28.02.2013 Views

Nonlinear wave propagation and ultrashort pulse compression in ...

Nonlinear wave propagation and ultrashort pulse compression in ...

Nonlinear wave propagation and ultrashort pulse compression in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Nonl<strong>in</strong>ear</strong> <strong>wave</strong> <strong>propagation</strong> <strong>and</strong><br />

<strong>ultrashort</strong> <strong>pulse</strong> <strong>compression</strong> <strong>in</strong><br />

step-<strong>in</strong>dex <strong>and</strong> microstructured<br />

fibers<br />

Ph.D. thesis<br />

Zoltán Krisztián Várallyay<br />

Supervisor: Dr. László Jakab<br />

BME, VIK<br />

Consultant: Róbert Szipőcs, PhD<br />

HAS, SZFKI<br />

Budapest University of Technology <strong>and</strong> Economics<br />

Atomic Physics Department<br />

(2007)


Foreword<br />

I had been work<strong>in</strong>g for the Japanese Furukawa Electric Co. Ltd. for one year<br />

when I started to work on my PhD <strong>in</strong> 2001. My company allowed me to jo<strong>in</strong> to<br />

the Atomic Physics Department of BUTE <strong>and</strong> prepare a PhD degree besides my<br />

regular subjects at the company. At the beg<strong>in</strong>n<strong>in</strong>g, Prof. Péter Richter <strong>and</strong> Dr.<br />

László Jakab gave me a help<strong>in</strong>g h<strong>and</strong> to start to work <strong>in</strong> their department. I would<br />

like to thank them for provid<strong>in</strong>g me the <strong>in</strong>valuable opportunity to prepare for my<br />

PhD degree <strong>and</strong> to get <strong>in</strong>volved <strong>in</strong> scientific research projects which could improve<br />

my scientific view, underst<strong>and</strong><strong>in</strong>g <strong>and</strong> knowledge.<br />

I would also like to thank the management of Furukawa Electric Institute of<br />

Technology Ltd. (especially Dr. Gyula Besztercey) for lett<strong>in</strong>g me cont<strong>in</strong>ue a<br />

postgraduate education, support<strong>in</strong>g me <strong>in</strong> my work <strong>and</strong> allow<strong>in</strong>g to cont<strong>in</strong>ue the<br />

research on similar topics at the company after f<strong>in</strong>ish<strong>in</strong>g my PhD scholarship, that<br />

I had done <strong>in</strong> the University.<br />

At the beg<strong>in</strong>n<strong>in</strong>g of my scholarship, I was <strong>in</strong>terested <strong>in</strong> the numerical solutions<br />

of the <strong>Nonl<strong>in</strong>ear</strong> Schröd<strong>in</strong>ger Equation (NLSE) as a mathematical <strong>in</strong>terpretation of<br />

the nonl<strong>in</strong>ear <strong>wave</strong> <strong>propagation</strong> <strong>in</strong> s<strong>in</strong>gle mode optical fibers (SMF). This <strong>in</strong>terest<br />

had determ<strong>in</strong>ed the direction of my <strong>in</strong>itial research on optical fibers <strong>in</strong> the University.<br />

Here, our ma<strong>in</strong> focus was to look for possible applications of the numerical<br />

results <strong>in</strong> such parameter regions which are difficult to achieve experimentally<br />

I was very glad to have a good contact with Professor István Frigyes dur<strong>in</strong>g<br />

this work <strong>and</strong> later on. I thank him for his ideas, his critical remarks on the results<br />

<strong>and</strong> his time for our long discussions.<br />

In 2004, I met Dr. Róbert Szipőcs <strong>in</strong> the Research Institute for Solid State<br />

Physics <strong>and</strong> Optics, Hungarian Academy of Sciences. He <strong>and</strong> his group had been<br />

work<strong>in</strong>g on optical fiber related experiments <strong>in</strong> their laboratory for three or four<br />

years by then. I was happy to work with such talented young scientists as Júlia<br />

Fekete, Ákos Bányász <strong>and</strong> Péter Antal who could prepare experiments to my<br />

simulations <strong>and</strong> the discussions with them led to collaborate papers. I thank Júlia<br />

i


Fekete <strong>and</strong> Péter Antal their useful comments <strong>in</strong> connection with my dissertation.<br />

This collaboration developed fruitfully until 2005 when we formed a consortium<br />

<strong>in</strong>clud<strong>in</strong>g Furukawa, Dr. Szipőcs’s company (R&D Ultrafast Lasers Ltd.) <strong>and</strong> six<br />

Hungarian research <strong>in</strong>stitutes. This consortium was given the name FEMTOBIO<br />

<strong>and</strong> focuses ma<strong>in</strong>ly on the biomedical applications of <strong>ultrashort</strong> laser <strong>pulse</strong>s. My<br />

field of research <strong>in</strong> this group is develop<strong>in</strong>g ultra-short <strong>and</strong> high <strong>in</strong>tensity fiber<br />

laser <strong>and</strong> amplifier as a cost effective seed for recent <strong>and</strong> future applications. This<br />

activity is strongly related to my previous works.<br />

I would like to thank Dr. Róbert Szipőcs for the opportunity of work<strong>in</strong>g <strong>in</strong><br />

his group <strong>and</strong> <strong>in</strong> his laboratory. I would also like to thank him for the many<br />

discussions as well about science as well as about general subjects from which I<br />

could learn so much.<br />

F<strong>in</strong>ally, I thank my family for their support, motivation <strong>and</strong> love.<br />

Zoltán Várallyay<br />

Budapest, March, 2007<br />

ii


List of acronyms<br />

1PA One-Photon Absorption<br />

2D Two Dimensional<br />

2PFM Two-Photon Fluorescent Microscopy<br />

3D Three Dimensional<br />

AO Acousto-Optic<br />

AOM Acousto-Optic Modulator<br />

CN Crank-Nicolson (method)<br />

CPA Chirped Pulse Amplifier<br />

CW Cont<strong>in</strong>uous Wave<br />

DCF Dispersion Compensat<strong>in</strong>g Fiber<br />

DFF Dispersion Flattened Fiber<br />

DIM Direct Intensity Modulation<br />

DSF Dispersion Shifted Fiber<br />

EDFA Erbium Doped Fiber Amplifier<br />

FI Faraday Isolator<br />

FWHM Full Width at Half Maximum<br />

FWM Four-Wave Mix<strong>in</strong>g<br />

GDD Group-Delay Dispersion<br />

GTI Gires-Tournois Interferometer<br />

GVD Group Velocity Dispersion<br />

HC Hollow Core<br />

HNL Highly-<strong>Nonl<strong>in</strong>ear</strong><br />

IM Intensity Modulation<br />

KdV Korteweg de Vreis (equation)<br />

LMA Large-Mode Area<br />

MCVD Modified Chemical Vapor Deposition<br />

MMF Multi-Mode Fiber<br />

MOF Microstructured Optical Fiber<br />

iii


MZ Mach-Zehnder (<strong>in</strong>terferometer)<br />

NA Numerical Aperture<br />

NLS <strong>Nonl<strong>in</strong>ear</strong> Schröd<strong>in</strong>ger (equation)<br />

PBG Photonic B<strong>and</strong>gap<br />

PC Photonic Crystal<br />

PCF Photonic Crystal Fiber<br />

PCFs Photonic Crystal Fibers<br />

PML Perfectly Matched Layer<br />

QW Quarter<strong>wave</strong><br />

ROF Radio Over Fiber<br />

SBS Stimulated Brillou<strong>in</strong> Scatter<strong>in</strong>g<br />

SM S<strong>in</strong>gle-Mode<br />

SMF S<strong>in</strong>gle-Mode Fiber<br />

SOA Semiconductor Optical Amplifier<br />

SPIDER Spectral-Phase Interferometry for Direct<br />

Electric-field Reconstruction<br />

SPM Self-Phase Modulation<br />

SRS Stimulated Raman Scatter<strong>in</strong>g<br />

TOD Third Order Dispersion<br />

iv


Contents<br />

Foreword i<br />

List of acronyms iii<br />

1 General <strong>in</strong>troduction 1<br />

1.1 Brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.2 Scope of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

2 Theory of optical fibers 6<br />

2.1 Optical <strong>wave</strong>guides <strong>and</strong> fibers . . . . . . . . . . . . . . . . . . . . . 6<br />

2.1.1 Fiber types . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2.1.2 Attenuation <strong>in</strong> the fiber . . . . . . . . . . . . . . . . . . . . 10<br />

2.1.3 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

2.1.4 <strong>Nonl<strong>in</strong>ear</strong>ity . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.2 <strong>Nonl<strong>in</strong>ear</strong> <strong>propagation</strong> <strong>in</strong> optical fiber . . . . . . . . . . . . . . . . . 16<br />

2.2.1 Maxwell’s equations <strong>and</strong> Wave equation . . . . . . . . . . . 16<br />

2.2.2 Induced polarization vector <strong>and</strong> susceptibility tensor . . . . 17<br />

2.2.3 Deriv<strong>in</strong>g the nonl<strong>in</strong>ear Schröd<strong>in</strong>ger equation . . . . . . . . . 19<br />

2.2.4 Higher order dispersion <strong>and</strong> nonl<strong>in</strong>earity . . . . . . . . . . . 22<br />

2.3 Numerical algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

2.3.1 Split-step Fourier method . . . . . . . . . . . . . . . . . . . 24<br />

2.3.2 F<strong>in</strong>ite difference method . . . . . . . . . . . . . . . . . . . . 28<br />

3 Soliton <strong>propagation</strong> of micro<strong>wave</strong> modulated signals 30<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

3.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

v


CONTENTS vi<br />

3.5 Results <strong>and</strong> discussion . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

3.5.1 Measurements <strong>and</strong> calculations . . . . . . . . . . . . . . . . 36<br />

3.5.2 Notch positions . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

3.5.3 Lossless <strong>propagation</strong> . . . . . . . . . . . . . . . . . . . . . . 40<br />

4 Chirped <strong>pulse</strong> fiber delivery system for femtosecond <strong>pulse</strong>s 43<br />

4.1 Theory of two-photon excitation <strong>and</strong> multi-photon microscopy . . . 44<br />

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

4.3 Pulse delivery system . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

4.4 Spectral <strong>and</strong> temporal characteristics of the delivered <strong>pulse</strong>s . . . . 47<br />

5 Optimiz<strong>in</strong>g <strong>ultrashort</strong> <strong>pulse</strong> <strong>compression</strong> <strong>in</strong> microstructured fibers 51<br />

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

5.4 Model<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

5.4.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

5.4.2 Compression of longer <strong>pulse</strong>s . . . . . . . . . . . . . . . . . . 59<br />

5.4.3 Compression with dispersion flattened PCFs . . . . . . . . . 62<br />

Summary 65<br />

Thesis po<strong>in</strong>ts 68<br />

List of publications 70<br />

Bibliography 71


Chapter 1<br />

General <strong>in</strong>troduction<br />

1.1 Brief history<br />

In the middle of the 1800s, some experiments demonstrated that light could be<br />

conducted through a curved stream of water or curved glass rod by total <strong>in</strong>ternal<br />

reflection (1841 Daniel Colladon, 1842 Jacques Bab<strong>in</strong>et, 1854 John Tyndall).<br />

The first all-glass optical fiber which had a higher <strong>in</strong>dex core surrounded by the<br />

lower <strong>in</strong>dex cladd<strong>in</strong>g was devised only almost a hundred years later. Although uncladded<br />

glass fibers were fabricated <strong>in</strong> the late 1920s (J. L. Baird, British Patent<br />

285,738 (1928)) the realization that optical fibers benefit from a dielectric cladd<strong>in</strong>g<br />

was discovered <strong>in</strong> the 1950s when van Heel <strong>and</strong> Hopk<strong>in</strong>s <strong>and</strong> Kapany published<br />

<strong>in</strong>dependently <strong>in</strong> the same issue of Nature [1, 2].<br />

The modern ages of optical fibers start from the 1960s with the appearance of<br />

the first lasers. These fibers were extremely lossy but new suggestion on the geometry<br />

with s<strong>in</strong>gle mode operation [3] which was obta<strong>in</strong>ed by theoretical calculations<br />

based on the Maxwell-equations, <strong>and</strong> the development of a new manufactur<strong>in</strong>g<br />

process [4] (this was the so called MCVD process) led to the achievement of the<br />

theoretical m<strong>in</strong>imum of loss value (0.2 dB/m at 1.5 µm) still <strong>in</strong> 1979 [5].<br />

The <strong>in</strong>vestigation of nonl<strong>in</strong>ear phenomena <strong>in</strong> optical fibers have been cont<strong>in</strong>uously<br />

ga<strong>in</strong>ed by the decreas<strong>in</strong>g loss. Loss reduction <strong>in</strong> fibers made possible the<br />

observation of such nonl<strong>in</strong>ear processes which required longer <strong>propagation</strong> path<br />

length at the available power levels <strong>in</strong> the 1970s. Most of the <strong>in</strong>vestigations related<br />

to nonl<strong>in</strong>ear phenomena <strong>in</strong> optical fiber were executed <strong>in</strong> the Bell Laboratories.<br />

Stimulated Raman Scatter<strong>in</strong>g (SRS) <strong>and</strong> Brillou<strong>in</strong> scatter<strong>in</strong>g (SBS) were studied<br />

first [6, 7]. Optical Kerr-effect [8], parametric four-<strong>wave</strong> mix<strong>in</strong>g (FWM) [9] <strong>and</strong><br />

1


CHAPTER 1. GENERAL INTRODUCTION 2<br />

self-phase modulation (SPM) [10] were observed later. The theoretical prediction<br />

of optical solitons as an <strong>in</strong>terplay of fiber dispersion <strong>and</strong> fiber nonl<strong>in</strong>earity was done<br />

as early as 1973 [11] <strong>and</strong> the soliton <strong>propagation</strong> was demonstrated seven years<br />

later <strong>in</strong> a s<strong>in</strong>gle mode optical fiber [12]. The first soliton fiber laser operat<strong>in</strong>g<br />

around the 1.55 µm <strong>wave</strong>length region was demonstrated <strong>in</strong> 1984 [13].<br />

In the 1980s, the <strong>pulse</strong> <strong>compression</strong> procedure was advanced by the exploitation<br />

of fiber nonl<strong>in</strong>earity. This possibility led to the generation <strong>and</strong> control of <strong>ultrashort</strong><br />

optical cycles at the beg<strong>in</strong>n<strong>in</strong>g of 1980s [14] <strong>and</strong> <strong>pulse</strong>s as short as 8 fs were<br />

generated by 1985 [15] when amplified <strong>pulse</strong>s with 40 fs <strong>in</strong>itial duration were<br />

<strong>in</strong>jected <strong>in</strong>to a s<strong>in</strong>gle mode fiber utiliz<strong>in</strong>g the SPM effect for spectral broaden<strong>in</strong>g.<br />

In 1987, 6 fs <strong>pulse</strong>s were generated <strong>in</strong> s<strong>in</strong>gle mode fiber compensat<strong>in</strong>g the cubic<br />

phase distortions by prisms <strong>and</strong> diffraction grat<strong>in</strong>gs [16]. Sub-5-fs <strong>pulse</strong>s, however,<br />

were obta<strong>in</strong>ed only at the end of the 1990s, apply<strong>in</strong>g 2 mm long SMF <strong>in</strong> a cavitydumped<br />

laser oscillator [17]. The generation of <strong>ultrashort</strong> <strong>pulse</strong>s shorter than 5 fs<br />

was also demonstrated <strong>in</strong> gas filled hollow core fiber (or capillary) as a nonl<strong>in</strong>ear<br />

medium [18].<br />

The common feature of the previous techniques is that they require laser <strong>pulse</strong>s<br />

at energy levels well above 10 nJ which is difficult to obta<strong>in</strong> directly from <strong>ultrashort</strong><br />

<strong>pulse</strong> laser oscillators without expensive amplification stages. In <strong>pulse</strong> <strong>compression</strong>,<br />

the breakthrough was the appearance of small core area photonic crystal fibers<br />

(PCF) [19] <strong>in</strong> which SPM can be much larger than <strong>in</strong> conventional fibers, therefore<br />

sub-nJ <strong>pulse</strong>s could be compressed.<br />

PCF is a new class of fibers <strong>in</strong> that the cladd<strong>in</strong>g is formed of a periodic array of<br />

holes like a crystal lattice <strong>in</strong> which the core is formed by the absence of the centermost<br />

air hole <strong>and</strong>/or also the first or more surround<strong>in</strong>g r<strong>in</strong>gs of holes. Holes form<br />

the cladd<strong>in</strong>g <strong>and</strong> run along the entire fiber (See figures <strong>and</strong> further explanation <strong>in</strong><br />

Chapter 5).<br />

The idea to prepare PCFs as their name show, goes back to the birth of photonic<br />

crystals (PC). The ability to tailor structures on the micro <strong>and</strong> nano scale <strong>in</strong><br />

the late 1980s provided the opportunity to <strong>in</strong>vestigate the relation between the<br />

structure of matter <strong>and</strong> light. With<strong>in</strong> this framework, the photonic crystal emerged<br />

<strong>and</strong> became an extensively studied scientific area s<strong>in</strong>ce 1987 when Eli Yablonovitch<br />

advised the idea of “photonic b<strong>and</strong>gap structures” [20]-[23]. 2D <strong>and</strong> 3D photonic<br />

crystal structures are periodic artificial, dielectric structures <strong>in</strong> which light behaves<br />

the same way as electron <strong>wave</strong>s <strong>in</strong> natural crystals. Under suitable circumstances,<br />

the photonic crystal may open up a frequency b<strong>and</strong> <strong>in</strong> which the <strong>propagation</strong><br />

of electromagnetic <strong>wave</strong> is forbidden. This frequency b<strong>and</strong> is generally called<br />

photonic b<strong>and</strong>gap (PBG) as a nomenclature borrowed from solid-state physics.


CHAPTER 1. GENERAL INTRODUCTION 3<br />

PCFs appeared <strong>in</strong> the middle of the 1990s [19] <strong>and</strong> the special class of hollowcore<br />

PBG fibers which have a lower <strong>in</strong>dex core <strong>and</strong> where the light is guided by the<br />

photonic b<strong>and</strong>gap effect was demonstrated <strong>in</strong> 1998 [24, 25]. These type of fibers<br />

have many novel properties.<br />

PCFs can have a large <strong>wave</strong>guide contribution to the material dispersion, therefore<br />

anomalous dispersion can be achieved below the 1.27 µm region [26, 27]. This<br />

allows the dispersion management of the fibers even <strong>in</strong> the visible region with a<br />

proper design [28]. This property of the fiber was used recently <strong>in</strong> Ytterbium<br />

fiber laser oscillators for dispersion compensation [29], because other fibers have<br />

normal dispersion at the radiation <strong>wave</strong>length of Ytterbium but PCF can have an<br />

anomalous one.<br />

PCFs revolutionized the nonl<strong>in</strong>ear optics s<strong>in</strong>ce the end of 1990s. These types<br />

of fibers opened up new areas <strong>in</strong> physics such us ultra-broad supercont<strong>in</strong>uum generation<br />

<strong>in</strong> silica microstructured fiber even <strong>in</strong> the visible region [28]. The process<br />

of cont<strong>in</strong>uum <strong>and</strong> super-cont<strong>in</strong>uum generation had been known for many years<br />

but <strong>in</strong>itial experiments used very high power lasers (> µJ) with ultra short <strong>pulse</strong>s<br />

(< 1 ps), focused <strong>in</strong>to glass, sapphire or even water. The breakthrough provided<br />

by PCF <strong>in</strong> 2000 was the design of the fiber that allowed the use of much lower<br />

powers to produce the cont<strong>in</strong>uum effect <strong>and</strong> the zero dispersion <strong>wave</strong>length of fiber<br />

might be close to the pump <strong>wave</strong>length of Ti:Sapphire. The cont<strong>in</strong>uum is also particularly<br />

broad, often spann<strong>in</strong>g over two optical octaves. These novel light sources<br />

are cheap <strong>and</strong> effective sources for spectroscopy, frequency metrology <strong>and</strong> optical<br />

coherent tomography.<br />

Ultrashort <strong>pulse</strong> generation via nonl<strong>in</strong>ear <strong>compression</strong> is also reconsidered with<br />

much lower optical <strong>pulse</strong> energies (< 1 nJ). Tenfold <strong>pulse</strong> <strong>compression</strong>s were<br />

demonstrated <strong>in</strong> a few experiments [30, 31] at nJ or sub-nJ optical <strong>pulse</strong> energies,<br />

which resulted <strong>in</strong> typical compressed <strong>pulse</strong> durations of 20 to 35 fs start<strong>in</strong>g<br />

from 100-150 fs. The length of the used microstructured fiber was only a few<br />

centimeter. The possibility of compress<strong>in</strong>g supercont<strong>in</strong>uum generated <strong>in</strong> a 5 mm<br />

long microstructured fiber us<strong>in</strong>g a rather complicate <strong>and</strong> expensive adaptive <strong>compression</strong><br />

technique based on spectral-phase <strong>in</strong>terferometry for direct electric-field<br />

reconstruction (SPIDER) was also reported [32]. The obta<strong>in</strong>ed <strong>pulse</strong> width was<br />

5.5 fs start<strong>in</strong>g from 15 fs transform limit.<br />

A novel <strong>and</strong> effective <strong>pulse</strong> <strong>compression</strong> method is recently based on solitoneffect<br />

<strong>compression</strong> <strong>in</strong> a very new type of microstructured fibers which have submicron<br />

core diameter. This <strong>wave</strong>guide is called nano-wire [33]-[37]. These <strong>wave</strong>guides<br />

provide suitable conditions for broadb<strong>and</strong> soliton-effect <strong>compression</strong> of <strong>ultrashort</strong><br />

<strong>pulse</strong>s. In a recent experiment, 6.8 fs, few-cycle duration was demon-


CHAPTER 1. GENERAL INTRODUCTION 4<br />

strated start<strong>in</strong>g from 70 fs [38, 39] <strong>and</strong> computations show the reliable s<strong>in</strong>gle-cycle<br />

<strong>compression</strong> of sub-nJ <strong>pulse</strong>s (< 3 fs). This <strong>compression</strong> technique <strong>in</strong> photonic<br />

nanowires provides a simple method for the self-<strong>compression</strong> of sub-nJ <strong>pulse</strong>s to<br />

few-cycle durations without any additional optical elements.<br />

Higher <strong>in</strong>tensity <strong>pulse</strong> <strong>compression</strong> (> 5 − 10 nJ) however, can not be carried<br />

out by silica core nanowires or small-core area microstructured fibers because the<br />

photon-density per volume unit would be such a high value that could damage the<br />

fiber itself (well above 10-20 kW peak power of the <strong>pulse</strong>). A possible alternative<br />

<strong>in</strong> this energy region are the large-mode area (LMA) photonic crystal fiber [40]<br />

<strong>and</strong> the above mentioned hollow core photonic b<strong>and</strong>gap fibers.<br />

LMA fibers with step-<strong>in</strong>dex profiles are usually multimode, cares must be taken<br />

of the suppression of higher-order mode excitation to obta<strong>in</strong> near-diffraction-limit<br />

outputs. Novel PCF technology however yields the possibility of carry<strong>in</strong>g only<br />

the fundamental mode <strong>in</strong> an LMA fiber [40]-[42]. Us<strong>in</strong>g LMA PCF higher than<br />

1000 µm 2 effective core area was achieved recently without los<strong>in</strong>g the s<strong>in</strong>gle mode<br />

operation <strong>in</strong> a fiber amplifier [43]. This fiber reduces the nonl<strong>in</strong>earity more than<br />

100 times compared to a s<strong>in</strong>gle mode fiber which has an effective core area of<br />

approximately 80 µm 2 at 1550 nm. The dispersion of LMA fibers, however, can<br />

not be tailored us<strong>in</strong>g structural modifications. LMA fibers have about the same<br />

magnitude of dispersion as material dispersion does. LMA fibers are therefore suitable<br />

for chirped <strong>pulse</strong> amplifiers (CPA) [44]-[46], but not for deliver<strong>in</strong>g <strong>ultrashort</strong><br />

<strong>pulse</strong>s (below 1.3 µm) where material dispersion changes rapidly. CPA technique<br />

was first proposed <strong>in</strong> doped step-<strong>in</strong>dex fibers <strong>in</strong> order to avoid the harmful effect<br />

of nonl<strong>in</strong>earity <strong>and</strong> fiber damage [47].<br />

PBG fibers enable light guidance <strong>in</strong> a low refractive <strong>in</strong>dex material such as air,<br />

vacuum or gas. PBG fibers <strong>in</strong> which a high percentage of the light (> 95%) can<br />

be guided <strong>in</strong> a hollow core, offer a significantly reduced nonl<strong>in</strong>earity with respect<br />

to silica core fibers [48]. In PBG fibers, achiev<strong>in</strong>g lower losses than conventional<br />

doped solid core fibers are also possible [49] <strong>and</strong> light transmission at <strong>wave</strong>lengths<br />

where the material absorption would otherwise be prohibitive [50, 51]. Photonic<br />

b<strong>and</strong>gap fibers have a typical third order function-like dispersion property [52, 53]<br />

which <strong>in</strong>creases cont<strong>in</strong>uously from the normal dispersion region to the anomalous<br />

region with an <strong>in</strong>flection po<strong>in</strong>t at the middle of the b<strong>and</strong>gap This behavior is<br />

<strong>in</strong>dependent of the constitut<strong>in</strong>g materials, this is a basic feature of the b<strong>and</strong>gap<br />

structure [53]. This dispersion property of PBG fiber, however, is somewhat affected<br />

by the <strong>wave</strong>guide contribution [54] <strong>and</strong> also by harmful effects such as mode<br />

anti-cross<strong>in</strong>g [55, 56]. The problem of avoid<strong>in</strong>g cladd<strong>in</strong>g or surface modes (mode<br />

anti-cross<strong>in</strong>g effect) <strong>and</strong> tailor<strong>in</strong>g the dispersion properly by the <strong>wave</strong>guide contri-


CHAPTER 1. GENERAL INTRODUCTION 5<br />

bution or by the <strong>in</strong>troduction of resonant structures are the subjects of recent <strong>and</strong><br />

future researches.<br />

We note here that design<strong>in</strong>g photonic crystal structures by us<strong>in</strong>g f<strong>in</strong>ite element<br />

numerical method was already done by Hungarian scientist <strong>in</strong> the Central Research<br />

Physics Institute, Budapest [57].<br />

A detailed overview on nonl<strong>in</strong>ear fiber optics <strong>and</strong> their applications cover<strong>in</strong>g<br />

almost all the physical effects <strong>and</strong> their theories are given <strong>in</strong> Ref. [58] <strong>and</strong> [59].<br />

Microstructured fibers are discussed <strong>in</strong> Ref. [60] <strong>and</strong> [61] extensively.<br />

1.2 Scope of the dissertation<br />

The matter of the dissertation can be divided to three topics which are connected<br />

to each other by the <strong>in</strong>vestigation of nonl<strong>in</strong>ear <strong>wave</strong> <strong>propagation</strong> <strong>in</strong> s<strong>in</strong>gle-mode or<br />

microstructured fibers. Furthermore, all chapters are deal<strong>in</strong>g with f<strong>in</strong>d<strong>in</strong>g suitable<br />

<strong>pulse</strong> or fiber parameters for the realization of an optical system.<br />

In the first chapter, we <strong>in</strong>vestigate the micro<strong>wave</strong> modulated light transmission<br />

through s<strong>in</strong>gle mode fiber with the <strong>in</strong>clusion of nonl<strong>in</strong>earity. This chapter is us<strong>in</strong>g<br />

the nonl<strong>in</strong>earity as an advantageous effect compensat<strong>in</strong>g dispersion caused modulation<br />

suppression <strong>and</strong> <strong>in</strong>vestigate the expected soliton <strong>propagation</strong> of <strong>in</strong>tensity<br />

modulated signals.<br />

We cont<strong>in</strong>ue to use our numerical tool to design such <strong>pulse</strong> delivery system<br />

applied <strong>in</strong> a two-photon fluorescent microscope (2PFM) which is based on the<br />

chirped <strong>pulse</strong> transmission through s<strong>in</strong>gle mode, step-<strong>in</strong>dex fiber <strong>and</strong> re<strong>compression</strong>.<br />

Avoid<strong>in</strong>g the harmful effects of nonl<strong>in</strong>earity is the aim <strong>in</strong> this system. The<br />

simulation <strong>and</strong> correspond<strong>in</strong>g measurements can predict the usable <strong>pulse</strong> energy,<br />

applied prechirp <strong>and</strong> <strong>compression</strong> chirp allowed to deliver through a s<strong>in</strong>gle mode<br />

fiber <strong>in</strong> order to achieve the two-photon excitation after.<br />

The third part of the dissertation deals with <strong>pulse</strong> <strong>compression</strong> us<strong>in</strong>g microstructured<br />

fibers. Prechirp, <strong>in</strong> this chapter, has also a significant role to avoid<br />

dispersion caused temporal distortions <strong>and</strong> f<strong>in</strong>e tune the broaden<strong>in</strong>g of the spectrum<br />

by chang<strong>in</strong>g the peak power of the <strong>pulse</strong>. F<strong>in</strong>d<strong>in</strong>g the optimum <strong>in</strong>put <strong>and</strong><br />

output chirps is the aim here to obta<strong>in</strong> sub-6 fs compressed <strong>pulse</strong>s. The quality<br />

<strong>and</strong> duration of the compressed <strong>pulse</strong>s are <strong>in</strong>vestigated also <strong>in</strong> dispersion modified<br />

microstructured fibers.


