13.07.2015 Views

Methods in quantum mechanical inverse scattering theory at fixed ...

Methods in quantum mechanical inverse scattering theory at fixed ...

Methods in quantum mechanical inverse scattering theory at fixed ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Methods</strong> <strong>in</strong> <strong>quantum</strong> <strong>mechanical</strong><strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong><strong>at</strong> <strong>fixed</strong> energyTamás PálmaiDoctor of Philosophy thesisDepartment of Theoretical PhysicsSupervisor: Barnabás ApagyiBudapest Universityof Technology and EconomicsBudapest, HungaryMay, 2012Copyright c○Tamás Pálmai, 2012


ContentsAcknowledgmentsiChapter 1. Introduction 11. Elements of sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong> 22. Inverse sc<strong>at</strong>ter<strong>in</strong>g <strong>at</strong> <strong>fixed</strong> energy 5Chapter 2. Newton-type methods 91. Introduction 92. The Newton-Sab<strong>at</strong>ier and Cox-Thompson methods 133. Parity dependent simplific<strong>at</strong>ion and approxim<strong>at</strong>ions 184. Consistency <strong>in</strong>vestig<strong>at</strong>ions 245. Generaliz<strong>at</strong>ion to long-range potentials 28Chapter 3. Transform<strong>at</strong>ional procedures 361. Introduction 362. Liouville transform<strong>at</strong>ion 363. Us<strong>in</strong>g the Gel’fand-Levitan <strong>in</strong>version – Horváth-Apagyi method 384. Us<strong>in</strong>g the Marchenko <strong>in</strong>version 54Chapter 4. Applic<strong>at</strong>ions to measurement d<strong>at</strong>a 611. Introduction 612. Electron-argon potentials 613. Nucleon-alpha potentials 624. Pion-pion quasipotentials 645. Tables and figures 66AppendicesAppendix A. Spectral <strong>theory</strong> of the one dimensional Schröd<strong>in</strong>ger oper<strong>at</strong>or 751. Introduction 752. Def<strong>in</strong>itions 763. Inverse problems 80Appendix B. Special functions 821. Introduction 822. Coulomb wave functions 833. Bessel functions 84Bibliography 90ii


CHAPTER 1IntroductionThe idea of <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g <strong>in</strong> <strong>quantum</strong> mechanics was first considered by Heisenberg<strong>in</strong>the1940s,st<strong>at</strong><strong>in</strong>gth<strong>at</strong>the<strong>in</strong>teractions <strong>in</strong>a<strong>quantum</strong>systemshouldbecompletelydeterm<strong>in</strong>ed by the sc<strong>at</strong>ter<strong>in</strong>g m<strong>at</strong>rix. S<strong>in</strong>ce then the <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong> <strong>in</strong> <strong>quantum</strong>mechanics has been developed and it stimul<strong>at</strong>ed much advancement <strong>in</strong> theoreticalphysics. The <strong>in</strong>verse problem of potential sc<strong>at</strong>ter<strong>in</strong>g of a s<strong>in</strong>gle non-rel<strong>at</strong>ivistic particle<strong>in</strong> one dimension was solved by Gel’fand, Levitan, Marchenko and Kre<strong>in</strong> <strong>in</strong> the 50s[23, 47, 33]. This <strong>theory</strong> has l<strong>at</strong>er led to the discovery of solitonic solutions of certa<strong>in</strong>nonl<strong>in</strong>ear differential equ<strong>at</strong>ions (e.g. the Korteweg de Vries and non-l<strong>in</strong>ear Schröd<strong>in</strong>gerequ<strong>at</strong>ions) [22, 1]. The <strong>quantum</strong> version of the so called <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g transformhas been developed l<strong>at</strong>er, <strong>in</strong> the 70s and 80s [32], which have proved <strong>in</strong>strumental <strong>in</strong> thedescription of low dimensional <strong>quantum</strong> systems. On the other hand, the problem onthe scale of potential sc<strong>at</strong>ter<strong>in</strong>g – the topic of this work – still has undeveloped aspectsand <strong>at</strong>tracts <strong>in</strong>terest, mostly from the nuclear physics community.This thesis is devoted to the development and applic<strong>at</strong>ion of <strong>quantum</strong> <strong>mechanical</strong><strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g methods, which can be used to extract effective central potentialsgovern<strong>in</strong>g the sc<strong>at</strong>ter<strong>in</strong>g of composite <strong>quantum</strong> systems. (Potentials obta<strong>in</strong>ed by <strong>in</strong>versesc<strong>at</strong>ter<strong>in</strong>g methods will be called <strong>in</strong>verse potentials <strong>in</strong> this work.) Such methods consistof thedeterm<strong>in</strong><strong>at</strong>ion ofamodel <strong>in</strong>dependent(effective) central potential <strong>in</strong>aSchröd<strong>in</strong>gerequ<strong>at</strong>ion responsible for a sc<strong>at</strong>ter<strong>in</strong>g picture or cross section d<strong>at</strong>a described <strong>in</strong> terms ofphase shifts. Although one always has some ideas on the range and strength of the<strong>in</strong>teractions between <strong>quantum</strong> systems, their exact depth, range and shape are generallyunknown <strong>in</strong> the more <strong>in</strong>volved or less understood theories (such as the <strong>theory</strong> beh<strong>in</strong>dthe <strong>in</strong>teraction of nuclei). This fact provides the ma<strong>in</strong> motiv<strong>at</strong>ion to develop <strong>in</strong>versesc<strong>at</strong>ter<strong>in</strong>g methods.From the methodological po<strong>in</strong>t of view this work is concerned with an <strong>in</strong>verse problem,th<strong>at</strong> of recover<strong>in</strong>g the potential <strong>in</strong> the Schröd<strong>in</strong>ger equ<strong>at</strong>ion from sc<strong>at</strong>ter<strong>in</strong>g d<strong>at</strong>a.(Inverse) spectral theoretical methods of the Schröd<strong>in</strong>ger equ<strong>at</strong>ion are applied and developedto solve this problem. Rigorous tre<strong>at</strong>ment of physical, eng<strong>in</strong>eer<strong>in</strong>g, medical andeven astronomical <strong>in</strong>verse problems has become a very <strong>at</strong>tractive topic <strong>in</strong> the field ofapplied m<strong>at</strong>hem<strong>at</strong>ics <strong>in</strong> the last few years. For <strong>in</strong>stance, the famous question: ”Can onehear the shape of a drum?” also boils down to an <strong>in</strong>verse problem, an acoustic <strong>in</strong>verseeigenvalue problem [31]. A common property of the <strong>in</strong>terest<strong>in</strong>g <strong>in</strong>verse problems is th<strong>at</strong>they are ill-conditioned (i.e. the solution either does not exists, not unique or not stable[26]) which makes them difficult to solve, usually call<strong>in</strong>g for some stabiliz<strong>at</strong>ion method.The structure of this work is as follows. This chapter <strong>in</strong>troduces further the <strong>in</strong>versesc<strong>at</strong>ter<strong>in</strong>g problem of the Schröd<strong>in</strong>ger equ<strong>at</strong>ion. We start with a short exposition of1


1. ELEMENTS OF SCATTERING THEORY 2sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong>, then the ma<strong>in</strong> facts are g<strong>at</strong>hered on the problem consist<strong>in</strong>g of therecovery of a central potential from the <strong>fixed</strong> energy sc<strong>at</strong>ter<strong>in</strong>g phase shifts (equivalently,the cross section d<strong>at</strong>a given <strong>at</strong> one sc<strong>at</strong>ter<strong>in</strong>g energy). In the ma<strong>in</strong> part (chapters2, 3) development of new methods is discussed, which is followed by a short part ofapplic<strong>at</strong>ions toobta<strong>in</strong> effective potentials govern<strong>in</strong>g <strong>quantum</strong>systems frommeasurementd<strong>at</strong>a (chapter 4). It should illustr<strong>at</strong>e the usefulness of the techniques developed <strong>in</strong>chapters 2 and 3. The underly<strong>in</strong>g m<strong>at</strong>hem<strong>at</strong>ical <strong>theory</strong> (<strong>in</strong>verse spectral <strong>theory</strong> of theSturm-Liouville equ<strong>at</strong>ion) is sketched <strong>in</strong> Appendix A while some necessary results (someof which are new) on special functions are collected <strong>in</strong> Appendix B.New scientific results are conta<strong>in</strong>ed <strong>in</strong> sections 2.3 [63, 62, 58], 2.4 [56, 58], 2.5[61], 3.2 [59], 3.3 [59], 3.4 [60], 4.2 [61], 4.3, and B.3 [57, 55].1. Elements of sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong>When describ<strong>in</strong>g <strong>quantum</strong> <strong>mechanical</strong> sc<strong>at</strong>ter<strong>in</strong>g it is n<strong>at</strong>ural to adopt an oper<strong>at</strong>orialapproach, whichweshall do<strong>in</strong>itially. Considera<strong>quantum</strong><strong>mechanical</strong> system ofparticlesand let the energy oper<strong>at</strong>or be denoted byH = H 0 +Vwith H 0 be<strong>in</strong>g the energy oper<strong>at</strong>or of the free particles and V the <strong>in</strong>teraction oper<strong>at</strong>orwhich describes a sc<strong>at</strong>ter<strong>in</strong>g process. Long before (and long after) the collision the<strong>in</strong>teraction is zero and we have non-<strong>in</strong>teract<strong>in</strong>g particles. Free particles have the timedependentst<strong>at</strong>e vector, Ψ ± (t) which is given byΨ ± (t) = e −iH 0t Ψ ± ,where Ψ ± determ<strong>in</strong>es the <strong>in</strong>itial conditions. For f<strong>in</strong>ite time the st<strong>at</strong>e Ψ(t) is time-evolvedby the whole energy oper<strong>at</strong>or, th<strong>at</strong> isΨ(t) = e −iHt Ψ,which s<strong>at</strong>isfieslim ||Ψ(t)−Ψ ±(t)|| = 0.t→±∞The l<strong>at</strong>ter can be rewritten aslimt→±∞ ||Ψ−eiHt e −iH0t Ψ ± || = 0.We def<strong>in</strong>e the unitary wave oper<strong>at</strong>ors Ω ± (also known as Møller oper<strong>at</strong>ors), such th<strong>at</strong>Ω ± Ψ = limt→±∞ eiHt e −iH 0t Ψ.Another unitary oper<strong>at</strong>or, the sc<strong>at</strong>ter<strong>in</strong>g oper<strong>at</strong>or can be def<strong>in</strong>ed byS = Ω −1+ Ω −,th<strong>at</strong> rel<strong>at</strong>es the asymptotic st<strong>at</strong>es: Ψ + ∼ Ω −1+ Ψ ∼ Ω−1 + Ω −Ψ − = SΨ − .There are a number of rigorous results concern<strong>in</strong>g these oper<strong>at</strong>ors imply<strong>in</strong>g theirwell-def<strong>in</strong>ed and relevant n<strong>at</strong>ure <strong>in</strong> connection with sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong>. One of the mostmean<strong>in</strong>gful results is th<strong>at</strong> for short-range potentials (e.g. <strong>in</strong> potential sc<strong>at</strong>ter<strong>in</strong>g shortrangepotentials are those decay<strong>in</strong>g as |x| −1−ε with ε > 0) the wave oper<strong>at</strong>ors are


