/02/2006 3:18:51 7400 6276 4459 7445 298.0 21.0 84.0 65.0 202.0 13.0 339.0 66.0 71.0 84.0 73<br />

129 13/02/2006 1:55:58 7400 6167 4354 7445 202.0 8.0 296.0 25.0 95.0 63.0 134.0 58.0 266.0 43.0 75<br />

130 12/02/2006 15:31:58 7400 6242 4313 7388 149.0 37.0 276.0 38.0 33.0 30.0 273.0 86.0 177.0 38.0 75<br />

158


P-axis B-axis T-axis Fault Plane 1 Fault Plane 2<br />

Event<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

#<br />

131 12/02/2006 4:24:22 7400 6135 4336 7385 299.0 20.0 43.0 34.0 184.0 49.0 235.0 73.0 347.0 39.0 72<br />

132 12/02/2006 3:54:59 7400 6193 4310 7348 173.0 2.0 81.0 38.0 265.0 52.0 52.0 58.0 295.0 54.0 73<br />

133 12/02/2006 1:29:21 7400 6271 4368 7328 262.0 49.0 130.0 30.0 24.0 25.0 318.0 77.0 69.0 34.0 67<br />

134 11/02/2006 10:53:51 7400 6268 4444 7410 250.0 60.0 159.0 0.0 69.0 30.0 340.0 75.0 159.0 15.0 77<br />

135 09/02/2006 23:32:50 7400 6075 4285 7291 312.0 47.0 100.0 38.0 203.0 17.0 85.0 72.0 334.0 44.0 73<br />

136 09/02/2006 18:04:04 7400 6163 4316 7363 270.0 21.0 176.0 9.0 65.0 67.0 172.0 67.0 16.0 25.0 68<br />

137 09/02/2006 3:16:41 7400 6161 4330 7440 248.0 26.0 342.0 7.0 86.0 63.0 164.0 72.0 321.0 20.0 81<br />

138 05/02/2006 15:07:30 7400 6228 4308 7404 291.0 10.0 44.0 67.0 197.0 21.0 335.0 68.0 242.0 82.0 72<br />

139 03/02/2006 23:50:12 7400 6177 4320 7351 156.0 24.0 273.0 45.0 47.0 35.0 100.0 83.0 196.0 45.0 79<br />

140 03/02/2006 18:33:38 7400 6180 4325 7413 162.0 51.0 271.0 15.0 12.0 35.0 269.0 82.0 150.0 17.0 67<br />

141 02/02/2006 7:22:05 7400 6190 4343 7320 315.0 28.0 183.0 52.0 59.0 24.0 6.0 87.0 98.0 52.0 74<br />

142 02/02/2006 6:58:23 7400 6175 4391 7390 191.0 20.0 288.0 18.0 57.0 62.0 116.0 68.0 252.0 30.0 78<br />

143 02/02/2006 6:56:09 7400 6192 4449 7419 337.0 9.0 239.0 39.0 77.0 49.0 217.0 65.0 103.0 50.0 65<br />

144 01/02/2006 12:46:13 7400 6140 4376 7371 85.0 7.0 319.0 77.0 176.0 10.0 311.0 88.0 221.0 78.0 68<br />

145 20/03/2006 9:12:41 7400 6229 4263 7328 69.0 23.0 244.0 67.0 338.0 2.0 206.0 75.0 111.0 73.0 82<br />

146 18/03/2006 20:43:26 7400 6189 4579 7366 269.0 13.0 160.0 54.0 7.0 32.0 142.0 77.0 43.0 57.0 62<br />

147 16/03/2006 13:30:48 7400 6232 4379 7422 231.0 15.0 25.0 73.0 139.0 7.0 274.0 74.0 6.0 84.0 81<br />

148 16/03/2006 13:30:46 7400 6262 4380 7420 230.0 28.0 35.0 61.0 136.0 6.0 6.0 75.0 269.0 66.0 82<br />

149 13/03/2006 3:47:31 7400 6249 4686 7298 235.0 29.0 118.0 39.0 350.0 37.0 114.0 85.0 18.0 40.0 83<br />

150 11/03/2006 14:03:05 7400 6233 4372 7365 225.0 73.0 98.0 11.0 5.0 13.0 81.0 33.0 284.0 59.0 72<br />

151 10/03/2006 0:38:25 7400 6362 4821 7458 69.0 70.0 184.0 9.0 277.0 18.0 180.0 63.0 21.0 28.0 82<br />

152 08/03/2006 18:51:35 7400 6137 4446 7300 215.0 29.0 311.0 10.0 58.0 59.0 134.0 75.0 279.0 18.0 78<br />

153 06/03/2006 3:07:20 7400 6217 4589 7458 257.0 25.0 143.0 40.0 9.0 39.0 136.0 82.0 37.0 41.0 75<br />

154 05/03/2006 18:42:15 7400 6190 4431 7325 271.0 7.0 170.0 56.0 6.0 32.0 143.0 73.0 44.0 62.0 79<br />

155 30/03/2006 19:51:46 7400 6130 4357 7361 109.0 5.0 226.0 79.0 19.0 10.0 64.0 87.0 154.0 80.0 74<br />

156 29/03/2006 13:23:26 7400 6160 4503 7347 284.0 55.0 159.0 22.0 58.0 26.0 346.0 74.0 108.0 28.0 77<br />

157 27/04/2006 0:49:12 7400 6296 4893 7381 109.0 48.0 292.0 42.0 200.0 2.0 144.0 59.0 256.0 57.0 79<br />

159


P-axis B-axis T-axis Fault Plane 1 Fault Plane 2<br />

Event<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

#<br />

158 26/04/2006 11:03:58 7400 6300 4839 7358 61.0 51.0 258.0 37.0 161.0 8.0 100.0 63.0 216.0 49.0 71<br />