Chapter 2<br />

Theory of optical fibers<br />

2.1 Optical <strong>wave</strong>guides <strong>and</strong> fibers<br />

Optical <strong>wave</strong>guides constitute a general structure <strong>in</strong> that typically a higher refractive<br />

<strong>in</strong>dex region is surrounded by a lower refractive <strong>in</strong>dex dielectric material. This<br />

arrangement assures the light <strong>propagation</strong> <strong>in</strong> the higher refractive <strong>in</strong>dex part of the<br />

<strong>wave</strong>guide by total <strong>in</strong>ternal reflection. The <strong>wave</strong>guide mechanism works until the<br />

angle of <strong>in</strong>cidence at the boundary of the two dielectric materials is higher than<br />

the critical angle of the total <strong>in</strong>ternal reflection. Let the higher <strong>in</strong>dex material<br />

have a refractive <strong>in</strong>dex of nh <strong>and</strong> the surround<strong>in</strong>g, low <strong>in</strong>dex one nl. The critical<br />

angle <strong>in</strong>cidence for <strong>in</strong>ternal reflection can be given by [62]<br />

� �<br />

nl<br />

Φc = as<strong>in</strong> . (2.1)<br />

Step-<strong>in</strong>dex fibers are <strong>wave</strong>guides with core <strong>and</strong> cladd<strong>in</strong>g dielectric components<br />

as higher <strong>and</strong> lower refractive <strong>in</strong>dex parts, respectively. They show a cyl<strong>in</strong>drical<br />

symmetry <strong>and</strong> the core <strong>and</strong> cladd<strong>in</strong>g regions are placed concentrically (See Figure<br />

2.1).<br />

The numerical aperture of the fiber (the maximum space angle with that the<br />

light can be <strong>in</strong>jected <strong>in</strong>to a fiber) can be derived with the assumption of Φ is the<br />

critical angle of the total <strong>in</strong>ternal reflection (Φc). Namely, Φ can be larger than<br />

Φc (See explanation <strong>in</strong> Fig. 2.1). In this case Θ2 can be obta<strong>in</strong>ed by subtract<strong>in</strong>g<br />

Φc from π/2 (neglect<strong>in</strong>g the small bend<strong>in</strong>g of the fiber) <strong>and</strong> us<strong>in</strong>g the Snellius-<br />

Descartes law at the fiber <strong>in</strong>put for obta<strong>in</strong><strong>in</strong>g Θ1 (See Fig. 2.1). The numerical<br />

aperture can be expressed by the refractive <strong>in</strong>dex of the core <strong>and</strong> cladd<strong>in</strong>g us<strong>in</strong>g<br />

6<br />

nh


CHAPTER 2. THEORY OF OPTICAL FIBERS 7<br />

nenv<br />

Θ 1<br />

nh<br />

nl<br />

Φ<br />

Θ2 Φ<br />

Cladd<strong>in</strong>g<br />

Core<br />

Jacket<br />

(coat<strong>in</strong>g)<br />

Figure 2.1: Structure of optical fibers with a propagat<strong>in</strong>g mode represented as a<br />

ray with <strong>in</strong>cident angle Θ1, refracted angle Θ2 <strong>and</strong> total <strong>in</strong>ternal reflection with<br />

an angle of Φ at the boundary of core <strong>and</strong> cladd<strong>in</strong>g. The refractive <strong>in</strong>dex of the<br />

core <strong>and</strong> cladd<strong>in</strong>g are nh <strong>and</strong> nl, respectively.<br />

some trigonometric identities dur<strong>in</strong>g the derivation:<br />

NA = s<strong>in</strong>(Θ1) = 1<br />

nenv<br />

�<br />

n 2 h − n2 l<br />

(2.2)<br />

where nenv is the refractive <strong>in</strong>dex of the environment surround<strong>in</strong>g the fiber which<br />

can be approximated by 1 <strong>in</strong> case of air <strong>and</strong> atmospheric gases. In Eq. (2.2), the<br />

refractive <strong>in</strong>dex of core <strong>and</strong> cladd<strong>in</strong>g can be <strong>wave</strong>length dependent, therefore the<br />

numerical aperture of the fiber varies as a function of <strong>wave</strong>length.<br />

Two parameters that can characterize an optical fiber are the relative corecladd<strong>in</strong>g<br />

<strong>in</strong>dex difference<br />

∆ = nh − nl<br />

(2.3)<br />

nh<br />

<strong>and</strong> the so-called V parameter<br />

�<br />

V = kρ n2 h − n2 l<br />

(2.4)<br />

where k = 2π/λ is the free-space <strong>wave</strong> number, ρ is the core radius <strong>and</strong> λ is the<br />

<strong>wave</strong>length. About V-parameter <strong>in</strong> connection with microstructured fibers, one<br />

can f<strong>in</strong>d <strong>in</strong>formation <strong>in</strong> Ref. [63].<br />

The eigenvalue equation for modes can be used to determ<strong>in</strong>e the values of V<br />

at which different modes reach cut-off (See, for <strong>in</strong>stance, [64]). It can be seen,<br />

that the V parameter depends on the fiber geometry <strong>and</strong> the core-cladd<strong>in</strong>g <strong>in</strong>dex<br />

difference. The V parameter tells us how many modes are supported by the optical


CHAPTER 2. THEORY OF OPTICAL FIBERS 8<br />

fiber, therefore the V parameter is a critical fiber design parameter. A step-<strong>in</strong>dex<br />

fiber supports only one mode if the V parameter is less than 2.405.<br />

An approximate expression can be used to determ<strong>in</strong>e the number of modes <strong>in</strong><br />

a step-<strong>in</strong>dex fiber by the follow<strong>in</strong>g equation<br />

� �2 � �2 V NA<br />

M ≈ =<br />

(2.5)<br />

π λ/(2ρ)<br />

where we denoted the number of modes by M <strong>and</strong> we used (2.2) <strong>and</strong> (2.4) to<br />

express M by the numerical aperture too.<br />

2.1.1 Fiber types<br />

St<strong>and</strong>ard fibers for communication purposes are step-<strong>in</strong>dex or graded-<strong>in</strong>dex fibers<br />

manufactured nowadays. Graded-<strong>in</strong>dex fibers have a core with radially decreas<strong>in</strong>g<br />

refractive <strong>in</strong>dex from the center to the core boundary (See Fig. 2.2).<br />

These fibers are usually referred to transmission fibers. To <strong>in</strong>crease the transmission<br />

capacity <strong>and</strong> the <strong>wave</strong>length range where these fibers are able to be used,<br />

dispersion compensat<strong>in</strong>g <strong>and</strong> active fibers were <strong>in</strong>troduced.<br />

Consider<strong>in</strong>g the geometrical properties <strong>and</strong> the number of guided modes the<br />

fibers can be categorized further as multi-mode <strong>and</strong> s<strong>in</strong>gle mode fibers.<br />

Multi-mode fibers (MMF) are <strong>in</strong>expensive solutions for build<strong>in</strong>g LAN <strong>in</strong> an<br />

office, for example. The name MMF comes from the fact that the light travels down<br />

the fiber <strong>in</strong> multiple paths. Graded-<strong>in</strong>dex fibers are usually used for LAN/WAN<br />

equipments because the light path <strong>in</strong> this case is s<strong>in</strong>uous <strong>and</strong> regular while <strong>in</strong> the<br />

case of step-<strong>in</strong>dex MMF the light path is highly angular <strong>and</strong> irregular.<br />

The graded <strong>in</strong>dex profile is usually given by the follow<strong>in</strong>g form<br />

⎧ �<br />

⎨<br />

� �m r<br />

n1 1 − 2∆ , r ≤ ρ<br />

n(r) =<br />

ρ<br />

(2.6)<br />

⎩<br />

n2, r > ρ<br />

where n1 is the nom<strong>in</strong>al refractive <strong>in</strong>dex n1 = n(r = 0), n2 is the refractive <strong>in</strong>dex<br />

of the homogeneous cladd<strong>in</strong>g, ρ is the radius of the core, ∆ = (n 2 1 − n 2 2)/(2n 2 1) <strong>and</strong><br />

m is a parameter def<strong>in</strong><strong>in</strong>g the shape of the profile.<br />

From the end of 1990s, highly nonl<strong>in</strong>ear (HNL) fibers were developed for supercont<strong>in</strong>uum<br />

generation. These fibers are SM fibers with a relatively small core<br />

area <strong>and</strong> high NA <strong>in</strong> order to yield high nonl<strong>in</strong>earity (see the relation between<br />

nonl<strong>in</strong>earity <strong>and</strong> core area <strong>in</strong> subsection 2.2.3).


CHAPTER 2. THEORY OF OPTICAL FIBERS 9<br />

n<br />

n<br />

(a) (b)<br />

(c)<br />

125<br />

0<br />

62.5<br />

125 9 4 r<br />

r<br />

[ µ m]<br />

n<br />

n<br />

(d)<br />

125 4 r<br />

[ µ m]<br />

[ µ m]<br />

r [ µ m]<br />

Figure 2.2: Some typical <strong>in</strong>dex profiles for optical fibers with the st<strong>and</strong>ard geometrical<br />

parameters. (a) graded-<strong>in</strong>dex MMF, (b) step-<strong>in</strong>dex SMF, (c) dispersion<br />

compensat<strong>in</strong>g fiber (DCF). Highly nonl<strong>in</strong>ear fibers (HNL) have a similar structure<br />

to DCFs with a graded <strong>in</strong>dex refractive <strong>in</strong>dex distribution <strong>in</strong> their core, (d)<br />

Bragg-fiber with periodic <strong>in</strong>dex variations. Light is guided by the b<strong>and</strong>gap effect<br />

<strong>in</strong> Bragg fibers (lower <strong>in</strong>dex core).<br />

An other category of fibers is microstructured optical fibers (MOF) which are<br />

usually referred to photonic crystal fibers (PCF). These fibers can be ranked <strong>in</strong> two<br />

ma<strong>in</strong> classes: high-<strong>in</strong>dex core fibers or <strong>in</strong>dex guid<strong>in</strong>g fibers <strong>and</strong> photonic b<strong>and</strong>gap<br />

fibers (PBG) or b<strong>and</strong>gap guid<strong>in</strong>g fibers. High <strong>in</strong>dex core fibers can be large mode<br />

area fibers <strong>and</strong> highly nonl<strong>in</strong>ear fibers. PBG fibers can be Bragg fibers <strong>and</strong> hollow<br />

core (HC) or air guid<strong>in</strong>g fibers.


CHAPTER 2. THEORY OF OPTICAL FIBERS 10<br />

2.1.2 Attenuation <strong>in</strong> the fiber<br />

The light propagat<strong>in</strong>g through a medium loses some percentage of it’s power if<br />

the dielectric material is not perfectly transparent. Phenomenologically, this phenomenon<br />

can be demonstrated by a complex susceptibility,<br />

χ = χ ′ + iχ ′′<br />

(2.7)<br />

correspond<strong>in</strong>g to the complex permittivity ɛ = ɛ0(1+χ) [62]. The <strong>wave</strong>number will<br />

be complex valued (k = β−iα/2) where the imag<strong>in</strong>ary part of the <strong>wave</strong>number will<br />

be responsible for the attenuation of light (See subsection 2.2.3 for the relations<br />

between α <strong>and</strong> χ).<br />

The transmitted power (Pout) of a light beam with an <strong>in</strong>itial power of P<strong>in</strong> can<br />

be given by the follow<strong>in</strong>g expression after the <strong>propagation</strong> length L<br />

Pout = P<strong>in</strong> exp(−αL) (2.8)<br />

where the attenuation constant α is a measure of total fiber losses from all sources.<br />

α <strong>in</strong> Eq. (2.8) has a unit of 1/m <strong>in</strong> SI. It is customary however to express α <strong>in</strong><br />

units of dB/km. The conversion between a ratio R <strong>in</strong> SI <strong>and</strong> <strong>in</strong> decibel can be<br />

easily done by the general def<strong>in</strong>ition<br />

R(<strong>in</strong> dB) = 10 log 10 R(<strong>in</strong> SI) (2.9)<br />

The most common use of decibel scale occurs for power ratios as it is the case <strong>in</strong><br />

Eq. (2.8)<br />

α[dB/m] = − 10<br />

L log � �<br />

Pout<br />

10 = − 10<br />

L ln<br />

� ��<br />

Pout<br />

ln 10 = 10<br />

ln 10 α[1/m] (2.10)<br />

P<strong>in</strong><br />

where ln st<strong>and</strong>s for the natural logarithm <strong>and</strong> we used Eq. (2.8) to substitute the<br />

ratio of output <strong>and</strong> <strong>in</strong>put power with α[1/m]L. Subscripts next to the α parameters<br />

are <strong>in</strong>tended to show the unit of the parameter. In order to get the loss <strong>in</strong> dB/km<br />

we should simply multiply the above equation by thous<strong>and</strong><br />

P<strong>in</strong><br />

α[dB/km] = 104<br />

ln 10 α[1/m]<br />

(2.11)<br />

This expression is often used <strong>in</strong> the simulations for obta<strong>in</strong><strong>in</strong>g the loss <strong>in</strong> SI from<br />

the loss data provided by the fiber manufacturers.


CHAPTER 2. THEORY OF OPTICAL FIBERS 11<br />

The loss <strong>in</strong> a fiber is also <strong>wave</strong>length dependent. Different frequency components<br />

of the propagat<strong>in</strong>g light are attenuated with different magnitudes. The<br />

factors which contribute to the loss spectrum are the Rayleigh scatter<strong>in</strong>g, water<br />

(OH − ) absorption <strong>and</strong> metal-oxide absorption peaks. Silica glass, for example,<br />

has electronic resonances <strong>in</strong> the UV <strong>and</strong> vibrational resonances <strong>in</strong> the FIR region.<br />

Therefore, this type of glasses can transmit light <strong>in</strong> the 0.5 − 2.2 µm region.<br />

Rayleigh scatter<strong>in</strong>g is a fundamental loss mechanism aris<strong>in</strong>g from the density<br />

fluctuations frozen <strong>in</strong>to the fused silica dur<strong>in</strong>g manufactur<strong>in</strong>g. Result<strong>in</strong>g local<br />

fluctuations <strong>in</strong> the refractive <strong>in</strong>dex scatter light <strong>in</strong> all directions. The Rayleigh<br />

scatter<strong>in</strong>g loss varies with λ −4 therefore its effect is dom<strong>in</strong>ant at short <strong>wave</strong>lengths.<br />

Another loss factor is the bend<strong>in</strong>g loss which may scatter light at the corecladd<strong>in</strong>g<br />

<strong>in</strong>terface. In communication systems the splic<strong>in</strong>g loss <strong>and</strong> connector<br />

losses may also contribute to the attenuation of the transmitted light.<br />

2.1.3 Dispersion<br />

Propagat<strong>in</strong>g light <strong>in</strong>teracts with the bound electrons of a dielectric material whose<br />

response, <strong>in</strong> general, depends on the optical frequency. This property is referred<br />

to as chromatic dispersion <strong>and</strong> manifests through the frequency dependence of the<br />

susceptibility χ(f), refractive <strong>in</strong>dex n(f) <strong>and</strong> speed of light c = c0/n(f) where c0 is<br />

the speed of light <strong>in</strong> vacuum. Relations between the real part of the <strong>wave</strong>number<br />

(β: <strong>propagation</strong> constant), susceptibility <strong>and</strong> dispersion are described <strong>in</strong> subsection<br />

2.2.3.<br />

There are characteristic resonances of the medium at which the medium absorbs<br />

the electro-magnetic radiation through the oscillations of bound electrons. Far<br />

from the medium resonances the refractive <strong>in</strong>dex of the glass can be approximated<br />

by the Sellmeier equation (See, for example, [64])<br />

n(λ) =<br />

�<br />

1 +<br />

m�<br />

Bjλ 2<br />

λ<br />

j=1<br />

2 − Cj<br />

� 1/2<br />

(2.12)<br />

where Bj <strong>and</strong> Cj are fitt<strong>in</strong>g parameters with j = 1, 2, . . . , m where m can be<br />

considered the number of resonances that contribute to the frequency range of<br />

<strong>in</strong>terest <strong>and</strong> this way Cj is the jth resonance <strong>wave</strong>length <strong>and</strong> Bj is the strength of<br />

the jth resonance.<br />

In the case of silica glass the Sellmeier parameters have the follow<strong>in</strong>g values<br />

if m = 3 <strong>and</strong> λ is calculated <strong>in</strong> µm <strong>in</strong> Eq. (2.12): B1 = 6.961663 × 10 −1 , B2 =


CHAPTER 2. THEORY OF OPTICAL FIBERS 12<br />

4.079426×10 −1 , B3 = 8.974794×10 −1 , C1 = 4.67914826×10 −3 , C2 = 1.35120631×<br />

10 −2 , C3 = 9.79340025 × 10.<br />

Chromatic dispersion<br />

Because of the dispersion, propagat<strong>in</strong>g <strong>pulse</strong>s become broader as a function of fiber<br />

length. This effect is the result of the above mentioned frequency dependence<br />

of the speed of light <strong>in</strong> the guid<strong>in</strong>g medium. We may note that shorter <strong>pulse</strong>s<br />

are affected more strongly by dispersion than longer ones. Longer <strong>pulse</strong>s have a<br />

narrower spectrum <strong>and</strong> because of the Fourier-transform relation<br />

∆ν∆τ = const (2.13)<br />

where ∆ν is the spectral <strong>and</strong> ∆τ is the transform limited temporal width.<br />

The dispersion coefficient can be derived from the <strong>propagation</strong> constant for<br />

that we exp<strong>and</strong> β(ω) <strong>in</strong> a Taylor-series around the center frequency ω0<br />

β(ω) = n(ω) ω<br />

� �<br />

dβ<br />

= β(ω0) +<br />

· (ω − ω0) +<br />

c0<br />

dω ω=ω0<br />

1<br />

� 2 d β<br />

2 dω2 �<br />

· (ω − ω0)<br />

ω=ω0<br />

2 + · · ·<br />

(2.14)<br />

The derivatives of β(ω) are related to the refractive <strong>in</strong>dex n(ω) <strong>and</strong> its derivatives<br />

through the relations<br />

dβ<br />

dω ≡ β1 = 1<br />

=<br />

vg<br />

ng<br />

=<br />

c0<br />

1<br />

�<br />

n + ω<br />

c0<br />

dn<br />

�<br />

(2.15)<br />

dω<br />

d2β dω2 ≡ β2 = 1<br />

�<br />

2 dn<br />

dω + ω d2n dω2 �<br />

(2.16)<br />

c0<br />

where ng is the group <strong>in</strong>dex <strong>and</strong> vg is the group velocity. The envelope of an optical<br />

<strong>pulse</strong> moves at the group velocity (vg = 1/β1 = c0/ng), while the parameter β2<br />

represents dispersion of the group velocity <strong>and</strong> is responsible for <strong>pulse</strong> broaden<strong>in</strong>g.<br />

The dispersion parameter or dispersion coefficient which is often used to describe<br />

dispersion properties is given by<br />

D(λ) = dβ1<br />

. (2.17)<br />

dλ<br />

We can say that D gives the time difference between two frequency components<br />

with unit <strong>wave</strong>length difference after unit <strong>propagation</strong> length.


CHAPTER 2. THEORY OF OPTICAL FIBERS 13<br />

The dispersion coefficient can be expressed by the group velocity dispersion,<br />

β2, <strong>and</strong> the refractive <strong>in</strong>dex as well us<strong>in</strong>g Eq. (2.15), (2.16) <strong>and</strong> (2.17)<br />

D(λ) = − 2πc0<br />

λ 2 β2 = − λ<br />

c0<br />

d 2 n<br />

dλ 2<br />

(2.18)<br />

The expression after the second equal sign is often used to determ<strong>in</strong>e the dispersion<br />

of a <strong>wave</strong>guide whose refractive <strong>in</strong>dex is obta<strong>in</strong>ed from the solution of<br />

the Helmholtz-eigenvalue equation. This type of analysis is important when the<br />

<strong>wave</strong>guide dispersion contributes significantly to the total group velocity dispersion.<br />

The dispersion parameter as a function of <strong>wave</strong>length is usually described by<br />

the coefficients of a Taylor series<br />

D(λ) ≈ D0 + S(λ − λ0) + T<br />

2 (λ − λ0) 2 + F<br />

3<br />

(λ − λ0)<br />

6<br />

(2.19)<br />

where D0, S, T <strong>and</strong> F are the dispersion (at λ0), dispersion slope, third order dispersion<br />

<strong>and</strong> fourth order dispersion, respectively. The λ0 parameter is the reference<br />

<strong>wave</strong>length around which D(λ) was exp<strong>and</strong>ed. Fiber manufacturers usually provide<br />

λref = λ0 <strong>and</strong> D, S <strong>and</strong>/or higher order terms for describ<strong>in</strong>g the dispersion<br />

properties of their fibers.<br />

Dur<strong>in</strong>g the numerical solution of the <strong>wave</strong> <strong>propagation</strong> (See Section 2.3) the<br />

coefficients of the Taylor series for the mode <strong>propagation</strong> constants (β1, β2, . . . )<br />

are used to calculate the effects of dispersion. They can be obta<strong>in</strong>ed from the<br />

dispersion coefficients as follows<br />

λ 2 0<br />

β2 = −D0<br />

(2.20)<br />

2πc<br />

2 λ0<br />

β3 = (λ<br />

2πc<br />

2 0S + 2λ0D0) (2.21)<br />

3 λ0<br />

β4 = − (λ<br />

2πc<br />

3 0T + 6λ 2 0S + 6λ0D0) (2.22)<br />

4 λ0<br />

β5 = (λ<br />

2πc<br />

4 0F + 12λ 3 0T + 36λ 2 0S + 24λ0D0) (2.23)<br />

The total group velocity dispersion of a <strong>wave</strong>guide, as briefly mentioned above,<br />

consists of two parts:<br />

1. material dispersion


CHAPTER 2. THEORY OF OPTICAL FIBERS 14<br />

2. <strong>wave</strong>guide dispersion.<br />

<strong>in</strong>ter-modal dispersion may belong to dispersion effects <strong>in</strong> general. Intermodal dispersion<br />

occures <strong>in</strong> MMF because the different modes are associated with different<br />

values of β <strong>and</strong> hence different velocities. Polarization mode dispersion is also<br />

the same phenomenon as <strong>in</strong>ter-modal dispersion but the relevant modes are here<br />

orig<strong>in</strong>ally degenerate.<br />

The contribution of <strong>wave</strong>guide dispersion to the total dispersion depends on<br />

fiber design parameters such as core radius ρ <strong>and</strong> core-cladd<strong>in</strong>g <strong>in</strong>dex difference<br />

∆. This feature makes it possible to design such fibers whose zero dispersion<br />

<strong>wave</strong>length are shifted towards the longer <strong>wave</strong>lengths. These fibers are called<br />

dispersion-shifted fibers (DSF). Dispersion compensat<strong>in</strong>g fibers (DCF) are the<br />

fibers <strong>in</strong> which the β2 value is positive (D negative) <strong>in</strong> the <strong>wave</strong>length region<br />

below 1.6 µm. DCFs usually have more cladd<strong>in</strong>g layers as transmission fibers (See<br />

Fig. 2.2). This is the same for dispersion-flattened fibers (DFF) which provide a<br />

flat dispersion profile for a few tens or hundreds of nano-meters of <strong>wave</strong>lengths.<br />

In case of MFs or PCFs, the structure <strong>in</strong>dicates that the <strong>wave</strong>guide contribution<br />

to the dispersion can be tuned by the hole size d <strong>and</strong> the pitch (hole-to-hole<br />

spac<strong>in</strong>g) Λ. These types of fibers may have such a large dispersion contribution<br />

from the guid<strong>in</strong>g mechanism that anomalous dispersion can be achieved even <strong>in</strong><br />

the visible region [28].<br />

Group-delay dispersion<br />

Us<strong>in</strong>g the term<strong>in</strong>ology of people work<strong>in</strong>g with femtosecond lasers we respectively<br />

def<strong>in</strong>e the follow<strong>in</strong>gs: phase shift after the <strong>propagation</strong> length L<br />

φ(ω) = n(ω) ω<br />

L (2.24)<br />

c<br />

group-delay which is the frequency dependence of phase-shift<br />

τ(ω) = dφ<br />

dω<br />

= 1<br />

c<br />

�<br />

n(ω) + ω dn(ω)<br />

dω<br />

�<br />

L (2.25)<br />

Group delay dispersion (GDD) is the frequency dependency of the group delay, or<br />

quantitatively the correspond<strong>in</strong>g derivative with respect to angular frequency<br />

φ2(ω) = dτ(ω)<br />

dω = d2φ . (2.26)<br />

dω2


CHAPTER 2. THEORY OF OPTICAL FIBERS 15<br />

The third order dispersion (TOD) is obviously the third derivative of phase<br />

with respect to ω.<br />

GDD is usually specified <strong>in</strong> fs 2 or ps 2 . Positive (negative) values correspond to<br />

normal (anomalous) chromatic dispersion. (GDD) always refers to some optical<br />

elements or to some given length of a medium. If one specifies the GDD per unit<br />

length (<strong>in</strong> units of s 2 /m or ps 2 /m, etc.), it gives the above mentioned GVD (β1,<br />

see Eq. (2.15)).<br />

We can see consequently that<br />

φ(ω) = β(ω)L. (2.27)<br />

In order to derive a relation between D(λ) <strong>and</strong> GDD (φ2) we can write D(λ) us<strong>in</strong>g<br />

Eq. (2.27) <strong>in</strong> the form<br />

where dω/dλ = −2πc0/λ 2 .<br />

2.1.4 <strong>Nonl<strong>in</strong>ear</strong>ity<br />

D(λ) = dτ dτ dω ω2<br />

L = L = − φ2(ω)L (2.28)<br />

dλ dω dλ 2πc0<br />

The orig<strong>in</strong> of nonl<strong>in</strong>ear response is related to anharmonic motion of bound electrons<br />

under the <strong>in</strong>fluence of an applied field. Mathematically, this phenomena can be<br />

expressed by the nonl<strong>in</strong>ear dependence of <strong>in</strong>duced polarization vector (P) from the<br />

electric field (E) (see the relations <strong>in</strong> Section 2.2.3). Most of the nonl<strong>in</strong>ear effects<br />

<strong>in</strong> optical fibers are orig<strong>in</strong>ate from nonl<strong>in</strong>ear refraction which is a phenomenon<br />

referr<strong>in</strong>g to the <strong>in</strong>tensity dependence of refractive <strong>in</strong>dex<br />

n(ω) = n0(ω) + n2|E| 2<br />

(2.29)<br />

where n0(ω) is the l<strong>in</strong>ear part <strong>and</strong> n2 is the nonl<strong>in</strong>ear-<strong>in</strong>dex relates to the third<br />

order susceptibility (see Section 2.2.3). The <strong>in</strong>tensity dependents of the refractive<br />

<strong>in</strong>dex leads to SPM, for example. SPM refers to self-<strong>in</strong>duced phase shift experienced<br />

by an optical field dur<strong>in</strong>g its <strong>propagation</strong> <strong>in</strong> optical fibers. Its magnitude<br />

can be given by<br />

φ(ω) = n(ω)k0L = � n0 + n2|E| 2� k0L (2.30)<br />

where k0 = 2π/λ, L is the fiber length <strong>and</strong> φNL = n2k0L|E| 2 is the nonl<strong>in</strong>ear<br />

phase-shift.


CHAPTER 2. THEORY OF OPTICAL FIBERS 16<br />

An other class of nonl<strong>in</strong>ear effects <strong>in</strong> optical fibers are the <strong>in</strong>elastic scatter<strong>in</strong>gs.<br />

In this case, the optical field transfers energy to the nonl<strong>in</strong>ear medium. Such effects<br />

are the stimulated Raman scatter<strong>in</strong>g (SRS) <strong>and</strong> stimulated Brillou<strong>in</strong> scatter<strong>in</strong>g<br />

(SBS). The ma<strong>in</strong> difference between the two is that optical phonons participate <strong>in</strong><br />

SRS while acoustic phonons participate <strong>in</strong> SBS. Both scatter<strong>in</strong>gs can be expla<strong>in</strong>ed<br />

the same way. A photon of the <strong>in</strong>cident field is annihilated to create a photon at<br />

lower frequency <strong>and</strong> a phonon with the right energy (<strong>and</strong> momentum) conserv<strong>in</strong>g<br />

energy <strong>and</strong> momentum. Further explanation of the nonl<strong>in</strong>ear effects are <strong>in</strong> Section<br />

2.2.3.<br />

2.2 <strong>Nonl<strong>in</strong>ear</strong> <strong>propagation</strong> <strong>in</strong> optical fiber<br />

The nonl<strong>in</strong>ear Schröd<strong>in</strong>ger equation is derived <strong>in</strong> the follow<strong>in</strong>gs start<strong>in</strong>g from the<br />

Maxwell’s equation. The used approximations are discussed <strong>in</strong> detail <strong>and</strong> higher<br />

order approximations <strong>and</strong> additional effects are described too. We note that c is<br />

used <strong>in</strong>stead of c0 <strong>in</strong> further sections because the necessary physical constant we<br />

need is the speed of light <strong>in</strong> vacuum.<br />

2.2.1 Maxwell’s equations <strong>and</strong> Wave equation<br />

The complete equation system that can describe all electromagnetic phenomena<br />

are the Maxwell’s equations whose differential <strong>and</strong> <strong>in</strong>tegral forms are presented<br />

here<br />

∇ × H = J + ∂D<br />

∂t ,<br />

∇ × E = − ∂B<br />

∂t ,<br />

∇B = 0,<br />

∇D = ρ,<br />

�<br />

(c)<br />

�<br />

(c)<br />

�<br />

S<br />

�<br />

S<br />

�<br />

Hdr =<br />

S<br />

Edr = − ∂<br />

∂t<br />

�<br />

J + ∂D<br />

�<br />

dS, (2.31a)<br />

∂t<br />

�<br />

S<br />

BdS, (2.31b)<br />

BdS = 0, (2.31c)<br />

�<br />

DdS =<br />

V<br />

ρdV (2.31d)<br />

where H is the magnetic field vector, E is the electric field vector, B <strong>and</strong> D are<br />

the magnetic <strong>and</strong> electric flux densities, respectively. The current density vector


CHAPTER 2. THEORY OF OPTICAL FIBERS 17<br />

is J <strong>and</strong> the charge density is ρ. The notation (c) under the sign of the <strong>in</strong>tegral<br />

means that the <strong>in</strong>tegral is carried out for a closed curve, S is for surface <strong>and</strong> V is<br />

for volume.<br />

The correspond<strong>in</strong>g constitutive relations are given by<br />

D = ε0E + P, (2.32a)<br />

B = µ0H + M, (2.32b)<br />

J = σE, (2.32c)<br />

where ε0 = 8.885 × 10 −12 As/Vm is the vacuum permittivity, µ0 = 1.2566 ×<br />

10 −6 Vs/Am is the vacuum permeability, σ is the conductibility, its unit of measure<br />

is A/Vm, <strong>and</strong> P <strong>and</strong> M are the <strong>in</strong>duced electric <strong>and</strong> magnetic polarizations.<br />

In optical fibers the follow<strong>in</strong>g quantities are zeros: J, ρ (no free charges) <strong>and</strong><br />

M (nonmagnetic medium). Therefore if we take the curl of Eq. (2.31b) <strong>and</strong> us<strong>in</strong>g<br />

(2.31a), (2.32a) <strong>and</strong> (2.32b), yields Eq. (2.33) where we also used the relation<br />

µ0ε0 = 1/c 2<br />

∇ × ∇ × E + 1<br />

c2 ∂2E ∂<br />

= −µ0<br />

∂t2 2P . (2.33)<br />

∂t2 There is a well-known vector-analytical relation for ∇ × ∇ × E that we can<br />

apply <strong>in</strong> Eq. (2.33):<br />

∇ × ∇ × E = ∇(∇E) − ∇ 2 E = −∇ 2 E, (2.34)<br />

because the fiber can be considered isotropic <strong>and</strong> ρ = 0, therefore ∇E vanishes<br />

(∇D = ε0∇E = 0). With this substitution Eq. (2.33) becomes:<br />

∇ 2 E − 1<br />

c 2<br />

∂2E = µ0<br />

∂t2 ∂2P . (2.35)<br />

∂t2 2.2.2 Induced polarization vector <strong>and</strong> susceptibility tensor<br />

In order to solve Eq. (2.35) one has to determ<strong>in</strong>e the relation between the <strong>in</strong>duced<br />

polarization vector P <strong>and</strong> electric field vector E. In general, a quantum mechanical<br />

approach is needed but if the applied optical frequency is far from the medium<br />

resonances which means the <strong>wave</strong>length of the field is between 0.5 <strong>and</strong> 2.2 µm<br />

(fc = 140 − 600 THz) then the electric-dipole approximation is valid. Assum<strong>in</strong>g<br />

that the medium response is local, the <strong>in</strong>duced polarization vector can be written


CHAPTER 2. THEORY OF OPTICAL FIBERS 18<br />

as<br />

� ∞<br />

P(r, t) =ε0 χ<br />

−∞<br />

(1) (t − τ)E(r, τ)dτ+<br />

� � ∞<br />

ε0 χ<br />

−∞<br />

(2) (t − τ, t − θ)E(r, τ)E(r, θ)dτdθ+<br />

� � � ∞<br />

χ (3) (t − τ, t − θ, t − η)E(r, τ)E(r, θ)E(r, η)dτdθdη + . . . .<br />

ε0<br />

−∞<br />

(2.36)<br />

If the medium response is <strong>in</strong>stantaneous compared to the <strong>pulse</strong> duration (τ/T0 ≪<br />

1 where T0 is the <strong>pulse</strong> width <strong>and</strong> τ is the nonl<strong>in</strong>ear response time of the medium)<br />

then Eq. (2.36) may be approximated by<br />

� �<br />

(1) (2) (3)<br />

P(r, t) ≈ ε0 χ E(r, t) + χ E(r, t)E(r, t) + χ E(r, t)E(r, t)E(r, t) (2.37)<br />

where χ (j) is the jth order susceptibility, a tensor of rank j + 1.<br />

where<br />

• χ (1) – is the l<strong>in</strong>ear susceptibility. Its effects are <strong>in</strong>cluded <strong>in</strong> the l<strong>in</strong>ear refractive<br />

<strong>in</strong>dex n0 <strong>and</strong> the attenuation coefficient α.<br />

• χ (2) – is the second order susceptibility. The second order susceptibility is<br />

responsible for the second-harmonic generation <strong>and</strong> sum-frequency generation.<br />

It is nonzero only for media that has a lack of <strong>in</strong>version symmetry at<br />

molecular level. SiO2 is a symmetric molecule, therefore χ (2) vanishes for<br />

silica glasses.<br />

• χ (3) – is the third order susceptibility. It is responsible for the third-harmonic<br />

generation, four-<strong>wave</strong> mix<strong>in</strong>g <strong>and</strong> nonl<strong>in</strong>ear refraction.<br />

The follow<strong>in</strong>g notation will be used:<br />

PL = ε0χ (1) E, (2.38)<br />

PNL = ε0χ (3) EEE (2.39)<br />

P = PL + PNL. (2.40)<br />

<strong>and</strong> PL denotes the l<strong>in</strong>ear part while PNL the nonl<strong>in</strong>ear part of the <strong>in</strong>duced polarization<br />

vector.


