25.02.2013 Views

A Simple Alternative to Charcoal

A Simple Alternative to Charcoal

A Simple Alternative to Charcoal

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

y Chris Lanning (Forest Concepts)<br />

& Paul Means (Burn Design Lab)


A <strong>Simple</strong> <strong>Alternative</strong>….<br />

Background<br />

Issues with <strong>Charcoal</strong><br />

<strong>Charcoal</strong> and <strong>Alternative</strong> Value Chains<br />

Size Reduction<br />

Drying<br />

Transport Considerations<br />

Fuel Utilization<br />

Next Steps<br />

1/27/2013 2


A <strong>Simple</strong> <strong>Alternative</strong> - Background<br />

1/27/2013<br />

<strong>Charcoal</strong> Use<br />

Sub-Saharan Africa<br />

○ 11% of population use<br />

charcoal as primary fuel.<br />

○ 69% use woody<br />

biomass.<br />

Kenya, 30% of urban<br />

dwellers use charcoal as<br />

primary fuel<br />

Uganda, 60% of urban<br />

population use charcoal<br />

3


A <strong>Simple</strong> <strong>Alternative</strong> - Background<br />

1/27/2013<br />

Advantages <strong>to</strong> <strong>Charcoal</strong><br />

Employment<br />

○ The estimated charcoal producers in<br />

Kenya is 200,000.<br />

○ Approximately 500,000 people engage<br />

in downstream-processing and trade.<br />

○ the economic value of the charcoal<br />

industry in SSA may exceed US$12<br />

billion by 2030, employing almost 12<br />

million people.<br />

Clean burning – low<br />

particulate emissions<br />

Very convenient<br />

Fuel Conservation – user can<br />

save unused fuel.<br />

Low capital production<br />

4


Issues with <strong>Charcoal</strong><br />

1/27/2013<br />

Environmental Impact –<br />

charcoal made from live<br />

trees (Deforestation rate<br />

in Sub-Saharan Africa<br />

~0.8%)<br />

In Kenya 2006, biomass<br />

demand was estimated at<br />

38.1 million <strong>to</strong>nnes<br />

against a sustainable<br />

supply of 15.4 million<br />

<strong>to</strong>nnes, creating a<br />

demand-supply deficit of<br />

60 percent.<br />

High CO emissions from<br />

burning charcoal<br />

Low production efficiency<br />

5


System Efficiency – Traditional<br />

<strong>Charcoal</strong> Production & Use<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

<strong>Charcoal</strong><br />

Production<br />

Efficiency = 15%<br />

Efficiency = energy<br />

output / energy input<br />

<strong>Charcoal</strong> S<strong>to</strong>ve<br />

Efficiency = 25% Net System<br />

Efficiency = 4%<br />

Wood Energy <strong>Charcoal</strong> Energy Cooking Energy<br />

1/27/2013 6


System Efficiency – Improved<br />

<strong>Charcoal</strong> Production & Use<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

<strong>Charcoal</strong><br />

Production<br />

Efficiency = 25%<br />

Efficiency = energy<br />

output / energy input<br />

<strong>Charcoal</strong> S<strong>to</strong>ve<br />

Efficiency = 45%<br />

Net System<br />

Efficiency = 11.5%<br />

Wood Energy <strong>Charcoal</strong> Energy Cooking Energy<br />

1/27/2013 7


Value Chains<br />

1/27/2013<br />

<strong>Charcoal</strong><br />

Wood<br />

Production<br />

• High<br />

Consumption<br />

<strong>Charcoal</strong><br />

Production<br />

• Low<br />

Efficiency<br />

• Low Capital<br />

Transport<br />

• High Energy<br />

Density<br />

Wholesale /<br />

Retail<br />

• Well<br />

Established<br />

Use<br />

• Variable<br />

Efficiency<br />

• Low<br />

Particulate<br />

• High CO<br />

8


Value Chains<br />

1/27/2013<br />

<strong>Alternative</strong> – sized & dried biomass<br />

Wood<br />

Production<br />

• Low<br />

Consumption<br />

Size<br />

Reduction &<br />

Drying<br />

• High<br />

Efficiency<br />

• Moderate<br />

Capital<br />

Transport<br />

• Moderate<br />

Energy<br />

Density<br />

Wholesale /<br />

Retail<br />

• Not<br />

Established<br />

Consumption<br />

• High<br />

Efficiency<br />

• Low<br />

Emissions<br />

9


System Efficiency –Sized & Dry Biomass<br />

Production & Use<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Sizing & Drying<br />