159 24/04/2006 15:06:09 7400 6317 4871 7455 300.0 9.0 203.0 39.0 41.0 50.0 180.0 65.0 67.0 49.0 71<br />

160 22/04/2006 11:50:29 7400 6453 4883 7450 150.0 50.0 28.0 24.0 284.0 30.0 213.0 79.0 326.0 27.0 88<br />

161 21/04/2006 6:39:42 7400 6254 4465 7431 70.0 3.0 172.0 75.0 339.0 15.0 24.0 82.0 116.0 77.0 75<br />

162 21/04/2006 2:35:13 7400 6239 4498 7420 267.0 84.0 122.0 5.0 31.0 4.0 306.0 49.0 116.0 42.0 86<br />

163 15/04/2006 23:35:34 7400 6161 4340 7418 221.0 6.0 328.0 70.0 129.0 19.0 173.0 81.0 266.0 72.0 72<br />

164 13/04/2006 21:12:21 7400 6331 4344 7376 336.0 3.0 234.0 64.0 69.0 26.0 205.0 77.0 109.0 68.0 65<br />

165 12/04/2006 3:25:13 7400 6231 4659 7327 250.0 75.0 113.0 11.0 22.0 10.0 99.0 37.0 301.0 56.0 74<br />

166 07/04/2006 13:59:30 7400 6278 4466 7456 208.0 67.0 57.0 20.0 323.0 10.0 250.0 58.0 30.0 39.0 67<br />

167 04/04/2006 8:58:05 7400 6181 4386 7310 243.0 29.0 140.0 21.0 20.0 53.0 135.0 77.0 17.0 25.0 79<br />

168 03/04/2006 17:49:39 7400 6168 4316 7373 183.0 11.0 279.0 29.0 74.0 59.0 116.0 62.0 242.0 42.0 84<br />

169 03/04/2006 2:43:25 7400 6328 4789 7437 99.0 74.0 298.0 15.0 206.0 5.0 280.0 42.0 130.0 52.0 79<br />

170 02/04/2006 7:49:10 7400 6118 4331 7338 227.0 54.0 107.0 20.0 5.0 28.0 292.0 76.0 54.0 25.0 73<br />

171 30/05/2006 7:02:55 7400 6172 4318 7353 239.0 18.0 335.0 16.0 103.0 65.0 162.0 65.0 305.0 30.0 75<br />

172 27/05/2006 17:22:40 7400 6162 4347 7393 312.0 27.0 201.0 36.0 70.0 43.0 194.0 81.0 92.0 37.0 77<br />

173 15/05/2006 13:45:16 7400 6108 4374 7306 265.0 32.0 97.0 57.0 359.0 5.0 47.0 64.0 308.0 72.0 65<br />

174 06/05/2006 13:51:29 7400 6228 4340 7426 204.0 27.0 94.0 34.0 324.0 44.0 88.0 81.0 344.0 35.0 71<br />

175 30/05/2006 7:02:55 7400 6172 4318 7353 237.0 15.0 332.0 17.0 108.0 67.0 161.0 62.0 304.0 34.0 75<br />

176 27/05/2006 17:22:40 7400 6162 4347 7393 313.0 28.0 201.0 35.0 71.0 42.0 195.0 82.0 94.0 37.0 77<br />

177 23/05/2006 6:39:08 7400 6304 4887 7379 263.0 32.0 124.0 51.0 7.0 21.0 313.0 83.0 49.0 51.0 76<br />

178 09/05/2006 5:38:27 7400 6294 4759 7417 282.0 6.0 39.0 77.0 191.0 11.0 327.0 78.0 236.0 86.0 74<br />

179 09/05/2006 4:02:01 7400 6264 4710 7438 38.0 75.0 243.0 14.0 152.0 6.0 227.0 41.0 74.0 53.0 80<br />

180 09/05/2006 3:48:22 7400 6286 4693 7459 103.0 42.0 245.0 41.0 354.0 20.0 233.0 77.0 129.0 44.0 81<br />

181 05/05/2006 2:44:00 7400 6310 4880 7438 221.0 4.0 116.0 76.0 312.0 14.0 87.0 83.0 355.0 78.0 79<br />

182 03/05/2006 8:25:31 7400 6170 4609 7315 291.0 20.0 121.0 70.0 22.0 3.0 335.0 79.0 68.0 74.0 74<br />

183 30/06/2006 23:49:53 7400 6242 4764 7297 264.0 29.0 138.0 46.0 12.0 30.0 138.0 90.0 48.0 46.0 63<br />

184 27/06/2006 7:41:46 7400 6291 4319 7451 165.0 3.0 258.0 46.0 73.0 44.0 110.0 63.0 219.0 59.0 83<br />

160


P-axis B-axis T-axis Fault Plane 1 Fault Plane 2<br />

Event<br />

#<br />

Date Time Level Northing Easting Depth Trend Plunge Trend Plunge Trend Plunge Strike Dip Strike Dip fit%<br />

185 26/06/2006 4:16:07 7400 6257 4795 7378 220.0 73.0 74.0 14.0 342.0 9.0 55.0 38.0 264.0 56.0 74<br />

186 25/06/2006 10:19:17 7400 6066 4692 7379 197.0 45.0 96.0 11.0 355.0 43.0 276.0 89.0 10.0 11.0 82<br />

187 24/06/2006 18:56:57 7400 6159 4359 7367 357.0 28.0 106.0 32.0 235.0 45.0 292.0 80.0 38.0 34.0 77<br />

188 24/06/2006 0:53:35 7400 6349 4758 7438 43.0 64.0 159.0 12.0 254.0 23.0 154.0 69.0 7.0 25.0 84<br />

189 23/06/2006 17:24:50 7400 6188 4745 7362 213.0 70.0 303.0 0.0 34.0 20.0 303.0 65.0 124.0 25.0 82<br />