CHAPTER 2. THEORY OF OPTICAL FIBERS 19<br />

2.2.3 Deriv<strong>in</strong>g the nonl<strong>in</strong>ear Schröd<strong>in</strong>ger equation<br />

We can evaluate now a basic <strong>propagation</strong> equation from Eq. (2.35) us<strong>in</strong>g the<br />

(2.38) <strong>and</strong> (2.39) relations between E <strong>and</strong> P. Here, we can make some simplify<strong>in</strong>g<br />

assumptions:<br />

• PNL is treated as a small perturbation compared to PL (nonl<strong>in</strong>ear effects are<br />

weak <strong>in</strong> silica fibers).<br />

• The optical field is assumed to ma<strong>in</strong>ta<strong>in</strong> its polarization along the fiber<br />

length.<br />

• The optical field assumed to be quasi-monochromatic (∆ω/ω0 ≪ 1 where ω0<br />

is the center frequency <strong>and</strong> ∆ω is the spectral width).<br />

Accord<strong>in</strong>g to the slowly-vary<strong>in</strong>g-envelope approximation it is useful to separate<br />

the rapidly vary<strong>in</strong>g part of the electric field by writ<strong>in</strong>g it <strong>in</strong> the form of<br />

E(r, t) = 1<br />

2 ˆx[E(r, t) exp(−iω0t) + E ∗ (r, t) exp(iω0t)], (2.41)<br />

where ˆx is the polarization unit vector of the light assumed to be l<strong>in</strong>early polarized<br />

along the x axis, E(r, t) is a slowly-vary<strong>in</strong>g function of time (relative to the optical<br />

period) <strong>and</strong> E ∗ means the complex conjugate of E.<br />

Eq. (2.41) is substituted <strong>in</strong>to Eq. (2.39) <strong>and</strong> (2.38) <strong>and</strong> a similar form is used<br />

<strong>in</strong> the polarization vector as <strong>in</strong> Eq. (2.41):<br />

PL(r, t) = 1<br />

2 ˆx[PL(r, t) exp(−iω0t) + P ∗ L(r, t) exp(iω0t)], (2.42)<br />

PNL(r, t) = 1<br />

2 ˆx[PNL(r, t) exp(−iω0t) + P ∗ NL(r, t) exp(iω0t)]. (2.43)<br />

A Fourier-transformation is applied on Eq. (2.35) <strong>and</strong> Eq. (2.42) are substituted<br />

<strong>and</strong> (2.43) <strong>in</strong> that where we express PL(r, t) <strong>and</strong> PNL(r, t) with their relation to<br />

E(r, t). The obta<strong>in</strong>ed <strong>wave</strong> equation will have a form of<br />

∇ 2 ˜ E + ε(ω)k 2 0 ˜ E = 0 (2.44)<br />

where ˜ E denotes the Fourier-transform of E(r, t), k0 = ω0/c <strong>and</strong><br />

ε0(ω) = 1 + ˜χ (1)<br />

xx + 3<br />

4 ˜χ(3)<br />

xxxx|E(r, t)| 2 . (2.45)


CHAPTER 2. THEORY OF OPTICAL FIBERS 20<br />

Eq. (2.44) is known as Helmholtz equation <strong>and</strong> can be solved by us<strong>in</strong>g the<br />

method of separation of variables<br />

˜E(r, ω − ω0) = F (x, y) ˜ E(z, ω − ω0)e iβ0z<br />

(2.46)<br />

where ˜ E(z, ω − ω0) is a slowly vary<strong>in</strong>g function of z <strong>and</strong> F (x, y) is a function<br />

which corresponds to the transverse electric modes <strong>in</strong> the (x, y) plane if the z-axis<br />

is identical to the <strong>propagation</strong> direction. We note here, that both side of Eq. (2.46)<br />

conta<strong>in</strong> the E function but at the left h<strong>and</strong> side it depends on all spatial coord<strong>in</strong>ates<br />

while at the right h<strong>and</strong> side E is only z dependent. In the follow<strong>in</strong>g, only E(z, t)<br />

will be used <strong>in</strong> the derivation process therefore the argument of the function will<br />

not be noted <strong>in</strong> all cases.<br />

Writ<strong>in</strong>g back Eq. (2.46) <strong>in</strong>to Eq. (2.44) we obta<strong>in</strong><br />

� 2 1 ∂ F<br />

F ∂x2 + ∂2F ∂y2 �<br />

+ ε(ω)k 2 0 = 1<br />

˜Ee iβ0z<br />

∂ 2<br />

∂z 2 ( ˜ Ee iβ0z ). (2.47)<br />

The two sides of the equation depend on different variables. Therefore the right<br />

h<strong>and</strong> side <strong>and</strong> the left h<strong>and</strong> side must be equal with the same constant. Thus we<br />

obta<strong>in</strong> the follow<strong>in</strong>g differential equations:<br />

∂2F ∂x2 + ∂2F ∂y2 + [ε0(ω)k 2 0 − β 2 ]F = 0, (2.48)<br />

∂2E˜ ∂<br />

+ 2iβ0<br />

∂z2 ˜ E<br />

∂z + [β2 − β 2 0] ˜ E = 0 (2.49)<br />

where β is the <strong>wave</strong>number <strong>and</strong> it is determ<strong>in</strong>ed by solv<strong>in</strong>g the eigenvalue equation<br />

(2.48). In Eq. (2.49), the second derivative can be neglected because ˜ E(z, ω) is a<br />

slowly vary<strong>in</strong>g function of z.<br />

The eigenvalue β can be written <strong>in</strong> the form of<br />

β(ω) = β(ω) + ∆β, (2.50)<br />

where ∆β is a perturbation term <strong>and</strong> β(ω) is the frequency dependent mode<strong>propagation</strong><br />

constant. Thus, from Eq. (2.49) we obta<strong>in</strong><br />

∂ ˜ � �<br />

E i �β(ω) � 2 1<br />

− + 2β(ω)∆β − β0<br />

˜E = 0. (2.51)<br />

∂z 2<br />

It is useful to exp<strong>and</strong> β(ω) <strong>in</strong> a Taylor-series around the carrier frequency ω0 as<br />

it is given <strong>in</strong> Eq. (2.14) <strong>and</strong> we use the same notation as <strong>in</strong> Subsection 2.1.3 for<br />

β0


CHAPTER 2. THEORY OF OPTICAL FIBERS 21<br />

the derivatives (β1, β2,etc.). Writ<strong>in</strong>g back the Taylor exp<strong>and</strong>ed form of β(ω) to<br />

Eq. (2.51) <strong>and</strong> neglect<strong>in</strong>g the terms that are higher than second order such as<br />

β1∆β <strong>and</strong> β2∆β. Thus we may obta<strong>in</strong> the follow<strong>in</strong>g equation <strong>in</strong> the Fourier space<br />

from (2.51):<br />

∂ ˜ E<br />

∂z − iβ1(ω − ω0) ˜ E − i<br />

2 β2(ω − ω0) 2 ˜ E − iβ0∆β ˜ E = 0. (2.52)<br />

Now, perform<strong>in</strong>g the <strong>in</strong>verse Fourier-transformation on Eq. (2.52) <strong>and</strong> tak<strong>in</strong>g<br />

<strong>in</strong>to consideration the follow<strong>in</strong>g equations:<br />

<strong>and</strong><br />

F −1 {(ω − ω0) ˜ E(z, ω − ω0)} = i<br />

∂E(z, t)<br />

, (2.53)<br />

∂t<br />

F −1 {(ω − ω0) 2 ˜ E(z, ω − ω0)} = − ∂2 E(z, t)<br />

∂t 2 . (2.54)<br />

F −1 means the operation of <strong>in</strong>verse Fourier-transformation. We obta<strong>in</strong> the next<br />

equation<br />

∂E ∂E iβ2 ∂<br />

+ β1 +<br />

∂z ∂t 2<br />

2E − i∆βE = 0. (2.55)<br />

∂t2 The term with ∆β <strong>in</strong>cludes the effect of fiber loss <strong>and</strong> nonl<strong>in</strong>earity. It can be evaluated<br />

from Eq. (2.48) us<strong>in</strong>g a first-order perturbation theory (detailed derivation<br />

<strong>and</strong> references are given <strong>in</strong> Ref. [58]):<br />

where γ is the nonl<strong>in</strong>ear coefficient def<strong>in</strong>ed by<br />

∆β = − α<br />

2 + iγ|E|2 , (2.56)<br />

γ = n2ω0<br />

. (2.57)<br />

cAeff<br />

Aeff is the effective core area <strong>in</strong> (2.57) which is <strong>in</strong>versely proportional to the nonl<strong>in</strong>earity.<br />

n2 is the so-called nonl<strong>in</strong>ear refractive <strong>in</strong>dex which perturbs the l<strong>in</strong>ear<br />

<strong>in</strong>dex at higher <strong>in</strong>tensities n = n0 + n2I.<br />

The effective core area is given <strong>in</strong> the form of<br />

Aeff =<br />

�� � ∞<br />

−∞ |F (x, y)|2dxdy � � ∞<br />

−∞ |F (x, y)|4 dxdy<br />

� 2<br />

. (2.58)


CHAPTER 2. THEORY OF OPTICAL FIBERS 22<br />

where F (x, y) is the transverse mode field distribution that can be obta<strong>in</strong>ed from<br />

the eigenvalue equation (2.48). Substitut<strong>in</strong>g Eq. (2.56) <strong>in</strong>to Eq. (2.55) <strong>and</strong> mak<strong>in</strong>g<br />

a variable transformation with<br />

T = t − z<br />

= t − β1z, (2.59)<br />

v g<br />

one can obta<strong>in</strong> the NLS equation (2.60). The variable transformation yields the<br />

frame mov<strong>in</strong>g with the group velocity of the <strong>pulse</strong> envelope. This is the reduced<br />

time useful for describ<strong>in</strong>g <strong>pulse</strong> <strong>propagation</strong> <strong>in</strong> a coord<strong>in</strong>ate system fixed to the<br />

<strong>pulse</strong>.<br />

The obta<strong>in</strong>ed differential equation describes the light <strong>propagation</strong> <strong>in</strong> a lossy,<br />

dispersive <strong>and</strong> nonl<strong>in</strong>ear fiber can be written as [58]<br />

∂E(z, T )<br />

∂z<br />

= − α iβ2 ∂<br />

E −<br />

2 2<br />

2E ∂T 2 + iγ|E|2E (2.60)<br />

which is often referred as NLS equation <strong>in</strong> the case of α = 0. Attenuation is<br />

described by the first term at the right-h<strong>and</strong> side <strong>in</strong> Eq. (2.60), GVD corresponds<br />

to the second term <strong>and</strong> nonl<strong>in</strong>earity, or SPM is the third term with the <strong>in</strong>tensity<br />

dependence.<br />

In the follow<strong>in</strong>gs, we describe more general forms of the NLS equation us<strong>in</strong>g<br />

higher order approximations <strong>and</strong> <strong>in</strong>clud<strong>in</strong>g an <strong>in</strong>elastic stimulated scatter<strong>in</strong>g effect.<br />

2.2.4 Higher order dispersion <strong>and</strong> nonl<strong>in</strong>earity<br />

Equation (2.60) does not <strong>in</strong>clude <strong>in</strong>elastic scatter<strong>in</strong>g such as Raman or Brillou<strong>in</strong><br />

scatter<strong>in</strong>g which becomes important above a threshold of <strong>pulse</strong> peak <strong>in</strong>tensities<br />

<strong>and</strong> below a certa<strong>in</strong> time duration of the <strong>pulse</strong>s. Raman effect is usually important<br />

below the 1 ps time scale if the Raman threshold is reached which can be<br />

approximated as follows<br />

P 0 cr ≈ 16 Aeff<br />

LeffgR<br />

(2.61)<br />

where Leff = (1 − exp(−αL))/α is the effective fiber length with the <strong>pulse</strong> attenuation<br />

α <strong>and</strong> fiber length L. Aeff is the effective core area <strong>in</strong> Eq. (2.61) <strong>and</strong> gR is<br />

the Raman ga<strong>in</strong> curve as a function of frequency shift. The maximal value of gR<br />

is about 10 −13 m/W for fused silica which is approximately 13.5 THz shift from<br />

the reference frequency.<br />

Below 1 ps the spectral width can be broad enough that Raman ga<strong>in</strong> transfers<br />

energy from the low-frequency components to the higher frequency components.


CHAPTER 2. THEORY OF OPTICAL FIBERS 23<br />

This results <strong>in</strong> the self-frequency shift of the <strong>pulse</strong> whose physical orig<strong>in</strong> comes<br />

from the delayed nature of Raman response.<br />

In this approximation the nonl<strong>in</strong>ear response of the medium is comparable with<br />

the <strong>pulse</strong> width. Thus Eq. (2.36) should be used <strong>in</strong> the derivation of generalized<br />

nonl<strong>in</strong>ear Schröd<strong>in</strong>ger equation (GNLSE). Assum<strong>in</strong>g the follow<strong>in</strong>g functional form<br />

of the nonl<strong>in</strong>ear susceptibility<br />

χ (3) (t − τ, t − θ, t − η) = χ (3) R(t − τ)δ(t − θ)δ(t − η) (2.62)<br />

where R(t) is the nonl<strong>in</strong>ear response function normalized the same way as the<br />

delta function ( � ∞<br />

R(t)dt = 1).<br />

−∞<br />

Higher order dispersion terms can be easily added <strong>in</strong>clud<strong>in</strong>g higher order Taylor<br />

coefficients from the expansion of β(ω) dur<strong>in</strong>g the derivation process of (2.60) at<br />

the step Eq. (2.51).<br />

Substitut<strong>in</strong>g Eq. (2.62) <strong>in</strong>to Eq. (2.36) <strong>and</strong> perform<strong>in</strong>g a similar derivation<br />

process to the case of Eq. (2.60) this yields [65]<br />

∂E(z, t)<br />

= −<br />

∂z<br />

α<br />

�<br />

M�<br />

i<br />

E −<br />

2<br />

m=1<br />

m−1<br />

m! βm<br />

∂m ∂tm �<br />

E<br />

�<br />

+ iγ 1 + i<br />

� � � ∞<br />

∂<br />

E(z, t) R(t<br />

∂t<br />

′ )|E(z, t − t ′ )| 2 dt ′<br />

�<br />

. (2.63)<br />

ω0<br />

The response function R(t) <strong>in</strong>cludes the electronic (<strong>in</strong>stantaneous) <strong>and</strong> vibrational<br />

(delayed) Raman response<br />

−∞<br />

R(t) = (1 − fR)δ(t) + fRhR(t) (2.64)<br />

where fR is the fractional contribution of the delayed Raman response to the<br />

nonl<strong>in</strong>ear polarization <strong>and</strong> hR(t) is the Raman response function.<br />

Eq. (2.63) can be simplified with the assumption ∆τ ≫ 10 fs to the follow<strong>in</strong>g<br />

expression<br />

∂E(z, T )<br />

∂z<br />

= − α<br />

2 E<br />

�<br />

5�<br />

i<br />

−<br />

���� m=2<br />

Loss<br />

m−1<br />

m! βm<br />

∂m ∂T m<br />

�<br />

E<br />

� �� �<br />

Dispersion<br />

⎡<br />

⎢<br />

+ iγ ⎢<br />

⎣ |E|2E +<br />

� �� �<br />

SPM<br />

i ∂ � � 2<br />

|E| E − TRE<br />

ω0 ∂T<br />

� �� �<br />

Self−steepen<strong>in</strong>g<br />

∂|E|2 ⎥<br />

� ��∂T ⎦<br />

�<br />

SRS<br />

⎤<br />

(2.65)


CHAPTER 2. THEORY OF OPTICAL FIBERS 24<br />

where<br />

TR ≈ fR<br />

� ∞<br />

thR(t)dt (2.66)<br />

0<br />

where hR is the Raman response function can be given by an approximate formula<br />

which has a Lorentz shape <strong>in</strong> the Fourier space<br />

� � �<br />

t<br />

s<strong>in</strong> exp − t<br />

�<br />

(2.67)<br />

hR = τ 2 1 + τ 2 2<br />

τ1τ 2 2<br />

where τ1 <strong>and</strong> τ2 are adjust<strong>in</strong>g parameters with typical values <strong>in</strong> silica 12.2 fs <strong>and</strong><br />

32 fs, respectively.<br />

Us<strong>in</strong>g this form of the Raman response function, the <strong>in</strong>tegration of Eq. (2.66)<br />

can be performed analytically:<br />

τ1<br />

2τ<br />

TR ≈ fR<br />

2 1 τ2<br />

τ 2 2 + τ 2 2<br />

τ2<br />

. (2.68)<br />

This can be used to approximate Raman scatter<strong>in</strong>g effect <strong>in</strong> the last term of (2.65).<br />

2.3 Numerical algorithm<br />

2.3.1 Split-step Fourier method<br />

The Split-Step Fourier (SSF) Method applies the l<strong>in</strong>ear <strong>propagation</strong> (diffraction)<br />

operator <strong>and</strong> <strong>in</strong>dex nonhomogeneity <strong>in</strong> separate steps (see Fig. 2.3). The l<strong>in</strong>ear<br />

<strong>propagation</strong> operator ( ˆ L) is applied <strong>in</strong> the Fourier space <strong>and</strong> simply represents the<br />

k–sphere appropriate to the polarization, direction of <strong>propagation</strong> <strong>and</strong> material<br />

symmetry. The <strong>in</strong>dex nonhomogeneity is a result of a <strong>wave</strong>guid<strong>in</strong>g structure or<br />

third-order nonl<strong>in</strong>earity.<br />

The SSF method is commonly used to <strong>in</strong>tegrate several types of nonl<strong>in</strong>ear<br />

partial differential equations. In simulat<strong>in</strong>g NLS systems, SSF is predom<strong>in</strong>antly<br />

used, rather than f<strong>in</strong>ite difference method (FDM), as SSF is often more efficient<br />

[66, 67].<br />

Consider<strong>in</strong>g one of the simplest NLS type system, the equation conta<strong>in</strong>s the<br />

terms of attenuation, dispersion <strong>and</strong> nonl<strong>in</strong>earity (See Eq. (2.60)).<br />

In order to solve Eq. (2.60) by the SSF method, we write the differential equation<br />

<strong>in</strong> the follow<strong>in</strong>g functional form<br />

∂A(z, t)<br />

∂z<br />

= [ ˆ L + ˆ N]A(z, t), (2.69)


CHAPTER 2. THEORY OF OPTICAL FIBERS 25<br />

<strong>Nonl<strong>in</strong>ear</strong> Segments<br />

Input Pulse Output Pulse<br />

Dispersive Segments<br />

Figure 2.3: Schematic illustration of the calculation. The material is represented<br />

by a sequence of th<strong>in</strong> segments<br />

where ˆ L <strong>and</strong> ˆ N are the l<strong>in</strong>ear <strong>and</strong> nonl<strong>in</strong>ear parts of (2.60), respectively, where<br />

∆z<br />

ˆL = − α i<br />

−<br />

2 2 β2<br />

∂2 ,<br />

∂T 2 (2.70)<br />

ˆN = iγ|E| 2 . (2.71)<br />

Integrat<strong>in</strong>g (2.69) along z us<strong>in</strong>g a small space <strong>in</strong>terval ∆z, the solution can be<br />

written <strong>in</strong> the form of<br />

�<br />

Em(z + ∆z, t) = exp ∆z( ˆ L + ˆ �<br />

N) E(z, T ), (2.72)<br />

where the effects of the l<strong>in</strong>ear operator (2.70) can be easily implemented because<br />

the time derivatives become multiplications <strong>in</strong> the Fourier space by: (iω) n where<br />

n is the order of the derivative<br />

exp[∆z ˆ L]E(z, T ) =<br />

�<br />

F −1 exp[∆z ˆ �<br />

L(iω)]F E(z, T ), (2.73)<br />

where F denotes the Fourier transformation, F −1 the <strong>in</strong>verse Fourier transformation<br />

<strong>and</strong> ˆ L(iω) is the Fourier transform of ˆ L which is obta<strong>in</strong>ed from Eq. (2.70).


CHAPTER 2. THEORY OF OPTICAL FIBERS 26<br />

First Order SSF<br />

The essence of the first order SSF method is that the exponential operator act<strong>in</strong>g<br />

on E(z, T ) <strong>in</strong> (2.72) is divided <strong>in</strong>to two parts<br />

�<br />

Em(z + ∆z, t) ≈ exp ∆z ˆ � �<br />

L exp ∆z ˆ �<br />

N E(z, T ). (2.74)<br />

The computation of the <strong>propagation</strong> of the slowly vary<strong>in</strong>g envelope is realized<br />

<strong>in</strong> four steps with<strong>in</strong> a space <strong>in</strong>terval ∆z:<br />

• Step 1. <strong>Nonl<strong>in</strong>ear</strong> step: compute E1 = e ∆z ˆ N E(z, T ) (by f<strong>in</strong>ite differences)<br />

• Step 2. Forward FT: Perform the forward FFT on E1: E2 = FE1<br />

• Step 3. L<strong>in</strong>ear step: compute E3 = e ∆z ˆ L E2<br />

• Step 4. Backward FT: Perform the backward FFT on E3: E(z + ∆z, t) =<br />

F −1 E3<br />

It is to be noted that <strong>in</strong> order to work the algorithm properly, the sampl<strong>in</strong>g<br />

po<strong>in</strong>ts <strong>in</strong> the temporal <strong>and</strong> frequency space must comply the follow<strong>in</strong>g relation<br />

com<strong>in</strong>g from digital signal process<strong>in</strong>g<br />

δf = 1<br />

(2.75)<br />

Mδt<br />

where δf is the frequency resolution <strong>in</strong> the Fourier space, δt is the time resolution<br />

<strong>in</strong> the temporal space <strong>and</strong> M is the number of sampl<strong>in</strong>g po<strong>in</strong>ts.<br />

The Symmetrized (Second Order) SSF<br />

The ma<strong>in</strong> difference between the first order Split-Step <strong>and</strong> the Symmetrized SSF<br />

method is that the effect of nonl<strong>in</strong>earity is <strong>in</strong>cluded <strong>in</strong> the middle of the segment.<br />

Schematic illustration of this method can be seen <strong>in</strong> Fig. 2.4. In this procedure<br />

the Eq. (2.72) is replaced by<br />

E(z + ∆z, T ) � exp<br />

z<br />

� ∆z<br />

2 ˆ L<br />

�<br />

�� z+∆z<br />

exp<br />

z<br />

ˆN(z ′<br />

)dz ′<br />

≈ ∆z<br />

2<br />

ˆN(z ‘ )dz ‘<br />

� �<br />

∆z<br />

exp<br />

2 ˆ �<br />

L E(z, T ) (2.76)<br />

where ˆ L <strong>and</strong> ˆ N are the l<strong>in</strong>ear <strong>and</strong> nonl<strong>in</strong>ear operators. The <strong>in</strong>tegral <strong>in</strong> (2.76) can<br />

be approximated by the trapezoidal rule<br />

� z+∆z<br />

� �<br />

ˆN(z) + N(z ˆ + ∆z) . (2.77)<br />

This method can be realized <strong>in</strong> seven steps with<strong>in</strong> a spatial step ∆z:


CHAPTER 2. THEORY OF OPTICAL FIBERS 27<br />

Input<br />

Pulse<br />

<strong>Nonl<strong>in</strong>ear</strong>ity<br />

L<strong>in</strong>earity<br />

Figure 2.4: Schematic illustration of Symmetrized SSF method. The nonl<strong>in</strong>earity<br />

acts <strong>in</strong> the center of the segment.<br />

• Step 1. FFT: E1 = FE(z, t)<br />

• Step 2. Half l<strong>in</strong>ear step: E2 = e ∆z<br />

2 ˆ L E1<br />

• Step 3. IFFT : E3 = F −1 E2<br />

• Step 4. <strong>Nonl<strong>in</strong>ear</strong> step: E4 = e ∆z ˆ N E3<br />

• Step 5. FFT: E5 = FE4<br />

• Step 6. Other half l<strong>in</strong>ear step: E6 = e ∆z<br />

2 ˆ L E5<br />

• Step 7. IFFT : E7 = F −1 E6<br />

The symmetrized SSF method gives the possibility to calculate the nonl<strong>in</strong>ear<br />

operator with the help of an iteration process accurately. Us<strong>in</strong>g (2.76), the envelope<br />

at the beg<strong>in</strong>n<strong>in</strong>g of the segment <strong>and</strong> at the end of the segment can be used to iterate<br />

(2.77) such a way that we place N(z) <strong>in</strong>stead of N(z + ∆z) <strong>in</strong> the first iteration<br />

step. Usually two iterations are enough <strong>in</strong> each split-step segment to reach high<br />

accuracy.<br />

∆z


CHAPTER 2. THEORY OF OPTICAL FIBERS 28<br />

2.3.2 F<strong>in</strong>ite difference method<br />

Us<strong>in</strong>g the Cranck-Nicolson (CN) method ([68]), the (∂ 2 E/∂T 2 ) m+1/2<br />

n<br />

second partial<br />

derivative is expressed as an average of the po<strong>in</strong>ts (m, n) <strong>and</strong> (m + 1, n), where m<br />

is the <strong>in</strong>dex of the spatial mesh po<strong>in</strong>ts <strong>and</strong> n is for the time discretization. The<br />

discretized form of the NLS equation (2.60) apply<strong>in</strong>g the CN scheme can be given<br />

by<br />

E m+1<br />

n<br />

h<br />

− E m n<br />

+ iβ2<br />

2<br />

� E m n+1 − 2E m n + E m n−1<br />

τ 2<br />

+ Em+1 n+1 − 2Em+1 n<br />

τ 2<br />

+ E m+1<br />

n−1<br />

− iγ|E m n | 2 E m n = 0 (2.78)<br />

where m is the spatial <strong>and</strong> n is the temporal discretization (grid po<strong>in</strong>ts) <strong>in</strong> the<br />

algorithm. h is the step size <strong>in</strong> space while τ is the step size for (retarded) time.<br />

By sort<strong>in</strong>g the terms <strong>in</strong> Eq. (2.78), the follow<strong>in</strong>g form is obta<strong>in</strong>ed<br />

E m+1<br />

n<br />

+ iβ2<br />

2<br />

E m n − iβ2<br />

h<br />

(Em+1<br />

τ 2 n+1 − 2E m+1<br />

n + E m+1<br />

n−1 ) =<br />

h<br />

τ 2 (Em n+1 − 2E m n + E m n−1) + iγh|E m n | 2 E m n . (2.79)<br />

2<br />

For the sake of simplicity, let now σ, ζ <strong>and</strong> η be the follow<strong>in</strong>g<br />

h<br />

τ 2 , ζ = γh, <strong>and</strong> η = 1 + i2σ + iζ|Em n | 2 . (2.80)<br />

σ = β2<br />

2<br />

with that Eq. (2.79) can be written <strong>in</strong> the form of<br />

(1 − i2σ)E m+1<br />

n<br />

Furthermore, let be<br />

+ iσ(E m+1<br />

n+1 + E m+1<br />

n−1 ) = ηE m n − iσ(E m n+1 + E m n−1). (2.81)<br />

a = 1 − i2σ, <strong>and</strong> b = iσ, (2.82)<br />

This allow us to reshape Eq. (2.78) to the follow<strong>in</strong>g matrix equation<br />

⎛<br />

a<br />

⎜<br />

b<br />

⎜<br />

⎝<br />

b<br />

a<br />

b<br />

b<br />

...<br />

...<br />

⎞ ⎛<br />

E<br />

⎟ ⎜<br />

⎟ ⎜<br />

...<br />

⎟ ⎜<br />

⎠ ⎝<br />

a<br />

m+1<br />

1<br />

E m+1<br />

2<br />

.<br />

E m+1<br />

⎞<br />

⎟<br />

⎠<br />

N<br />

=<br />

⎛<br />

η1<br />

⎜<br />

b<br />

⎜<br />

⎝<br />

b<br />

η2<br />

b<br />

b<br />

...<br />

...<br />

⎞ ⎛<br />

E<br />

⎟ ⎜<br />

⎟ ⎜<br />

...<br />

⎟ ⎜<br />

⎠ ⎝<br />

ηN<br />

m 1<br />

Em 2<br />

.<br />

Em ⎞<br />

⎟ .<br />

⎠<br />

N<br />

(2.83)<br />

This algebraic equation system can simply be written <strong>in</strong> the form of<br />

AE = B, (2.84)<br />

where B is the whole right-h<strong>and</strong> side of the Eq. (2.83) while A is the coefficient<br />

matrix of the envelope function <strong>in</strong>dicat<strong>in</strong>g the solution for E m+1 .<br />


CHAPTER 2. THEORY OF OPTICAL FIBERS 29<br />

Improved calculations of nonl<strong>in</strong>ear phase-shift <strong>in</strong> FDM<br />

The above drafted FDM is not able to solve for the nonl<strong>in</strong>ear phase shift accurately<br />

without the <strong>in</strong>troduction of an iteration process for f<strong>in</strong>d<strong>in</strong>g E m+1 <strong>in</strong> every step.<br />

This iteration slows down the method significantly.<br />

For the more accurate treatment of the nonl<strong>in</strong>ear part of the equation, some<br />

FD schemes were proposed to make the solution more reliable [69]-[72]. One of<br />

the most often used discretization of Eq. (2.60) if α = 0 is given by<br />

E m+1<br />

n<br />

h<br />

− E m n<br />

+ iβ2<br />

� m En+1 − 2E<br />

2<br />

m n + Em n−1<br />

τ 2<br />

− iγ |E<br />

2<br />

m+1<br />

n<br />

+ Em+1 n+1 − 2Em+1 n<br />

| 2 + |Em n | 2<br />

(E<br />

2<br />

m+1<br />

n + E m n ) = 0,<br />

τ 2<br />

+ E m+1<br />

n−1<br />

�<br />

(2.85)<br />

where we used the same notation as <strong>in</strong> the previous subsection.<br />

One has to solve the above difference equation iteratively <strong>in</strong> every step because<br />

the equation is implicit. In order to avoid the iterative process, we may consider an<br />

extrapolation formula to approximate the nonl<strong>in</strong>ear term <strong>and</strong> obta<strong>in</strong> a l<strong>in</strong>earized<br />

CN scheme.<br />

E m+1<br />

n<br />

h<br />

− E m n<br />

+ iβ2<br />

2<br />

+ 3<br />

� E m n+1 − 2E m n + E m n−1<br />

τ 2<br />

2 iγ(|Em n | 2 E m n − |E m−1<br />

n<br />

+ Em+1 n+1 − 2Em+1 n<br />

| 2 E m−1<br />

n ) = 0.<br />

τ 2<br />

+ E m+1<br />

n−1<br />

�<br />

(2.86)<br />

This is a semi-implicit method, because only a l<strong>in</strong>ear tridiagonal system of equations<br />

needs to be solved at each spatial po<strong>in</strong>t.<br />

In Ref. [71], a new l<strong>in</strong>earized CN scheme was published which was used to<br />

approximate only the nonl<strong>in</strong>ear coefficient <strong>and</strong> not the entire nonl<strong>in</strong>ear term. The<br />

scheme can be written <strong>in</strong> the follow<strong>in</strong>g form<br />

E m+1<br />

n<br />

h<br />

− E m n<br />

+ iβ2<br />

� m En+1 − 2E<br />

2<br />

m n + Em n−1<br />

τ 2 + Em+1 n+1 − 2Em+1 n + E m+1<br />

n−1<br />

τ 2<br />

�<br />

+ iγ<br />

�<br />

3 � m<br />

|En |<br />

2 2<br />

2� − 1 � m−1<br />

|En |<br />

2<br />

2��<br />

(E m+1<br />

n + E m n ) = 0. (2.87)<br />

which yield an accurate solution of this system <strong>and</strong> can be easily adopted to more<br />

general forms of the NLS equation.