Efficiency = 75+%<br />

Micro-Gasifier S<strong>to</strong>ve<br />

Efficiency = 40+%<br />

Net System<br />

Efficiency = 30+%<br />

Wood Energy S & D Wood Energy Cooking Energy<br />

3 Fold increase over improved charcoal system efficiency<br />

8 fold increase over traditional charcoal system efficiency<br />

1/27/2013 10


Size Reduction (Comminution)<br />

Saw<br />

Grinder<br />

Shredder<br />

Chipper<br />

Knife Mill<br />

Lathe<br />

Crumbler<br />

…<br />

1/27/2013 11


Size Reduction (Comminution)<br />

Grinder<br />

Mech. Energy (kW-hr/t*)<br />

○ 85-420<br />

Benefit<br />

○ Can be HUGE 100 t/hr<br />

○ Many configurations<br />

○ Very <strong>to</strong>lerant of feeds<strong>to</strong>ck impurities<br />

Limitation<br />

○ Material handling challenges<br />

Stringy, “broom ends”, non-flowable<br />

○ Sensitive <strong>to</strong> moisture content<br />

Energy increases with mc<br />

○ Minimum piece size<br />

Energy increases very quickly as size decreases<br />

○ Wide piece size distribution<br />

* t= 1000 oven dry kg mass<br />

1/27/2013 12


Size Reduction (Comminution)<br />

Chipper / Knife Mill<br />

Mech. Energy (kW-hr/t)<br />

○ 25-140<br />

Benefit<br />

○ More Efficient<br />

○ Many configurations<br />

Limitation<br />

○ Material handling<br />

Minimal flowability<br />

○ Grit in<strong>to</strong>lerance<br />

Grit dulls knives quickly<br />

○ Minimum piece size<br />

Limitation <strong>to</strong> minimum piece size<br />

○ Moderate piece size distribution<br />

Material pic<br />

1/27/2013 13


Size Reduction (Comminution)<br />

Auger Chipper<br />

Mech. Energy (kW-hr/t)<br />

○ 25-140<br />

Benefit<br />

○ Efficient<br />

○ Moisture <strong>to</strong>lerance<br />

Limitation<br />

Effective over wide moisture range<br />

○ Material handling<br />

Minimal flowability<br />

○ Grit in<strong>to</strong>lerance<br />

○ Product size range<br />

Larger particles<br />

○ Wide piece size distribution<br />

1/27/2013 14


Size Reduction (Comminution)<br />

Lathe<br />

Mech. Energy (kW-hr/t)<br />

○ 2-6<br />

Benefit<br />

○ Very Efficient<br />

○ Uniform product<br />

○ Transportable<br />

Limitation<br />

○ Veneer?<br />

Easily rolls or stacks<br />

Intermediate product<br />

○ Grit <strong>to</strong>lerance<br />

Grit wears blade<br />

○ Out of round material<br />

Lost yield, can be difficult <strong>to</strong> start<br />

1/27/2013 15


Size Reduction (Comminution)<br />

Crumbler®<br />

Mech. Energy (kW-hr/t)<br />

○ 15-55<br />

Benefit<br />

○ Very efficient<br />

○ Narrow piece size distribution<br />

○ Material handling<br />

Highly flowable<br />

○ Moisture <strong>to</strong>lerance<br />

Limitation<br />

More efficient with high mc<br />

○ Grit in<strong>to</strong>lerance<br />

○ Size range<br />

16 mm maximum in 1 dimension<br />

○ Second stage size reduction<br />

1/27/2013 16


Size Reduction (Comminution)<br />

Particle shape consideration, Flowability<br />

Pellets<br />

Ground pellet furnish<br />

(in front of glass)<br />

Pouring<br />

Glass<br />

Crumbles®<br />

4mm Particles<br />

1/27/2013 17


Size Reduction (Comminution)<br />

Summary<br />

kW-hr/t<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Mechanical Energy<br />