1. ELEMENTS OF SCATTERING THEORY 4where δ(k) is the phase shift. Ψ(r) as r → ∞ (r be<strong>in</strong>g the distance of the particlefrom the orig<strong>in</strong> or the distance between the two particles) can be viewed as the sum of<strong>in</strong>com<strong>in</strong>g and outgo<strong>in</strong>g waves,Ψ(r) = C(k) (e ikr−iδ(k) −e −ikr+iδ(k) )+o(1), r → ∞.2iThe amplitudes of the <strong>in</strong>com<strong>in</strong>g and outgo<strong>in</strong>g waves are rel<strong>at</strong>ed by the S-m<strong>at</strong>rix whichis expressed asS(k) = e 2iδ(k) .We now move on to the three dimensional case. The time-<strong>in</strong>dependent energy eigenst<strong>at</strong>esof the energy oper<strong>at</strong>or will be of central importance for us. For the wave functionΨ(x) = 〈x|Ψ〉 the govern<strong>in</strong>g equ<strong>at</strong>ion reads as(−∇2x +q(x)−k 2) Ψ(k,x,α) = 0, x ∈ R 3 , k ∈ R + , α ∈ S 2where Ψ(k,x,α) is the sc<strong>at</strong>ter<strong>in</strong>g solution correspond<strong>in</strong>g to the <strong>in</strong>cident direction α andwavenumberk, andisdef<strong>in</strong>edbyitsasymptotics: Ψ(k,x,α) = e ikx·α +O(1/|x|), |x| → ∞.We supposed the sc<strong>at</strong>ter<strong>in</strong>g potential to be local, i.e. 〈x|V|x ′ 〉 = V(x)δ(x − x ′ ). It iseasy to see th<strong>at</strong> the next term <strong>in</strong> its asymptotic expansion is given by(1.1) Ψ(k,x,α) = e ikx·α +A(α ′ ,α,k) eikrkr +o ( 1r), r = |x| → ∞, α ′ = x r .The plane wave e ikx·α is the <strong>in</strong>cident wave and the spherical wave, A(α ′ ,α,k) eikrkris theasymptotic form of the sc<strong>at</strong>tered wave. The sc<strong>at</strong>ter<strong>in</strong>g amplitude A(α,α ′ ,k) is almostthe same as the on-shell T-m<strong>at</strong>rix:A(α,α ′ ,k) = −2π 2 kT( ⃗ k, ⃗ k ′ ), | ⃗ k| = | ⃗ k ′ |.Besides consider<strong>in</strong>g local <strong>in</strong>teractions, our second assumption is spherical symmetry,th<strong>at</strong> is q(x) = q(r). Then the expansion of the wave function <strong>in</strong> terms of sphericalharmonics (Y lm (α)) simplifies to the partial wave expansion,(1.2)(1.3)Ψ(x,α) ==∞∑l∑l=0 m=−l∞∑l=04πi lψ l(k,r)Y lm (α ′ )Ȳlm(α)kr(2l+1)i lψ l(k,r)krP l (cosϑ),where ψ l (k,r) is the lth partial wave – the regular solution (ψ l (k,0) = 0) of the radialSchröd<strong>in</strong>ger equ<strong>at</strong>ion on the half-l<strong>in</strong>e(1.4)(− d2dr 2 + l(l+1) )r 2 +q(r)−k 2 ψ l (k,r) = 0 r ∈ R +and P l (cosϑ) is the lth Legendre pol<strong>in</strong>omial taken <strong>at</strong> cosϑ = α ·α ′ . It is easy to showth<strong>at</strong> the regular solution of the radial Schröd<strong>in</strong>ger equ<strong>at</strong>ion s<strong>at</strong>isfies(1.5)ψ l (k,r) = |F l (k)|r l+1 +o(r l+1 ), r → 0,(1.6)ψ l (k,r) = |F l (k)|s<strong>in</strong>(kr − lπ 2 +δ l(k))+o(1), r → ∞,


2. INVERSE SCATTERING AT FIXED ENERGY 5|F l (k)| be<strong>in</strong>g a constant (i.e. the absolute value of the Jost function, see Appendix A),provided th<strong>at</strong> the potential q(r) decays sufficiently fast as r goes to <strong>in</strong>f<strong>in</strong>ity. The phaseshifts of the partial waves, δ l (k) are def<strong>in</strong>ed by the l<strong>at</strong>ter asymptotic expression. In thechannel characterized by l the S-m<strong>at</strong>rix takes the form S l (k) = e 2iδl(k) .Similarly to the partial wave expansion for the wave function, the sc<strong>at</strong>ter<strong>in</strong>g amplitudetakes on a similar form,∞∑ l∑(1.7) A(α ′ ,α,k) = A(α ′ ·α,k) = 4πe iδ ls<strong>in</strong>δ l Y lm (α ′ )Ȳlm(α)(1.8)l=0 m=−l= 1 2i∞∑(2l +1)(e 2iδ l−1)P l (cosϑ).l=0One can see th<strong>at</strong> the knowledge of the phase shifts is equivalent to th<strong>at</strong> of the sc<strong>at</strong>ter<strong>in</strong>gamplitude.We shall be <strong>in</strong>terested <strong>in</strong> the rel<strong>at</strong>ionship between the energy oper<strong>at</strong>or and the sc<strong>at</strong>ter<strong>in</strong>goper<strong>at</strong>or. The determ<strong>in</strong><strong>at</strong>ion of S (or some equivalent quantity) from H is calledthe direct problem while its converse represents the <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problem <strong>in</strong> <strong>quantum</strong>mechanics. It is worthwhile to keep <strong>in</strong> m<strong>in</strong>d th<strong>at</strong> the experimentally availablequantity for measurement is the differential cross section: the r<strong>at</strong>io of the flux densitiesof the outgo<strong>in</strong>g and <strong>in</strong>com<strong>in</strong>g particles for a given outgo<strong>in</strong>g direction α ′ . The crosssection (or differential cross section), dσdΩ (α′ ,α,k) is rel<strong>at</strong>ed to the sc<strong>at</strong>ter<strong>in</strong>g amplitudebydσ(1.9)dΩ (α′ ,α,k) = 1 k 2|A(α′ ,α,k)| 2 .We shall discuss the <strong>in</strong>verse problem of sc<strong>at</strong>ter<strong>in</strong>g and for th<strong>at</strong> we need the sc<strong>at</strong>ter<strong>in</strong>gamplitude or the phase shifts as <strong>in</strong>put. The sc<strong>at</strong>ter<strong>in</strong>g amplitude can be recoveredthrough an <strong>in</strong>tegral equ<strong>at</strong>ion for its phase and its modulus (see e.g. [12]). On the otherhand, the phaseshifts can berecovered from the cross section by the so called phase shiftanalysis, which can be carried out as the m<strong>in</strong>imiz<strong>at</strong>ion of the error square expression( ) 2(1.10) χ 2 = 1 dσthN∑ dΩ (ϑ j,k)− dσexpdΩ (ϑ j,k)N ∆ 2 ,(ϑ j ,k)j=1where N is the number of ϑ po<strong>in</strong>ts where the measurement d<strong>at</strong>a, dσexpdΩ (ϑ j,k) is given,dσ thdΩ (ϑ j,k) is the cross section calcul<strong>at</strong>ed from the theoretical formula with phase shifts{δ l }, which need to be found. ∆ 2 (ϑ j ,k) is the measurement error square of dσexpdΩ (ϑ j,k).It is generally a good str<strong>at</strong>egy to f<strong>in</strong>d the global m<strong>in</strong>imum of χ 2 , which however is anontrivial task due to the extreme non-smoothness of χ 2 .2. Inverse sc<strong>at</strong>ter<strong>in</strong>g <strong>at</strong> <strong>fixed</strong> energyThe <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problem with spherical symmetry is an overdeterm<strong>in</strong>ed one(to see this, it is enough to consider th<strong>at</strong> the cross section depends on two cont<strong>in</strong>uousvariables while the potential to be recovered is a function of only one). Accord<strong>in</strong>gly,there are various cases of special <strong>in</strong>put d<strong>at</strong>a of <strong>in</strong>terest. One may formul<strong>at</strong>e methods