Chapter 3<br />

Soliton <strong>propagation</strong> of micro<strong>wave</strong><br />

modulated signals<br />

When I started to deal with the simulation of light <strong>propagation</strong> <strong>in</strong> optical fibers, I<br />

primarily focused on look<strong>in</strong>g for such parameter sets which resulted <strong>in</strong> the breath<strong>in</strong>g<br />

<strong>and</strong> recurrence phenomena of soliton <strong>propagation</strong> <strong>in</strong> the temporal space. A<br />

possibility on calculat<strong>in</strong>g the micro<strong>wave</strong> modulated signal <strong>propagation</strong> <strong>in</strong> SMF<br />

gave me the idea to do this with the modulated signals as well. Although the<br />

s<strong>in</strong>e or cos<strong>in</strong>e modulated signals behave differently as <strong>pulse</strong>s under the effect of<br />

dispersion <strong>and</strong> SPM still I managed to f<strong>in</strong>d such modulation frequency <strong>and</strong> signal<br />

<strong>in</strong>tensity where soliton <strong>propagation</strong> could be demonstrated numerically.<br />

F<strong>in</strong>d<strong>in</strong>g soliton <strong>propagation</strong> of micro<strong>wave</strong> modulated signal <strong>in</strong> SMF is a result<br />

of a long <strong>in</strong>vestigation period <strong>in</strong> connection with the <strong>in</strong>terplay of dispersion <strong>and</strong><br />

SPM. In the follow<strong>in</strong>gs, we <strong>in</strong>troduce briefly the system relates to the models. We<br />

describe the theory for the simulation <strong>and</strong> the physics beh<strong>in</strong>d after. Then the performed<br />

experiment <strong>and</strong> the correspond<strong>in</strong>g calculations are discussed. Simulations<br />

for f<strong>in</strong>d<strong>in</strong>g the position of dispersion caused modulation suppression along the fiber<br />

is described after. Lossless <strong>propagation</strong> is <strong>in</strong>vestigated <strong>in</strong> the next subsection <strong>in</strong><br />

order to have enough power after long <strong>propagation</strong> lengths to ma<strong>in</strong>ta<strong>in</strong> nonl<strong>in</strong>ear<br />

effect. This leads to soliton <strong>propagation</strong> of IM signals which may have practical<br />

significance by compensat<strong>in</strong>g the loss.<br />

30


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 31<br />

3.1 Introduction<br />

Radio over fiber (ROF) systems have attracted attention for distribut<strong>in</strong>g micro<strong>wave</strong><br />

signals through SMFs at the end of the 1990s [73]. The aim was to solve<br />

the communication cost effectively between a central station <strong>and</strong> several base stations<br />

connected with optical fibers where micro<strong>wave</strong> subcarriers are transmitted.<br />

At the base stations, photodetectors recover the micro<strong>wave</strong> optical signals <strong>and</strong><br />

radiate them to any wireless device. ROF has the advantage of centraliz<strong>in</strong>g the<br />

expensive electronics <strong>in</strong> the central station.<br />

Basically, micro<strong>wave</strong> signals can be transmitted three different ways over optical<br />

fibers with <strong>in</strong>tensity modulation (IM) which type of modulations are applied <strong>in</strong><br />

many radio over fiber systems [74, 75]. First, it can be done by the direct <strong>in</strong>tensity<br />

modulation (DIM) where an electrical parameter of the light source is modulated<br />

by the <strong>in</strong>formation-bear<strong>in</strong>g radio frequency (RF) signal. Another method applies<br />

an unmodulated light source <strong>and</strong> an external light <strong>in</strong>tensity modulator. Third,<br />

micro<strong>wave</strong>s <strong>and</strong> millimeter <strong>wave</strong>s can be optically generated via remote heterodyn<strong>in</strong>g.<br />

Micro<strong>wave</strong> optical transmissions operat<strong>in</strong>g <strong>in</strong> the telecommunication w<strong>in</strong>dow<br />

are limited by the chromatic dispersion of SMF [76]-[78]. Chromatic dispersion<br />

can cause modulation suppression, l<strong>in</strong>ear distortion or even complete cancel<strong>in</strong>g<br />

of <strong>in</strong>tensity modulation by the RF signal. The suppression of the IM signal may<br />

occur by the different group-velocity of the sideb<strong>and</strong>s. The unequal phase between<br />

the sideb<strong>and</strong>s leads to a modulation function dur<strong>in</strong>g the detection which becomes<br />

zero if the phase difference is equal with π [76].<br />

Several techniques have been proposed to overcome this effect such as optical<br />

s<strong>in</strong>gle sideb<strong>and</strong> modulation [79, 80], dispersion compensation us<strong>in</strong>g chirped fiber<br />

grat<strong>in</strong>gs [81], variable chirp <strong>in</strong> external modulators [82, 83], SPM effect orig<strong>in</strong>ated<br />

from the fiber [84, 85], midway optical phase conjugation [86], four-<strong>wave</strong> mix<strong>in</strong>g<br />

<strong>in</strong> dispersion-shifted fibers [87, 88] <strong>and</strong> <strong>in</strong>terplay between the <strong>in</strong>tensity dependent<br />

phase modulation <strong>in</strong> semiconductor optical amplifiers (SOAs) [89].<br />

Optical fiber <strong>and</strong> radio over fiber systems usually operate around the 1550 nm<br />

<strong>wave</strong>length range where they benefit from low <strong>propagation</strong> loss. The effects of dispersion<br />

<strong>and</strong> non-l<strong>in</strong>earity however can not be neglected. I shall call the locations<br />

where <strong>in</strong>tensity modulation disappears “notches” throughout this dissertation because<br />

of their appearance on the transfer function of the fiber over a relatively wide<br />

range of modulation frequencies (See Fig. 3.1). Notch is the location on the transfer<br />

function where dispersion caused modulation suppression occurs. The transfer<br />

function is def<strong>in</strong>ed as the quotient of the modulated <strong>in</strong>put <strong>and</strong> the detected output


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 32<br />

Relative modulation <strong>in</strong>tensity [dBm]<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

0 5 10 15 20 25 30<br />

Modulation frequency [GHz]<br />

Figure 3.1: Calculated transfer function of the fiber as a function of modulation<br />

frequency between 1 GHz <strong>and</strong> 30 GHz. The fiber length was 30 km, modulation<br />

depth 0.25, average power 1 mW <strong>and</strong> the center <strong>wave</strong>length of the carrier is 1550<br />

nm. First notch appears at 11.3 GHz <strong>in</strong>tensity modulation.<br />

signal powers as a function of frequency.<br />

Above a given density of photon flux, SPM may become significant [84]. At<br />

relatively high average <strong>in</strong>put <strong>in</strong>tensities (> 5 − 10 mW) SPM modifies the transfer<br />

function of the fiber [85] <strong>and</strong> this may result the complete cancellation of dispersion<br />

caused suppression at elevated powers [87, 88] <strong>and</strong> periodic oscillations of the<br />

transfer function [90].<br />

As the signal <strong>in</strong>tensity <strong>in</strong>creases the notches caused by chromatic dispersion<br />

shift to higher modulation frequencies. In accordance with one of our study [90],<br />

calculations show that the effect of dispersion can be compensated by SPM totally,<br />

at least <strong>in</strong> the case of lossless <strong>propagation</strong>. A critical <strong>in</strong>put power as a function of<br />

carrier frequency can also be determ<strong>in</strong>ed which separates the dispersion dom<strong>in</strong>ated<br />

<strong>and</strong> non-l<strong>in</strong>earity dom<strong>in</strong>ated regions.<br />

I present <strong>in</strong> the follow<strong>in</strong>gs the jo<strong>in</strong>t effects of dispersion <strong>and</strong> nonl<strong>in</strong>ear refraction<br />

<strong>in</strong> a region of <strong>in</strong>tensity where non-l<strong>in</strong>earity related distortions become important. I<br />

report our prepared measurements <strong>in</strong> the Broadb<strong>and</strong> Communication Department<br />

of BUTE <strong>and</strong> correspond<strong>in</strong>g simulations. I give the exact locations of notches<br />

predicted by computer simulation us<strong>in</strong>g various fiber parameters.<br />

At the end of this chapter, I also report the soliton <strong>propagation</strong> of a 10 GHz<br />

modulated optical signal which has not reported <strong>in</strong> conjunction with micro<strong>wave</strong>


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 33<br />

modulated light <strong>wave</strong>s <strong>in</strong> the literature previously. Although micro<strong>wave</strong> modulated<br />

light <strong>propagation</strong> has a substantially different nature as <strong>pulse</strong> <strong>propagation</strong> but<br />

soliton <strong>propagation</strong> may happen because of SPM <strong>and</strong> FWM.<br />

Transmission of unmodulated RF carriers are discussed here but the results<br />

lead to conclusions applicable to the modulated RF signals as well [88].<br />

3.2 Theory<br />

The <strong>propagation</strong> of light <strong>in</strong> SMF <strong>in</strong> the picosecond regions <strong>and</strong> larger time-scales<br />

is approximated by the NLS equation (see Eq. (2.60)). If the <strong>in</strong>tensity (|E(z, t)| 2 )<br />

of the <strong>in</strong>vestigated signal is large enough the SPM term <strong>in</strong> Eq. (2.60) may have<br />

a significant role <strong>in</strong> signal transmission. Especially <strong>in</strong> <strong>pulse</strong> <strong>propagation</strong> [58]. In<br />

agreement with previous studies [84]-[88], we found this is valid <strong>in</strong> the case of RF<br />

modulated signal <strong>propagation</strong> as well. In case of nonl<strong>in</strong>ear <strong>pulse</strong> <strong>propagation</strong> <strong>in</strong><br />

anomalous dispersive media, the broaden<strong>in</strong>g factor on a given length of fiber is<br />

less than if dispersion alone is considered. In the case of RF modulated signal<br />

<strong>propagation</strong>, the nonl<strong>in</strong>ear term appears to decrease the effect of β2 virtually,<br />

result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>crease of the frequency at which the RF notch appears [84]-[88].<br />

A qualitative explanation of the sharp dip (notch) <strong>in</strong> the transfer function<br />

can be given by the different <strong>propagation</strong> speeds of the two first-order modulation<br />

sideb<strong>and</strong>s. Thus they arrive to the photo-detector, placed at the output of the fiber,<br />

with unequal phases. Consequently, the photo-detector produces two <strong>in</strong>terfer<strong>in</strong>g<br />

signals result<strong>in</strong>g <strong>in</strong> a modulation transfer function that is less than unity,<br />

�<br />

β2L<br />

K(L, ωm) = cos<br />

2 ω2 �<br />

m<br />

(3.1)<br />

<strong>in</strong>dicat<strong>in</strong>g that modulation is suppressed. In (3.1), ωm is the modulat<strong>in</strong>g RF<br />

angular frequency <strong>and</strong> L is the <strong>propagation</strong> length. We can see that modulation<br />

is completely suppressed if the argument of the cos<strong>in</strong>e is an odd multiple of π/2.<br />

In the case of anomalous dispersion the first notch appears when the argument<br />

is −π/2:<br />

L l n = Θ(β2) π<br />

β2ω 2 m<br />

where Θ(β2) =<br />

� 1 if β2 ≥ 0<br />

−1 if β2 < 0<br />

(3.2)<br />

<strong>and</strong> subscript n refers to notch <strong>and</strong> superscript l to the l<strong>in</strong>ear case. Expression<br />

(3.2) is valid until the fiber can be considered as l<strong>in</strong>ear. If SPM has a significant<br />

contribution to the signal evolution, notches will appear at locations different from<br />

those that could be calculated from (3.2).


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 34<br />

HP<br />

83424A<br />

CW Laser<br />

HP 83422A<br />

MZ<br />

EDFA<br />

Att.<br />

Network<br />

analyzer<br />

HP 8722D<br />

Fiber<br />

RF 50 MHz − 20 GHz<br />

Optical spectrum<br />

analyzer<br />

Anritsu MS 9710B<br />

Detector<br />

HP 11982A<br />

Figure 3.2: Experimental setup to demonstrate the effect of SPM.<br />

3.3 Measurement<br />

Fig. 3.2 illustrates our experimental setup. The frequency of the RF signal is varied<br />

between 50 MHz <strong>and</strong> 20 GHz <strong>in</strong> 800 steps. These frequencies modulate a 1 mW,<br />

1550.8 nm cont<strong>in</strong>uous-<strong>wave</strong> (CW) laser us<strong>in</strong>g a Mach-Zehnder (MZ) modulator<br />

with 25% modulation depth. This type of MZ modulator (HP 83422A) has a<br />

relatively large 6.5 dB attenuation reduc<strong>in</strong>g its optical output power to 0.22 mW.<br />

The RF signal propagates through 30 km of SMF <strong>and</strong> at the fiber output a<br />

network analyzer registers the field parameters. An optical spectrum analyzer<br />

monitors the frequency <strong>and</strong> optical power dur<strong>in</strong>g the experiments. We used attenuators<br />

<strong>and</strong> an erbium-doped fiber amplifier (EDFA) before the fiber <strong>in</strong>put to<br />

measure the transfer function of the fiber at various average <strong>in</strong>put <strong>in</strong>tensities. The<br />

ga<strong>in</strong> of the EDFA is 20.6 dB rais<strong>in</strong>g the 0.22 mW <strong>in</strong>put to 25.5 mW when no attenuation<br />

is used before the fiber <strong>in</strong>put. An attenuator was applied to reduce the<br />

optical <strong>in</strong>tensity by about 4 dB before <strong>in</strong>ject<strong>in</strong>g the light <strong>in</strong>to the fiber, <strong>and</strong> some<br />

additional attenuator was used before the detector to protect it from damag<strong>in</strong>gly<br />

high <strong>in</strong>tensities.<br />

We used a st<strong>and</strong>ard s<strong>in</strong>gle-mode optical fiber with 0.22 dB/km attenuation <strong>and</strong><br />

16.8 ps/(nm · km) chromatic dispersion at 1550 nm. The effective core area of the<br />

fiber, necessary for calculat<strong>in</strong>g the nonl<strong>in</strong>ear coefficient (2.57), was 75 µm 2 .<br />

Dur<strong>in</strong>g the measurements, we have not observed harmful effects caused by<br />

counter propagat<strong>in</strong>g signals <strong>in</strong>dicated by <strong>in</strong>elastic scatter<strong>in</strong>gs therefore we have


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 35<br />

not applied any optical isolator.<br />

3.4 Simulation<br />

A second order (symmetric) SSF method (Section 2.3.1) with a s<strong>in</strong>usoidally modulated<br />

<strong>in</strong>put field is used to solve (2.60). The modulated output of the MZ modulator<br />

is<br />

Eout(z = 0, T ) = Elaser(T ) � d(T ) exp [j∆φ(T )] (3.3)<br />

where<br />

d(T ) = 1 + m(s<strong>in</strong>(ωmT )) (3.4)<br />

is the power transfer function, m is the modulation depth, ωm is the modulation<br />

angular frequency <strong>and</strong> ∆φ(T ) is the phase difference between the two branches<br />

of the modulator which can be set to zero if an ideal amplitude modulator is to<br />

be simulated. The <strong>in</strong>put field <strong>in</strong> the calculated time w<strong>in</strong>dow provided by the CW<br />

laser, like <strong>in</strong> the measurements, is Elaser(T ), the square root of the laser <strong>in</strong>tensity.<br />

The phase difference <strong>in</strong> (3.3) can be given by<br />

�<br />

∆φ(T ) = C1 − C2 s<strong>in</strong>(ωmT ) − 1<br />

�<br />

(3.5)<br />

2<br />

where C1 <strong>and</strong> C2 are constants representative of the modulator, chosen to be 0.06<br />

<strong>and</strong> 0.073, respectively, to fit the simulated signal to the experimental values. The<br />

used T , <strong>in</strong> the above expressions, is the retarded time same as used <strong>in</strong> the NLS<br />

equation (see Eq. (2.59) <strong>in</strong> section 2.2.3).<br />

The fiber parameters used <strong>in</strong> the model<strong>in</strong>g were the same as those <strong>in</strong> the<br />

measurements (loss: 0.22 dB/km, chromatic dispersion: 16.8 ps/(nmkm), effective<br />

core area: 75 µm 2 ). Silica based fibers usually have a nonl<strong>in</strong>ear refractive <strong>in</strong>dex<br />

as large as 2.6 × 10 −20 m 2 /W <strong>and</strong> third order chromatic dispersion <strong>in</strong> the range of<br />

0.05 − 0.1 × 10 3 ps/(nm 2 km) <strong>in</strong> the vic<strong>in</strong>ity of 1550 nm [58]. All the simulations<br />

were prepared us<strong>in</strong>g the above parameters. Results were obta<strong>in</strong>ed by vary<strong>in</strong>g the<br />

<strong>in</strong>put <strong>in</strong>tensity of the CW laser <strong>and</strong> the modulation frequency. We have also made<br />

calculations vary<strong>in</strong>g the optical power level <strong>and</strong> the fiber length us<strong>in</strong>g a constant<br />

10 GHz RF modulation. In order to detect the RF component of the signal alone,<br />

a narrow b<strong>and</strong> (100 MHz) Gaussian filter centered at 10 GHz was applied.


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 36<br />

Relative <strong>in</strong>tensity [dB]<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

0<br />

-35<br />

-40<br />

-45<br />

-50<br />

Measurement 0.22 mW<br />

Measurement 10.5 mW<br />

Measurement 25.5 mW<br />

Simulation 0.22 mW<br />

Simulation 10.5 mW<br />

Simulation 25.5 mW<br />

-0.5<br />

-1<br />

0 1 2 3 4 5 6 7 8<br />

0 2 4 6 8 10 12 14 16 18 20<br />

0.5<br />

Modulation frequency [GHz]<br />

Figure 3.3: Measurement <strong>and</strong> simulation results at three different average <strong>in</strong>put<br />

<strong>in</strong>tensities. 30 km fiber was used to obta<strong>in</strong> the transfer function as a function<br />

of frequency. Inset zooms to the 25.5 mW signal transmission <strong>in</strong> order to make<br />

visible the positive slope of the function. Noise is smoothed on measurement data<br />

by fitt<strong>in</strong>g a Bézier curve <strong>in</strong> the <strong>in</strong>set.<br />

3.5 Results <strong>and</strong> discussion<br />

3.5.1 Measurements <strong>and</strong> calculations<br />

Fig. 3.3 shows the measured <strong>and</strong> calculated output RF power normalized to the<br />

modulated <strong>in</strong>put power as a function of the modulation frequency for three different<br />

optical <strong>in</strong>put powers. One can see that as the optical power is <strong>in</strong>creased the notches<br />

appear at higher modulation frequencies. We note that this trend is valid <strong>in</strong> case<br />

of as well (see Fig. 3.4 below). The RF power correspond<strong>in</strong>g to the 25.5 mW signal<br />

has a positive slope between 50 MHz <strong>and</strong> 7 GHz <strong>and</strong> rema<strong>in</strong>s above the <strong>in</strong>put RF<br />

average <strong>in</strong>tensity up to 8 GHz. As further expla<strong>in</strong>ed below, this occurs because<br />

the Kerr non-l<strong>in</strong>earity converts the optical power (central peak <strong>in</strong> the spectrum)<br />

to RF power (sideb<strong>and</strong>s). We note that accord<strong>in</strong>g to our simulations if a different<br />

type of modulator is used, e.g., an ideal amplitude modulator or a MZ modulator<br />

with smaller ext<strong>in</strong>ction ratio, the rise <strong>in</strong> RF power will occur at a much smaller<br />

RF signal <strong>in</strong>put <strong>in</strong>tensity, at about 10 mW.<br />

The measured fiber responses beyond 30 km <strong>propagation</strong> length are <strong>in</strong> excellent<br />

agreement with calculated results. These correspondences make it possible to ex-<br />

1


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 37<br />

Relative average RF power [dB]<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Fiber length [km]<br />

0.22 mW<br />

5 mW<br />

10.5 mW<br />

20 mW<br />

40 mW<br />

80 mW<br />

160 mW<br />

Figure 3.4: Simulation of the normalized RF power as a function of fiber length<br />

with different <strong>in</strong>put <strong>in</strong>tensities. The plot for the 160 mW <strong>in</strong>put signal (thick solid<br />

l<strong>in</strong>e) shows an irregular behavior compared to lower <strong>in</strong>tensity signals.<br />

tend our <strong>in</strong>vestigations of parameter dependencies <strong>in</strong>to regions, which are difficult<br />

to be measured. In what follows we make some numerical <strong>in</strong>vestigations <strong>in</strong>to these<br />

regions.<br />

3.5.2 Notch positions<br />

From an eng<strong>in</strong>eer<strong>in</strong>g po<strong>in</strong>t of view, it might be important to know the notch<br />

location <strong>and</strong> their dependence on the optical <strong>in</strong>put power. These simulations can<br />

be seen <strong>in</strong> Fig. 3.4, where the average <strong>in</strong>tensity of the RF signal is plotted as a<br />

function of fiber length, reta<strong>in</strong><strong>in</strong>g the parameters used previously. As one can see,<br />

when the <strong>in</strong>put power is <strong>in</strong>creased notches appear at longer distances. Here we<br />

also plotted the fiber response to an unusually high <strong>in</strong>tensity RF signal, show<strong>in</strong>g<br />

a behavior unexpected from that displayed at smaller RF <strong>in</strong>tensities, namely, that<br />

modulation suppression occurs much earlier than before.<br />

The dependency of notch position on <strong>in</strong>put power can not be expressed by<br />

basic functions. In order to show these locations as caused by simultaneous chromatic<br />

dispersion <strong>and</strong> SPM, we performed computations with different nonl<strong>in</strong>ear<br />

refractive <strong>in</strong>dices <strong>and</strong> different dispersion parameters as well. These are shown <strong>in</strong><br />

Figs. 3.5 (a) <strong>and</strong> (b). Fig. 3.5 (a) shows the notch location as a function of <strong>in</strong>put<br />

<strong>in</strong>tensity, us<strong>in</strong>g the nonl<strong>in</strong>ear refractive <strong>in</strong>dex as a parameter at a fixed dispersion


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 38<br />

Notch position [km]<br />

90<br />

80<br />

70<br />

60<br />

50<br />

(a)<br />

40<br />

30<br />

2.6·10<br />

0 20 40 60 80 100 120 140 160<br />

-20 m 2 /W<br />

3·10 -20 m 2 /W<br />

3.4·10 -20 m 2 /W<br />

Input <strong>in</strong>tensity [mW]<br />

Notch position [km]<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

(b)<br />

30<br />

14 ps/(nm km)<br />

16.8 ps/(nm km)<br />

20<br />

20 ps/(nm km)<br />

0 20 40 60 80 100 120 140 160<br />

Input <strong>in</strong>tensity [mW]<br />

Figure 3.5: Notch position as a function of average <strong>in</strong>put <strong>in</strong>tensity for different nonl<strong>in</strong>ear<br />

refractive <strong>in</strong>dices (a) <strong>and</strong> different chromatic dispersion values (b) of SMF.<br />

Dispersion was fixed at 16.8 ps/(nmkm) <strong>in</strong> case of (a) <strong>and</strong> nonl<strong>in</strong>ear refractive<br />

<strong>in</strong>dex at 2.6 × 10 −20 m 2 /W <strong>in</strong> case of (b).<br />

(16.8 ps/(nmkm)), while Fig. 3.5 (b) shows the correspond<strong>in</strong>g results for three<br />

dispersion values, us<strong>in</strong>g a fixed nonl<strong>in</strong>ear refractive <strong>in</strong>dex (2.6 × 10 −20 m 2 /W).<br />

Notice that both <strong>in</strong> Figs. 3.5 (a) <strong>and</strong> (b) at power levels below a certa<strong>in</strong> threshold<br />

the notch position shifts to longer fiber lengths as the <strong>in</strong>put power <strong>in</strong>creases.<br />

Above a certa<strong>in</strong> <strong>in</strong>put power however, the notch positions drop abruptly, i.e., they<br />

reappear at a much reduced fiber length. As expected, keep<strong>in</strong>g the chromatic<br />

dispersion fixed, when non-l<strong>in</strong>earity is <strong>in</strong>creased (larger nonl<strong>in</strong>ear refractive <strong>in</strong>dex)<br />

dispersion caused suppression occurs at larger distances. However, at a given<br />

power level, there is a change <strong>in</strong> this behavior <strong>and</strong> higher non-l<strong>in</strong>earity causes a<br />

drop <strong>in</strong> notch position at a smaller <strong>in</strong>put power level. A similar relationship holds<br />

when the magnitude of chromatic dispersion is <strong>in</strong>creased while hold<strong>in</strong>g the nonl<strong>in</strong>ear<br />

refractive <strong>in</strong>dex fixed. In this case, when the chromatic dispersion is decreased<br />

notches appear at longer path lengths, but drop at smaller <strong>in</strong>put powers.<br />

Consider<strong>in</strong>g the shape of the plotted functions <strong>in</strong> Figs. 3.5 (a) <strong>and</strong> (b) three<br />

different regions can be listed, namely:<br />

• exponentially <strong>in</strong>creas<strong>in</strong>g region,<br />

• region of downturn,


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 39<br />

• region of abrupt drop.<br />

At a given modulation frequency (ωm), us<strong>in</strong>g the above fiber <strong>and</strong> signal parameters,<br />

these regions can be separated as follows. The exponentially <strong>in</strong>creas<strong>in</strong>g<br />

region reaches until the effect of non-l<strong>in</strong>earity, def<strong>in</strong>ed by γP0 where P0 is the<br />

optical <strong>in</strong>put power, equalizes the dispersive one (β2ω 2 m), i.e., until [91]<br />

γP0<br />

β2ω 2 m<br />

≤ 1 (3.6)<br />

where the numerator is practically the coefficient of the envelope function <strong>in</strong> the<br />

last term of Eq. (2.60) with P0 = |a(z = 0, t)| 2 , <strong>and</strong> the denom<strong>in</strong>ator is related to<br />

the GVD term, the second <strong>in</strong> (2.60).<br />

Further behaviors can be assigned also to the loss because <strong>in</strong> loss compensated<br />

case notches do not appear after a critical <strong>in</strong>tensity at all (see next subsection).<br />

The second region, where the average RF signal <strong>in</strong>tensity as a function of <strong>in</strong>put<br />

<strong>in</strong>tensity turns downward, non-l<strong>in</strong>earity exceeds the magnitude of the chromatic<br />

dispersion at the fiber <strong>in</strong>put. Notch position however does not appear at longer<br />

length but at shorter one. This is because optical power is attenuated progressively<br />

dur<strong>in</strong>g the <strong>propagation</strong> <strong>and</strong> SPM related changes <strong>in</strong> spectrum can not happen so<br />

effectively.<br />

In practice, this region is not significant because this behavior occurs only at<br />

very high <strong>in</strong>tensities. However, if the fiber is dispersion compensated or dispersion<br />

shifted, this region might become important at reduced chromatic dispersion<br />

values.<br />

Abrupt drop happens when the non-l<strong>in</strong>earity <strong>and</strong> GVD related term exhibit<br />

the follow<strong>in</strong>g relation [91]<br />

γP0<br />

≈ 3<br />

π ≈ 2.3 (3.7)<br />

4<br />

β2ω 2 m<br />

Above this region we call the <strong>propagation</strong> of micro<strong>wave</strong> modulated signal irregular.<br />

This irregular behavior caused by the <strong>in</strong>tense non-l<strong>in</strong>earity can be observed<br />

<strong>in</strong> Fig. 3.4 at the plotted average <strong>in</strong>tensity of the 160 mW signal. Fig. 3.5 shows<br />

however that the abrupt drops still happen regularly but further behaviors (average<br />

<strong>in</strong>tensity as a function of propagat<strong>in</strong>g length, position of the second, third notch,<br />

etc.) are impossible to predict analytically.<br />

We must note that the evaluated expressions slightly depends on the used<br />

modulator as well. The place of dispersion caused suppression of RF signal belong<br />

to a system outl<strong>in</strong>ed <strong>in</strong> the previous sections.