190 23/06/2006 5:34:19 7400 6342 4752 7442 47.0 86.0 199.0 4.0 290 2.0 23.0 43.0 196.0 47.0 67<br />

191 22/06/2006 14:44:03 7400 6205 4482 7307 140.0 12.0 246.0 52.0 41.0 35.0 86.0 75.0 187.0 56.0 83<br />

192 21/06/2006 15:54:34 7400 6186 4539 7389 318.0 23.0 193.0 54.0 60.0 26.0 190.0 88.0 98.0 54.0 80<br />

193 20/06/2006 4:47:23 7400 6367 4456 7496 92.0 2.0 182.0 64.0 1.0 26.0 44.0 74.0 140.0 71.0 68<br />

194 06/06/2006 4:02:43 7400 6130 4374 7437 50.0 21.0 176.0 57.0 310.0 24.0 360.0 88.0 91.0 58.0 69<br />

195 09/06/2006 16:31:39 7400 6202 4660 7352 87.0 44.0 264.0 46.0 355.0 1.0 122.0 60.0 230.0 62.0 89<br />

196 15/06/2006 19:07:06 7400 6150 4355 7368 17.0 6.0 282.0 38.0 115.0 51.0 257.0 61.0 141.0 51.0 67<br />

197 13/06/2006 3:27:21 7400 6087 4953 7375 18.0 25.0 208.0 64.0 109.0 4.0 61.0 75.0 156.0 69.0 69<br />

161


Appendix D<br />

Modelling Results<br />

D.1 UDEC Results<br />

Results for UDEC models are presented in this section.<br />

C = Cohesion, in MPa<br />

Ф = Friction angle, in degrees.<br />

162


D.1.1: Case 1 Models<br />

Figure D1: Case 1, elastic models showing maximum stress. (A) Locked condition. Pinks and reds indicate high stress; (B) C=5 MPa, Φ=35°; (C) C=0 MPa,<br />

Φ=35°; (D) C=0 MPa, Φ=20°.<br />

163


Figure D2: Case 1, elastic models showing differential stress. (A) Locked condition. Greens and yellow indicate high differential stress; (B) C=5, Φ=35°; (C)<br />

C=0, Φ=35°; (D) C=0, Φ=20°.<br />

164


Figure D3: Case 1, elastic models shear displacement along discontinuities. Green indicates right-lateral slip. (A) Locked condition; (B) C=5, Φ=35°; (C) C=0,<br />

Φ=35°; (D) C=0, Φ=20°.<br />

165


A B<br />

C D<br />

Figure D4: Case 1, plastic models showing major principal stress. Pinks and reds indicate high stress. (A) Locked condition; (B) C=5, Φ=35°; (C) C=0, Φ=35°;<br />

(D) C=0, Φ=20°.<br />

166


A B<br />

C D<br />

Figure D5: Case 1, plastic models showing differential stress. Greens and yellow indicate high differential stress. (A) Locked condition; (B) C=5, Φ=35°; (C)<br />

C=0, Φ=35°; (D) C=0, Φ=20°.<br />

167


A B<br />

C D<br />

Figure D6: Case 1, plastic model showing yielding. Purple indicates tensile failure; green and pink indicate past and current yielding. (A) Locked condition; (B)<br />

C=5, Φ=35°; (C) C=0, Φ=35°; (D) C=0, Φ=20°.<br />

168


A B<br />

C D<br />

Figure D7: Case 1, plastic models showing shear displacement along discontinuities. Green indicates right-lateral slip. (A) Locked condition; (B) C=5, Φ=35°;<br />

(C) C=0, Φ=35°; (D) C=0, Φ=20°.<br />

169


Figure D8: Stress distribution <strong>of</strong> elastic model, C=0, Φ=35°.<br />

Figure D9: Stress distribution <strong>of</strong> plastic model, C=0, Φ=35°.<br />

170


D.1.2: Case 2 Models<br />

A B<br />

C D<br />

Figure D10: Case 2, elastic models for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress. Yellow and greens<br />

indicate high differential stress; (C) assigned fault materials according to Table 4.3; (D) shear displacement along discontinuities.<br />

171


A B<br />

C D<br />

Figure D11: Case 2, plastic models for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress. Yellow and greens<br />

indicate high differential stress; (C) Plastic yielding. Purple indicates tensile failures, green and pink indicate past and current yielding; (D) shear displacement<br />

along discontinuities.<br />

172


D.1.3: Case 3 Models<br />

A B<br />

C<br />

Figure D12: Case 3 (k=2), elastic models for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress.<br />

Yellow and greens indicate high differential stress; (C) shear displacement along discontinuities.<br />

173


A B<br />

C D<br />

Figure D13: Case 3 (k=2), plastic models for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress.<br />

Yellow and greens indicate high differential stress; (C) Plastic yielding. Purple indicates tensile failures, green and pink indicate past and current<br />

yielding; (D) shear displacement along discontinuities.<br />

174


D1.4 Tectonic Loading Models<br />

Figure D14: Tectonic model, elastic models for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress.<br />

Yellow and greens indicate high differential stress; (C) shear displacement along discontinuities.<br />

175


Figure D15: Tectonic model, plastic model for C=0, Φ =35º. (A) Major principal stress. Pinks and reds indicate high stress; (B) Differential stress.<br />

Yellow and greens indicate high differential stress; (C) Plastic yielding. Purple indicates tensile failures, green and pink indicate past and current<br />

yielding; (D) shear displacement along discontinuities.<br />

176


D.2 Discussion <strong>of</strong> Phase 2 Models<br />

Elastic and plastic models were created using <strong>the</strong> finite element method in Phase 2 (Rocscience,<br />

2005) to model <strong>the</strong> stress distribution resulting from geological structure and mining geometry on<br />

<strong>the</strong> 7200, 7400 and 7530 Levels. The modelling approach and results are discussed in this<br />

appendix. A comparison <strong>of</strong> results from Phase 2 and UDEC for <strong>the</strong> 7400 Level is also presented.<br />