2. INVERSE SCATTERING AT FIXED ENERGY 6hav<strong>in</strong>g the sc<strong>at</strong>ter<strong>in</strong>g amplitude or the phase shifts as <strong>in</strong>put. Especially important arethe cases when we have <strong>fixed</strong> angular momentum or <strong>fixed</strong> energy phase shift. In bothcases we have uniqueness theorems imply<strong>in</strong>g the sufficiency of <strong>fixed</strong> angular momentumor <strong>fixed</strong> energy d<strong>at</strong>a. Note however th<strong>at</strong> the case of mixed d<strong>at</strong>a was also <strong>in</strong>vestig<strong>at</strong>ed[36].Fixed momentum problem is mostly covered by Appendix A, where the <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>gand spectral problems of the one dimensional Schröd<strong>in</strong>ger equ<strong>at</strong>ion on the halfl<strong>in</strong>e is discussed. The only miss<strong>in</strong>g <strong>in</strong>gredient there, is the generaliz<strong>at</strong>ion of the formul<strong>at</strong>ion(Jost solutions, spectral function, Gel’fand-Levitan and Marchenko procedures) tos<strong>in</strong>gular potentials which can be found e.g. <strong>in</strong> [38]. This is because the one dimensionalSchröd<strong>in</strong>ger equ<strong>at</strong>ion with the potential(1.11) ˜q(r) = q(r)+ l(l+1)r 2is the same as the differential equ<strong>at</strong>ion of the <strong>fixed</strong> momentum problem (as l is <strong>fixed</strong>).The <strong>fixed</strong> energy problem is much less developed. As early as the 60s it was knownth<strong>at</strong> the <strong>fixed</strong> energy phase shifts determ<strong>in</strong>e the short-range potential q(r) s<strong>at</strong>isfy<strong>in</strong>g(1.12) q(r) = 0, r > a,∫ auniquely [44]. L<strong>at</strong>er this result was sharpened [66, 27]:0r|q(r)|dr < ∞Uniqueness theorem. An <strong>in</strong>f<strong>in</strong>ite subset L, s<strong>at</strong>isfy<strong>in</strong>g the Müntz condition,∑ 1l = ∞,l∈L\{0}of the phase shifts is enough to uniquely recover the potential (if complex angular momentaare allowed this condition modifies to the Müntz-Szász condition, ∑ Rl|l| 2 = ∞).Recently it turned out th<strong>at</strong> this requirement is almost necessary [27] <strong>in</strong> the senseth<strong>at</strong> a potential with∫ a0r 1−σ |q(r)|dr < ∞, 0 < σ < 2is not determ<strong>in</strong>ed uniquely by the d<strong>at</strong>a with ∑ Rl< ∞.|l| 2On the stability of the <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problem very little is known. Globally wecan say the follow<strong>in</strong>g: if the sc<strong>at</strong>ter<strong>in</strong>g amplitude is bounded by some δ the Fouriertransform of the perturb<strong>at</strong>ion of a compactly supported, square <strong>in</strong>tegrable and boundedpotential is bounded by log|logδ|/|logδ| [65]. Locally we have [29]||r 2 δq(r)|| L 2 (0,a) ≤ c(1√N+√log 1 εwhere ( ) 2n 2n+2|s<strong>in</strong>δ(δ n )| < ε, n ≤ Naeand rq(r) is supposedto be boundedand r 2 q(r) hav<strong>in</strong>g a boundedtotal vari<strong>at</strong>ion (examplesof such functions <strong>in</strong>clude potentials hav<strong>in</strong>g bounded, cont<strong>in</strong>uous deriv<strong>at</strong>ives except)


2. INVERSE SCATTERING AT FIXED ENERGY 7<strong>at</strong> f<strong>in</strong>ite po<strong>in</strong>ts, where jumps are allowed). N is the number of given <strong>in</strong>put phase shifts.The problem with this result is th<strong>at</strong> it gives a bound <strong>in</strong> terms of an absolute error estim<strong>at</strong>eapply<strong>in</strong>g to all the phase shifts. The desirable scenario would be for rel<strong>at</strong>ive error.However, the poor convergence of q(x) to the orig<strong>in</strong>al potential both <strong>in</strong> the number N ofphase shifts utilized and the absolute error bound (ε) cannot be dismissed. This resultpo<strong>in</strong>ts out th<strong>at</strong> potential recovery is unstable, <strong>in</strong> general. In the course of this thesis itwill become transparent th<strong>at</strong> one might have several, almost phase equivalent potentials(i.e. those gener<strong>at</strong><strong>in</strong>g virtually the same set of phase shifts) as the output of <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>gmethods, when as <strong>in</strong>put only a f<strong>in</strong>ite set of phase shifts (even perhaps with error)are known. The choice from these virtually equivalent potentials is often motiv<strong>at</strong>ed bysome sensible requirement or physical <strong>in</strong>tuition (e.g. by prescrib<strong>in</strong>g ∫ ∞0|q(r) ′ |dr to bem<strong>in</strong>imal or |q(0)| < ∞).2.1. A review of <strong>in</strong>version methods <strong>at</strong> <strong>fixed</strong> energy. From a certa<strong>in</strong> po<strong>in</strong>t ofview, the <strong>fixed</strong> energy problem can be tre<strong>at</strong>ed on the same foot<strong>in</strong>g as the <strong>fixed</strong> angularmomentum one. Inthel<strong>at</strong>e fifties and <strong>in</strong>the sixties aconstructive method was developedby Levitan, Regge, Loeffel and Sab<strong>at</strong>ier [38], similar to the Gel’fand-Levitan <strong>theory</strong> (seeAppendixA), build<strong>in</strong>gupontheexistence and uniquenessof thetransform<strong>at</strong>ion oper<strong>at</strong>or(between free and perturbed solutions) and the spectral decomposition correspond<strong>in</strong>g tothe self-adjo<strong>in</strong>t oper<strong>at</strong>or (completeness <strong>in</strong> l space). The key property is th<strong>at</strong> the <strong>in</strong>putkernel is a functional of δ l (k), l ∈ R ∪ iR. Thus the d<strong>at</strong>a neccessary <strong>in</strong> this approachis obviously much more than it is physically accessible. To take <strong>in</strong>to account only thephysical phase shifts is not trivial. Indeed, there is no generally accepted method of<strong>in</strong>version <strong>at</strong> <strong>fixed</strong> energy. There exist altern<strong>at</strong>ives, however none achieved the eleganceand rigor of their counterparts’ <strong>in</strong> the <strong>fixed</strong> angular momentum problem. In essence,there exist two k<strong>in</strong>ds of <strong>in</strong>verse methods: those rely<strong>in</strong>g on <strong>in</strong>verse spectral <strong>theory</strong> (e.g.Levitan’s, the Newton-type and the transform<strong>at</strong>ional methods) and those us<strong>in</strong>g mostlydirect sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong>. The former ones are sometimes termed as formal methods. Thel<strong>at</strong>ter ones are outside of the scope of this work. Examples of these methods <strong>in</strong>clude theiter<strong>at</strong>ive-perturb<strong>at</strong>ive [46] and WKB methods of which reasonable amount of experiencehas been collected, for a survey see [34]. Another such <strong>in</strong>terest<strong>in</strong>g procedure consists ofapproxim<strong>at</strong><strong>in</strong>g the S-m<strong>at</strong>rix <strong>in</strong> term of a r<strong>at</strong>ional fraction which gives rise the so calledBargmann potentials, whose forms are known explicitly from the S-m<strong>at</strong>rix [40, 41]. Thecommon element of these procedures is the <strong>in</strong>troduction of some k<strong>in</strong>d of a theoreticalapproxim<strong>at</strong>ion.One of the most popular family of <strong>in</strong>version techniques <strong>at</strong> <strong>fixed</strong> energy consists ofthe Newton-type, or m<strong>at</strong>rix methods [12]. They strongly depend on the existence anduniqueness [66] of an l-<strong>in</strong>dependent transform<strong>at</strong>ion kernel. Then a Gel’fand-Levitan-Marchenko type <strong>in</strong>tegral equ<strong>at</strong>ion (cf. (A.41)) is supposed for this kernel. For the <strong>in</strong>putkernel <strong>in</strong> the a Gel’fand-Levitan-Marchenko-type (GLM) <strong>in</strong>tegral equ<strong>at</strong>ion an angularmomentum decomposition is postul<strong>at</strong>ed, which only depends on the potential througha f<strong>in</strong>ite number of coefficients. A rel<strong>at</strong>ion between the coefficients and the phase shiftsis derived (either l<strong>in</strong>ear or non-l<strong>in</strong>ear) and through its applic<strong>at</strong>ion the potential can beobta<strong>in</strong>ed. These type of methods are easy to use, however only capable to look forpotentials <strong>in</strong> a very specific class. In addition there are theoretical concerns: uniquesolvability of the GLM type equ<strong>at</strong>ion must be ma<strong>in</strong>ta<strong>in</strong>ed, otherwise the method breaks


2. INVERSE SCATTERING AT FIXED ENERGY 8down [68], which aspect of these methods still requires development. The m<strong>at</strong>rix methodsare discussed <strong>in</strong> Chapter 2.Recently, we developed another family of exact methods. It utilizes a Liouvilletransform<strong>at</strong>ion of the <strong>fixed</strong> energy radial Schröd<strong>in</strong>ger equ<strong>at</strong>ion to obta<strong>in</strong> its Liouvillenormal form (cf. AppendixAand seeChapter 3). Then, it turnsout th<strong>at</strong> the m-functionof the result<strong>in</strong>g oper<strong>at</strong>or is given <strong>in</strong> discrete po<strong>in</strong>ts by the <strong>fixed</strong> energy phase shifts. Them-function is meromorphic and determ<strong>in</strong>es the potential, which two properties suggestthe possibility of a scheme to recover the potential from the m-function values. Thesenew methods are discussed <strong>in</strong> Chapter 3.