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 40<br />

3.5.3 Lossless <strong>propagation</strong><br />

The attenuation of a signal <strong>in</strong> optical telecommunication systems <strong>and</strong> also <strong>in</strong> fiberradio<br />

systems can be compensated along the transmission medium. A possible<br />

method to amplify the signal without the use of doped amplifier media is called<br />

Raman amplification. Through a phenomenon called <strong>in</strong>duced Raman scatter<strong>in</strong>g<br />

the fiber is capable to amplify the signal us<strong>in</strong>g an approximately 13.5 THz blueshifted<br />

high power pump. If the loss can be compensated this way the problem is<br />

traced back to the follow<strong>in</strong>g periodic boundary value problem of solv<strong>in</strong>g the NLS<br />

equation<br />

∂u<br />

∂x = −ζ2 ∂2u ∂t2 + |u|2u (3.8)<br />

with a boundary condition of<br />

u(0, t) = a � 1 + m s<strong>in</strong>(bt) (3.9)<br />

where ζ, a, m <strong>and</strong> b are positive real constants <strong>and</strong> u ≡ E now. This problem<br />

is somewhat similar to the one proposed <strong>and</strong> solved by Zabusky <strong>and</strong> Kruskal <strong>in</strong><br />

connection with the KdV equation [92]<br />

where<br />

∂u<br />

∂t<br />

+ u∂u<br />

∂x + ζ2 ∂3u ∂x<br />

= 0 (3.10)<br />

u(0, x) = cos(πx) 0 ≤ x ≤ 2 (3.11)<br />

<strong>and</strong> u, ∂u/∂x, ∂ 2 u/∂x 2 are periodic on [0, 2] for all t; they choose ζ = 0.022. This<br />

numerical solution resulted a soliton solution with the recurrence of <strong>in</strong>itial states.<br />

I prepared numerical simulations neglect<strong>in</strong>g loss from the previous calculations.<br />

I used various <strong>in</strong>put powers us<strong>in</strong>g the orig<strong>in</strong>al fiber parameters: 16.8 ps/(nmkm)<br />

chromatic dispersion <strong>and</strong> 2.6 × 10 −20 m 2 /W nonl<strong>in</strong>ear refractive <strong>in</strong>dex.<br />

As illustrated <strong>in</strong> Fig. 3.6, one can see that above a critical <strong>in</strong>put power the<br />

effect of dispersion is virtually completely compensated by non-l<strong>in</strong>earity. As a<br />

consequence, there are no notches at all <strong>in</strong> this doma<strong>in</strong>. At 10 mW <strong>in</strong>put power<br />

the effect of dispersion <strong>in</strong> the form of modulation suppression is still apparent, but<br />

at 20 mW <strong>in</strong>put the signal does not show this behavior. Between these two values<br />

therefore, a critical <strong>in</strong>tensity exists where dispersion <strong>and</strong> Kerr non-l<strong>in</strong>earity cancel<br />

each other [90].<br />

Above this critical <strong>in</strong>tensity, SPM exceed dispersion <strong>and</strong> as it can be seen <strong>in</strong><br />

Fig. 3.7 the average <strong>in</strong>tensity of the RF signal becomes higher at certa<strong>in</strong> places


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 41<br />

than the <strong>in</strong>put. We plotted <strong>in</strong> Fig. 3.7 a 400 km long <strong>propagation</strong> with 20 km<br />

steps. The <strong>in</strong>put signal was a 10 GHz, 20 mW s<strong>in</strong>e modulated signal. Solitonlike<br />

recurrence can be observed <strong>in</strong> the changes of signal shape with<strong>in</strong> this length.<br />

The periodicity of these oscillations can be observed <strong>in</strong> Fig. 3.6 too, where <strong>in</strong><br />

case of a 60 mW <strong>in</strong>put, the average RF signal oscillates several times along a<br />

200 km path, although the amplitude of these oscillations are decreas<strong>in</strong>g. Smaller<br />

<strong>in</strong>tensity signals oscillate less than the ones with higher <strong>in</strong>tensity with<strong>in</strong> the same<br />

<strong>propagation</strong> length.<br />

This k<strong>in</strong>d of <strong>propagation</strong> can happen because a part of the optical power transfers<br />

to the RF signal due to SPM (see Fig. 3.8). Fig. 3.8 shows how the peaks<br />

of the spectrum is chang<strong>in</strong>g as a function of <strong>propagation</strong> path length . We plotted<br />

here only the central peak (f0) <strong>and</strong> the two side b<strong>and</strong>s (f0 ± fm where fm is<br />

the modulation frequency). Center peak has an <strong>in</strong>put spectral <strong>in</strong>tensity around<br />

13 dBm. Side b<strong>and</strong>s starts from smaller <strong>in</strong>tensities <strong>and</strong> strong oscillations can be<br />

observed which co<strong>in</strong>cide with the oscillations of the peak <strong>in</strong>tensities of signal <strong>in</strong> the<br />

time doma<strong>in</strong> (Fig. 3.7). Where central peak <strong>in</strong>tensity is decreas<strong>in</strong>g the two side<br />

b<strong>and</strong>s are <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> <strong>in</strong>tensity <strong>and</strong> vice versa. This spectral <strong>in</strong>tensity changes of<br />

side b<strong>and</strong>s <strong>and</strong> carriers make possible the observation of soliton <strong>propagation</strong> [91].<br />

Relative <strong>in</strong>tensity [dB]<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

0.22 mW<br />

-15<br />

10.5 mW<br />

20 mW<br />

-20<br />

-25<br />

40 mW<br />

60 mW<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Fiber length [km]<br />

Figure 3.6: Relative <strong>in</strong>tensity of a 10 GHz s<strong>in</strong>e modulated RF signal as a function<br />

of distance <strong>in</strong> a lossless fiber. As the <strong>in</strong>put <strong>in</strong>tensity <strong>in</strong>creases the plots show the<br />

dom<strong>in</strong>ance of SPM over GVD.


CHAPTER 3. SOLITON PROPAGATION OF MICROWAVE... 42<br />

Power [W]<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-200<br />

-100<br />

0<br />

Time duration [ps]<br />

100<br />

100<br />

200<br />

300<br />

400<br />

500<br />

Distance [km]<br />

Figure 3.7: The <strong>propagation</strong> of 10 GHz s<strong>in</strong>e modulated signal with 25% modulation<br />

depth <strong>and</strong> 20 mW <strong>in</strong>put power. RF signal peak <strong>in</strong>tensities become higher than<br />

<strong>in</strong>put ones after 100-140 km <strong>propagation</strong> <strong>in</strong> accordance with the <strong>in</strong>crease of the<br />

average RF <strong>in</strong>tensity <strong>in</strong> Fig. 3.6.<br />

Spectral peak <strong>in</strong>tensity [dBm]<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

−15<br />

0<br />

Central b<strong>and</strong> ( f0) Left side b<strong>and</strong> ( f −<br />

0 fm) Right side b<strong>and</strong> ( f +<br />

0 fm) 80<br />

Spectral <strong>in</strong>tensity [dBm]<br />

20<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−120<br />

−20 −10 0 10 20<br />

Relative frequency [GHz]<br />

160 240<br />

Distance [km]<br />

Figure 3.8: Oscillatory behavior of the peak <strong>in</strong>tensities <strong>in</strong> the spectrum dur<strong>in</strong>g the<br />

<strong>propagation</strong>. f0 st<strong>and</strong>s for the frequency of the perfect CW light source <strong>and</strong> fm is<br />

the modulation frequency. The small <strong>in</strong>set is <strong>in</strong>tended to show the <strong>in</strong>put spectral<br />

shape <strong>and</strong> the correspond<strong>in</strong>g notation of peaks.<br />

320<br />

400<br />

.


Chapter 4<br />

Chirped <strong>pulse</strong> fiber delivery<br />

system for femtosecond <strong>pulse</strong>s<br />

This work is a theoretical <strong>in</strong>vestigation on a chirped <strong>pulse</strong> delivery system which<br />

is a part of a modern, real time, 3D, two-photon fluorescence microscope (2PFM)<br />

system now. This system is used for neurology related research <strong>in</strong> the Pharmacology<br />

Department of the Medical Research Institute of the Hungarian Academy of<br />

Sciences.<br />

We met here the harmful effect of nonl<strong>in</strong>earity which must have been avoided<br />

because of <strong>pulse</strong> distortions which made the two photon imag<strong>in</strong>g system useless.<br />

The aim of my calculations were to obta<strong>in</strong> <strong>and</strong> specify a <strong>pulse</strong> delivery system<br />

based on SMF which can transmit approximately 0.5 nJ ultra short laser <strong>pulse</strong>s<br />

with less than 50 fs FWHM time duration. Transmitt<strong>in</strong>g <strong>pulse</strong>s directly with these<br />

parameters is impossible us<strong>in</strong>g SMF. Pulse stretch<strong>in</strong>g, however, can lower the peak<br />

<strong>in</strong>tensity sufficiently to ma<strong>in</strong>ta<strong>in</strong> nearly the same shape till the output end of the<br />

fiber. At this po<strong>in</strong>t the <strong>compression</strong> has to be done <strong>and</strong> the system is ready for<br />

two-photon excitation.<br />

The questions are: how large GDD should be applied to stay below 50 fs<br />

after re<strong>compression</strong>? How much <strong>pulse</strong> energy can be launched <strong>in</strong>to the fiber for<br />

distortion free delivery us<strong>in</strong>g fixed prechirp <strong>and</strong> <strong>compression</strong> before <strong>and</strong> after the<br />

fiber?<br />

Dur<strong>in</strong>g answer<strong>in</strong>g these questions we realized that spectral narrow<strong>in</strong>g of the<br />

<strong>pulse</strong> can occur under certa<strong>in</strong> circumstances.<br />

In the follow<strong>in</strong>gs, we describe briefly the phenomenon of two-photon excitation.<br />

The experiment is discussed <strong>in</strong> the second part of this chapter <strong>and</strong> the chirped <strong>pulse</strong><br />

delivery system is <strong>in</strong>troduced. The calculations are presented <strong>in</strong> the fourth section<br />

43


CHAPTER 4. CHIRPED PULSE FIBER DELIVERY SYSTEM... 44<br />

hν A<br />

excitation<br />

hν A2<br />

hν A1<br />

flourescence<br />

Figure 4.1: Jablonski diagram for two photon absorption. hνA is the photon for one<br />

photon excitation, hνA1 <strong>and</strong> hνA2 the photon energies for two-photon excitation<br />

<strong>and</strong> hνE is the emission Usually νA1 + νA2 �= νF because of small, additional<br />

molecular transitions.<br />

of this chapter with the used parameter list.<br />

4.1 Theory of two-photon excitation <strong>and</strong> multiphoton<br />

microscopy<br />

Two-photon excitation is a physical process which require that the low energy<br />

molecules or flourophores <strong>in</strong> a quantum event absorb two photons quasi simultaneously.<br />

Dur<strong>in</strong>g the absorption process, an electron of the molecule is transferred<br />

to an excited-state molecular orbital result<strong>in</strong>g <strong>in</strong> the emission of a fluorescence<br />

photon (See Fig. 4.1) [93]. The emitted photon has almost twice as large energy<br />

than the absorbed lower energy photons.<br />

Multi-photon absorption lies on the same theory as two-photon excitation.<br />

Depend<strong>in</strong>g on the number of the absorbed photons the emitted photon will have<br />

so many times larger frequency. We note here, that the human cells conta<strong>in</strong> such<br />

natural flourophores <strong>in</strong> the mitochondrial system which are able to absorb threephotons<br />

simultaneously result<strong>in</strong>g <strong>in</strong> a nearly three times higher frequency photon.<br />

The probability of the simultaneous two- or more-photon absorption is extremely<br />

low. Therefore, the application of high <strong>in</strong>tensity, focused laser <strong>pulse</strong>s are<br />

required. Typical <strong>pulse</strong> durations com<strong>in</strong>g from a Ti:Sapphire oscillator should be<br />

well below 1 ps <strong>and</strong> their <strong>pulse</strong> energy above 0.5 nJ <strong>in</strong> order to obta<strong>in</strong> high photon<br />

flux <strong>in</strong> the focal po<strong>in</strong>t (0.1-10 MW/cm 2 ) result<strong>in</strong>g <strong>in</strong> significant amount of emitted<br />

light. This is because the virtual absorption of a photon of non-resonant energy<br />

lasts only for a very short period of time (10 −15 − 10 −18 seconds). Dur<strong>in</strong>g this<br />

hν E


CHAPTER 4. CHIRPED PULSE FIBER DELIVERY SYSTEM... 45<br />

time a second photon must be absorbed to reach an excited state. The number<br />

of absorbed photons <strong>in</strong> a sample excited by a laser beam focused by microscope<br />

objectives is described by the follow<strong>in</strong>g equation [94]<br />

NA = P 2 � 2<br />

�2<br />

0 σ2P NA<br />

(4.1)<br />

∆τRpr 2¯hcλ<br />

where σ2P is the two-photon absorption cross-section, P0 is the average power,<br />

NA is the numerical aperture of the objective, ∆τ is the <strong>pulse</strong> width, Rpr is the<br />

repetition rate, c is the speed of light <strong>in</strong> vacuum, <strong>and</strong> λ is the excitation <strong>wave</strong>length.<br />

The most important differences compared to one-photon absorption (1PA) are the<br />

quadratic dependence on the average power (l<strong>in</strong>ear <strong>in</strong> 1PA) <strong>and</strong> the power-of-four<br />

dependence on the NA of the microscope objective.<br />

The mentioned small probability ensures also the light emission from the focal<br />

po<strong>in</strong>t only. This is because the lower <strong>in</strong>tensity light at other parts of the <strong>in</strong>vestigated<br />

sample can not produce two- or more-photon excitations. Therefore, very<br />

sensitive technique can be established on the above phenomenon <strong>in</strong> order to follow,<br />

for example, ion concentrations <strong>in</strong> neurons [95]. This method is called 2PFM which<br />

comb<strong>in</strong>es the two photon absorption phenomenon with a laser scann<strong>in</strong>g technique.<br />

The system realized <strong>in</strong> our work [96] for 2PFM is based on the idea to deliver<br />

the laser beam to the sample through optical fibers <strong>in</strong> order to be able to<br />

<strong>in</strong>vestigate liv<strong>in</strong>g animals [97]. The problems must be solved <strong>in</strong> this case, are the<br />

<strong>pulse</strong> spread<strong>in</strong>g, spectral broaden<strong>in</strong>g <strong>and</strong> scann<strong>in</strong>g of the sample by mov<strong>in</strong>g the<br />

end of the fiber precisely. This relatively slow, scann<strong>in</strong>g technique however can<br />

be changed by address<strong>in</strong>g many fibers by acousto-optic deflectors <strong>in</strong> order to obta<strong>in</strong><br />

<strong>in</strong>formation with<strong>in</strong> a micro-second useful for <strong>in</strong>vestigat<strong>in</strong>g neural processes<br />

[98]-[100].<br />

4.2 Experimental setup<br />

The used experimental setup is shown <strong>in</strong> Fig. 4.2. The <strong>in</strong>tense laser <strong>pulse</strong>s are<br />

provided by a mode-locked Ti:sapphire laser oscillator (FemtoRose 20 MDC [101])<br />

with a central <strong>wave</strong>length of 795 nm <strong>and</strong> a FWHM b<strong>and</strong>width of ∼ 20 nm.<br />

A Faraday isolator (FI) was placed after the Proctor <strong>and</strong> Wise four-prism<br />

sequence <strong>in</strong> order to avoid any disturbance of the laser operation by backreflections.<br />

This FI reduced the negative dispersion by 2700 fs 2 .<br />

Switch<strong>in</strong>g between the optical fibers is carried out by computer controlled<br />

acousto-optic modulator AOM [103]. The AO switches <strong>in</strong>troduce an additional


CHAPTER 4. CHIRPED PULSE FIBER DELIVERY SYSTEM... 46<br />

Figure 4.2: Experimental setup for r<strong>and</strong>om-access 3D two-photon measurements.<br />

positive GDD of ∼ 1500 fs 2 . Angular dispersion of the AO switches is compensated<br />

by antireflection coated prisms (Px, Py) made of SF11 glass.<br />

The AO switches are then imaged onto the fiber coupl<strong>in</strong>g lenses (Li, i =<br />

1, . . . , n) by a large diameter doublet lens L1 free of spherical <strong>and</strong> chromatic aberration.<br />

The output ends of the optical fibers are imaged onto the sample by a 10:1<br />

telescope imag<strong>in</strong>g system. The imag<strong>in</strong>g system consists of a collimat<strong>in</strong>g objective<br />

(OBJ1, 4× , NA∼ 0.13), the high-dispersion ZnSe prism, <strong>and</strong> a focus<strong>in</strong>g objective<br />

(OBJ2, 40× , NA∼ 0.8). The spectral filter<strong>in</strong>g is performed by a dichroic mirror<br />

(D). Fluorescent photons are detected by photomultiplier tubes (PMT1, PMT2)<br />

comb<strong>in</strong>ed with spectral filters.<br />

The lower part of Fig. 4.2 is a conventional scann<strong>in</strong>g two-photon microscope


CHAPTER 4. CHIRPED PULSE FIBER DELIVERY SYSTEM... 47<br />

used for the selection <strong>and</strong> alignment of the po<strong>in</strong>ts to measure.<br />

4.3 Pulse delivery system<br />

St<strong>and</strong>ard SM fiber (Nufern, 780HP [104]) was used to deliver <strong>pulse</strong>s to the selected<br />

po<strong>in</strong>ts of the <strong>in</strong>vestigated sample. This <strong>pulse</strong> delivery system ensures the Gaussian<br />

beam profile of the femtosecond <strong>pulse</strong>s. SM fiber, however, causes temporal <strong>and</strong><br />

spectral distortions on ultra-short <strong>and</strong> <strong>in</strong>tense laser <strong>pulse</strong>s which problem may pose<br />

the usage of different type of fibers as <strong>pulse</strong> delivery system such as s<strong>in</strong>gle mode<br />

LMA MS fibers or HC fibers [105]. We must note here that both type of fibers<br />

have disadvantages such us <strong>in</strong>creased mode size (LMA) <strong>and</strong> the water adsorption<br />

related losses (<strong>in</strong> the case of HC).<br />

In order to avoid the nonl<strong>in</strong>ear distortions, the successfully applied chirped<br />

<strong>pulse</strong> amplification (CPA) technique on broadb<strong>and</strong> <strong>and</strong> ultra-short laser <strong>pulse</strong>s<br />

[47] can be applied here as well. This procedure consist of the follow<strong>in</strong>g steps:<br />

1. stretch<strong>in</strong>g the <strong>in</strong>itially short <strong>pulse</strong>s by the addition of relatively large GDD.<br />

This reduces the peak <strong>in</strong>tensity <strong>and</strong> the nonl<strong>in</strong>ear distortion <strong>in</strong> the fiber<br />

media as well.<br />

2. <strong>propagation</strong> of the stretched <strong>pulse</strong> <strong>in</strong> the fiber<br />

3. <strong>compression</strong> of the output <strong>pulse</strong> <strong>in</strong>troduc<strong>in</strong>g nearly the same GDD with the<br />

opposite sign as at the <strong>in</strong>put end of the fiber.<br />

S<strong>in</strong>ce the free space between the two objectives (OBJ1 <strong>and</strong> OBJ2, See Fig. 4.2)<br />

is limited, high-space dem<strong>and</strong><strong>in</strong>g negative GDD setup was used before the fiber.<br />

The negative chirp (-14000 fs 2 ) was <strong>in</strong>troduced by a Proctor <strong>and</strong> Wise four-prism<br />

sequence [102]. The positive chirp after the fiber output was realized by a highly<br />

dispersive z<strong>in</strong>c-selenide (ZnSe) unit built <strong>in</strong>to the imag<strong>in</strong>g system, which is a rightangle<br />

prism <strong>and</strong> both additional optical elements possess<strong>in</strong>g positive material dispersion.<br />

4.4 Spectral <strong>and</strong> temporal characteristics of the<br />

delivered <strong>pulse</strong>s<br />

I prepared simulations on <strong>pulse</strong> <strong>propagation</strong> through the optical fibers <strong>in</strong> order to<br />

control the prechirp <strong>and</strong> optimize <strong>pulse</strong> parameters for the above described system.


CHAPTER 4. CHIRPED PULSE FIBER DELIVERY SYSTEM... 48<br />

To calculate the optimum arrangement <strong>and</strong> the correspond<strong>in</strong>g distance values [106]<br />

of the Proctor <strong>and</strong> Wise four-prism sequence of SF10 prisms, the dispersion of the<br />

optical components were measured.<br />

Stability of <strong>pulse</strong> duration at different <strong>pulse</strong> energies were <strong>in</strong>vestigated by<br />

the SSF method. Fig. 4.3 (a) shows the effect of re<strong>compression</strong> on the <strong>in</strong>itially<br />

stretched <strong>pulse</strong> by the high positive dispersion orig<strong>in</strong>at<strong>in</strong>g from the imag<strong>in</strong>g system.<br />

The plotted <strong>pulse</strong> shapes corresponds to a <strong>pulse</strong> with 10 mW average power.<br />

Parameters used <strong>in</strong> the simulations are gathered <strong>in</strong> Table 4.1.<br />

Pulses stretched to several hundred femtosecond time duration could be compressed<br />

to 40 fs approximately. Fig. 4.3 (b) shows that the <strong>pulse</strong> duration rema<strong>in</strong>s<br />

40 fs if the coupled average power is 10,20 or 40 mW.<br />

However, <strong>pulse</strong>s with the same duration at 80 mW average power (<strong>pulse</strong> energy<br />

∼ 1 nJ) can be recompressed only to ∼ 100 fs due to the simultaneous nonl<strong>in</strong>ear<br />

<strong>and</strong> dispersive effects <strong>in</strong> the fiber. The <strong>pulse</strong> shape become strongly distorted<br />

Table 4.1: Physical parameters of the system used for the simulations.<br />

Parameter Value Unit<br />

Fiber parameters<br />

Fiber length 130 mm<br />

Dispersion (@800 nm) -95 ps/nm·km<br />

Dispersion slope 0.4 ps/nm 2 ·km<br />

Attenuation (@780 nm) 4 dB/km<br />

<strong>Nonl<strong>in</strong>ear</strong> <strong>in</strong>dex 3.2 × 10 −20 m 2 /W<br />

Effective core area 15 µm 2<br />

NA 0.13<br />

Pulse parameters<br />

Average power 10, 20, 40, 80 mW<br />

Repetition rate 76 MHz<br />

Central <strong>wave</strong>length 795 nm<br />

B<strong>and</strong>width 20, 40 nm<br />

FWHM (chirp free) 33 fs<br />

Additional <strong>in</strong>put chirp -14100 fs 2<br />

Dispersion compensat<strong>in</strong>g unit<br />

Beam path <strong>in</strong> ZnSe 12 mm<br />

GDD 10000 fs 2


CHAPTER 4. CHIRPED PULSE FIBER DELIVERY SYSTEM... 49<br />

Intensity [W]<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Input (prechirped)<br />

Output<br />

Compressed<br />

(a)<br />

36 fs<br />

0<br />

−1 −0.5 0 0.5 1<br />

Duration [ps]<br />

200<br />

160<br />

120<br />

80<br />

40<br />

0<br />

−1 0 1<br />

Intensity [W]<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

(b)<br />

0<br />

−150 −100 −50 0 50 100 150<br />

Duration [fs]<br />

10 mW<br />

20 mW<br />

40 mW<br />

80 mW<br />

Figure 4.3: (a) Re<strong>compression</strong> of the output <strong>pulse</strong> with 10 mW average power after<br />

the fiber sample to 36 fs. Small <strong>in</strong>set zooms to the <strong>in</strong>put <strong>and</strong> output <strong>pulse</strong>s plotted<br />

with the same l<strong>in</strong>e types. (b) Pulse shapes correspond<strong>in</strong>g to different <strong>in</strong>tensities<br />

after re<strong>compression</strong>. 40 mW <strong>pulse</strong>s still suffer acceptable distortions.<br />

at this <strong>in</strong>tensity level. I note that <strong>in</strong> [96], we did not <strong>in</strong>cluded the third order<br />

dispersion contribution of the fiber <strong>in</strong>to the calculations but this effect only results<br />

somewhat asymmetric shape of the <strong>pulse</strong>.<br />

The background of the <strong>in</strong>compressibility of 80 mW signal is due to the spectral<br />

narrow<strong>in</strong>g happens dur<strong>in</strong>g the <strong>propagation</strong>. We observed numerically <strong>and</strong><br />

experimentally that the strongly chirped <strong>pulse</strong>s suffer spectral narrow<strong>in</strong>g [99] if<br />

the guid<strong>in</strong>g medium has an opposite chirp contribution to the <strong>pulse</strong> evaluation<br />

(See Fig. 4.4). The <strong>in</strong>put <strong>pulse</strong> had -14000 fs 2 <strong>in</strong> our case <strong>and</strong> the SM fiber<br />

had positive frequency chirp contribution <strong>in</strong>duced by SPM <strong>in</strong> the visible region.<br />

Silica glass has positive GDD (negative dispersion coefficient) below the 1.3 µm<br />

<strong>wave</strong>length region.<br />

Simulations showed also that 25 fs <strong>pulse</strong>s can be generated at the sample even<br />

at 80 mW if we use 40 nm FWHM b<strong>and</strong>width <strong>in</strong>put <strong>pulse</strong>s <strong>in</strong>stead of 20 nm<br />

b<strong>and</strong>width [100]. This is due to the much higher stretch<strong>in</strong>g effect of the same<br />

dispersion for shorter <strong>pulse</strong>s, which causes smaller nonl<strong>in</strong>earity <strong>in</strong> the fiber.<br />

The fiber delivery system was tested by measur<strong>in</strong>g the temporal <strong>and</strong> spectral<br />

properties of the femtosecond <strong>pulse</strong>s at different energy levels. In the experiment,<br />

we used an SMF with a length of 130 mm (See fiber parameters <strong>in</strong> Table 4.1). After<br />

collimat<strong>in</strong>g the light exit<strong>in</strong>g the fiber, the negative dispersion was compensated by


CHAPTER 4. CHIRPED PULSE FIBER DELIVERY SYSTEM... 50<br />

Normalized <strong>in</strong>tensity (a.u.)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Input<br />

Output (38 mW)<br />

(a)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Intensity (a.u.)<br />

760 780 800 820 840<br />

Wavelength [nm]<br />

−400−200 0 200 400<br />

Duration [fs]<br />

Normalized spectral <strong>in</strong>tensity (a.u.)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(b)<br />

Input<br />

10 mW<br />

20 mW<br />

40 mW<br />

80 mW<br />

760 780 800 820 840<br />

Wavelength [nm]<br />

Figure 4.4: (a) Measured <strong>in</strong>put <strong>and</strong> output spectra of femtosecond laser <strong>pulse</strong>s<br />

transmitted through the chirped <strong>pulse</strong> fiber delivery system. The small <strong>in</strong>set shows<br />

the measured autocorrelation trace of the output <strong>pulse</strong>. (b) Calculated output<br />

spectra of different <strong>in</strong>tensity <strong>pulse</strong>s with -14100 fs 2 <strong>in</strong>itial GDD. Spectral narrow<strong>in</strong>g<br />

is observed <strong>in</strong>stead of spectral broaden<strong>in</strong>g at elevated <strong>in</strong>tensities.<br />

the ZnSe prism (the length of the beam path <strong>in</strong> ZnSe was 12 mm, which provided<br />

GDD ≈ 10000fs 2 ). The measured spectra at the <strong>in</strong>put/output <strong>and</strong> a correspond<strong>in</strong>g<br />

autocorrelation trace at the output are shown <strong>in</strong> Fig. 4.4 (a).<br />

Spectral FWHM for the <strong>pulse</strong>s with 10,20,40 <strong>and</strong> 80 mW average power were<br />

monotonically decreas<strong>in</strong>g <strong>and</strong> the simulations provided their width as 18.7, 17.4,<br />

14.7 <strong>and</strong> 10.8 nm, respectively. The simulated spectral narrow<strong>in</strong>g is shown <strong>in</strong><br />

Fig. 4.4 (b).<br />

As a summary of this work we may claim that a distortion-free <strong>pulse</strong> delivery<br />

system was modeled <strong>and</strong> experimentally achieved by the chirped <strong>pulse</strong> concept usually<br />

used <strong>in</strong> chirped <strong>pulse</strong> amplifiers. Femtosecond <strong>pulse</strong>s were delivered through<br />

a SMF without significant temporal <strong>and</strong> spectral distortions. Simulation determ<strong>in</strong>ed<br />

the <strong>in</strong>tensity range of <strong>pulse</strong>s can be applied <strong>in</strong> the built system without<br />

significant impact on <strong>pulse</strong> quality. Simulation <strong>and</strong> experiments also showed that<br />

spectral narrow<strong>in</strong>g can be achieved with highly prechirped <strong>pulse</strong>s <strong>in</strong> a medium<br />

with opposite GDD contribution <strong>and</strong> SPM.