Grinder Chipper Screw<br />

Chipper<br />

Particle Size and Shape Matter<br />

Lathe Crumbler®<br />

1/27/2013 18


Drying<br />

Types<br />

Rotary drum<br />

Fluidized bed<br />

Belt<br />

Deep bed (grain)<br />

Tarp<br />

Fuels<br />

Fossil fuel<br />

Electric (very limited)<br />

Wood<br />

Other biomass<br />

Sun<br />

1/27/2013 19


Drying<br />

Types<br />

Rotary drum<br />

Fluidized bed<br />

Belt<br />

Deep bed (grain)<br />

Tarp<br />

Fuels<br />

Fossil fuel<br />

Electric (very limited)<br />

Wood<br />

Other biomass<br />

Sun<br />

1/27/2013 20


Transport Considerations<br />

Energy Density<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Relative Energy Density<br />

(lower heating value / kg)<br />

<strong>Charcoal</strong> @<br />

3% Moisture<br />

Hardwood @<br />

10% Moisture<br />

Hardwood @<br />

40% Moisture<br />

1/27/2013 21


Transport Considerations<br />

Hauling Cost<br />

Impact due <strong>to</strong><br />

lower net heating<br />

value for raw<br />

biomass.<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

<strong>Charcoal</strong> @ 3%<br />

Moisture<br />

Haul Cost Multiplier<br />

Hardwood @<br />

10% Moisture<br />

Hardwood @<br />

40% Moisture<br />

1/27/2013 22


Transport Considerations<br />

RElative Haul Distance<br />

160%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

Forest Area Required and Relative Haul Distance<br />

Forest Required<br />

<strong>to</strong> Support<br />

Traditional<br />

<strong>Charcoal</strong><br />

Forest <strong>to</strong><br />

support<br />

Improved<br />

<strong>Charcoal</strong><br />

Forest for<br />

<strong>Alternative</strong><br />

0 1 2 3 4<br />

1/27/2013 23


Transportation Considerations – cont.<br />

Net Hauling Cost =<br />

Energy Density * Haul<br />

Distance<br />

100%<br />

1/27/2013 24<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Relative Net Hauling Cost<br />

Traditional<br />

<strong>Charcoal</strong><br />

Improved<br />

<strong>Charcoal</strong><br />

<strong>Alternative</strong>


Fuel Utilization<br />

Micro-Gasifiers get<br />

their day in the sun..<br />

Efficiency = 40+%<br />

Low CO and PM2.5<br />

emissions<br />

Well suited for<br />

standardized dry<br />

chunky fuel.<br />

1/27/2013 25


Conclusions<br />

The charcoal value chain is very<br />

inefficient.<br />

Size reduction & drying of woody<br />

biomass, combined with microgasification<br />

can displace charcoal as a<br />

fuel for urban dwellers.<br />

The new value chain, if developed,<br />

would<br />

reduce forest usage by 66 <strong>to</strong> 87%<br />

Reduce indoor air pollution.<br />

1/27/2013 26


Next Steps<br />

Comparative Economic Analysis of Value<br />

Chains<br />

Development of right sized equipment for size<br />

reduction.<br />

Evaluation of alternative drying technologies<br />

Optimization of the fuel for:<br />

Low capital cost<br />

Low purchased energy costs<br />

S<strong>to</strong>rage, handling, & combustion characteristics<br />

S<strong>to</strong>ve design<br />

Pilot the <strong>Alternative</strong> (Kenya S<strong>to</strong>ve)<br />

1/27/2013 27


Thank You!<br />

Questions??<br />

Chris Lanning<br />

clanning@forestconcepts.com<br />

Paul Means<br />

paul@burndesignlab.org<br />

1/27/2013 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!