CHAPTER 2Newton-type methods1. Introduction1.1. General framework <strong>at</strong> <strong>fixed</strong> energy. The <strong>fixed</strong> energy problem is formul<strong>at</strong>ed<strong>in</strong> terms of the radial Schröd<strong>in</strong>ger equ<strong>at</strong>ion for the partial waves,)(2.1)(− d2 l(l +1)+dr2 r 2 +q(r) ψ l (r) = k 2 ψ l (r) l = 0,1,2,...,with a potential s<strong>at</strong>isfy<strong>in</strong>g(2.2)(2.3)∫ 10r|logrq(r)|dr < ∞,∫ ∞1r|q(r)|dr < ∞.These conditions specify a standard sc<strong>at</strong>ter<strong>in</strong>g class (made up of functions decay<strong>in</strong>gmore rapidly than r −1 and not too s<strong>in</strong>gular <strong>in</strong> the orig<strong>in</strong>) and a short-ranged sc<strong>at</strong>ter<strong>in</strong>gpotential can assumed to be <strong>in</strong> this class.We fix k = 1 which does not lead to the loss of generality. Indeed, the dimensionfulreduced potential is recovered as q DIM (r) = k 2 q(kr). Then (2.1) can be turned <strong>in</strong>to theeigenvalue equ<strong>at</strong>ion(2.4) D(r)y(r) = λ 2 y(r),given <strong>in</strong> λ = l+ 1 2 , l = 0,1,2,... and y(r) = 2ψ r−1 l (r). The oper<strong>at</strong>or D(r) is(2.5) D(r) = D 0 (r)−r 2 q(r) = r d (r d )+r 2 −r 2 q(r), 0 < r < ∞,dr drwhere D 0 (r) with a vanish<strong>in</strong>g potential is also implicitly def<strong>in</strong>ed. Also, let ∆ 0 (r) =D 0 (r)−r 2 , which only conta<strong>in</strong>s the first term from the RHS of (2.5).Now, follow<strong>in</strong>g [38] I <strong>in</strong>troduce the spectral formalism for the <strong>fixed</strong> energy problem.It turns out, th<strong>at</strong> the Gel’fand-Levitan <strong>theory</strong> (see Appendix A) can be transferred tothe <strong>fixed</strong> energy problem with little modific<strong>at</strong>ion. The Gel’fand-Levitan <strong>theory</strong> reliesupon the spectral decomposition of the oper<strong>at</strong>ors D and D 0 (or equivalently th<strong>at</strong> of ∆ 0 )and transform<strong>at</strong>ion oper<strong>at</strong>ors which transform the solutions of the eigenvalue equ<strong>at</strong>ionsdef<strong>in</strong>ed by the previous differential oper<strong>at</strong>ors <strong>in</strong>to each other. In this framework spectrald<strong>at</strong>a (which can <strong>in</strong> ideal cases be connected to sc<strong>at</strong>ter<strong>in</strong>g d<strong>at</strong>a) determ<strong>in</strong>es an <strong>in</strong>putkernel, which gives the potential via the solution of an <strong>in</strong>tegral equ<strong>at</strong>ion. In our case,however, the sc<strong>at</strong>ter<strong>in</strong>g d<strong>at</strong>a is <strong>in</strong>sufficient to obta<strong>in</strong> the <strong>in</strong>put kernel. Nevertheless, theformalism is still useful as it turns out.9


1. INTRODUCTION 10First the boundary condition is specified. Let us denote the solutions to the eigenvalueequ<strong>at</strong>ions behav<strong>in</strong>g regularly <strong>at</strong> the orig<strong>in</strong> by φ ∆0 ,D 0 ,D(r,λ), i.e.,(2.6) φ ∆0 ,D 0 ,D(r,λ) →r λ2 λ Γ(λ+1) , r → 0.It can be shown th<strong>at</strong> only one of the two l<strong>in</strong>early <strong>in</strong>dependent solutions to the eigenvalueequ<strong>at</strong>ions behaves regularly (thus the oper<strong>at</strong>ors are limit po<strong>in</strong>t <strong>at</strong> the orig<strong>in</strong>). We willconsider regular solutions. The spectral decompositions are given by(2.7)12∫ ∞−∞φ ∆0 (r,iτ)φ ∆0 (r ′ τdτ,−iτ)s<strong>in</strong>hπτ = rδ(r −r′ )(2.8)∞∑2λ n φ D0 (r,λ n )φ D0 (r ′ ,λ n )n=1+ 1 2∫ ∞−∞(φ D0 (r,iτ)− µ )0(−iτ)µ 0 (iτ) φ D 0(r,−iτ)φ D0 (r ′ τdτ,−iτ)s<strong>in</strong>hπτ = rδ(r −r′ )(2.9)∞∑ 1||φ D (r,λ n )|| 2φ D(r,λ n )φ D (r ′ ,λ n )+ 1 ∫ ∞(φ D (r,iτ)− µ(−iτ) )2 µ(iτ) φ D(r,−iτ) φ D (r ′ τdτ,−iτ)s<strong>in</strong>hπτ = rδ(r −r′ )n=1−∞rNoteth<strong>at</strong>φ ∆0 (r,λ) =λ2 λ Γ(λ+1) andφ D 0(r,λ) = J λ (r), thel<strong>at</strong>terbe<strong>in</strong>gtheBesselfunctionof the first k<strong>in</strong>d. For the other quantities λ n , µ 0 , µ and ||...|| 2 see [38].The transform<strong>at</strong>ion oper<strong>at</strong>ors are def<strong>in</strong>ed as <strong>in</strong> Appendix A, but now the <strong>in</strong>tegr<strong>at</strong>ionmeasure is 1 r, thus a transform<strong>at</strong>ion oper<strong>at</strong>or X applied to a function f(r) gives(2.10) Xf(r) = f(r)+∫ r0A(r,t)f(t) dtt ,with some kernel A(r,t). The kernels A ∆0 ,D, A D0 ,D belong<strong>in</strong>g to the transform<strong>at</strong>ionoper<strong>at</strong>ors X ∆0 ,D : φ ∆0 → φ D , X D0 ,D : φ D0 → φ D , respectively, s<strong>at</strong>isfy appropri<strong>at</strong>edifferential equ<strong>at</strong>ions with boundary conditions(2.11) A ∆0 ,D(r,r) = − r24 + 1 2∫ r0sq(s)ds(2.12) A D0 ,D(r,r) = 1 2∫ r0sq(s)dsThe Gel’fand-Levitan-type <strong>in</strong>tegral equ<strong>at</strong>ions are <strong>in</strong> the form(2.13) 0 = A B,D (r,r ′ )+F B,D (r,r ′ )+∫ r0A B,D (r,r ′′ )F B,D (r ′′ ,r ′ ) dr′′r ′′ ,r′ < r


1. INTRODUCTION 11where B is one of ∆ 0 and D 0 . Similarly to (A.43) the kernels are of the form(2.14)(2.15)F ∆0 ,D(r,r ′ ) =F D0 ,D(r,r ′ ) =which can be expressed explicitly as∫ ∞−∞∫ ∞−∞φ ∆0 (r,λ)φ ∆0 (r ′ ,λ)dσ ∆0 ,D(λ)φ D0 (r,λ)φ D0 (r ′ ,λ)dσ D0 ,D(λ)(2.16) F ∆0 ,D(r,r ′ ) = f(rr ′ )with(2.17) f(r) =and∞∑n=1(2.18) F D0 ,D(r,r ′ ) =1a 2 − 1 ∫ ∞n4 λn Γ(1+λ n ) 2rλn 2 −∞n=0µ(−iτ) τdτ4 iτ Γ(1−iτ) 2 µ(iτ) s<strong>in</strong>hπτr iτ∞∑∞∑J λn (r)J λn (r ′ )− 2nJ 2n (r)J 2n (r ′ )n=1∫ ∞− 1 2−∞( µ(−iτ)µ(iτ) +1 )J iτ (r)J iτ (r ′ τdτ)s<strong>in</strong>hπτThe quantities λ n and µ appear<strong>in</strong>g <strong>in</strong> the <strong>in</strong>put kernels are functionals of the phase shiftfunction δ(λ) def<strong>in</strong>ed by the asymptotic behaviour of the solution φ D (r,λ),( πr) −1(2(2.19) φ D (r,λ) = A(λ)s<strong>in</strong> r − π (λ− 1 ) )+δ(λ) +o(1), r → ∞,2 2 2and δ(λ) is required for real and pure imag<strong>in</strong>ary λ’s. Note th<strong>at</strong> the uniqueness theoremof Chapter 1 suggests th<strong>at</strong> δ(λ) could be obta<strong>in</strong>ed for the nonphysical arguments fromthe physical d<strong>at</strong>a, however there is no such procedure currently available.Now, suppose th<strong>at</strong> the potential q(r) is the restriction of an entire function to thehalf l<strong>in</strong>e. In this case it can be shown th<strong>at</strong> the <strong>in</strong>put kernels admit the expansions∞∑ ∞∑(2.20) F ∆0 ,D(r,r ′ ) = a n (rr ′ ) n + a n+1/2 (rr ′ ) n+1/2(2.21) F D0 ,D(r,r ′ ) =(2.22)(2.23)(2.24)n=1n=1n=0∞∑∞∑c n J n (r)J n (r ′ )+ c n+1/2 J n+1/2 (r)J n+1/2 (r ′ )For further reference let us give (2.13), (2.10), (2.21) for the functionsNamely, we have(2.25) K(r,r ′ ) = g(r,r ′ )−n=0K(r,r ′ ) = − √ rr ′ A ∆0 ,D(r,r ′ ),g(r,r ′ ) = √ rr ′ F ∆0 ,D(r,r ′ ),ψ l (r) = √ rφ D (r,λ−1/2).∫ r0K(r,t)g(t,r ′ ) dtt 2, r ≥ r′ ,