Chapter 5<br />

Optimiz<strong>in</strong>g <strong>ultrashort</strong> <strong>pulse</strong><br />

<strong>compression</strong> <strong>in</strong> microstructured<br />

fibers<br />

Pulse <strong>compression</strong> <strong>in</strong> a nonl<strong>in</strong>ear medium which causes spectral broaden<strong>in</strong>g is an<br />

area <strong>in</strong>vestigated for many years. The appearance of the novel PCF or MOF revolutionized<br />

this scientific area as well as many other fields. Small core area PCFs<br />

provided the possibility of us<strong>in</strong>g only a small piece of them (avoid<strong>in</strong>g large distortions<br />

by higher order dispersion) because of their very small core area result<strong>in</strong>g <strong>in</strong><br />

significant spectral broaden<strong>in</strong>g even <strong>in</strong> case of a short fiber length. This way the<br />

duration of the <strong>pulse</strong> may become much shorter than the <strong>in</strong>itial one.<br />

Our group has already had some publications on this field but we decided<br />

to conduct a deeper analysis of nonl<strong>in</strong>ear PCF <strong>compression</strong> us<strong>in</strong>g newer fibers<br />

with red-shifted zero dispersion <strong>wave</strong>length <strong>and</strong> <strong>in</strong>volv<strong>in</strong>g computer optimization.<br />

The experience of my previous works <strong>in</strong>timate that <strong>pulse</strong> prechirp should have<br />

significance on <strong>pulse</strong> quality <strong>and</strong> duration after the <strong>compression</strong>. This is because<br />

prechirp can control the spectral <strong>and</strong> temporal distortions <strong>in</strong> the fiber with some<br />

limitations. F<strong>in</strong>d<strong>in</strong>g an optimization procedure is difficult <strong>in</strong> case of HNL fibers<br />

because more than one optimum is expected as a function of <strong>in</strong>put <strong>and</strong> output<br />

chirps.<br />

We show <strong>in</strong> the follow<strong>in</strong>gs, how <strong>in</strong>put <strong>and</strong> output chirp of the <strong>pulse</strong> should<br />

be selected to reach the shortest available <strong>pulse</strong> duration <strong>in</strong> a given experimental<br />

arrangement with certa<strong>in</strong> quality factor. We also show the <strong>compression</strong> possibilities<br />

us<strong>in</strong>g dispersion flattened PCFs as a cost effective <strong>and</strong> efficient solution of<br />

produc<strong>in</strong>g sub-6 or even sub-5 fs <strong>pulse</strong>s launch<strong>in</strong>g 20-30 fs <strong>pulse</strong>s <strong>in</strong> the fiber.<br />

51


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 52<br />

Figure 5.1: The first demonstrated PCF (left) [19] <strong>and</strong> the first dispersion tailored<br />

PCF paved the way to supercont<strong>in</strong>uum generation around 800 nm (right) [28].<br />

Pictures were obta<strong>in</strong>ed from the referenced papers.<br />

A brief <strong>in</strong>troduction is given here about the <strong>pulse</strong> <strong>compression</strong> experiments<br />

us<strong>in</strong>g PCFs. The theory of calculations is discussed after <strong>and</strong> that is followed by<br />

our experiments performed <strong>in</strong> SZFKI. The section after describes the model<strong>in</strong>g<br />

<strong>and</strong> optimization of the system <strong>in</strong> order to achieve sub-6 fs <strong>pulse</strong>s. The compressibility<br />

of different <strong>pulse</strong> durations are also <strong>in</strong>vestigated <strong>and</strong> the possibility of us<strong>in</strong>g<br />

dispersion flattened fibers is also the scope of this chapter.<br />

5.1 Introduction<br />

Pulse <strong>compression</strong> experiments us<strong>in</strong>g PCFs dates back to the beg<strong>in</strong>n<strong>in</strong>g of this<br />

decade after the construction of the first dispersion tailored small core area PCF for<br />

supercont<strong>in</strong>uum generation [28]. Because the small core area results <strong>in</strong> larger SPM<br />

dur<strong>in</strong>g the same <strong>propagation</strong> length, it can be used for broaden<strong>in</strong>g the spectrum<br />

considerably even at low <strong>pulse</strong> energies (around 1 nJ). Us<strong>in</strong>g a few centimeter long<br />

fiber sample, appropriate spectral broaden<strong>in</strong>g can be achieved without too large<br />

temporal distortions caused by the chromatic dispersion [30].<br />

The first PCF samples that can be seen <strong>in</strong> Fig. 5.1 were prepared <strong>in</strong> the University<br />

of Southampton, Southampton, UK [19] <strong>and</strong> <strong>in</strong> the Bell Laboratories, Lucent<br />

Technologies, New Jersey, US [28].<br />

In my dissertation, I show that it is possible to obta<strong>in</strong> compressed sub-6 fs


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 53<br />

<strong>pulse</strong>s us<strong>in</strong>g nanojoule or sub-nanojoule seed <strong>pulse</strong>s at around 800 nm by utiliz<strong>in</strong>g<br />

only a small-core area PCF <strong>and</strong> prism-pair/chirped mirror compressors. In<br />

the study Ref. [30], the compressed <strong>pulse</strong> duration was primarily limited by the<br />

maximum available <strong>wave</strong>length difference between the laser central <strong>wave</strong>length<br />

(750 nm) <strong>and</strong> the zero-dispersion <strong>wave</strong>length (767 nm) of the PCF sample. Novel<br />

PCFs with red-shifted zero-dispersion <strong>wave</strong>lengths, however, can improve both the<br />

quality <strong>and</strong> the duration of the compressed <strong>pulse</strong>s when we choose <strong>in</strong>put <strong>and</strong> output<br />

chirp compensation parameters properly. It is worth po<strong>in</strong>t<strong>in</strong>g out that 1 nJ<br />

seed <strong>pulse</strong> energies with the required <strong>pulse</strong> durations can be obta<strong>in</strong>ed easily from<br />

low pump threshold, mode-locked Ti:sapphire laser oscillators pumped by only 1.2<br />

W at 532 nm [107].<br />

As a proof of my calculations, I describe our correspond<strong>in</strong>g experiment with<br />

similar experimental conditions as the simulations. I also extend the simulations to<br />

the <strong>compression</strong> of sub-nJ <strong>pulse</strong>s with <strong>in</strong>itial time duration at around 1 ps. Later,<br />

I discuss the possibility of build<strong>in</strong>g cost efficient, compact sub-100 fs laser sources<br />

by utiliz<strong>in</strong>g nonl<strong>in</strong>ear spectral broaden<strong>in</strong>g <strong>and</strong> dispersion compensation. As a seed<br />

<strong>pulse</strong>, we consider low cost, compact <strong>ultrashort</strong> <strong>pulse</strong> laser diodes with transform<br />

limited <strong>pulse</strong> duration of around 1 ps [108, 109]. Their typical <strong>pulse</strong> energy is well<br />

below 1 nJ, which does not result <strong>in</strong> considerable spectral broaden<strong>in</strong>g <strong>in</strong> st<strong>and</strong>ard<br />

SMFs. However, nonl<strong>in</strong>ear spectral broaden<strong>in</strong>g (<strong>and</strong> possible amplification) <strong>in</strong><br />

doped [110] small core area PCF-s allows the reduction of the <strong>pulse</strong> duration to<br />

the sub-100 fs regime. Previously, this time doma<strong>in</strong> could only be achieved by<br />

more expensive solid-state lasers.<br />

5.2 Theory<br />

We calculate the <strong>pulse</strong> <strong>propagation</strong> through PCFs as a nonl<strong>in</strong>ear Schröd<strong>in</strong>ger type<br />

system (See Eq. (2.60) <strong>in</strong> Section 2.2.3). The <strong>in</strong>put <strong>pulse</strong>s used <strong>in</strong> our simulation<br />

exhibit a sech 2 temporal <strong>in</strong>tensity envelope function that is typical for femtosecond<br />

solid state laser oscillators. We used dispersion data provided by the manufacturer<br />

(type “2.2 <strong>Nonl<strong>in</strong>ear</strong> PCF” fiber, Crystal Fibre, Denmark [111]) <strong>in</strong> our calculations.<br />

S<strong>in</strong>ce the dispersion was not available for the required broad spectral range<br />

necessary for our calculations, it was approximated by a Taylor-expansion:<br />

D(λ) = D0 + S(λ − λ0) + T<br />

2 (λ − λ0) 2 + F<br />

6 (λ − λ0) 3 . (5.1)<br />

In Eq. (5.1), λ0 is the central <strong>wave</strong>length (reference <strong>wave</strong>length) of the seed <strong>pulse</strong>,<br />

D0 is the chromatic dispersion at the central <strong>wave</strong>length, S is the dispersion-


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 54<br />

slope, T is the third-order dispersion <strong>and</strong> F is the fourth-order dispersion hav<strong>in</strong>g<br />

the correspond<strong>in</strong>g values of D0 = −27.15 · 10 −6 s/m 2 , S = 0.51772 · 10 3 s/m 3 ,<br />

T = −3.277854 · 10 9 s/m 4 , F = 1.642713 · 10 16 s/m 5 , respectively.<br />

We found that the <strong>compression</strong> level strongly depends on the <strong>in</strong>itial chirp of the<br />

<strong>pulse</strong> <strong>in</strong>jected <strong>in</strong>to the fiber for possible shortest <strong>pulse</strong> durations corresponds to<br />

the given spectrum <strong>in</strong> the sub-100 fs regime. We must note here that <strong>in</strong> coherent<br />

optical systems, the shortest <strong>pulse</strong> duration corresponds to a given spectrum is<br />

called transform limited <strong>pulse</strong> width. In this case, the <strong>pulse</strong> <strong>and</strong> spectral shapes<br />

are regular <strong>and</strong> the expression for ∆ν <strong>and</strong> ∆τ given <strong>in</strong> Section 2.1.3 is acceptable.<br />

In the case of strongly modulated spectra, the width of the spectral shape can be<br />

def<strong>in</strong>ed quite elaborately. Furthermore, systems with very broad spectral regions<br />

are difficult to consider as a coherent system (coherent length is <strong>in</strong>versely proportional<br />

with the spectral width). Because of the above reasons we will not use<br />

the expression “transform limited” for such <strong>pulse</strong>s which have broad <strong>and</strong> irregular<br />

spectral shape. Instead of transform limited we apply the “possible shortest <strong>pulse</strong><br />

duration” term<strong>in</strong>ology throughout this dissertation.<br />

Provid<strong>in</strong>g a small l<strong>in</strong>ear chirp to the <strong>in</strong>put <strong>pulse</strong>, the <strong>pulse</strong> duration becomes<br />

slightly longer but it results <strong>in</strong> lower <strong>pulse</strong> shape distortion dur<strong>in</strong>g <strong>propagation</strong><br />

<strong>in</strong> the fiber (the distortion is caused by the strong third-order dispersion of the<br />

PCF). However, the required l<strong>in</strong>ear pre-chirp may result <strong>in</strong> less efficient spectral<br />

broaden<strong>in</strong>g dur<strong>in</strong>g <strong>propagation</strong>. One may control the spectral broaden<strong>in</strong>g at a<br />

certa<strong>in</strong> energy level <strong>in</strong> this way, <strong>and</strong> avoid frequency components that may harm<br />

the quality of the compressed <strong>pulse</strong>.<br />

In our calculations, the follow<strong>in</strong>g expression was used for describ<strong>in</strong>g the prechirp<br />

of the laser <strong>pulse</strong> seed<strong>in</strong>g the PCF sample:<br />

Echirped(0, T ) = F −1 � exp � iφ <strong>in</strong><br />

2 /2ω 2 + iφ <strong>in</strong><br />

3 /6ω 3� F {E(0, T )} �<br />

(5.2)<br />

where F st<strong>and</strong>s for Fourier transformation, E(z, T ) is the complex envelope function<br />

of the seed <strong>pulse</strong> with no chirp (where z is the space coord<strong>in</strong>ate <strong>in</strong> the prop-<br />

agation direction <strong>and</strong> T is the retarded time), ω is the angular frequency <strong>and</strong> φ <strong>in</strong><br />

2<br />

<strong>and</strong> φ <strong>in</strong><br />

3 are the second- <strong>and</strong> third-order pre-chirp parameters (GDD <strong>and</strong> TOD),<br />

respectively. The def<strong>in</strong>ition of GDD <strong>and</strong> TOD can be f<strong>in</strong>d <strong>in</strong> Section 2.1.3.<br />

Compression after the fiber sample is described <strong>in</strong> the same way for the complex<br />

envelope function us<strong>in</strong>g output chirp parameters (φ out<br />

2 , φ out<br />

3 ).


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 55<br />

scope<br />

fs SiO 2<br />

2<br />

fs 3<br />

GDD: −400 ... −200<br />

TOD: −1500 ... −2500<br />

FemtoRose 20 MDC<br />

λ =797 nm<br />

E=1.4 nJ<br />

Auto−<br />

correlator<br />

SF10<br />

SF10<br />

SiO 2<br />

Compressor<br />

GDD: 100 ... 400 fs2<br />

3<br />

TOD: −6000 fs<br />

Faraday isolator<br />

Chirped<br />

mirrors<br />

Pre−compressor<br />

Figure 5.2: Experimental setup. An SF10 prism pair <strong>in</strong> comb<strong>in</strong>ation with chirped<br />

mirrors are used for pre-<strong>compression</strong> of a 24 fs <strong>pulse</strong> with central <strong>wave</strong>length of 797<br />

nm. The spectrally broadened <strong>pulse</strong> exit<strong>in</strong>g the PCF is compressed by a fused silica<br />

pair / chirped mirror compressor result<strong>in</strong>g <strong>in</strong> a two-fold temporal <strong>compression</strong>.<br />

5.3 Experiment<br />

Our Ti:sapphire laser oscillator (FemtoRose 20 MDC [101]) operated at 797 nm,<br />

<strong>and</strong> delivered 24 fs sech2 <strong>pulse</strong>s at a repetition rate of 76 MHz. A PCF piece with a<br />

length of 22 mm was the shortest that could be cut with our fiber cleaver, although<br />

the optimal length predicted by our simulation was shorter (see Sect. 5.4.1 below).<br />

Accord<strong>in</strong>gly, the <strong>in</strong>put <strong>pulse</strong> energy had to be further reduced <strong>in</strong> order to get<br />

spectral shapes similar to what can be obta<strong>in</strong>ed with a 6 mm long PCF used <strong>in</strong><br />

our simulations.<br />

The experimental setup is shown <strong>in</strong> Fig. 5.2. In order to provide the optimal<br />

pre-chirp parameters, a pre-compressor was built compris<strong>in</strong>g of an SF10 prism pair<br />

<strong>and</strong> a pair of chirped mirrors. A FI was also <strong>in</strong>stalled <strong>in</strong>to the pre-compressor to<br />

avoid feedback from the fiber [30]. The positive dispersion <strong>in</strong>troduced by the FI<br />

(GDD of 2700 fs2 ) had to be compensated as well dur<strong>in</strong>g pre-<strong>compression</strong>. We<br />

could set the pre-chirp between 100 fs2 <strong>and</strong> 400 fs2 <strong>in</strong> this way. The pre-compressor<br />

provided an <strong>in</strong>put TOD of approximately -6000 fs3 .<br />

We obta<strong>in</strong>ed two-fold <strong>compression</strong> start<strong>in</strong>g from 24 fs <strong>pulse</strong>s with φ<strong>in</strong> 2 = 400<br />

PCF<br />

lens


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 56<br />

Intensity [a.u.]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Measured<br />

Calculated<br />

0<br />

-40 -30 -20 -10 0 10 20 30 40<br />

Time delay [fs]<br />

Spectral <strong>in</strong>tensity a.u.<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Intensity [kW]<br />

12 fs<br />

0<br />

0 20 40 60 80 100<br />

Time duration [fs]<br />

Measured<br />

Calculated<br />

0<br />

650 700 750 800 850 900<br />

Wavelength [nm]<br />

Figure 5.3: Measured <strong>and</strong> computed autocorrelation traces (left) <strong>and</strong> the corre-<br />

spond<strong>in</strong>g spectra (right). Input <strong>pulse</strong> parameters: 0.6 nJ, 24 fs. φ <strong>in</strong><br />

2 = 400 fs 2<br />

φ<strong>in</strong> 3 = −6000 fs3 . Fiber length 22 mm. φout 2<br />

retrieved compressed <strong>pulse</strong> shape.<br />

= −320 fs 2 φ out<br />

3<br />

= −2000 fs 3 . Inset:<br />

fs 2 <strong>and</strong> φ <strong>in</strong><br />

3 = −6000 fs 3 [113]. The measured <strong>and</strong> computed autocorrelation traces<br />

are shown <strong>in</strong> Fig. 5.3 (left) <strong>and</strong> the correspond<strong>in</strong>g spectra are plotted <strong>in</strong> Fig. 5.3<br />

(right). In the <strong>in</strong>set, the retrieved temporal <strong>pulse</strong> shape is shown with FWHM<br />

<strong>pulse</strong> duration of 12 fs.<br />

We note that <strong>in</strong> order to fit our simulations to the measured experimental data,<br />

we had to <strong>in</strong>crease the effective core area of the PCF <strong>in</strong> our model: it had to be<br />

doubled to the new value of around 10 µm 2 . It might have been partially caused<br />

by improper orientation of the PCF sample (see Ref. [30]). An additional practical<br />

problem orig<strong>in</strong>ated from the use of the Faraday-isolator that had to be placed <strong>in</strong><br />

front of the PCF: its relatively high dispersion had to be compensated by an SF10<br />

prism pair which limited the b<strong>and</strong>width <strong>and</strong> hence the transform limited <strong>pulse</strong><br />

duration of the seed <strong>pulse</strong> at around 25 fs.<br />

Because of the relatively good agreement between the experiment described<br />

<strong>and</strong> our correspond<strong>in</strong>g simulations we cont<strong>in</strong>ue our <strong>in</strong>vestigations with numerical<br />

model<strong>in</strong>g <strong>in</strong> the follow<strong>in</strong>g section. The same fiber parameters <strong>and</strong> different <strong>in</strong>put<br />

<strong>pulse</strong> durations <strong>and</strong> chirp parameters are used for our <strong>in</strong>vestigations <strong>in</strong> the<br />

simulations except the effective core area. We take this fiber parameter from an<br />

earlier study [30] <strong>and</strong> use <strong>in</strong> the follow<strong>in</strong>g section. In Section 5.4.2, we turn back<br />

to the value <strong>in</strong> the experiment (Aeff ≈ 5 µm). This is because <strong>in</strong> the next sec-


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 57<br />

GDD <strong>in</strong> [fs 2 ]<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−100<br />

−200<br />

−300<br />

−400<br />

−500<br />

−2000<br />

−1000<br />

0<br />

TOD <strong>in</strong> [fs 3 ]<br />

Figure 5.4: Peak <strong>in</strong>tensity of 1 nJ optimally compressed <strong>pulse</strong>s as a function of<br />

<strong>in</strong>put GDD <strong>and</strong> TOD. The result corresponds to a small core area PCF with zero<br />

dispersion <strong>wave</strong>length of 860 nm. The seed<strong>in</strong>g laser <strong>pulse</strong> has a central <strong>wave</strong>length<br />

of 760 nm <strong>and</strong> a transform limited FWHM <strong>pulse</strong> duration of 12 fs.<br />

tion we would like to <strong>in</strong>vestigate a highly nonl<strong>in</strong>ear system <strong>and</strong> its performance <strong>in</strong><br />

connection with <strong>pulse</strong> <strong>compression</strong>.<br />

5.4 Model<strong>in</strong>g<br />

5.4.1 Optimization<br />

For the optimization of the <strong>in</strong>put chirp parameters (φ<strong>in</strong> 2 , φ<strong>in</strong> 3 ) <strong>and</strong> <strong>compression</strong> parameters<br />

(φout 2 , φout 3 ) at a given fiber length, <strong>in</strong>put <strong>pulse</strong> energy <strong>and</strong> <strong>pulse</strong> duration,<br />

we assumed that the shortest compressed <strong>pulse</strong> exhibits the highest peak power.<br />

This assumption was used <strong>in</strong> a brute-force optimization method to f<strong>in</strong>d the best<br />

second- <strong>and</strong> third-order <strong>in</strong>put <strong>and</strong> output GDD <strong>and</strong> TOD parameters of a sech2 <strong>in</strong>put <strong>pulse</strong> through a given range of the chirp parameters [112, 113]. Fig. 5.4<br />

shows the peak <strong>in</strong>tensity of the compressed <strong>pulse</strong> as a function of <strong>in</strong>put GDD <strong>and</strong><br />

TOD after provid<strong>in</strong>g the best <strong>compression</strong> parameters for each calculated po<strong>in</strong>t.<br />

In our calculations, the length, nonl<strong>in</strong>ear refractive <strong>in</strong>dex <strong>and</strong> effective core<br />

area of the fiber were respectively chosen as 6 mm, 2.5 · 10−20 m2 /W <strong>and</strong> 2.5 µm2 .<br />

1000<br />

2000<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Peak power [kW]


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 58<br />

Intensity [kW]<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

a.u.<br />

0<br />

500 700 900 1100<br />

Wavelength [nm]<br />

(a)<br />

Input<br />

Compressed<br />

5.7 fs<br />

0<br />

0 50 100 150 200<br />

Time duration [fs]<br />

Intensity [kW]<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

a.u.<br />

0<br />

500 700 900 1100<br />

Wavelength [nm]<br />

(b)<br />

Input<br />

Compressed<br />

4.7 fs<br />

0<br />

0 50 100 150 200<br />

Time duration [fs]<br />

Figure 5.5: Computed temporal <strong>and</strong> spectral <strong>in</strong>tensity distributions correspond<strong>in</strong>g<br />

to two data po<strong>in</strong>ts depicted from Fig. 5.4. (a) φ <strong>in</strong><br />

2 = −170 fs 2 , φ <strong>in</strong><br />

3 = −220 fs 3 with<br />

φ out<br />

2 = −110 fs 2 <strong>and</strong> φ out<br />

3 = −340 fs 3 compensation (b) φ <strong>in</strong><br />

2 = 140 fs 2 , φ <strong>in</strong><br />

3 = −1530<br />

fs 3 <strong>and</strong> φ out<br />

2<br />

= −100 fs 2 , φ out<br />

3<br />

= −300 fs 3 . An <strong>in</strong>put <strong>pulse</strong> with transform limited<br />

<strong>pulse</strong> duration of 12 fs is used <strong>in</strong> the calculations (dotted l<strong>in</strong>e is a pre-chirped <strong>pulse</strong><br />

at the fiber <strong>in</strong>put).<br />

The seed<strong>in</strong>g laser <strong>pulse</strong> has a central <strong>wave</strong>length of 760 nm, <strong>pulse</strong> energy of 1 nJ<br />

that corresponds to 76 mW average output power at a repetition rate of 76 MHz.<br />

The FWHM <strong>pulse</strong> duration was chosen to be 12 fs. Such <strong>pulse</strong> durations can be<br />

obta<strong>in</strong>ed from a mirror-dispersion controlled Ti:sapphire oscillator, see Ref. [107].<br />

We must note that the <strong>pulse</strong> parameters used <strong>in</strong> the presented optimization process<br />

correspond<strong>in</strong>g to Fig. 5.4 <strong>and</strong> Fig. 5.5 are slightly different from our experimental<br />

conditions. The effective core area is the same as used <strong>in</strong> Ref. [30].<br />

Accord<strong>in</strong>g to the optimization map (see Fig. 5.4), the shortest compressed<br />

<strong>pulse</strong>s can be generated at around −200 fs 2 <strong>in</strong>put GDD <strong>and</strong> −200 fs 3 <strong>in</strong>put TOD.<br />

The best <strong>compression</strong> values that correspond to this peak are φout 2 = −100 fs2 <strong>and</strong> φout 3 = −350 · · ·−400 fs3 . The correspond<strong>in</strong>g computed temporal <strong>and</strong> spectral<br />

<strong>in</strong>tensity distributions are shown <strong>in</strong> Fig. 5.5(a). The compressed <strong>pulse</strong> that belongs<br />

to the red spot around φ <strong>in</strong><br />

2 = 140 fs 2 <strong>and</strong> φ <strong>in</strong><br />

3 = −1530 fs 3 is shown <strong>in</strong> Fig. 5.5(b). In<br />

this latter case, the compressed <strong>pulse</strong> width is quite short (4.7 fs) but the quality of<br />

the <strong>pulse</strong> is worse than that of the compressed laser <strong>pulse</strong> shown <strong>in</strong> Fig. 5.5(a). The<br />

reason for this is that the spectrum displayed <strong>in</strong> Fig. 5.5(b) extends well above the<br />

zero dispersion <strong>wave</strong>length (860 nm) <strong>in</strong>to the anomalous dispersion region of our


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 59<br />

PCF sample. This part of the spectrum can not be compressed properly, which<br />

results <strong>in</strong> a pedestal <strong>and</strong> satellite <strong>pulse</strong>s of the compressed <strong>pulse</strong>. The obvious<br />

asymmetric spectral broaden<strong>in</strong>g both <strong>in</strong> Fig. 5.5(a) <strong>and</strong> Fig. 5.5(b) is caused by<br />

the considerable third-order dispersion of our PCF around 800 nm.<br />

5.4.2 Compression of longer <strong>pulse</strong>s<br />

In the follow<strong>in</strong>g, we present some attract<strong>in</strong>g features of <strong>pulse</strong> <strong>compression</strong> us<strong>in</strong>g<br />

small core area PCF-s with the same parameters described <strong>in</strong> Sec. 5.3. We performed<br />

a number of calculations us<strong>in</strong>g different <strong>in</strong>put <strong>pulse</strong> widths <strong>and</strong> we searched<br />

for the shortest compressed <strong>pulse</strong> durations as described <strong>in</strong> the previous section.<br />

We started our <strong>in</strong>vestigation with 1 ps <strong>pulse</strong>s that can be obta<strong>in</strong>ed from ultrafast<br />

laser diodes. Then we use shorter <strong>and</strong> shorter <strong>pulse</strong>s which could be related to<br />

different types of fs <strong>pulse</strong> solid-state laser oscillators [114]. The <strong>compression</strong> results<br />

are summarized <strong>in</strong> Table 5.1 <strong>and</strong> Figure 5.6.<br />

Here, we def<strong>in</strong>e the Quality Factor (QF) of a compressed laser <strong>pulse</strong> as the<br />

ratio of the energy <strong>in</strong> the ma<strong>in</strong> peak <strong>and</strong> the total energy of the <strong>pulse</strong> tak<strong>in</strong>g on<br />

values between 0 <strong>and</strong> 1:<br />

QF =<br />

� b<br />

a |A(z, T )|2 dT<br />

� ∞<br />

−∞ |A(z, T )|2 dT<br />

(5.3)<br />

In Eq. (5.3), the numerator is computed as a temporal <strong>in</strong>tegral of the <strong>in</strong>tensity<br />

function between time a <strong>and</strong> b correspond<strong>in</strong>g to the two local <strong>in</strong>tensity m<strong>in</strong>ima<br />

around the ma<strong>in</strong> peak. The Quality Factors calculated for the different <strong>compression</strong><br />

<strong>and</strong> <strong>pulse</strong> parameters are listed <strong>in</strong> Table 5.1.<br />

We found that 1 ps, 1 nJ <strong>pulse</strong>s can be compressed to 50 fs result<strong>in</strong>g <strong>in</strong> a<br />

20-fold <strong>compression</strong> ratio (see Table 5.1). We note that a similar <strong>compression</strong> was<br />

experimentally demonstrated at around 1550 nm us<strong>in</strong>g soliton <strong>compression</strong> <strong>in</strong> a<br />

dispersion flattened fiber [116]: a 965 m long polarization ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g SMF was<br />

used <strong>and</strong> 54 fs <strong>pulse</strong>s were obta<strong>in</strong>ed after the <strong>propagation</strong> along the slow axis with<br />

71 mW <strong>in</strong>put power at a repetition rate of 10 GHz.<br />

In the case of our PCF sample, the <strong>compression</strong> ratio <strong>and</strong> the quality factor<br />

are strongly limited by third-order dispersion <strong>in</strong> the fiber. Although the PCF that<br />

we used <strong>in</strong> our simulations has much higher third-order dispersion at around 800<br />

nm than the dispersion flattened fiber at 1550 nm, our simulation shows that it is<br />

still possible to obta<strong>in</strong> 50 fs compressed <strong>pulse</strong>s.<br />

We note that no pre-chirp was needed for the <strong>pulse</strong>s with transform limited<br />

time durations between 100 fs <strong>and</strong> 1 ps, as it had no measurable effect on the


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 60<br />

60<br />

0<br />

Applied GDD for compensation [fs 2]<br />

21.6 fs<br />

Intensity (a.u.)<br />

10.1 fs<br />

Intensity (a.u.)<br />

50<br />

−5000<br />

0 200 400 600<br />

Time duration [fs]<br />

6 fs<br />

Intensity (a.u.)<br />

48.8 fs<br />

0 100 200 300 400<br />

Time duration [fs]<br />

40<br />

−10000<br />

Intensity (a.u.)<br />

Spectral <strong>in</strong>tensity (a.u.)<br />

Spectral <strong>in</strong>tensity (a.u.)<br />

0 50 100 150 200<br />

Time duration [fs]<br />

600<br />

30<br />

0 200 400<br />

Time duration [fs]<br />

740 780 820 860<br />

Wavelength [nm]<br />

−15000<br />

Spectral <strong>in</strong>tensity (a.u.)<br />

800 900<br />

Wavelength [nm]<br />

700<br />

Spectral <strong>in</strong>tensity (a.u.)<br />

20<br />

−20000<br />

650 750 850 950 1050<br />

Wavelength [nm]<br />

760 780 800 820 840<br />

Wavelength [nm]<br />

10<br />

Compressed <strong>pulse</strong> duration [fs]<br />

−25000<br />

0<br />

10 100 1000<br />

Initial <strong>pulse</strong> duration [fs] (log scale)<br />

Figure 5.6: Compressed <strong>pulse</strong> width <strong>and</strong> applied GDD for the best <strong>compression</strong> as a function of <strong>in</strong>itial <strong>pulse</strong><br />

duration. We plotted also the temporal <strong>and</strong> spectral shape of some results. Strong asymmetric spectral<br />

broaden<strong>in</strong>g is also presented due to the higher order dispersions <strong>in</strong> the relatively wide spectral ranges.