D.2.1 Model Constituents<br />

Like UDEC models presented in Chapter 4, model geometry constructed in Phase 2 consists <strong>of</strong>:<br />

a) <strong>the</strong> model medium, whose geomechanical properties are modelled after footwall rocks in<br />

<strong>the</strong> Creighton Deep. Property values are taken or derived from values provided by<br />

Coulson (1996) for footwall rocks. Rock mass failure is governed by Mohr-Coulomb<br />

criteria (cohesion and friction). Values used in Phase 2 models are <strong>the</strong> same values used<br />

in UDEC models discussed in Chapter 4.<br />

b) pervasive joints that represent shear zones. Failure along <strong>the</strong>se features is also governed<br />

by Mohr-Coulomb criteria. Like models created in UDEC, discontinuities in Phase 2<br />

models assume lateral continuity <strong>of</strong> shear zones, far beyond <strong>the</strong> excavation.<br />

c) <strong>the</strong> main excavation that was modelled after level plans provided by Vale Inco. This<br />

comprises stopes and sills in <strong>the</strong> 400 Orebody.<br />

Model constituents are shown in Figure D16.<br />

177


Figure D16 Phase 2 model depicting model and boundary conditions. The model consists <strong>of</strong> a rockmass,<br />

joints (orange) and an excavation, outlined in black. This figure shows <strong>the</strong> first stage in a two-stage model<br />

where material within <strong>the</strong> excavation removed in <strong>the</strong> second stage.<br />

D.2.2 Boundary Conditions<br />

The model is subject to an external stress field where <strong>the</strong> maximum principal stress is directed<br />

EW and <strong>the</strong> minimum principal stress is oriented NS. An intermediate, out-<strong>of</strong>-plane stress is<br />

applied in <strong>the</strong> vertical direction. Phase 2 uses a positive sign convention to denote compressive<br />

stress. Movement on <strong>the</strong> model boundaries is restricted by pinning <strong>the</strong> corners <strong>of</strong> <strong>the</strong> model so<br />

that NS or EW movement <strong>of</strong> <strong>the</strong> model is not possible. This is appropriate as it simulates <strong>the</strong><br />

confined conditions <strong>of</strong> <strong>the</strong> mine within <strong>the</strong> Canadian Shield.<br />

178


Staged models were created in which <strong>the</strong> medium and discontinuities are allowed to come to<br />

equilibrium before introducing <strong>the</strong> excavation. In this manner <strong>the</strong> stress conditions simulate<br />

stress conditions within <strong>the</strong> mine and influence <strong>of</strong> <strong>the</strong> excavation on <strong>the</strong> distribution <strong>of</strong> stress can<br />

be better understood. This approach did not yield appreciable differences from <strong>the</strong> applying<br />

external stresses to a model complete with an excavation.<br />

Unlike models created in UDEC, tectonically loaded models were not created due to limitations<br />

on <strong>the</strong> program version.<br />

Phase 2 results are shown for Case 1, described in Chapter 4, in which all faults are assigned equal<br />

properties. Faults within <strong>the</strong> model are progressively weakened to induce slip by varying <strong>the</strong><br />

cohesion and angle <strong>of</strong> internal friction. Material properties were also tested to examine <strong>the</strong> effect<br />

<strong>of</strong> rock mass strength on fault slip.<br />

D.3 Phase 2 Model Results<br />

Results for <strong>the</strong> 7200, 7400 and 7530 Level indicate that stress is bounded by faults ra<strong>the</strong>r than<br />

accumulated along weaker geological structure. This indicates that seismicity is a result <strong>of</strong> <strong>the</strong><br />

stress concentrations that occurs between faults, ra<strong>the</strong>r than slip on <strong>the</strong> mine-scale structures.<br />

The stress distribution closely matches <strong>the</strong> distribution <strong>of</strong> seismicity in <strong>the</strong> January 2006-<br />

December 2007 time period. Areas <strong>of</strong> high maximum and differential stress are areas <strong>of</strong> dense<br />

event localization, while areas <strong>of</strong> low modelled stress are areas <strong>of</strong> sparse activity. In plastic<br />

models, yielding occurs directly to <strong>the</strong> north and south <strong>of</strong> <strong>the</strong> excavation and displacement is<br />

modelled along discontinuities within this yielded zone. Low stress is modelled in this yield zone<br />

and correspondingly, <strong>the</strong>re is little-to no seismicity.<br />

179


The 7200 Level (Fig. D17) is an excellent example <strong>of</strong> how stress is modelled to be bounded and<br />

channelled between faults. To <strong>the</strong> north <strong>of</strong> <strong>the</strong> excavation, high stresses are concentrated between<br />

<strong>the</strong> Northwest and Fresh Air Raise Shear Zones, and bounded to <strong>the</strong> south by <strong>the</strong> Footwall Shear<br />

Zone. High stress is modelled between <strong>the</strong> Return Air Raise and Plum Shear Zones to <strong>the</strong> south<br />

<strong>of</strong> <strong>the</strong> excavation and is bounded to <strong>the</strong> north by <strong>the</strong> Footwall Shear Zone. This area corresponds<br />

to dense seismic activity.<br />

The 7400 Level (Fig. D18) model shows that high stress forms a ring around <strong>the</strong> excavation and<br />

is bounded by faults, lowering stress to <strong>the</strong> southwest <strong>of</strong> <strong>the</strong> excavation. NE-striking faults act to<br />

shield this area from high stress. Shear zones in this model act as a boundary to stress ra<strong>the</strong>r than<br />

a conduit or concentrator for stress.<br />

The 7530 Level model (Fig. D19) has similar excavation geometry as <strong>the</strong> 7400 Level and has a<br />

similar stress distribution. Stress is diminished in <strong>the</strong> southwest, as highlighted best in <strong>the</strong> elastic<br />

case (Fig. D19A, B) and is elevated in a ring around <strong>the</strong> excavation, as highlighted in <strong>the</strong> plastic<br />

case (Fig. D19C, D). High stress occurs between <strong>the</strong> Plum and Return Air Raise Shear Zones.<br />