1. INTRODUCTION 12with(2.26)where(2.27)(2.28)Further,(2.29) ψ l (r) = u l (r)−L r K(r,r ′ ) = L y0 K(r,r ′ ), 0 < r ′ ≤ r,q(r) = − 2 rddrK(r,r), K(r,0) = 0r]L r =[r 2 d2dr 2 +r2 −r 2 q(r)]L r0 =[r 2 d2dr 2 +r2 .∫ r0K(r,r ′ )u l (r ′ )r ′ −2 dr ′ , K(r,0) = 0where u l (r) is the lth Ricc<strong>at</strong>i-Bessel function,√ πr(2.30) u l (r) =2 J l+ 1 (r)2which is the regular solution of the free radial Schröd<strong>in</strong>ger equ<strong>at</strong>ion (q ≡ 0). Theexpansion for the restriction of analytic potentials can be written as∞∑∞∑(2.31) g(r,r ′ ) = c ′ n u n−1/2(r)u n−1/2 (r ′ )+ c ′ n+1/2 u n(r)u n (r ′ ).n=11.2. M<strong>at</strong>rix methods. While the above general formul<strong>at</strong>ion is very appeal<strong>in</strong>g, itis not apparent how it is useful when solv<strong>in</strong>g the <strong>in</strong>verse problem <strong>at</strong> <strong>fixed</strong> energy, i.e.determ<strong>in</strong><strong>in</strong>g the potential from the <strong>fixed</strong> energy physical phase shifts. The problem isth<strong>at</strong> thephaseshiftsrequiredfortheconstruction ofthe<strong>in</strong>putkernelaremuchmorethanaccessible physically (i.e. phase shifts not only for non-<strong>in</strong>teger but also for imag<strong>in</strong>aryangular momenta).Newton-type methods solve this problem by tak<strong>in</strong>g the expansion (more preciselyonly a part of) (2.31) and determ<strong>in</strong><strong>in</strong>g the coefficients from the phase shifts throughtak<strong>in</strong>g the r → ∞ limit of the Povzner-Levitan represent<strong>at</strong>ion (2.29). We note, th<strong>at</strong><strong>in</strong>dependent of the above construction the existence of K(r,r ′ ) <strong>in</strong> (2.29) s<strong>at</strong>isfy<strong>in</strong>g theGours<strong>at</strong>-type problem (2.26) was shown <strong>in</strong> [66].The differential equ<strong>at</strong>ion for the transform<strong>at</strong>ion kernel implies <strong>in</strong> turn for g(r,r ′ )(2.32) L r0 g(r,r ′ ) = L r ′ 0g(r,r ′ ), g(r,0) = g(0,r ′ ) = 0.If only look<strong>in</strong>g <strong>at</strong> this equ<strong>at</strong>ion one can see th<strong>at</strong> g(r,r ′ ) is a good candid<strong>at</strong>e for approxim<strong>at</strong>ions<strong>in</strong>ce its differential equ<strong>at</strong>ion can be s<strong>at</strong>isfied trivially, for <strong>in</strong>stance if the angularmomentum expansionn=0(2.33) g(r,r ′ ) = ∑ lc l γ l (r,r ′ ),


2. THE NEWTON-SABATIER AND COX-THOMPSON METHODS 13is imposed then for the γ l (r,r ′ ) functions we only have the potential-<strong>in</strong>dependent restrictionsof(2.34) L r0 γ l (r,r ′ ) = L r ′ 0γ l (r,r ′ ), γ l (r,0) = γ l (0,r ′ ) = 0, ∀l.and the <strong>in</strong>form<strong>at</strong>ion is put <strong>in</strong> the c l expansion coefficients.However thisisnotcompletely true. Noteth<strong>at</strong>byapproxim<strong>at</strong><strong>in</strong>gthe<strong>in</strong>putkernelonemight <strong>in</strong>troduce <strong>in</strong>consistency to one’s method. This is because the angular momentumdecomposition with arbitrary coefficients does not yield, <strong>in</strong> general [68], a potential evenif the differential equ<strong>at</strong>ion for the <strong>in</strong>put kernel g(r,r ′ ) is s<strong>at</strong>isfied. The reason for this lies<strong>in</strong> the fact th<strong>at</strong> the fulfillment of the differential equ<strong>at</strong>ion is not sufficient for the GLMtype<strong>in</strong>tegral equ<strong>at</strong>ion to be uniquely solvable. This problem was the source of confusion<strong>in</strong> the liter<strong>at</strong>ure and this l<strong>in</strong>e of thought is cont<strong>in</strong>ued <strong>in</strong> section 4 (<strong>in</strong> the context of theCox-Thompson method), for now it is supposed th<strong>at</strong> equ<strong>at</strong>ion (2.25) is uniquely solvablewith g(r,r ′ ).Another fe<strong>at</strong>ure is th<strong>at</strong> depend<strong>in</strong>g on the basis functions quite different procedurescan be obta<strong>in</strong>ed. In the Newton-Sab<strong>at</strong>ier procedure we take γ l (r,r ′ ) = u l (r)u l (r ′ ) whichyields a l<strong>in</strong>ear problem <strong>in</strong> terms of the d<strong>at</strong>a for the coefficients. This method <strong>in</strong> itselfconta<strong>in</strong>s a parameter th<strong>at</strong> must be chosen to get a potential which decays faster thanthe others <strong>at</strong> <strong>in</strong>f<strong>in</strong>ity. The Newton-Sab<strong>at</strong>ier method was l<strong>at</strong>er modified by Münchowand Scheid trunc<strong>at</strong><strong>in</strong>g the range of the <strong>in</strong>version, tak<strong>in</strong>g q(r) = 0, r > a [52]. Thistrunc<strong>at</strong>ion proved to be highly beneficial and the subsequent mNS method was usedby various authors <strong>in</strong> the 80s and 90s to obta<strong>in</strong> effective potentials govern<strong>in</strong>g <strong>quantum</strong>systems, ma<strong>in</strong>ly of nuclear physical <strong>in</strong>terest. The mNS method while l<strong>in</strong>ear thus easy tohandle has some drawbacks most prom<strong>in</strong>ently produc<strong>in</strong>g potentials be<strong>in</strong>g s<strong>in</strong>gular <strong>at</strong> theorig<strong>in</strong>, contrary to the frequent assumption of non-s<strong>in</strong>gular behavior for nuclear physicalpotentials <strong>at</strong> the orig<strong>in</strong>. To overcome this difficulty it turns out th<strong>at</strong> one must take adifferent ans<strong>at</strong>z for the γ l (r,r ′ ) functions. Tak<strong>in</strong>g the Cox-Thompson prescription [14]producespotentials generally be<strong>in</strong>gf<strong>in</strong>ite<strong>at</strong> theorig<strong>in</strong> however it also entails abandon<strong>in</strong>gthe l<strong>in</strong>ear problem for a nonl<strong>in</strong>ear one.2. The Newton-Sab<strong>at</strong>ier and Cox-Thompson methods2.1. Newton-Sab<strong>at</strong>ier method and its modific<strong>at</strong>ion. Start<strong>in</strong>g from the ans<strong>at</strong>zimposed on the symmetric kernel∞∑(2.35) g(r,r ′ ) = c l u l (r)u l (r ′ ),l=0one obta<strong>in</strong>s the Newton-Sab<strong>at</strong>ier method. This prescription is ”half” of the series (2.31),thus ideal convergence properties are not expected for a general potential. On the otherhand the method yielded is easily applicable and is <strong>in</strong>deed one of the most frequentlyused <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g procedure.If the Newton-Sab<strong>at</strong>ier expansion is substituted <strong>in</strong>to the <strong>in</strong>tegral equ<strong>at</strong>ion one gets∞∑∫ ∞∞∑(2.36) K(r,r ′ ) = c l u l (r)u l (r ′ )− dr ′′ r ′′ −2 K(r,r ′′ ) c l u l (r ′′ )u l (r ′ ),l=00l=0