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 61<br />

Table 5.1: Pulse <strong>compression</strong> <strong>in</strong> PCF with zero dispersion <strong>wave</strong>length of 860 nm<br />

computed for 1 nJ seed <strong>pulse</strong>s of different transform limited <strong>pulse</strong> durations with a<br />

central <strong>wave</strong>length of 797 nm <strong>and</strong> for different fiber lengths. The optimal pre-chirp,<br />

<strong>compression</strong> parameters <strong>and</strong> the QFs are listed along with the shortest compressed<br />

<strong>pulse</strong> durations.<br />

FWHM<strong>in</strong> L φ<strong>in</strong> 2 φ<strong>in</strong> 3 φout 2 φout 3 FWHMout QF<br />

[fs] [m] [fs2 ] [fs3 ] [fs2 ] [fs3 ] [fs] [%]<br />

1000 1.000 0 0 -18600 -170000 61.1 74.7<br />

1000 1.100 0 0 -19200 -200000 57.9 76.3<br />

1000 1.200 0 0 -19700 -195000 55.2 77.6<br />

1000 1.300 0 0 -20300 -220000 53.2 79.4<br />

1000 1.400 0 0 -21000 -245000 51.6 80.8<br />

1000 1.500 0 0 -21700 -245000 49.9 81.4<br />

1000 1.600 0 0 -22400 -265000 48.8 82.2<br />

500 0.450 0 0 -7100 -75000 36.2 80.1<br />

500 0.500 0 0 -7500 -80000 33.8 80.2<br />

500 0.550 0 0 -7800 -85000 31.6 78.7<br />

500 0.600 0 0 -8200 -91000 29.6 72.9<br />

250 0.14 0 0 -2400 -21000 25.2 78.3<br />

250 0.14 0 -300000 -2450 -21500 24.5 78.1<br />

250 0.16 0 0 -2500 -22500 22.1 73.5<br />

250 0.16 -2000 -300000 -2500 -22000 21.6 72.1<br />

100 0.030 100 -4000 -600 -3800 15.2 77.0<br />

100 0.035 640 -3600 -610 -4100 14.0 72.6<br />

100 0.040 1430 -2600 -700 -4550 14.2 75.7<br />

100 0.040 -1100 -3800 -660 -4300 13.8 72.9<br />

100 0.040 -1400 -2400 -700 -4500 15.3 79.8<br />

100 0.042 -1400 -3000 -700 -4500 14.3 76.0<br />

50 0.009 40 -3000 -200 -1000 11.8 80.5<br />

50 0.010 40 -2800 -200 -1050 10.8 77.6<br />

50 0.011 90 -2050 -200 -1090 10.1 74.4<br />

25 0.005 200 -140 -120 -520 8.8 88.8<br />

25 0.005 120 -200 -90 -440 7.1 77.3<br />

12 0.004 -80 -170 -60 -250 6.4 88.5<br />

12 0.005 -100 -200 -70 -290 6.6 88.2<br />

12 0.005 -90 -200 -60 -290 6.0 78.4


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 62<br />

spectral broaden<strong>in</strong>g process <strong>in</strong> the fiber. For <strong>in</strong>stance, we tried to optimize prechirp<br />

for 250 fs seed <strong>pulse</strong>s, but only extremely large negative TOD resulted <strong>in</strong><br />

slight reduction of the f<strong>in</strong>al compressed <strong>pulse</strong> duration. Short seed <strong>pulse</strong>s with time<br />

durations below 100 fs, however, suffer irreversible distortions dur<strong>in</strong>g <strong>propagation</strong><br />

due to higher-order dispersion. Therefore we have to use some l<strong>in</strong>ear pre-chirp to<br />

stretch the seed <strong>pulse</strong> slightly. We note that for shorter seed <strong>pulse</strong>s we need higher<br />

optimal relative temporal stretch<strong>in</strong>g (τstretched/τ0). Dur<strong>in</strong>g optimization we also<br />

aimed for m<strong>in</strong>imum necessary pre-chirp.<br />

One can observe <strong>in</strong> Table 5.1 that high <strong>compression</strong> ratios can be obta<strong>in</strong>ed<br />

for considerably different l<strong>in</strong>ear <strong>and</strong> higher order pre-chirp parameters (see, for<br />

<strong>in</strong>stance, the different parameters for 100 fs seed <strong>pulse</strong>s result<strong>in</strong>g <strong>in</strong> compressed<br />

<strong>pulse</strong> durations <strong>in</strong> the 13.8-15.3 fs range). These results are similar to the calculations<br />

presented <strong>in</strong> Fig. 5.6. Hav<strong>in</strong>g a 100 fs seed <strong>pulse</strong> the shortest compressed<br />

<strong>pulse</strong> is 13.8 fs long, which is slightly longer than what was presented <strong>in</strong> Ref. [30]<br />

(≈ 13 fs). Shorter <strong>pulse</strong>s can be generated only at the expense of quality (like <strong>in</strong><br />

Fig. 5.5 (a) <strong>and</strong> (b)).<br />

5.4.3 Compression with dispersion flattened PCFs<br />

Our PCF sample had large higher order dispersion contribution to the <strong>pulse</strong> evaluation<br />

which limited the usable length of the fiber because of the irreversible <strong>pulse</strong><br />

shape distortions. This also limits spectral broaden<strong>in</strong>g obta<strong>in</strong>ed by SPM on a<br />

shorter fiber length.<br />

This harmful effect can be avoided us<strong>in</strong>g such PCFs <strong>in</strong> which the <strong>wave</strong>guide<br />

dispersion is suited by careful structural modifications [117]. This can be done by<br />

chang<strong>in</strong>g the size <strong>and</strong> distance of the holes <strong>in</strong> the cladd<strong>in</strong>g region [26], [117]-[124].<br />

The physics beh<strong>in</strong>d it is that the total dispersion of a <strong>wave</strong>guide comes partially<br />

from the material dispersion <strong>and</strong> partially from the <strong>wave</strong>guide contribution to the<br />

dispersion. The <strong>wave</strong>guide contribution can be large enough if the propagat<strong>in</strong>g<br />

mode is conf<strong>in</strong>ed <strong>in</strong> a relatively small core (r < 2 - 4 × λ). This can result <strong>in</strong> flat<br />

total dispersion curve of the <strong>wave</strong>guide <strong>and</strong> improve the quality of <strong>pulse</strong> <strong>compression</strong><br />

significantly. The first demonstrated ultra-flattened <strong>and</strong> near zero dispersion<br />

PCF is shown <strong>in</strong> Fig. 5.7. This fiber shows dispersion of 0 ± 1.2 ps/(nm · km) over<br />

1 µm-1.6 µm <strong>wave</strong>length [125].<br />

We present calculations here us<strong>in</strong>g the same parameter set done <strong>in</strong> Sec. 5.3. An<br />

unchirped (φ <strong>in</strong><br />

2 = 0 fs 2 , φ <strong>in</strong><br />

3 = 0 fs 3 ) 24 fs <strong>in</strong>put <strong>pulse</strong> with 1 nJ is launched <strong>in</strong> a 6 mm<br />

length PCF whose dispersion is characterized by Eq. (5.1). The nonl<strong>in</strong>ear refractive<br />

<strong>in</strong>dex <strong>and</strong> effective core area are 2.5 · 10 −20 m 2 /W <strong>and</strong> 5 µm 2 , respectively. We


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 63<br />

Figure 5.7: The first dispersion flattened PCF with 11 periods of air holes around<br />

the core. The average hole diameter was 0.57 µm <strong>and</strong> the hole to hole spac<strong>in</strong>g<br />

(pitch) was 2.47 µm. Figure was obta<strong>in</strong>ed from Ref. [125].<br />

FWHM compressed [fs]<br />

7<br />

6.5<br />

6<br />

5.5<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

0 100 200 300 400 500<br />

55<br />

600<br />

Dispersion slope [s/m 3 ]<br />

Figure 5.8: Compressed shortest <strong>pulse</strong> duration <strong>and</strong> the quality factor of the <strong>pulse</strong><br />

as a function of dispersion slope.<br />

only changed the dispersion slope parameter (S) characteriz<strong>in</strong>g the fiber dispersion<br />

<strong>and</strong> searched for the optimum <strong>compression</strong> parameters (φ out<br />

2<br />

<strong>propagation</strong>. Results are summarized <strong>in</strong> Fig. 5.8.<br />

QF [%]<br />

<strong>and</strong> φ out<br />

3 ) after the


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 64<br />

After a certa<strong>in</strong> dispersion slope value, <strong>pulse</strong>s can not be compressed <strong>in</strong> a good<br />

quality anymore. Although the ma<strong>in</strong> peak could be quite short, less than 6 fs<br />

actually, but 30-40% of the <strong>pulse</strong> energy is outside of the ma<strong>in</strong> peak. This is<br />

the case when pre-chirp is required <strong>in</strong> order to broaden the <strong>pulse</strong> not to suffer<br />

unwanted, irreversible distortions caused by higher order dispersion. This limits<br />

however the spectral broaden<strong>in</strong>g.<br />

Summariz<strong>in</strong>g our simulations, we can conclude that us<strong>in</strong>g a PCF with zero<br />

dispersion <strong>wave</strong>length of 860 nm <strong>and</strong> dispersion properties described by Eq. (5.1)<br />

twentyfold <strong>compression</strong> can be obta<strong>in</strong>ed <strong>in</strong> case of 1 nJ <strong>in</strong>put <strong>pulse</strong>s with time<br />

duration of 1 ps. Additionally, start<strong>in</strong>g from 12 fs transform limited seed <strong>pulse</strong>s,<br />

which can be obta<strong>in</strong>ed from a relatively low cost fs <strong>pulse</strong> Ti:Sapphire laser, 6<br />

fs compressed <strong>pulse</strong>s can be generated. By the reduction of the higher order<br />

dispersion <strong>in</strong> a small core-area fiber, high quality (≥ 94%) 6-7 fs <strong>pulse</strong>s can be<br />

generated start<strong>in</strong>g from 24 fs transform limited <strong>pulse</strong> duration which means a<br />

fourfold <strong>compression</strong> <strong>in</strong> this region.


Summary<br />

Dur<strong>in</strong>g the past few years, my research <strong>in</strong>terest focused on nonl<strong>in</strong>ear <strong>wave</strong> <strong>propagation</strong><br />

<strong>in</strong> s<strong>in</strong>gle mode step <strong>in</strong>dex <strong>and</strong> microstructured fibers. These <strong>in</strong>vestigations<br />

are strongly related to the designation of such step-<strong>in</strong>dex or microstructured fibers<br />

which change the dispersion property of the fiber through the <strong>wave</strong>guide contribution.<br />

This improvement may change the quality <strong>and</strong> the achievable duration of<br />

the compressed <strong>ultrashort</strong> <strong>pulse</strong>s, for <strong>in</strong>stance. I would like to summarize here the<br />

new scientific results <strong>in</strong> my research based on the above mentioned topics.<br />

I <strong>in</strong>vestigated the nonl<strong>in</strong>ear <strong>propagation</strong> of micro<strong>wave</strong> modulated signal transmission<br />

over st<strong>and</strong>ard s<strong>in</strong>gle mode fiber theoretically <strong>and</strong> experimentally. After the<br />

good agreement between simulation <strong>and</strong> experiment, I <strong>in</strong>vestigated signal <strong>propagation</strong><br />

<strong>in</strong> relatively higher <strong>in</strong>tensity regions. I discovered the soliton <strong>propagation</strong><br />

of s<strong>in</strong>us modulated signals model<strong>in</strong>g that as a nonl<strong>in</strong>ear Schröd<strong>in</strong>ger type system<br />

<strong>in</strong> the GHz region. The <strong>propagation</strong> was <strong>in</strong>vestigated <strong>in</strong> a few hundred kilometer<br />

st<strong>and</strong>ard s<strong>in</strong>gle mode fiber. I looked for such parameter sets which could provide<br />

the stable <strong>and</strong> distortion-free <strong>propagation</strong> of the 10 GHz <strong>in</strong>tensity modulated CW<br />

laser source. The average <strong>in</strong>tensity which had to be launched <strong>in</strong> the fiber was<br />

20 mW. This signal could achieve slightly narrower signal formation after certa<strong>in</strong><br />

<strong>propagation</strong> path length (100-150 km) as an <strong>in</strong>terplay between dispersion <strong>and</strong> selfphase<br />

modulation, <strong>and</strong> got back the orig<strong>in</strong>al shape dur<strong>in</strong>g the same fiber length.<br />

This recurrence phenomenon was observed only <strong>in</strong> case of soliton <strong>pulse</strong> <strong>propagation</strong><br />

earlier. I demonstrated the soliton formation of micro<strong>wave</strong> modulated signals<br />

as well [91], although the <strong>propagation</strong> properties of modulated signals are fundamentally<br />

differ from that of <strong>pulse</strong> <strong>propagation</strong>.<br />

For lower <strong>in</strong>tensity signals, I found approximate formulas for the determ<strong>in</strong>ation<br />

of the position of dispersion suppression as a function of the quotient of group velocity<br />

dispersion <strong>and</strong> nonl<strong>in</strong>ear coefficient [90, 91]. I also advised the experimental<br />

demonstration of the soliton <strong>propagation</strong> of micro<strong>wave</strong> modulated signals <strong>in</strong> SMF<br />

utiliz<strong>in</strong>g the loss compensation possibilities of Raman amplification [91].<br />

65


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 66<br />

In order to avoid the harmful effect of nonl<strong>in</strong>earity <strong>in</strong> an ultra short <strong>pulse</strong> transmission<br />

system, based on SMF, we used chirped <strong>pulse</strong> delivery system <strong>in</strong> which<br />

the <strong>in</strong>itial chirp stretches the <strong>pulse</strong>s prevent<strong>in</strong>g them from nonl<strong>in</strong>ear distortions. I<br />

calculated <strong>and</strong> optimized the chirp parameters of the <strong>pulse</strong> <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> its<br />

shape undistorted <strong>and</strong> below an FWHM of 50 fs after re<strong>compression</strong>. Dur<strong>in</strong>g the<br />

simulations, we observed the spectral narrow<strong>in</strong>g effect of highly prechirped, <strong>ultrashort</strong><br />

<strong>pulse</strong>s [99, 100] which was demonstrated experimentally as well [98]-[100].<br />

The <strong>ultrashort</strong>, chirped <strong>pulse</strong> delivery system is a part of a 2PFM which require<br />

good beam quality <strong>and</strong> high peak power to achieve multi-photon excitation on the<br />

targeted sample. I <strong>in</strong>vestigated numerically the <strong>in</strong>tensity limit where <strong>ultrashort</strong><br />

<strong>pulse</strong>s (∼ 55 fs) com<strong>in</strong>g from a Ti:Sapphire oscillator with ∼ 20 nm b<strong>and</strong>width<br />

could be transmitted without temporal <strong>and</strong> spectral distortions. I found that<br />

apply<strong>in</strong>g ∼ −14000 fs 2 prechirp us<strong>in</strong>g a Procter <strong>and</strong> Wise four-prism sequence <strong>and</strong><br />

apply<strong>in</strong>g a dispersion compensation after the fiber output with ∼ 10000 fs 2 positive<br />

GDD, the <strong>pulse</strong>s with 10, 20, <strong>and</strong> 40 mW average power could be distortionfreely<br />

delivered. This setup provided almost the same FWHM for these <strong>pulse</strong><br />

powers which is also a unique feature of the system [96]. The obta<strong>in</strong>ed FWHM<br />

was around 40 fs. Pulses with 80 mW average power, however, could not be<br />

recompressed below 100 fs <strong>pulse</strong> duration without chang<strong>in</strong>g prechirp. The strong<br />

spectral narrow<strong>in</strong>g <strong>and</strong> the large temporal distortions caused this limit.<br />

Ultrashort <strong>pulse</strong> <strong>compression</strong> <strong>in</strong> photonic crystal or microstructured fiber was<br />

also <strong>in</strong>vestigated theoretically <strong>and</strong> experimentally. In our experiment a two fold<br />

<strong>compression</strong> was achieved start<strong>in</strong>g from 24 fs transform limited seed <strong>pulse</strong>s from a<br />

Ti:Sapphire laser [113]. The simulations with similar physical parameters showed<br />

a good correlation to the experiments after the adjustment of the effective core<br />

size to the experimental results.<br />

I observed that below a given <strong>pulse</strong> duration (∼ 100 fs) which slightly depends<br />

on the higher order dispersion contribution of the fiber, optimal <strong>pulse</strong> <strong>compression</strong><br />

can only be achieved by add<strong>in</strong>g chirp to the <strong>ultrashort</strong> <strong>pulse</strong> before the <strong>in</strong>put end<br />

of the fiber [114, 115]. This chirp (GDD, TOD) has an opposite sign than that<br />

is contributed to the <strong>pulse</strong> evaluation <strong>in</strong> the fiber. This pre-chirp can prevent<br />

the <strong>pulse</strong> from irreversible temporal distortions dur<strong>in</strong>g the nonl<strong>in</strong>ear <strong>propagation</strong>.<br />

I advised a computation method which can optimize the <strong>pulse</strong> <strong>compression</strong> <strong>in</strong><br />

microstructured fibers <strong>and</strong> gives an optimization map with <strong>pulse</strong> peak <strong>in</strong>tensities<br />

as a function of <strong>in</strong>put GDD <strong>and</strong> TOD after ideal <strong>compression</strong> at the output end.<br />

This optimization procedure was carried out for different <strong>pulse</strong> durations (1 ps -<br />

12 fs) which can be associated with different types of lasers (mode-locked diode to<br />

solid state lasers) [112].


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 67<br />

I analyzed the possibility of us<strong>in</strong>g different microstructured fibers with different<br />

dispersion properties by simulation <strong>and</strong> I showed which dispersion parameters of<br />

the fiber should be the most appropriate to obta<strong>in</strong> ideal <strong>pulse</strong> <strong>compression</strong> without<br />

add<strong>in</strong>g any pre-chirp to the <strong>pulse</strong> [112]. The <strong>in</strong>vestigated dispersion curves can be<br />

achieved <strong>in</strong> MOFs with structural modifications.


Thesis po<strong>in</strong>ts<br />

1. I <strong>in</strong>vestigated theoretically <strong>and</strong> experimentally the micro<strong>wave</strong> modulated signal<br />

transmission over st<strong>and</strong>ard s<strong>in</strong>gle mode optical fibers. I Calculated the<br />

soliton formation <strong>and</strong> stable soliton <strong>propagation</strong> of 10 GHz s<strong>in</strong>us modulated<br />

signal for 20 mW <strong>and</strong> higher average powers [90, 91]. I advised the Raman<br />

amplification for elim<strong>in</strong>at<strong>in</strong>g the attenuation of the carrier <strong>in</strong> the case of long<br />

<strong>propagation</strong> path lengths [91].<br />

2. I discussed the appearance of dispersion caused modulation suppression along<br />

the fiber as a function of the nonl<strong>in</strong>earity <strong>and</strong> chromatic dispersion [91]. The<br />

obta<strong>in</strong>ed results were summarized <strong>in</strong> approximat<strong>in</strong>g formulas.<br />

3. I demonstrated numerically that the negatively chirped ultra-short <strong>pulse</strong>s<br />

suffer spectral narrow<strong>in</strong>g dur<strong>in</strong>g its transmission on a s<strong>in</strong>gle mode fiber <strong>in</strong><br />

the normal dispersion regime as an <strong>in</strong>terplay of chromatic dispersion <strong>and</strong><br />

self-phase modulation [99]-[100]. I calculated also the limit <strong>in</strong>tensity for<br />

the delivery of the <strong>in</strong>itially chirped <strong>pulse</strong>s with 20 nm b<strong>and</strong>width can be<br />

recompressed to nearly 40 fs at the end of the transmission system without<br />

temporal distortions [96].<br />

4. I <strong>in</strong>vestigated theoretically the nano-Joule <strong>and</strong> sub-nano-Joule <strong>ultrashort</strong><br />

<strong>pulse</strong> <strong>compression</strong> <strong>in</strong> small core area microstructured fiber. I showed that<br />

both, pre-compensation (<strong>in</strong>itial chirp on the <strong>pulse</strong>) <strong>and</strong> dispersion compensation<br />

are required <strong>in</strong> order to obta<strong>in</strong> high quality sub-6 fs compressed <strong>pulse</strong>s<br />

start<strong>in</strong>g from 12 fs <strong>pulse</strong> duration apply<strong>in</strong>g only prism pairs <strong>and</strong> chirped<br />

mirrors beside the highly-nonl<strong>in</strong>ear fiber [113, 114, 115].<br />

5. I analyzed <strong>pulse</strong>s with picosecond <strong>and</strong> several times hundred femtosecond<br />

durations <strong>and</strong> showed that proper dispersion compensation may result <strong>in</strong><br />

twentyfold <strong>pulse</strong> <strong>compression</strong> on this time scale [112]. I showed that us<strong>in</strong>g a<br />

microstructured fiber with lower third order dispersion contribution to the<br />

68


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 69<br />

<strong>pulse</strong> evaluation, one may get record sub-6 or even sub-5 fs <strong>pulse</strong>s start<strong>in</strong>g<br />

from 24 fs transform limited <strong>pulse</strong> duration [112].


List of publications<br />

1. I. Frigyes, Z. Várallyay, O. Schwelb, L. Jakab <strong>and</strong> P. Richter, “Investigations<br />

<strong>in</strong> the jo<strong>in</strong>t effect of fiber dispersion <strong>and</strong> nonl<strong>in</strong>ear refraction <strong>in</strong> micro<strong>wave</strong><br />

optical l<strong>in</strong>ks,” Proceed<strong>in</strong>gs of International Topical Meet<strong>in</strong>g on Micro<strong>wave</strong><br />

Photonics, Budapest (Sept 10-12, 2003) pp. 299-302.<br />

2. Z. Várallyay, I. Frigyes, O. Schwelb, E. Udvary, L. Jakab <strong>and</strong> P. Richter,<br />

“Soliton <strong>propagation</strong> of micro<strong>wave</strong> modulated signal through s<strong>in</strong>gle mode<br />

optical fiber,” Acta Phys. Hung. B 23, 175-186 (2005).<br />

3. B. Rózsa, G. Katona, B. Lendvai, Sz. E. Vizi, P. Maák, Z. Várallyay,<br />

L. Valenta, T. Volos<strong>in</strong>, A. Vági, Á. Bányász, A. Lukács, J. Fekete <strong>and</strong><br />

R. Szipőcs, “Fast scann<strong>in</strong>g <strong>and</strong> unicag<strong>in</strong>g strategies <strong>in</strong> 3D two-photon microscopy,”<br />

IBRO International Workshop on Neuronal Circuits: from Elementary<br />

to Complex Functions, Budapest (Jan 29-31, 2004).<br />

4. R. Szipőcs, Á. Bányász, J. Fekete, Z. Várallyay, A. Lukács, B. Rózsa, G.<br />

Katona <strong>and</strong> S. E. Vizi, “Chirped <strong>pulse</strong> fiber delivery sytem for high speed,<br />

high spatial resolution 3D two-photon microscopy,” Conference of ESF Femtochemistry<br />

<strong>and</strong> Femtobiology (ULTRA) program, Pécs (Mar 25-28, 2004).<br />

5. B. Rózsa, E. S. Vizi, G. Katona, A. Lukács, Z. Várallyay, A. Sághy, L.<br />

Valenta, P. Maák, J. Fekete, Á. Bányász <strong>and</strong> R. Szipőcs, “Real time 3D<br />

nonl<strong>in</strong>ear microscopy,” Trends <strong>in</strong> Optics <strong>and</strong> Photonics, 98, 858-863 (2005).<br />

6. B. Rózsa, G. Katona, E. S. Vizi, Z. Várallyay, A. Sághy, L. Valenta, P. Maák,<br />

J. Fekete, Á. Bányász, <strong>and</strong> R. Szipőcs, “R<strong>and</strong>om access three-dimensional<br />

two-photon microscopy,” Appl. Optics 46, 1860-1865 (2007).<br />

7. Z. Várallyay, J. Fekete, Á. Bányász, R. Szipőcs, “Sub-nanojoule <strong>pulse</strong> <strong>compression</strong><br />

<strong>in</strong> small core area photonic crystal fibers below the zero dispersion<br />

70


CHAPTER 5. ULTRASHORT PULSE COMPRESSION IN MOFS 71<br />

<strong>wave</strong>length,” Trends <strong>in</strong> Optics <strong>and</strong> Photonics, 98, 571-576 (2005).<br />

8. Z. Várallyay, J. Fekete, Á. Bányász, R. Szipőcs, “Pulse Compression with<br />

highly nonl<strong>in</strong>ear photonic crystal fibers by optimization of <strong>in</strong>put <strong>and</strong> output<br />

chirp parameters up to the third-order,” OSA Conference on OAA, Budapest<br />

(Aug 7-10, 2005), paper ME6.<br />

9. Z. Várallyay, J. Fekete, Á. Bányász, S. Lakó, R. Szipőcs, “Sub-nanojoule<br />

<strong>pulse</strong> <strong>compression</strong> down to 6 fs <strong>in</strong> photonic crystal fibers,” CLEO/QELS,<br />

Baltimore, Maryl<strong>and</strong> (May 22-29, 2005), paper JThE21.<br />

10. Z. Várallyay, J. Fekete, Á. Bányász <strong>and</strong> R. Szipőcs, “Optimiz<strong>in</strong>g <strong>in</strong>put <strong>and</strong><br />

output chirps up to the third order for sub-nanojoule, <strong>ultrashort</strong> <strong>pulse</strong> <strong>compression</strong><br />

<strong>in</strong> small core area PCF,” Appl. Phys. B, 86, 567-572 (2007).


Bibliography<br />

[1] A. C. S. van Heel “A new method of transport<strong>in</strong>g optical images without<br />

aberrations,” Nature 173, 39 (1954).<br />

[2] H. H. Hopk<strong>in</strong>s, N. S. Kapany “A flexible fibrescope, us<strong>in</strong>g static scann<strong>in</strong>g,”<br />

Nature 173, 39-41 (1954).<br />

[3] K. C. Kao, G. A. Hockham “Dielectric-fibre surface <strong>wave</strong>guides for optical<br />

frequencies” IEE Proc. 113, 1151 (1966).<br />

[4] W. G. French, J. B. MacChesney, P. D. O’Connor, <strong>and</strong>. G. W. Tasker, “Optical<br />

<strong>wave</strong>guides with very low losses,” Bell Syst. Tech. J. 53, 951 (1974).<br />

[5] T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita “Ultimate low-loss s<strong>in</strong>gle<br />

mode fiber at 1.55 µm,” Electron. Lett. 15, 106 (1979).<br />

[6] R. H. Stolen, E. P. Ippen <strong>and</strong> A. R. Tynes “Raman oscillation <strong>in</strong> glass optical<br />

<strong>wave</strong>guide,” Appl. Phys. Lett. 20, 62 (1972).<br />

[7] E. P. Ippen, R. H. Stolen “Stimulated Brillou<strong>in</strong> scatter<strong>in</strong>g <strong>in</strong> optical fibers,”<br />

Appl. Phys. Lett. 21, 539 (1972).<br />

[8] R. H. Stolen, A. Ask<strong>in</strong> “Optical Kerr effect <strong>in</strong> glass <strong>wave</strong>guide,” Appl. Phys.<br />

Lett. 22, 294 (1973).<br />

[9] R. H. Stolen, J. E. Bjorkholm, <strong>and</strong> A. Ashk<strong>in</strong> “Phase-matched three-<strong>wave</strong><br />

mix<strong>in</strong>g <strong>in</strong> silica fiber optical <strong>wave</strong>guides,” Appl. Phys. Lett. 24, 308 (1974).<br />

[10] R. H. Stolen <strong>and</strong> C. L<strong>in</strong> “Self-phase-modulation <strong>in</strong> silica optical fibers,” Phys.<br />

Rev. A 17, 1448-1453 (1978).<br />

72


BIBLIOGRAPHY 73<br />

[11] A. Hasegawa <strong>and</strong> F. Tappert “Transmission of stationary nonl<strong>in</strong>ear optical<br />

<strong>pulse</strong>s <strong>in</strong> dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys.<br />

Lett. 23, 142-144 (1973).<br />

[12] L. F. Mollenauer, R. H. Stolen, <strong>and</strong> J. P. Gordon “Experimental Observation<br />

of Picosecond Pulse Narrow<strong>in</strong>g <strong>and</strong> Solitons <strong>in</strong> Optical Fibers,” Phys. Rev.<br />

Lett. 45, 1095-1098 (1980).<br />

[13] L. F. Mollenauer, R. H. Stolen “Soliton laser,”Opt. Lett. 9, 13 (1984).<br />

[14] H. Nakatsuka, D. Grischkowsky, <strong>and</strong> A. C. Balant, “<strong>Nonl<strong>in</strong>ear</strong> Picosecond-<br />

Pulse Propagation through Optical Fibers with Positive Group Velocity Dispersion,”<br />

Phys. Rev. Lett. 47, 910-913 (1981).<br />

[15] W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, J. A. Valdmanis <strong>and</strong><br />

C. V. Shank, “Optical <strong>pulse</strong> <strong>compression</strong> to 8 fs at a 5-kHz repetition rate,”<br />

Appl. Phys. Lett. 46, 1120-1121 (1985).<br />

[16] R. L. Fork, C. H. Brito Cruz, P. C. Becker <strong>and</strong> C. V. Shank, “Compression of<br />

optical <strong>pulse</strong>s to six femtoseconds by us<strong>in</strong>g cubic phase compensation,” Opt.<br />

Lett. 12, 483-486 (1987).<br />

[17] A. Baltuska, Z. Wei, M. S. Pshenichnikov, D.A. Wiersma <strong>and</strong> R. Szipőcs,<br />

“All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175-188<br />

(1997).<br />

[18] M. Nisoli, S. De Silvestri, O. Svelto, R. Szipőcs, K. Ferencz, C. Spielmann,<br />

S. Sartania <strong>and</strong> F. Krausz, “Compression of high-energy laser <strong>pulse</strong>s below 5<br />

fs,” Opt. Lett. 22, 522-524 (1997).<br />

[19] J. C. Knight, T. A. Birks, P. S. J. Russell <strong>and</strong> D. M. Atk<strong>in</strong>, ”All-silica s<strong>in</strong>glemode<br />

optical fiber with photonic crystal cladd<strong>in</strong>g,” Opt. Lett. 21, 1547-1549<br />

(1996).<br />

[20] E. Yablonovitch, “Inhibited spontaneous emission <strong>in</strong> solid-state physics <strong>and</strong><br />

electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).<br />

[21] S. John, “Strong localization of photons <strong>in</strong> certa<strong>in</strong> disordered dielectric superlattices,”<br />

Phys. Rev. Lett. 58, 2486-2489 (1987).<br />

[22] E. Yablonovitch, ”Photonic b<strong>and</strong>-gap structures,” J. Opt. Soc. Am. B 10,<br />

283-295 (1993).