Seismicity on this level occurs between <strong>the</strong> Plum and 402 Shear Zones and thus may not be<br />

accurately represented by <strong>the</strong> 7530 Level model.<br />

Damage domains are identified in Figure D20. The yield zone, damage zone and intact rock<br />

correspond to those modelled in UDEC.<br />

180


Figure D17 (A) Elastic model showing sigma-1 for <strong>the</strong> 7200 Level. Areas in white exceed <strong>the</strong> maximum<br />

stress on <strong>the</strong> scale; (B) Elastic model showing deviatoric stress; (C) Plastic model showing sigma-1; (D)<br />

Plastic model showing deviatoric stress; (E) Plastic model showing failure in shear and in tension; (F)<br />

seismicity corresponding to <strong>the</strong> 7200 Level for comparison with modelled stress.<br />

181


Figure D18 (A) Elastic model showing sigma-1 for <strong>the</strong> 7400 Level. Areas in white exceed <strong>the</strong> maximum<br />

stress on <strong>the</strong> scale; (B) Elastic model showing deviatoric stress; (C) Plastic model showing sigma-1; (D)<br />

Plastic model showing deviatoric stress; (E) Plastic model showing failure in shear and in tension; (F)<br />

seismicity corresponding to <strong>the</strong> 7400 Level for comparison with modelled stress.<br />

182


Figure D19 (A) Elastic model showing sigma-1 for <strong>the</strong> 7530 Level; (B) Elastic model showing deviatoric<br />

stress; (C) Plastic model showing sigma-1; (D) Plastic model showing deviatoric stress. Slip on faults is<br />

indicated in red; (E) Plastic model showing failure in shear and in tension; (F) seismicity corresponding to<br />

<strong>the</strong> 7530 Level for comparison with modelled stress.<br />

183


Figure D20 Rock mass states <strong>of</strong> degradation, as modelled for <strong>the</strong> 7400 Level in Phase 2 .<br />

D.4 Comparison <strong>of</strong> Phase 2 and UDEC Modelling Results<br />

The stress distribution in Phase 2<br />

results closely correspond to that modelled with UDEC.<br />

Differences in results using <strong>the</strong> two programs and numerical methods are reviewed.<br />

D.4.1 Similarities<br />

• The distribution <strong>of</strong> stress around <strong>the</strong> excavation on <strong>the</strong> 7400 Level is comparable to that<br />

in UDEC: Stress flows in a ring around <strong>the</strong> main excavation. This stress is intensified to<br />

<strong>the</strong> SE <strong>of</strong> <strong>the</strong> excavation and diminished in <strong>the</strong> SW. This result is comparable to <strong>the</strong><br />

distribution <strong>of</strong> seismicity around <strong>the</strong> main excavation. Results are similar even with<br />

different initial loading conditions.<br />

184


• Similar damage zones surrounding <strong>the</strong> excavation are modelled in both programs with<br />

tensile deformation in proximity to <strong>the</strong> excavation and damage in shear beyond this.<br />

D.4.2 Differences<br />

• The modelled elevated differential stress in Phase2 is <strong>of</strong>ten restricted to <strong>the</strong> area between<br />

two shear zones (<strong>the</strong> Return Air Raise Shear Zone and Plum Shear Zone on <strong>the</strong> 7400<br />

Level, for example) or bounded by shear zones. This suggests that stress is bounded by<br />

shear zones. High stresses occur in stiffer rock ra<strong>the</strong>r than accumulated in weak zones.<br />

• In plastic models, yielding is restricted to a zone surrounding <strong>the</strong> excavation, similar to<br />

UDEC model results, but no yielding is modeled along shear zones.<br />

• Slip is induced on <strong>the</strong> Fresh Air Raise, Plum, 402 and Northwest Shear Zones to <strong>the</strong><br />

south <strong>of</strong> <strong>the</strong> excavation. This slip occurs within <strong>the</strong> yield zone. This differs from slip<br />

modelled in UDEC, in which slip is only induced along <strong>the</strong> Plum and Fresh Air Raise<br />

Shear Zones.<br />

Model results produced using <strong>the</strong> distinct element method (UDEC) and finite element method<br />

(Phase 2 ) are very similar. The interactive visual display in Phase 2 and <strong>the</strong> minimal computing<br />

time required to produce a stress model make <strong>the</strong> finite element method a time-efficient way to<br />

model stress in two-dimensions in <strong>the</strong> Creighton Deep. The capabilities <strong>of</strong> UDEC are more<br />

robust. More detail is available for individual models and routines can be easily to expand <strong>the</strong><br />

depth <strong>of</strong> <strong>the</strong> analysis.<br />

185


Appendix E<br />

UDEC Code<br />

E.1 Case 1: Variable fault strength parameters (Elastic model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC Elastic Model ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

round 0.5<br />

set edge 5.173<br />

;<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

crack (0,1309.295) (1564.64,307.925)<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

186


;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=5 jfric=35 jtens=0<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

change jmat=2 range 446,1118, 446,448<br />

change jmat=2 range 446,1118 1117,1118<br />

change jmat=2 range 446,448 446,1118<br />

change jmat=2 range 1117,1118 446,1118<br />

;<br />

;==========================================================<br />

;===== Mohr-Coulomb Elastic Material ===============<br />

;==========================================================<br />

CHANGE cons 1 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

;<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-73.43 range 0,1564.64 -1,1<br />

bound stress 0,0,-73.43 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -73.43<br />