2. THE NEWTON-SABATIER AND COX-THOMPSON METHODS 14which <strong>in</strong> view of the PL represent<strong>at</strong>ion (2.29) implies(2.37) K(r,r ′ ) =∞∑c l ψ l (r)u l (r ′ ).This is then substituted <strong>in</strong>to the PL represent<strong>at</strong>ion with the result∞∑(2.38) ψ l (r) = u l (r)− c l ′L ll ′(r)ψ l ′(r),where(2.39) L ll ′(r) =∫ r0l=0l ′ =0{ ∫ rdtt −2 0u l (t)u l ′(t) =dtt−2 u 2 l(t) l = l′W[u l ,u l ′](r)l ′ (l ′ +1)−l(l+1)l ≠ l ′given explicitly <strong>in</strong> terms of the Wronskian W[a,b] = ab ′ −a ′ b for l ≠ l ′ . This equ<strong>at</strong>ionis then taken <strong>at</strong> x → ∞, whereψ l (r) = B l s<strong>in</strong>(r −lπ/2+δ l )+o(1),x → ∞applies and an <strong>in</strong>f<strong>in</strong>ite system of l<strong>in</strong>ear equ<strong>at</strong>ion is yielded for B l ’s and c l ’s. However,the solution of this system of equ<strong>at</strong>ions is not unique, which problem, <strong>in</strong> <strong>theory</strong>, can beremedied by choos<strong>in</strong>g the solution giv<strong>in</strong>g rise to the most decay<strong>in</strong>g potential [71]. Inaddition the potentials have zero first momenta (which is consistent with an undesirableoscill<strong>at</strong>ion <strong>at</strong> large distances) and possess a non-physical simple pole <strong>at</strong> x = 0. All <strong>in</strong>all, the Newton-Sab<strong>at</strong>ier method is considered impractical, with good reason.There is a modific<strong>at</strong>ion [52] of this procedure, however, which is applicable to tre<strong>at</strong>potentials with compact support, [0,a]. In this case(2.40) ψ l (r) = A l (cos(δ l )u l (r)−s<strong>in</strong>(δ l )v l (r)) ≡ A l α l (r), r > aapplies for the partial waves, which is def<strong>in</strong>ite for any r, <strong>in</strong> terms of the phase shifts. Ifthis is substituted <strong>in</strong>to (2.38) one getsl∑max(2.41) A l α l (r) = u l (r)− c l ′A l ′L ll ′(r)α l ′(r) l ∈ S ≡ {0,1,...,l max }.l ′ =0Let c l A l = C l and a kl (r) = α l (r)δ kl where δ kl is the Kronecker-delta. Then (2.41) turns<strong>in</strong>to∑(2.42) akl (r)A l = u l (r)− ∑ L kl (r) ∑ a ll ′(x)C l ′ k ∈ S.Let nowandM k ={A k , k ≤ l maxC k−lmax , k > l max{a lk (x) k ≤ l maxN lk = ∑ lmaxk ′ =0 L lk ′(r)a k ′ k(r) k > l max ,


2. THE NEWTON-SABATIER AND COX-THOMPSON METHODS 15then one gets the system of l<strong>in</strong>ear equ<strong>at</strong>ions(2.43)2l∑ maxk=0N lk (r)M k = u l (r), l ∈ S.This system is underdeterm<strong>in</strong>ed for a s<strong>in</strong>gle r 1 parameter, however, if it is used <strong>in</strong> morer i po<strong>in</strong>ts simultaneously it is solvable, per se. Moreover for three of more r i ’s it isoverdeterm<strong>in</strong>ed and one can use a least squares method to get a solution. In case ofd<strong>at</strong>a with considerable errors, solv<strong>in</strong>g the overdeterm<strong>in</strong>ed system of equ<strong>at</strong>ions for thecoefficients can be beneficial. Indeed, the result might also vary as the r i po<strong>in</strong>ts arevaried, which is to be avoided and generally some stability exam<strong>in</strong><strong>at</strong>ion is necessary.If the coefficients c l are obta<strong>in</strong>ed, the potential is yielded by(2.44)q(r) =− 2 r=− 2 rddrl∑maxl=0( ∑lmax)l=0 c lu l (r)ψ l (r)r[ u′c l · l(r)ψ l (r)+ u l(r)ψl ′(r)− u ]l(r)ψ l (r)r r r 2 ,readily, where ψ l (r) and ψl ′ (r) is to be calcul<strong>at</strong>ed from (2.38) and its deriv<strong>at</strong>ive. Anobvious advantage of this procedure is its l<strong>in</strong>earity: only l<strong>in</strong>ear systems of equ<strong>at</strong>ionsneed to be solved. Nevertheless, the non-physical pole <strong>at</strong> the orig<strong>in</strong> is still a (sometimesunwanted) fe<strong>at</strong>ure of this mNS method.2.2. Cox-Thompson method. In the framework of the method proposed by Coxand Thompson [14] one takes the follow<strong>in</strong>g separable form for the γ l (r,r ′ ) functions(2.45) γ l (r,r ′ ) = u l (m<strong>in</strong>(r,r ′ ))v l (max(r,r ′ )),which is also the Green’s function of the q ≡ 0 radial Schröd<strong>in</strong>ger equ<strong>at</strong>ion for the lthpartial wave:[ ] d2l(l+1)(2.46)+1−dr2 r 2 γ l (r,r ′ ) = δ(r −r ′ );and the summ<strong>at</strong>ion <strong>in</strong> g(r,r ′ ) runs only over a f<strong>in</strong>ite set S of <strong>in</strong>put physical angularmomenta, l’s:(2.47) g(r,r ′ ) = ∑ l∈Sc l u l (m<strong>in</strong>(r,r ′ ))v l (max(r,r ′ )),conta<strong>in</strong><strong>in</strong>g the Ricc<strong>at</strong>i-Bessel functions (regular and irregular solutions of the free radialSchröd<strong>in</strong>ger equ<strong>at</strong>ion), connected to the Bessel and Neumann functions by√ √ πrπr(2.48) u l (r) =2 J l+ 1 (r), v l (r) =2 2 Y l+ 1 (r).2Tak<strong>in</strong>g such an expansion can be <strong>in</strong>terpreted as go<strong>in</strong>g beyond the expansion (2.31)com<strong>in</strong>g from the general framework for a potential be<strong>in</strong>g the restrictions of analyticfunctions. Also, one can view the Cox-Thompson ans<strong>at</strong>z as a resumm<strong>at</strong>ion of (2.31).


2. THE NEWTON-SABATIER AND COX-THOMPSON METHODS 16For solv<strong>in</strong>g the GLM-type equ<strong>at</strong>ion (2.25) we use the separable ans<strong>at</strong>z(2.49) K(r,r ′ ) = ∑ L∈TA L (r)u L (r ′ )with a f<strong>in</strong>ite set T of ”shifted angular momenta” s<strong>at</strong>isfy<strong>in</strong>g S∩T = ∅ and |S| = |T|. Theuse of such an ans<strong>at</strong>z can be motiv<strong>at</strong>ed by the follow<strong>in</strong>g result ascerta<strong>in</strong>ed from [13, 58].Proposition 1. If y −1/2 K(r,r ′ ) = O(1), y → 0 is imposed on K(r,r ′ ) and the Lnumbers are restricted to L > −0.5 then∏L∈T(l(l +1)−L(L+1))(2.50) c l = ∏l ′ ∈S,l ′ ≠l (l(l +1)−l′ (l ′ ⇔ K(r,r ′ ) = ∑ A L (r)u L (r ′ ).+1))L∈TWhere {c l } ↔ {L} is a one-to-one mapp<strong>in</strong>g.Also, this form provides a reasonably easy way to solve the GLM-type <strong>in</strong>tegral equ<strong>at</strong>ion.In fact, it makes two (<strong>in</strong>dependent) systems of algebraic equ<strong>at</strong>ions <strong>in</strong>stead of the<strong>in</strong>tegral equ<strong>at</strong>ion, namely th<strong>at</strong> of (2.50) and(2.51)∑L∈TA L (r) u L(r)v ′ l (r)−u′ L (r)v l(r)l(l+1)−L(L+1)= v l (r), l ∈ S.The parameters of the set T can be obta<strong>in</strong>ed from the phase shifts {δ l } l∈S throughthe transform<strong>at</strong>ion equ<strong>at</strong>ion (2.29), which <strong>in</strong> terms of the L’s takes the form(2.52) ψ l (r) = u l (r)− ∑ L∈TA L (r) u L(r)u ′ l (r)−u′ L (r)u l(r)l(l+1)−L(L+1)Tak<strong>in</strong>g both equ<strong>at</strong>ion (2.52) and (2.51) for large r’s, i.e. r → ∞ we get the system ofnonl<strong>in</strong>ear equ<strong>at</strong>ions [4, 51, 63] connect<strong>in</strong>g {δ l } l∈S to T:(2.53) e 2iδ l= 1+iK+ l1−iK − laltern<strong>at</strong>ively, l ∈ S,K + l+K − l(2.54) tanδ l =2+i(K + l−K − l ∈ S,l),with(2.55) K ± l= ∑ ∑[M s<strong>in</strong> ] lL [Mcos] −1 Ll ′e ±i(l−l′ )π/2l ∈ S,L∈T l ′ ∈S{ }{Ms<strong>in</strong> 1 s<strong>in</strong>((l−L)π/2)(2.56) =M cos L(L+1)−l(l+1) cos((l−L)π/2)lLThe potential is expressed as(2.57)q(x) = 2 K(x,x)x 3 −2 K′ (x,x)x 2 = 2 ∑ [AL (x)u L (x)x 3 − A L(x)u ′ L (x)+A′ L (x)u ]L(x)x 2 ,Lwhere the differenti<strong>at</strong>ion can be performed analytically and A L (x), A ′ L(x) are calcul<strong>at</strong>edfrom equ<strong>at</strong>ion (2.51).}.