BIBLIOGRAPHY 74<br />

[23] C. M. Bowden, J. P. Dowl<strong>in</strong>g <strong>and</strong> H. O. Everitt, “Development <strong>and</strong> applications<br />

of materials exhibit<strong>in</strong>g photonic b<strong>and</strong> gaps: Introduction,” special issue<br />

of J. Opt. Soc. Am. B 10, 280- (1993).<br />

[24] J. C. Knight, J. Broeng, T. A. Birks <strong>and</strong> P. St. J. Russell, “Photonic b<strong>and</strong><br />

gap guidance <strong>in</strong> optical fibres,” Science, 282, 1476-1478 (1998).<br />

[25] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J.<br />

Roberts <strong>and</strong> D. C. Allan, “S<strong>in</strong>gle-mode photonic b<strong>and</strong> gap guidance of light<br />

<strong>in</strong> air,” Science, 285, 1537-1539 (1999).<br />

[26] D. Mogilevtsev, T. A. Birks <strong>and</strong> P. St. J. Russell, “Group-velocity dispersion<br />

<strong>in</strong> photonic crystal fiber,” Opt. Lett. 23, 1662-1664 (1998).<br />

[27] T. M. Monro, D. J. Richardson, N. G. R. Broderick <strong>and</strong> P. J. Bennett, “Holey<br />

optical fibers: an efficient modal model,” J. Light<strong>wave</strong> Technol. 17, 1093-1099<br />

(1999).<br />

[28] J. K. Ranka, R. S. W<strong>in</strong>deler <strong>and</strong> A. J. Stentz, “Visible cont<strong>in</strong>uum generation<br />

<strong>in</strong> air-silica microstructure optical fibers with anomalous dispersion at 800<br />

nm,” Opt. Lett. 25, 25-27 (2000).<br />

[29] H. Lim, F. Ilday, <strong>and</strong> F. Wise, “Femtosecond ytterbium fiber laser with photonic<br />

crystal fiber for dispersion control,” Opt. Express 10, 1497-1502 (2002).<br />

[30] S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. W<strong>in</strong>deler <strong>and</strong> R. Szipőcs, “Pulse<br />

<strong>compression</strong> of nanojoule <strong>pulse</strong>s <strong>in</strong> the visible us<strong>in</strong>g microstructure optical<br />

fiber <strong>and</strong> dispersion compensation,” Appl. Phys. B 76, 267-275 (2003).<br />

[31] G. McConnell <strong>and</strong> E. Riis, “Ultra-short <strong>pulse</strong> <strong>compression</strong> us<strong>in</strong>g photonic<br />

crystal fibre,” Appl. Phys. B 78, 557-563 (2004).<br />

[32] B. Schenkel, R. Paschotta <strong>and</strong> U. Keller, “Pulse <strong>compression</strong> with supercont<strong>in</strong>uum<br />

generation <strong>in</strong> microstructure fibers,” J. Opt. Soc. Am. B 22, 687-693<br />

(2005).<br />

[33] L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen,<br />

I. Maxwell <strong>and</strong> E. Mazur, “Sub<strong>wave</strong>length-diameter silica wires for low-loss<br />

optical <strong>wave</strong> guid<strong>in</strong>g,” Nature 426, 816-819 (2003).<br />

[34] A. M. Zheltikov, “The physical limit for the <strong>wave</strong>guide enhancement of<br />

nonl<strong>in</strong>ear-optical processes,” Opt. Spectrosc. 95, 410-415 (2003).


BIBLIOGRAPHY 75<br />

[35] L. M. Tong, J. Y. Lou, <strong>and</strong> E. Mazur, “S<strong>in</strong>gle-mode properties of sub<strong>wave</strong>length-diameter<br />

silica, <strong>and</strong> silicon wire <strong>wave</strong>guides,” Opt. Express 12,<br />

1025-1035 (2004).<br />

[36] M. A. Foster, K. D. Moll, A. L. Gaeta, “Optimal <strong>wave</strong>guide dimensions for<br />

nonl<strong>in</strong>ear <strong>in</strong>teractions,” Opt. Express 12, 2880 (2004).<br />

[37] M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, P. Yang,<br />

“Nanoribbon <strong>wave</strong>guides for sub<strong>wave</strong>length photonics <strong>in</strong>tegration,” Science<br />

305, 1269 (2004).<br />

[38] M. A. Foster, A. L. Gaeta. Q. Cao <strong>and</strong> R. Treb<strong>in</strong>o, “Soliton-effect <strong>compression</strong><br />

of supercont<strong>in</strong>uum to few cycle durations <strong>in</strong> photonic nanowires,” Opt.<br />

Express 13, 6848-6855 (2005).<br />

[39] M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Treb<strong>in</strong>o, <strong>and</strong> A.<br />

L. Gaeta, “<strong>Nonl<strong>in</strong>ear</strong> <strong>pulse</strong> <strong>propagation</strong> <strong>and</strong> supercont<strong>in</strong>uum generation <strong>in</strong><br />

photonic nanowires: experiment <strong>and</strong> simulation,” Appl. Phys. B, 81, 363-367<br />

(2005).<br />

[40] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell <strong>and</strong> J.-P. de S<strong>and</strong>ro,<br />

“Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348<br />

(1998).<br />

[41] T. A. Birks, J. C. Knight <strong>and</strong> P. St. J. Russell, “Endlessly s<strong>in</strong>gle-mode photonic<br />

crystal fiber,” Opt. Lett. 22, 961-963 (1997).<br />

[42] N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson <strong>and</strong> H. R.<br />

Simonsen, “Improved large-mode-area endlessly s<strong>in</strong>gle-mode photonic crystal<br />

fibers,” Opt. Lett. 28, 393-395 (2003).<br />

[43] J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A.<br />

Tünnermann, J. Broeng, A. Petersson, <strong>and</strong> C. Jakobsen, “Low-nonl<strong>in</strong>earity<br />

s<strong>in</strong>gle-transverse-mode ytterbium-doped photonic crystal fiber amplifier,”<br />

Opt. Express 12, 1313-1319 (2004).<br />

[44] M. E. Fermann, “S<strong>in</strong>gle-mode excitation of multimode fibers with <strong>ultrashort</strong><br />

<strong>pulse</strong>s,” Opt. Lett. 23, 52-54 (1998).


BIBLIOGRAPHY 76<br />

[45] M. Hofer, M. E. Fermann, A. Galvanauskaus, D. Harter <strong>and</strong> R. S. W<strong>in</strong>deler,<br />

“High-power 100-fs <strong>pulse</strong> generation by frequency doubl<strong>in</strong>g of an erbiumytterbium-fiber<br />

master oscillator power amplifier,” Opt. Lett. 23, 1840-1842<br />

(1998).<br />

[46] J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tünnermann, R. Iliew, F.<br />

Lederer, J. Broeng, G. Vienne, A. Petersson <strong>and</strong> C. Jakobsen, “High-power<br />

air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11, 818-<br />

823 (2003).<br />

[47] D. Strickl<strong>and</strong> <strong>and</strong> G. Mourou, “Compression of amplified chirped optical<br />

<strong>pulse</strong>s,” Opt. Commun 56, 219-221 (1985).<br />

[48] D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher,<br />

M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of Megawatt<br />

optical solitons <strong>in</strong> hollow-core photonic b<strong>and</strong>-gap fibers,” Science 301, 1702-<br />

1704 (2003).<br />

[49] P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr,<br />

M. W. Mason, A. Toml<strong>in</strong>son, T. A. Birks, J. C. Knight <strong>and</strong> P. S. J. Russell,<br />

“Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13,<br />

236-244, (2005).<br />

[50] T. J. Stephens, R. R. Maier, J. S. Barton <strong>and</strong> J. D. C. Jones, “Fused silica<br />

hollow-core photonic crystal fibre for mid-<strong>in</strong>frared transmission,” presented<br />

at Conference on Lasers <strong>and</strong> Electro-Optics (CLEO); Postconference Digest,<br />

CPDD4, 16-21 May 2004, San Francisco, CA, USA, (2004).<br />

[51] J. Shephard, W. MacPherson, R. Maier, J. Jones, D. H<strong>and</strong>, M. Mohebbi,<br />

A. George, P. Roberts <strong>and</strong> J. Knight, “S<strong>in</strong>gle-mode mid-IR guidance <strong>in</strong> a<br />

hollow-core photonic crystal fiber,” Opt. Express 13, 7139-7144 (2005).<br />

[52] D. Müller, J. West <strong>and</strong> K. Koch, “Interferometric Chromatic Dispersion Measurement<br />

of a Photonic B<strong>and</strong>-gap Fiber,” <strong>in</strong> Active <strong>and</strong> Passive Components<br />

for WDM communications II, A. K. Dutta, A. A. S. Awwal, N. K. Dutta, K.<br />

Okamoto, Eds. Proc. SPIE 4870, 395-403 (2002).<br />

[53] G. Bouwmans, F. Luan, J. Knight, P. St. J. Russell, L. Farr, B. Mangan, <strong>and</strong><br />

H. Sabert, “Properties of a hollow-core photonic b<strong>and</strong>gap fiber at 850 nm<br />

<strong>wave</strong>length,” Opt. Express 11, 1613-1620 (2003).


BIBLIOGRAPHY 77<br />

[54] J. Jasapara, Ts<strong>in</strong>g Hua Her, R. Bise, R. W<strong>in</strong>deler <strong>and</strong> D. J. DiGiovanni,<br />

“Group-velocity dispersion measurements <strong>in</strong> a photonic b<strong>and</strong>gap fiber,” J.<br />

Opt. Soc. Am. B 20, 1611-1615 (2003).<br />

[55] K. Saitoh, N. A. Mortensen <strong>and</strong> M. Koshiba, “Air-core photonic b<strong>and</strong>-gap<br />

fibers: the impact of surface modes,” Opt. Express 12, 394-400 (2004).<br />

[56] G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams,<br />

P. J. Roberts <strong>and</strong> B. J. Mangan, “Hollow core photonic crystal fiber for beam<br />

delivery,” Opt. Express 12, 1477-1484 (2004).<br />

[57] Zs. Szabó <strong>and</strong> Gy. Kádár, “B<strong>and</strong> gaps <strong>in</strong> photonic crystals with dispersion,”<br />

Proceed<strong>in</strong>gs of the 11th International IGTE symposium 2004, pp. 178-183;<br />

(accepted for publication also <strong>in</strong> the International Journal for Computation<br />

<strong>and</strong> Mathematics <strong>in</strong> Electrical <strong>and</strong> Electronic Eng<strong>in</strong>eer<strong>in</strong>g).<br />

[58] G. P. Agrawal, <strong>Nonl<strong>in</strong>ear</strong> Fiber Optics 3rd edition, (Academic Press, San<br />

Diego, CA, 2001).<br />

[59] G. P. Agrawal, Applications of <strong>Nonl<strong>in</strong>ear</strong> Fiber Optics, (Academic Press, San<br />

Diego, CA, 2001).<br />

[60] A. Bjarklev, J. Broeng <strong>and</strong> A. S. Bjarklev, Photonic Crystal Fibres, (Spr<strong>in</strong>ger<br />

Science, New York, 2003).<br />

[61] F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau <strong>and</strong> D. Felbacq,<br />

Foundations Of Photonic Crystal Fibres, (Imperial College Press, New Jersey,<br />

NJ, 2005).<br />

[62] E. A. Saleh, M. C. Teich, Fundamentals of photonics, (John Wiley & Sons,<br />

Inc., New York, 1991).<br />

[63] M. D. Nielsen <strong>and</strong> N. A. Mortensen, “Photonic crystal fiber design based on<br />

the V-parameter,” Opt. Express 11, 2761-2768 (2003).<br />

[64] D. Marcuse, Theory of dielectric optical <strong>wave</strong>guides, (Academic Press, San<br />

Diego, CA, 1991).<br />

[65] P. V. Mamyshev <strong>and</strong> S. V. Chernikov, “Ultrashort-<strong>pulse</strong> <strong>propagation</strong> <strong>in</strong> optical<br />

fibers,” Opt. Lett. 15, 1076-1078 (1990).


BIBLIOGRAPHY 78<br />

[66] T. R. Taha <strong>and</strong> M. J. Ablowitz, “Analytical <strong>and</strong> numerical aspects of certa<strong>in</strong><br />

nonl<strong>in</strong>ear evolution equations part I: Analytical,” J. Comp. Phys. 55, 192-202<br />

(1984).<br />

[67] T. R. Taha <strong>and</strong> M. J. Ablowitz, “Analytical <strong>and</strong> numerical aspects of certa<strong>in</strong><br />

nonl<strong>in</strong>ear evolution equations part II: Numerical nonl<strong>in</strong>ear Schröd<strong>in</strong>ger<br />

Equation,” J. Comp. Phys. 55, 203-230 (1984).<br />

[68] M. M. Woolfson <strong>and</strong> G. J. Pert: An Introduction to Computer Simulation,<br />

(Oxford University Press, 1999).<br />

[69] M. Delfour, M. Fort<strong>in</strong> <strong>and</strong> G. Payre “F<strong>in</strong>ite-difference solutions of a non-l<strong>in</strong>ear<br />

Schröd<strong>in</strong>ger equation,” J. Comput. Phys. 44, 277 (1981).<br />

[70] Q. Chang <strong>and</strong> L. Xu, “A numerical method for a system of generalized nonl<strong>in</strong>ear<br />

Schröd<strong>in</strong>ger equations,” J. Comput. Math. 4, 191 (1986).<br />

[71] Q. Chang, E. Jia <strong>and</strong> W. Sun, “Difference schemes for solv<strong>in</strong>g the generalized<br />

nonl<strong>in</strong>ear Schröd<strong>in</strong>ger equation,” J. Comput. Phys. 148, 397 (1999).<br />

[72] Q. Sheng, A. Q. M. Khaliq <strong>and</strong> E. A. Al-Said, “Solv<strong>in</strong>g the generalized nonl<strong>in</strong>ear<br />

Schröd<strong>in</strong>ger equation via quartic spl<strong>in</strong>e approximation,” J. Comput.<br />

Phys. 166, 400 (2001).<br />

[73] U. Gliese,”Multi-functional fiber-optic micro<strong>wave</strong> l<strong>in</strong>ks,” Opt. Quantum Electron.<br />

30, 1005-1019 (1998).<br />

[74] A. Seeds, “Optical transmission of micro<strong>wave</strong>s,” <strong>in</strong> The Review of Radio Science,<br />

W. Stone, Ed. London, U.K.: Oxford Univ. Press, 1996, pp. 325-360.<br />

[75] H. Al-Raweshidy <strong>and</strong> S. Komaki, Ed.: Radio over fiber technologies, Artech<br />

House, Inc. (London, 2002).<br />

[76] J. Wang <strong>and</strong> K. Petermann, “ Small signal analysis for dispersive optical fiber<br />

communication systems,” J. Light<strong>wave</strong> Technol., 10, 96-100 (1992).<br />

[77] H. Schmuck, “Comparison of optical millimeter-<strong>wave</strong> system concepts with<br />

regard to chromatic dispersion,” Electron. Lett., 31, 1848-1849 (1995).<br />

[78] U. Gliese, S. Nørskov <strong>and</strong> T. N. Nielsen, “Chromatic dispersion <strong>in</strong> fiber-optic<br />

micro<strong>wave</strong> <strong>and</strong> millimeter <strong>wave</strong> l<strong>in</strong>ks,” IEEE Trans. Micro<strong>wave</strong> Theory Tech.,<br />

44, 1716-1724 (1996).


BIBLIOGRAPHY 79<br />

[79] G. H. Smith, D. Novak, <strong>and</strong> Z. Ahmed, “Novel technique for generation of<br />

optical SSB with carrier us<strong>in</strong>g a s<strong>in</strong>gle MZM to overcome fiber chromatic<br />

dispersion,” Electron. Lett., 33, 74-75 (1997).<br />

[80] B. Davies <strong>and</strong> J. Conradi, “Hybrid modulator structures for subcarrier <strong>and</strong><br />

harmonic subcarrier optical s<strong>in</strong>gle side-b<strong>and</strong>,” IEEE Photon. Technol. Lett.,<br />

10, 600-602 (1998).<br />

[81] J. Marti, J. M. Fuster, <strong>and</strong> R. I. Lam<strong>in</strong>g, “Experimental reduction of chromatic<br />

dispersion effects <strong>in</strong> light<strong>wave</strong> micro<strong>wave</strong>/millimeter-<strong>wave</strong> transmission<br />

us<strong>in</strong>g tapered l<strong>in</strong>early chirped fiber grat<strong>in</strong>gs,” Electron. Lett., 33, 1170-1171<br />

(1997).<br />

[82] G. H. Smith, D. Novak, <strong>and</strong> Z. Ahmed, “Overcom<strong>in</strong>g chromatic-dispersion<br />

effects <strong>in</strong> fiber-wireless systems <strong>in</strong>corporat<strong>in</strong>g external modulators,” IEEE<br />

Trans. Micro<strong>wave</strong> Theory Tech., 45, 1410-1415 (1997).<br />

[83] V. Polo, J. Marti, F. Ramos, <strong>and</strong> D. Moodie, “Mitigation of chromatic dispersion<br />

effects employ<strong>in</strong>g electroabsorption modulator-based transmitters,”<br />

IEEE Photon. Technol. Lett., 11, 883-885 (1999).<br />

[84] F. Ramos, J. Marti, V. Polo, <strong>and</strong> J. M. Fuster, “On the use of fiber<strong>in</strong>duced<br />

self-phase modulation to reduce chromatic dispersion effects <strong>in</strong><br />

micro<strong>wave</strong>/millimeter-<strong>wave</strong> optical systems,” IEEE Photon. Technol. Lett.,<br />

10, 1473-1475 (1998).<br />

[85] F. Ramos <strong>and</strong> J. Marti, “Frequency Transfer Function of Dispersive <strong>and</strong> <strong>Nonl<strong>in</strong>ear</strong><br />

S<strong>in</strong>gle-Mode Optical Fibers <strong>in</strong> Micro<strong>wave</strong> Optical Systems,” IEEE Photon.<br />

Technol. Lett., 12, 549-551 (2000).<br />

[86] H. Sotobayashi <strong>and</strong> K. Kitayama, “Cancellation of the signal fad<strong>in</strong>g for 60<br />

GHz subcarrier multiplexed optical DSB signal transmission <strong>in</strong> nondispersionshifted<br />

fiber us<strong>in</strong>g midway optical phase conjugation,” J. Light<strong>wave</strong> Technol.,<br />

17, 2488-2497 (1999).<br />

[87] F. Ramos, J. Marti, <strong>and</strong> V. Polo, “Compensation of chromatic dispersion<br />

effects <strong>in</strong> micro<strong>wave</strong>/millimeter-<strong>wave</strong> optical systems us<strong>in</strong>g four-<strong>wave</strong>-mix<strong>in</strong>g<br />

<strong>in</strong>duced <strong>in</strong> dispersion-shifted fibers,” IEEE Photon. Technol. Lett., 11, 1171-<br />

1173 (1999).


BIBLIOGRAPHY 80<br />

[88] F. Ramos, J Marti, V. Polo <strong>and</strong> J. M. Fuster, “Compensation of Chromatic<br />

Dispersion Effects <strong>in</strong> Micro<strong>wave</strong>/Millimeter-Wave Optical Systems Us<strong>in</strong>g<br />

Four-Wave-Mix<strong>in</strong>g Induced <strong>in</strong> Dispersion-Shifted Fibers,” Micro<strong>wave</strong> <strong>and</strong><br />

Opt. Technol. Lett. 27, 1-4 (2000).<br />

[89] J. Marti, F. Ramos <strong>and</strong> J. Herrera, “Experimental reduction of dispersion<strong>in</strong>duced<br />

effects <strong>in</strong> micro<strong>wave</strong> optical l<strong>in</strong>ks employ<strong>in</strong>g SOA boosters,” IEEE<br />

Photon. Technol. Lett., 13, 999-1001 (2001).<br />

[90] I. Frigyes, Z. Várallyay, O. Schwelb, L. Jakab <strong>and</strong> P. Richter, “Investigations<br />

<strong>in</strong> the jo<strong>in</strong>t effect of fiber dispersion <strong>and</strong> nonl<strong>in</strong>ear refraction <strong>in</strong> micro<strong>wave</strong><br />

optical l<strong>in</strong>ks,” Proceed<strong>in</strong>gs of International Topical Meet<strong>in</strong>g on Micro<strong>wave</strong><br />

Photonics, Budapest (Sept 10-12, 2003) pp. 299-302.<br />

[91] Z. Várallyay, I. Frigyes, O. Schwelb, E. Udvary, L. Jakab <strong>and</strong> P. Richter, “Soliton<br />

<strong>propagation</strong> of micro<strong>wave</strong> modulated signal through s<strong>in</strong>gle mode optical<br />

fiber,” Acta Phys. Hung. B 23, 175-186 (2005).<br />

[92] N. J. Zabusky <strong>and</strong> M. D. Kruskal, “Interactions of solitons <strong>in</strong> a collisionless<br />

plasma <strong>and</strong> the recurrence of <strong>in</strong>itial states,” Phys. Rev. Lett. 15, 240-243<br />

(1965).<br />

[93] M. Gppert-Mayer, “ Über Elementarakte mit zwei Quantensprüngen,” Ann.<br />

Phys. 9, 273-295 (1931).<br />

[94] C. Xu <strong>and</strong> W. W. Webb, “ <strong>Nonl<strong>in</strong>ear</strong> <strong>and</strong> two-photon <strong>in</strong>duced fluorescence,”<br />

<strong>in</strong> Topics <strong>in</strong> Fluorescence Spectroscopy, ed. J. Lakowicz (Plenum, New York),<br />

5, 471-540 (1997).<br />

[95] W. Denk, J. Strickler <strong>and</strong> W. Webb, “Two-photon laser scann<strong>in</strong>g fluorescence<br />

microscopy,” Science 248, 73-76 (1990).<br />

[96] B. Rózsa, G. Katona, E. S. Vizi, Z. Várallyay, A. Sághy, L. Valenta, P. Maák,<br />

J. Fekete, Á. Bányász, <strong>and</strong> R. Szipőcs, “R<strong>and</strong>om access three-dimensional<br />

two-photon microscopy,” Appl. Optics 46, 1860-1865 (2007).<br />

[97] F. Helmchen, M.S. Fee, D. W. Tank <strong>and</strong> W. Denk, “A m<strong>in</strong>iature headmounted<br />

two-photon microscope: high resolution bra<strong>in</strong> imag<strong>in</strong>g <strong>in</strong> freely mov<strong>in</strong>g<br />

animals.” Neuron, 31, 903-912 (2001).


BIBLIOGRAPHY 81<br />

[98] B. Rózsa, G. Katona, B. Lendvai, Sz. E. Vizi, P. Maák, Z. Várallyay, L.<br />

Valenta, T. Volos<strong>in</strong>, A. Vági, Á. Bányász, A. Lukács, J. Fekete <strong>and</strong> R. Szipőcs,<br />

“Fast scann<strong>in</strong>g <strong>and</strong> unicag<strong>in</strong>g strategies <strong>in</strong> 3D two-photon microscopy,” IBRO<br />

International Workshop on Neuronal Circuits: from Elementary to Complex<br />

Functions, Budapest (Jan 29-31, 2004).<br />

[99] R. Szipőcs, Á. Bányász, J. Fekete, Z. Várallyay, A. Lukács, B. Rózsa, G.<br />

Katona <strong>and</strong> S. E. Vizi, “Chirped <strong>pulse</strong> fiber delivery sytem for high speed,<br />

high spatial resolution 3D two-photon microscopy,” Conference of ESF Femtochemistry<br />

<strong>and</strong> Femtobiology (ULTRA) program, Pécs (Mar 25-28, 2004).<br />

[100] B. Rózsa, E. S. Vizi, G. Katona, A. Lukács, Z. Várallyay, A. Sághy, L.<br />

Valenta, P. Maák, J. Fekete, Á. Bányász <strong>and</strong> R. Szipőcs, “Real time 3D<br />

nonl<strong>in</strong>ear microscopy,” Trends <strong>in</strong> Optics <strong>and</strong> Photonics, 98, 858-863 (2005).<br />

[101] www.fslasers.com<br />

[102] B. Proctor <strong>and</strong> F. Wise, “Quartz prism sequence for reduction of qubic phase<br />

<strong>in</strong> a mode-locked TiAl2O3 laser,” Opt. Lett. 17 1295-1297 (1992).<br />

[103] P. Maák, L. Jakab, A. Barócsi, <strong>and</strong> P. Richter, “Improved design method for<br />

acousto-optic light deflectors,” Opt. Commun. 172, 297324 (1999).<br />

[104] www.nufern.com<br />

[105] W. Göbel, A. Nimmerjahn <strong>and</strong> F. Helmchen, “ Distortion-free delivery of<br />

nanojoule femtosecond <strong>pulse</strong>s from a Ti:sapphire laser through a hollow-core<br />

photonic crystal fiber,” Opt. Lett. 29, 12851287 (2004).<br />

[106] R. E. Sherriff, “Analytic expressions for group-delay dispersion <strong>and</strong> cubic<br />

dispersion <strong>in</strong> arbitrary prism sequences,” J. Opt. Soc. Am. B 15, 1224 1230<br />

(1998).<br />

[107] B. Császár, A. Kőházi-Kis, R. Szipőcs, <strong>in</strong> Advanced Solid-State Photonics<br />

2005 Technical Digest on CD-ROM (The Optical Society of America, Wash<strong>in</strong>gton,<br />

DC, 2005), Paper WB17, ISBN: 1-55752-781-4<br />

[108] J. Kuhl, M. Serényi, <strong>and</strong> E. O. Göbel, “B<strong>and</strong>width-limited picosecond <strong>pulse</strong><br />

generation <strong>in</strong> an actively mode-locked GaAs laser with <strong>in</strong>tracavity chirp compensation,”<br />

Opt. Lett. 12, 334-336 (1987).


BIBLIOGRAPHY 82<br />

[109] Peter Vasilev, Ultrafast Diode Lasers, Fundamentals <strong>and</strong> Applications<br />

(Artech House, Boston, London 1995).<br />

[110] W.J. Wadsworth, J.C. Knight, W.H. Reeves, P.St.J. Russell, J. Arriaga,<br />

“Yb 3+ -doped photonic crystal fibre laser,” Electronics Letters 36, 1452-1453<br />

(2000).<br />

[111] www.crystal-fibre.com<br />

[112] Z. Várallyay, J. Fekete, Á. Bányász <strong>and</strong> R. Szipőcs, “Optimiz<strong>in</strong>g <strong>in</strong>put <strong>and</strong><br />

output chirps up to the third order for sub-nanojoule, <strong>ultrashort</strong> <strong>pulse</strong> <strong>compression</strong><br />

<strong>in</strong> small core area PCF,” Appl. Phys. B, 86, 567-572 (2007).<br />

[113] Z. Várallyay, J. Fekete, Á. Bányász, R. Szipőcs, “Sub-nanojoule <strong>pulse</strong> <strong>compression</strong><br />

<strong>in</strong> small core area photonic crystal fibers below the zero dispersion<br />

<strong>wave</strong>length,” Trends <strong>in</strong> Optics <strong>and</strong> Photonics, 98, 571-576 (2005).<br />

[114] Z. Várallyay, J. Fekete, Á. Bányász, R. Szipőcs, “Pulse Compression with<br />

highly nonl<strong>in</strong>ear photonic crystal fibers by optimization of <strong>in</strong>put <strong>and</strong> output<br />

chirp parameters up to the third-order,” OSA Conference on OAA, Budapest<br />

(Aug 7-10, 2005), paper ME6.<br />

[115] Z. Várallyay, J. Fekete, Á. Bányász, S. Lakó, R. Szipőcs, “Sub-nanojoule<br />

<strong>pulse</strong> <strong>compression</strong> down to 6 fs <strong>in</strong> photonic crystal fibers,” CLEO/QELS,<br />

Baltimore, Maryl<strong>and</strong> (May 22-29, 2005), paper JThE21.<br />

[116] K. R. Tamura <strong>and</strong> M. Nakazawa, “54-fs, 10-GHz soliton generation from<br />

a polarization-ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g dispersion-flattened dispersion-decreas<strong>in</strong>g fiber<br />

<strong>pulse</strong> compressor,” Opt. Lett. 26, 762-764 (2001).<br />

[117] A. Ferr<strong>and</strong>o, E. Silvestre, P. Andrés, J. J. Miret <strong>and</strong> M. V. Andrés, “Design<strong>in</strong>g<br />

the properties of dispersion-flattened photonic crystal fibers,” Opt.<br />

Express 9, 687-697 (2001).<br />

[118] A. Ferr<strong>and</strong>o, E. Silvestre, J. J. Miret <strong>and</strong> P. Andrés, “Nearly zero ultraflattened<br />

dispersion <strong>in</strong> photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000).<br />

[119] A. Ferr<strong>and</strong>o, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andrés <strong>and</strong><br />

P. St. J. Russell “Design<strong>in</strong>g a photonic crystal fibre with flattened chromatic<br />

dispersion,” Electron. Lett. 24, 325-327 (1999).


BIBLIOGRAPHY 83<br />

[120] A. Ferr<strong>and</strong>o, E. Silvestre, J. J. Miret, P. Andrés <strong>and</strong> M. V. Andrés, “Fullvector<br />

analysis of realistic photonic crystal fiber,” Opt. Lett. 24, 276-278<br />

(1999).<br />

[121] K. Saitoh, M. Koshiba, T. Hasegawa <strong>and</strong> E. Sasaoka, “Chromatic dispersion<br />

control <strong>in</strong> photonic crystal fibers: application to ultra-flattened dispersion,”<br />

Opt. Express 11, 843-852 (2003).<br />

[122] K. Saitoh <strong>and</strong> M. Koshiba, “Highly nonl<strong>in</strong>ear dispersion-flattened photonic<br />

crystal fibers for supercont<strong>in</strong>uum generation <strong>in</strong> a telecommunication w<strong>in</strong>dow,”<br />

Opt. Express 12, 2027-2032 (2004).<br />

[123] E. Kerr<strong>in</strong>ckx, L. Bigot, M. Douay <strong>and</strong> Y. Quiquempois, “Photonic crystal<br />

fiber design by means of a genetic algorithm,” Opt. Express 12, 1990 (2004).<br />

[124] E. Silvestre, T. P. Ortega, P. Andrés, J. J. Miret <strong>and</strong> Á. Coves, “Differential<br />

toolbox to shape dispersion behavior <strong>in</strong> photonic crystal fibers,” Opt. Lett.<br />

31, 1190-1192 (2006).<br />

[125] W. H. Reeves, J. C. Knight, P. St. J. Russell <strong>and</strong> P. J. Roberts, “Demonstration<br />

of ultra-flattened dispersion <strong>in</strong> photonic crystal fibers,” Opt. Express<br />

10, 609-613 (2002).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!