INITIAL sxx -102.70<br />

INITIAL syy -73.43<br />

INITIAL szz -83.43<br />

;<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 10000<br />

set plot po color<br />

187


E.2 Case 1: Variable fault strength parameters (Plastic model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC PLASTIC MODEL ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

crack (0,1309.295) (1564.64,307.925)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=5 jfric=35 jtens=0<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

188


change jmat=1 range 0,1564.64 0,1564.64<br />

change jmat=2 range 446,1118, 446,448<br />

change jmat=2 range 446,1118 1117,1118<br />

change jmat=2 range 446,448 446,1118<br />

change jmat=2 range 1117,1118 446,1118<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 3 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 670.560,922.020 726.440,843.788<br />

;<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-73.43 range 0,1564.64 -1,1<br />

bound stress 0,0,-73.43 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -73.43<br />

INITIAL sxx -102.70<br />

INITIAL syy -73.43<br />

INITIAL szz -83.43<br />

;<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 7000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

189


E.3 Case 2: Variable Fault Strength by Shear Zone Family (Elastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- VARIABLE FAULT STRENGTH ----<br />

;---- Elastic Model ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

;===FAR-type===<br />

crack (0,251.92736) (1564.64,820.8772)<br />

;===FAR===<br />

crack (0,290.59632) (1564.64,859.54616)<br />

;===plum===<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

;===402===<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

;===RAR===<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

;===NW===<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

190


crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=5 jfric=35 jtens=20<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=0 jfric=35 jtens=20<br />

PROP jmat=3 jkn=700000 jks=99400 jcoh=0 jfric=20 jtens=20<br />

PROP jmat=4 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=3 range 0,1564.64 246,1171 angle 15,30<br />

;<br />

change jmat=2 range -1,1565 303,1324 angle 140,160<br />

;<br />

change jmat=4 range 446,1118, 446,448 angle -1,1<br />

change jmat=4 range 446,1118 1117,1118 angle -1,1<br />

change jmat=4 range 446,448 446,1118 angle 89,91<br />

change jmat=4 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 1 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-73.43 range 0,1564.64 -1,1<br />

bound stress 0,0,-73.43 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -73.43<br />

INITIAL sxx -102.70<br />

INITIAL syy -73.43<br />

INITIAL szz -83.43<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

191


;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 7000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

E.4 Case 2: Variable Fault Strength by Shear Zone Family (Plastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- VARIABLE FAULT STRENGTH ----<br />

;---- Plastic Model ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

;===FAR-type===<br />

crack (0,251.92736) (1564.64,820.8772)<br />

;===FAR===<br />

crack (0,290.59632) (1564.64,859.54616)<br />

192


;===plum===<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

;===402===<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

;===RAR===<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

;===NW===<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

;<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=5 jfric=35 jtens=20<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=0 jfric=35 jtens=20<br />

PROP jmat=3 jkn=700000 jks=99400 jcoh=0 jfric=20 jtens=20<br />

PROP jmat=4 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;(EW structures and splays)<br />

;<br />

change jmat=3 range 0,1564.64 246,1171 angle 15,30<br />

;(NE-trending structures)<br />

;<br />

change jmat=2 range -1,1565 303,1324 angle 140,160<br />

;(FW fault)<br />

;<br />

change jmat=4 range 446,1118, 446,448 angle -1,1<br />

change jmat=4 range 446,1118 1117,1118 angle -1,1<br />

change jmat=4 range 446,448 446,1118 angle 89,91<br />

change jmat=4 range 1117,1118 446,1118 angle 89,91<br />

;(locked box)<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 3 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

;==========================================================<br />

193


;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-73.43 range 0,1564.64 -1,1<br />

bound stress 0,0,-73.43 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -73.43<br />

INITIAL sxx -102.70<br />

INITIAL syy -73.43<br />

INITIAL szz -83.43<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

;<br />

SOLVE step 7000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

;END<br />

E.5 Case 3: Increased Principal Stress Ratio (Elastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- Elastic Stress Ratio K=2 ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

194


crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=0 jfric=10 jtens=20<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=2 range 446,1118, 446,448 angle -1,1<br />

change jmat=2 range 446,1118 1117,1118 angle -1,1<br />

change jmat=2 range 446,448 446,1118 angle 89,91<br />

change jmat=2 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 1 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

195


;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-51 range 0,1564.64 -1,1<br />

bound stress 0,0,-51 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -51<br />

INITIAL sxx -102.70<br />

INITIAL syy -51<br />

INITIAL szz -83.43<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 7000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

E.6 Case 3: Increased Principal Stress Ratio (Plastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- Plastic Stress Ratio K=2 ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

196


crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=5 jfric=35 jtens=20<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=2 range 446,1118, 446,448 angle -1,1<br />

change jmat=2 range 446,1118 1117,1118 angle -1,1<br />

change jmat=2 range 446,448 446,1118 angle 89,91<br />

change jmat=2 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 3 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

197


;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-51 range 0,1564.64 -1,1<br />

bound stress 0,0,-51 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -51<br />

INITIAL sxx -102.70<br />

INITIAL syy -51<br />

INITIAL szz -83.43<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 7000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

E.7 Tectonic Loading Model (Elastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- ELASTIC TECTONIC LOADING MODEL ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

198


crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=0 jfric=35 jtens=10<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=2 range 446,1118, 446,448 angle -1,1<br />

change jmat=2 range 446,1118 1117,1118 angle -1,1<br />

change jmat=2 range 446,448 446,1118 angle 89,91<br />

change jmat=2 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 1 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 15.0<br />

;<br />

;==========================================================<br />

199


;===== set initial stress conditions ==============<br />

;==========================================================<br />

;***initial hydrostatic stress***<br />

INITIAL sxx -85<br />

INITIAL syy -85<br />

INITIAL szz -85<br />

;***rollers with compressed boundaries***<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.000001 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.000001 range 1563,1565 0,1564.64<br />