2. THE NEWTON-SABATIER AND COX-THOMPSON METHODS 172.2.1. Asymptotics. Concern<strong>in</strong>g the asymptotics of the CT potential, first we showth<strong>at</strong> the potential is generally not compactly supported nor is of long-range. To see thisdef<strong>in</strong>e the functions {A a L (r)} L∈T by the limit(2.58) A L (r) = A a L (r)+o(1), r → ∞, L ∈ T.Take the asymptotic version of equ<strong>at</strong>ion (2.51),∑(2.59) A a cos((l −L) π 2L(r))l(l +1)−L(L+1) = −cos(r −lπ ), l ∈ S,2L∈Tand differenti<strong>at</strong>e it twice with respect to the variable r. Thend 2 A a L(2.60)(r)dr 2 = −A a L (r),is obta<strong>in</strong>ed, which admits a periodic solution [63](2.61) A a L(r) = a L cos(r)+b L s<strong>in</strong>(r),where a L ’s and b L ’s are constants depend<strong>in</strong>g on all the elements of both S and T:∑ cos( π 2(2.62) a (l−L))L(lL(L+1)−l(l +1) = cos π ), l ∈ S,2(2.63)L∈T∑L∈Tb LThis form <strong>in</strong> turn implies th<strong>at</strong>cos( π 2(l −L)) (lL(L+1)−l(l+1) = s<strong>in</strong> π ), l ∈ S.2(2.64) K(r,r) = αs<strong>in</strong>(2r)+βcos(2r)+γ +o(1), r → ∞and thus(2.65) q(r) = βs<strong>in</strong>(2r)−αcos(2r)r 2 ·(1+o(1)), r → ∞.Which means th<strong>at</strong> the potential generally falls of as a second <strong>in</strong>verse power.One can give a necessary condition for the potential to decrease more rapidly thenO(r −2 ) [58]. One only needs(2.66) α = β = 0.The quantities α and β are given byα = 1 ∑ (a L cosL π 2 2 −b Ls<strong>in</strong>L π )(2.67)2L∈Tβ = − 1 ∑(a L s<strong>in</strong>L π 2 2 +b LcosL π )(2.68).2L∈TAltern<strong>at</strong>ively, K(r,r) can be written as a series <strong>in</strong> l (this formula does not hold forK(r,r ′ ) with r ≠ r ′ ),(2.69) K(r,r) = ∑ l∈Sc l ψ l (r)v l (r),


3. PARITY DEPENDENT SIMPLIFICATION AND APPROXIMATIONS 18which can readily be seen from the GLM equ<strong>at</strong>ion (2.25) taken <strong>at</strong> r = r ′ and the CTformula (2.45) substituted for g(r,r ′ ):(2.70)(2.71)K(r,r) = ∑ l∈S= ∑ l∈Sc l u l (r)v l (r)−[c l v l (r) u l (r)−∫ r0∫ rdtt −2 K(r,t) ∑ l∈S]K(r,ρ)u l (t)t −2 dt ,0c l u l (t)v l (r)where the formula (2.29) for ψ l (r) has appeared. This allows for the altern<strong>at</strong>ive conditions∑∑(2.72) (−1) l c l B l cosδ l = 0, and (−1) l c l B l s<strong>in</strong>δ l = 0l∈S<strong>in</strong>volv<strong>in</strong>g the expansion coefficients, the <strong>in</strong>put phase shifts and the normaliz<strong>at</strong>ion constantsof the partial wave functions.Such results may serve as useful tools to check numerical results or <strong>in</strong>corpor<strong>at</strong>ed <strong>in</strong>toa solution method provid<strong>in</strong>g a way to control the undesirable oscill<strong>at</strong>ions of the <strong>in</strong>versepotential.Second, we note th<strong>at</strong> the potential <strong>at</strong> the orig<strong>in</strong> is given by(2.73) q(r) = Q−2(1−Q)∑L∈T,l∈Sl∈SG −1lL2l −1 +O(r2 ), r → 0com<strong>in</strong>g from the power series of the Bessel functions appear<strong>in</strong>g <strong>in</strong> the explicit formulasfor q(r), conta<strong>in</strong><strong>in</strong>g the <strong>in</strong>verse of the G m<strong>at</strong>rix with elements(2.74) [G] Ll = 1L−land Q = ∑L∈T,l∈SG −1lLL+ 3 .2Thisform showsth<strong>at</strong> thepotential starts <strong>at</strong> theorig<strong>in</strong> with zero deriv<strong>at</strong>ive and, generallyfrom a f<strong>in</strong>ite value |q(0)| < ∞.Three aspects of the Cox-Thompson method are discussed <strong>in</strong> the rema<strong>in</strong>der of thischapter: i) simplific<strong>at</strong>ions of the system of nonl<strong>in</strong>ear equ<strong>at</strong>ions and the <strong>in</strong>troduction ofsome approxim<strong>at</strong>ive solutions, ii) consistency of the method and iii) generaliz<strong>at</strong>ion toefficiently tre<strong>at</strong> long-ranged potentials with known asymptotics far from the orig<strong>in</strong>.3. Parity dependent simplific<strong>at</strong>ion and approxim<strong>at</strong>ionsIn this section we present simplific<strong>at</strong>ions to equ<strong>at</strong>ions (2.53) which can be used ifonly even (odd) partial waves are aris<strong>in</strong>g dur<strong>in</strong>g the collision. Otherwise the simplifiedequ<strong>at</strong>ions can be employed to construct different approxim<strong>at</strong>ions which will be discussed<strong>in</strong> separ<strong>at</strong>e subsections [63, 62].3.1. Even (odd) angular momentum tre<strong>at</strong>ment. Insert<strong>in</strong>g the periodic solution(2.61) <strong>in</strong>to equ<strong>at</strong>ion (2.59) and tak<strong>in</strong>g <strong>in</strong>to account the <strong>in</strong>dependence of the s<strong>in</strong>eand cos<strong>in</strong>e functions, one gets the follow<strong>in</strong>g two equ<strong>at</strong>ions∑{ } ( )aL cos (l−L)π { ( ) }2 cos lπ(2.75)b L L(L+1)−l(l+1) = 2s<strong>in</strong> ( l π ) , l ∈ S.2L∈T


3. PARITY DEPENDENT SIMPLIFICATION AND APPROXIMATIONS 19Consider the decompositionS = S e ∪S owhere S e and S o conta<strong>in</strong>s, respectively, the even and odd elements of S. Instead of (2.59)we consider two systems:∑} ( )cos (l −L)π { ( ) }2 cos lπb L L(L+1)−l(l+1) = 2s<strong>in</strong> ( l π ) , l ∈ S e2andL∈T e{aL∑L∈T o{aL} ( )cos (l −L)π { ( )2 cos lπb L L(L+1)−l(l+1) = 2s<strong>in</strong> ( l π )2}, l ∈ S o ,where |T e | = |S e |, |T o | = |S o | and T e ∩ S e = ∅, T o ∩ S o = ∅. These systems have thesolutions∏l∈S(2.76) a L = e(L(L+1)−l(l +1)) 1∏L ′ ∈T e\{L} (L(L+1)−L′ (L ′ +1)) cos ( L π ), b L = 0, L ∈ T e ,2and∏l∈S(2.77) a L = 0, b L = o(L(L+1)−l(l+1)) 1∏L ′ ∈T o\{L} (L(L+1)−L′ (L ′ +1)) s<strong>in</strong> ( L π ), L ∈ T o ,2respectively. In case of T e ∩T o ≠ ∅ the formulae (2.76) and (2.77) may assign differentvalues to the same a L and b L butthis is not a real ambiguity because the solution vectors(2.76) and (2.77) are always used separ<strong>at</strong>ely.Now, by us<strong>in</strong>g the explicit expressions (2.76) <strong>in</strong> equ<strong>at</strong>ions (2.61) and the asymptoticversion of (2.29), one obta<strong>in</strong>s a simplified equ<strong>at</strong>ions <strong>in</strong>stead of (2.53):(2.78) tan(δ l ) = − ∑ ∏l ′ ∈S e\{l} (L(L+1)−l′ (l ′ +1))∏(LL∈T eL ′ ∈T e\{L} (L(L+1)−L′ (L ′ +1)) tan π ), l ∈ S e ,2valid for the case of even l’s. Similarly, us<strong>in</strong>g equ<strong>at</strong>ions (2.77) we get the system ofequ<strong>at</strong>ions(2.79) tan(δ l ) = ∑ ∏l ′ ∈S o\{l} (L(L+1)−l′ (l ′ +1))∏(LL∈T oL ′ ∈T o\{L} (L(L+1)−L′ (L ′ +1)) cot π ), l ∈ S o2which are valid <strong>in</strong> the case of odd l’s.Noticethesimplifiedstructureofthenonl<strong>in</strong>earequ<strong>at</strong>ions(2.78)and(2.79), comparedto equ<strong>at</strong>ions (2.53). While equ<strong>at</strong>ions (2.53) conta<strong>in</strong> an implicit m<strong>at</strong>rix <strong>in</strong>version of them<strong>at</strong>rix M cos <strong>in</strong>volv<strong>in</strong>g the unknowns of shifted angular momenta, L’s, formulas (2.78)and (2.79) do not require such a nonl<strong>in</strong>ear oper<strong>at</strong>ion. They ’only’ conta<strong>in</strong> products andthe tangent (cotangent) oper<strong>at</strong>ions and are thus presumably easier to be solved for thesets T e or T o , if the respective <strong>in</strong>put phase shifts are given.F<strong>in</strong>d<strong>in</strong>gthesets T e or T o , thecorrespond<strong>in</strong>gpotentials V e (r) or V o (r) can beobta<strong>in</strong>edsimilarly as <strong>in</strong> the general case, by employ<strong>in</strong>g equ<strong>at</strong>ions (2.51), (2.49), and (2.26).