;insitu stress -102.70, 0, -73.43<br />

;==========================================================<br />

;<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 5000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

E.8 Tectonic Loading Model (Plastic Model)<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- PLASTIC TECTONIC LOADING MODEL ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

200


;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=0 jfric=10 jtens=10<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=2 range 446,1118, 446,448 angle -1,1<br />

change jmat=2 range 446,1118 1117,1118 angle -1,1<br />

change jmat=2 range 446,448 446,1118 angle 89,91<br />

change jmat=2 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 3 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

PAUSE<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 15.0<br />

;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

;***initial hydrostatic stress***<br />

INITIAL sxx -85<br />

INITIAL syy -85<br />

201


INITIAL szz -85<br />

;***rollers with compressed boundaries***<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.000001 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.000001 range 1563,1565 0,1564.64<br />

;insitu stress -102.70, 0, -73.43<br />

;==========================================================<br />

;<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 5000<br />

set plot po color<br />

plot hold sig1 fill bl<br />

202


E.9 S3:S1 Model for fracture reactivation<br />

;----------------------------------------------------------<br />

;---- ----<br />

;---- 7400L UDEC MODEL ----<br />

;---- ----<br />

;----------------------------------------------------------<br />

;<br />

round 0.5<br />

set edge 5.173<br />

;==========================================================<br />

;===== define block ===============================<br />

;==========================================================<br />

block material 1 0,0 0,1564.64 1564.64,1564.64 1564.64,0<br />

;==========================================================<br />

;===== define excavation ==========================<br />

;==========================================================<br />

crack (670.56,793.496) (670.56,815.848)<br />

crack (670.56,815.848) (726.44,832.612)<br />

crack (726.44,832.612) (815.848,832.612)<br />

crack (815.848,832.612) (815.848,843.788)<br />

crack (815.848,843.788) (877.316,843.788)<br />

crack (877.316,843.788) (922.02,804.672)<br />

crack (922.02,804.672) (922.02,787.404)<br />

crack (922.02,787.404) (888.492,773.007)<br />

crack (888.492,773.007) (888.492,736.410)<br />

crack (888.492,736.410) (866.14,726.44)<br />

crack (866.14,726.44) (838.2,737.616)<br />

crack (838.2,737.616) (815.848,771.144)<br />

crack (815.848,771.144) (815.848,782.32)<br />

crack (815.848,782.32) (748.792,782.32)<br />

crack (748.792,782.32) (743.204,793.496)<br />

crack (743.204,793.496) (670.56,793.496)<br />

;==========================================================<br />

;===== define sub block ============================<br />

;==========================================================<br />

crack (447.04,447.04) (447.04,1117.6)<br />

crack (447.04,1117.6) (1117.6,1117.6)<br />

crack (1117.6,1117.6) (1117.6,447.04)<br />

crack (1117.6,447.04) (447.04,447.04)<br />

;==========================================================<br />

;===== define faults ==============================<br />

;==========================================================<br />

crack (0,251.92736) (1564.64,820.8772)<br />

crack (0,290.59632) (1564.64,859.54616)<br />

crack (0,355.2371429) (1564.64,1025.84504)<br />

crack (0,392.0061829) (1564.64,1062.61408)<br />

crack (0,437.4605714) (1564.64,1107.98864)<br />

crack (0,482.1629749) (1564.64,1158.05712)<br />

;===FW===<br />

crack (0,1309.295) (1564.64,307.925)<br />

;===Splays===<br />

crack (905.676,730.681) (864.557,605.485)<br />

crack (845.579,718.676) (787.063,578.045)<br />

crack (807.625,780.415) (746.192,713.585)<br />

;===1290/400E===<br />

crack (0,806.814) (670.243,806.814)<br />

crack (670.243,806.814) (922.184,789.484)<br />

crack (922.184,789.484) (1564.64,789.484)<br />

;<br />

;==========================================================<br />

;===== assign material properties =================<br />

203


;==========================================================<br />

PROP mat=1 dens=0.002965 k=24613 g=13856 fric=35 coh=10<br />

PROP jmat=1 jkn=700000 jks=99400 jcoh=0 jfric=35 jtens=20<br />

PROP jmat=2 jkn=700000 jks=99400 jcoh=50 jfric=50 jtens=50<br />

change mat=1 range 0,1564.64 0,1564.64<br />

change jmat=1 range 0,1564.64 0,1564.64<br />

;<br />

change jmat=2 range 446,1118, 446,448 angle -1,1<br />

change jmat=2 range 446,1118 1117,1118 angle -1,1<br />

change jmat=2 range 446,448 446,1118 angle 89,91<br />

change jmat=2 range 1117,1118 446,1118 angle 89,91<br />

;<br />

;==========================================================<br />

;===== elasto-plastic Mohr-Coulomb ================<br />

;==========================================================<br />

CHANGE cons 1 range 0,1564.64 0,1564.64<br />

;<br />

;==========================================================<br />

;===== null material to excavate ==================<br />

;==========================================================<br />

CHANGE cons 0 range 668,925 781,853<br />

CHANGE cons 0 range 812,925 726,786<br />

;==========================================================<br />

;===== Discretize =================================<br />

;==========================================================<br />

gen edge 20.0<br />

;<br />

;==========================================================<br />

;===== set initial stress conditions ==============<br />

;==========================================================<br />

bound stress -102.70,0,0 range -1,1 0,1564.64<br />

bound stress -102.70,0,0 range 1563.64,1565.64 0,1564.64<br />

bound stress 0,0,-73.43 range 0,1564.64 -1,1<br />

bound stress 0,0,-73.43 range 0,1564.64 1563.64,1565.64<br />

insitu stress -102.70, 0, -73.43<br />

INITIAL sxx -102.70<br />

INITIAL syy -73.43<br />

INITIAL szz -83.43<br />

;==========================================================<br />

;===== Set boundary velocity to zero ==============<br />

;==========================================================<br />

BOUNDARY yvel=0.0 range 0,1564.64 -1,1<br />

BOUNDARY yvel=0.0 range 0,1564.64 1563,1565<br />

BOUNDARY xvel=0.0 range -1,1 0,1564.64<br />

BOUNDARY xvel=0.0 range 1563,1565 0,1564.64<br />

;==========================================================<br />

;===== time steps =================================<br />

;==========================================================<br />

hist unbal<br />

hist xvel(50,50)<br />

hist yvel(50,50)<br />

hist xdisp(50,50)<br />

hist ydisp(50,50)<br />

SOLVE step 1000<br />

set plot po color<br />

;<br />

def ratios3s1<br />

bi=block_head<br />

loop while bi#0<br />

zi=b_zone(bi)<br />

loop while zi#0<br />

xval= abs(z_sxx(zi))<br />

204


yval= abs(z_syy(zi))<br />

xyval= abs(z_sxy(zi))<br />

subt=abs(xval-yval)<br />

s1 = 0.5*(xval+yval) + sqrt(subt*subt+4*xyval*xyval)<br />

s3 = 0.5*(xval+yval) - sqrt(subt*subt+4*xyval*xyval)<br />

ratio = s3/s1<br />

z_extra(zi)=ratio<br />

zi=z_next(zi)<br />

endloop<br />

bi=b_next(bi)<br />

endloop<br />

end<br />

ratios3s1<br />

plot hold z_extra fill block<br />

E.9.1 FISH Routine: ratio s3s1.fis<br />

def ratios3s1<br />

bi=block_head<br />

loop while bi#0<br />

zi=b_zone(bi)<br />

loop while zi#0<br />

xval= z_sxx(zi)<br />

yval= z_syy(zi)<br />

xyval= z_sxy(zi)<br />

s1 = 0.5*(xval+yval) + sqrt((xval-yval)*(xval-yval)+4*xyval*xyval)<br />

s3 = 0.5*(xval+yval) - sqrt((xval-yval)*(xval-yval)+4*xyval*xyval)<br />

ratio = s3/s1<br />

z_extra(zi)=ratio<br />

zi=z_next(zi)<br />

endloop<br />

bi=b_next(bi)<br />

endloop<br />

end<br />

ratios3s1<br />

plot fill z_extra block<br />

205


Appendix F<br />

Fracture Reactivation<br />

F.1 Maximum-to-minimum Principal Stress Ratio<br />

Mapping fracture reactivation, as done in Chapter 4, is a function <strong>of</strong> <strong>the</strong> maximum-to minimum<br />

principal stress ratio. This is described in terms <strong>of</strong> <strong>the</strong> friction angle when <strong>the</strong>re is no cohesion.<br />

Using <strong>the</strong> Mohr-Coulomb failure envelope as well as <strong>the</strong> Mohr circle, <strong>the</strong> Sine Law can be<br />

written as<br />

, (Equation F1)<br />

as shown in for triangle PBR in Figure F.1.<br />

Figure F1: Mohr-Coulomb failure envelope with Mohr circle depicting angles and quantities used in<br />

derivation<br />

Defining lengths BR and PB,<br />

(Equation F2)<br />

These can be substituted into Equation F1,<br />

206<br />

(Equation F3)


and rearranged to<br />

, (Equation F4)<br />

. (Equation F5)<br />

There are two intersections <strong>of</strong> <strong>the</strong> Mohr Circle with <strong>the</strong> Mohr-Coulomb failure envelope and thus<br />

two angles at which slip can occur:<br />

and<br />

(Equation F6)<br />

. (Equation F7)<br />

When cohesion is reduced to zero, <strong>the</strong>se angles can be expressed as:<br />

(Equation F8)<br />

. (Equation F9)<br />

For <strong>the</strong> argument,<br />

, (Equation F10)<br />

. (Equation F11)<br />

By defining <strong>the</strong> maximum normal and shear stress,<br />

(Equation F12)<br />

, (Equation F13)<br />

<strong>the</strong> ratio <strong>of</strong> <strong>the</strong>se quantities can be defined in terms <strong>of</strong> <strong>the</strong> maximum and minimum principal<br />

stress,<br />

207


. (Equation F14)<br />

Substituting this definition into equation 11,<br />

, (Equation F15)<br />

this ratio can be states as:<br />

. (Equation F16)<br />

This is <strong>the</strong> definition used to contour areas <strong>of</strong> slip in Chapter 4, based on <strong>the</strong> friction angle.<br />

F.2 Definitions for Deviatoric and Differential Stress<br />

Differential and deviatoric stress are plotted in UDEC and Phase 2 , respectively. There exists a<br />

need to define <strong>the</strong>se parameters. Differential stress is defined as<br />

.<br />

It is a scalar quantity and is not to be confused with deviatoric stress, which defined by a tensor.<br />

Notation used to describe <strong>the</strong> deviatoric stress tensor is that used by Jaeger et al., (2007).<br />

The deviatoric stress tensor is obtained from subtracting <strong>the</strong> isotropic component <strong>of</strong> <strong>the</strong> stress<br />

tensor<br />

, (Equation F17)<br />

,<br />

where τ m is <strong>the</strong> mean <strong>of</strong> <strong>the</strong> principal stresses, from <strong>the</strong> full stress tensor, (Equation F18)<br />

208


Such that<br />

, (Equation F19)<br />

I is <strong>the</strong> identity matrix,<br />

. (Equation F20)<br />

. (Equation F21)<br />

The resulting deviatoric tensor takes <strong>the</strong> form<br />

. (Equation F22)<br />

Principal deviatoric stresses have <strong>the</strong> same orientation as principal stresses and are defined as:<br />

, (Equation F23)<br />

, (Equation F24)<br />

. (Equation F25)<br />

209

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!