3. PARITY DEPENDENT SIMPLIFICATION AND APPROXIMATIONS 203.2. Equivalence of solutions (2.53) and (2.78) or (2.79). By explicit calcul<strong>at</strong>ionone can check the equivalence of equ<strong>at</strong>ions (2.53) and (2.78) or (2.79) for the specialcases of even or odd l’s. For the case of either even or odd l’s, the rel<strong>at</strong>ion K + l= K − lholds. Now, specify<strong>in</strong>g ourselves to the even l case only, l ∈ S e , the general equ<strong>at</strong>ions(2.53) can be written as(2.80) tan(δ l ) = ∑[M s<strong>in</strong> ] lL [Mcos −1 ] Ll )/2 ′(−1)(l−l′ , l ∈ S e .L∈T e,l ′ ∈S eUs<strong>in</strong>g (2.59) and (2.61) we get the expression(2.81) a L cos(r) = ∑cos] Ll ′ cos(r −l ′π 2 ),which simplifies to(2.82) a L = ∑l ′ ∈S e[M −1l ′ ∈S e[M −1cos] Ll ′(−1) l′ /2 , L ∈ T e .L ∈ T eBy multiply<strong>in</strong>g both sides of these equ<strong>at</strong>ions by (−1) l/2 [M s<strong>in</strong> ] lL , and perform<strong>in</strong>g the sumover L’s, one may write∑(2.83) a L [M s<strong>in</strong> ] lL (−1) l/2 = ∑[M s<strong>in</strong> ] lL [Mcos] −1 Ll ′(−1) (l−l′)/2 , l ∈ S e .L∈T e L∈T e,l ′ ∈S eAccord<strong>in</strong>g to equ<strong>at</strong>ion (2.80) the right hand side is already equal to tan(δ l ) and bynot<strong>in</strong>g th<strong>at</strong> the m<strong>at</strong>rix M s<strong>in</strong> on the left hand side can be written, on account of (2.56),as [M s<strong>in</strong> ] lL = −(−1) l/2 s<strong>in</strong>(L π 2)/(L(L+1)−l(l+1)) one gets the formula(2.84) tan(δ l ) = − ∑ L∈T ea Ls<strong>in</strong>(L π 2 )L(L+1)−l(l+1) ,l ∈ S ewhich is the same as equ<strong>at</strong>ion (2.78) if one takes <strong>in</strong>to consider<strong>at</strong>ion the solution (2.76)for the coefficient a L ,L ∈ T e .A similar procedure can be applied to prov<strong>in</strong>g equivalence of equ<strong>at</strong>ions (2.53) and(2.79) for odd l’s.3.3. Asymptotics. For potentials constructed from phase shifts belong<strong>in</strong>g to partialwaves of a s<strong>in</strong>gle parity the CT <strong>in</strong>verse potential behaves <strong>in</strong> a peculiar manner [58].To see this we derive the phase shifts of the CT potential.Phase shifts of the <strong>in</strong>verse potential can be get from equ<strong>at</strong>ion (2.52) if it is taken <strong>at</strong>r → ∞:(2.85) ψ j (r) = s<strong>in</strong>(r −jπ/2) − ∑ L∈TA a L (r) s<strong>in</strong>((j −L)π/2)+o(1), r → ∞.j(j +1)−L(L+1)Now the trigonometric form (2.61) is substituted for A a L(r). There are two special casesth<strong>at</strong> we consider: i) the S set (of <strong>in</strong>put angular momenta) consists of only even numbers,ii) S consists of odd numbers. In the first case we have b L = 0 ∀L ∈ T while <strong>in</strong> the


3. PARITY DEPENDENT SIMPLIFICATION AND APPROXIMATIONS 21second a L = 0 ∀L ∈ T. This is deductible from equ<strong>at</strong>ions (2.62) and (2.63) which assumethe forms∑{ }aL cos ( L π ) { }2 1(2.86)b L L(L+1)−l(l+1) = , l ∈ S0L∈T∑{ }aL s<strong>in</strong> ( L π ) { }2 0(2.87)b L L(L+1)−l(l+1) = , l ∈ S1L∈Tfor the cases i) and ii) respectively. One can assume cos ( L π (2)≠ 0 and s<strong>in</strong> Lπ2)≠ 0,then s<strong>in</strong>ce the m<strong>at</strong>rix M with elements M lL = (L(L +1) −l(l + 1)) −1 is <strong>in</strong>vertible (itis a Cauchy m<strong>at</strong>rix) and cannot be s<strong>in</strong>gular unless T ∩ S ≠ ∅ which is not true byassumption, we have b L = 0 ∀L ∈ T for i) and a L = 0 ∀L ∈ T for ii). Now generally{(−1) j s<strong>in</strong>r, j even(2.88) s<strong>in</strong>(r −jπ/2) =(−1) j+1 cosr, j oddwhich implies(2.89) ψ j (r) = B j s<strong>in</strong>(r −jπ/2) for i) and odd j or ii) and even j,<strong>in</strong> other words the CT phase shifts of the opposite parities are exactly zero. Notice th<strong>at</strong>the CT method allows the construction of potentials which are transparent for half thepartial waves (be<strong>in</strong>g even or odd <strong>in</strong> parity).Applic<strong>at</strong>ions suggest th<strong>at</strong> if deal<strong>in</strong>g with <strong>in</strong>put partial wave d<strong>at</strong>a of one parity theperformance of the CT method with the same number of <strong>in</strong>put is less effective than <strong>in</strong>the case when d<strong>at</strong>a with both parities are employed. Therefore the sum rules shown <strong>in</strong>the <strong>in</strong>troductory section can be extremely useful to improve performance by suppress<strong>in</strong>goscill<strong>at</strong>ions of the potential. Also note th<strong>at</strong> one of the sum rules (2.72) simplifies (dueto B l cosδ l = 1, l ∈ S <strong>in</strong> the even case and B l s<strong>in</strong>δ l = 1, l ∈ S <strong>in</strong> the odd case [62]) to∑(2.90)c l = 0l∈Swhile the other becomes ∑ l∈S c ltanδ l = 0 and ∑ l∈S c lcotδ l = 0 for the even and theodd case, respectively.3.4. Approxim<strong>at</strong>ions. Equ<strong>at</strong>ions (2.78) and (2.79) can be used to derive <strong>in</strong>versepotentials only <strong>in</strong> the case when either even or odd partial waves are aris<strong>in</strong>g dur<strong>in</strong>g thecollision process or only such are taken <strong>in</strong>to consider<strong>at</strong>ion. In other words, identicalbosonic or fermionic sc<strong>at</strong>ter<strong>in</strong>g can be tre<strong>at</strong>ed by the simplified equ<strong>at</strong>ions (2.78) and(2.79) without any omission of d<strong>at</strong>a. However, the simplified equ<strong>at</strong>ions offer severalpossibilities to <strong>in</strong>troduce various approxim<strong>at</strong>e tre<strong>at</strong>ments of the general sc<strong>at</strong>ter<strong>in</strong>g case[63, 62]. The type of approxim<strong>at</strong>ions will be classified accord<strong>in</strong>g to the level it is appliedto.3.4.1. Potential approxim<strong>at</strong>ion (A). If the general equ<strong>at</strong>ions (2.53) can be solved byneither of the nonl<strong>in</strong>ear solvers <strong>at</strong> hand, one may try to assess the <strong>in</strong>verse potentialby solv<strong>in</strong>g the simplified equ<strong>at</strong>ions (2.78) and (2.79) for the sets T e and T o . Then,separ<strong>at</strong>ely construct<strong>in</strong>g the correspond<strong>in</strong>g potentials V e (r) and V o (r), one simply addsthemtogethertogetanapproxim<strong>at</strong>ionofthe<strong>in</strong>teraction potential, V A (r) = V e (r)+V o (r).


3. PARITY DEPENDENT SIMPLIFICATION AND APPROXIMATIONS 22Motiv<strong>at</strong>ion of add<strong>in</strong>g the two potentials comes from the fact th<strong>at</strong> q(r) is written up asa sum for the L’s appear<strong>in</strong>g. If m<strong>in</strong>imal coupl<strong>in</strong>g is expected between the odd and evennumbered equ<strong>at</strong>ions of the system of nonl<strong>in</strong>ear equ<strong>at</strong>ions the approxim<strong>at</strong>ion has merit.3.4.2. T-set approxim<strong>at</strong>ion (T). One may try to approxim<strong>at</strong>e the set of the shiftedangular momenta themselves. By unify<strong>in</strong>g the two sets obta<strong>in</strong>ed by solv<strong>in</strong>g equ<strong>at</strong>ions(2.78) and(2.79), onegets theT-set approxim<strong>at</strong>ion T a = T e ∪T o . Us<strong>in</strong>gthis approxim<strong>at</strong>eset T a <strong>in</strong> conjunction with equ<strong>at</strong>ions (2.51), (2.49), and (2.26), one gets the approxim<strong>at</strong>e<strong>in</strong>verse potential V T (r). The motiv<strong>at</strong>ion is the same as for the potential approxim<strong>at</strong>ion(A), however the supposed m<strong>in</strong>imal coupl<strong>in</strong>g is exploited <strong>at</strong> a different stage of thecalcul<strong>at</strong>ion.3.4.3. One-term approxim<strong>at</strong>ion (L). If the collision is dom<strong>in</strong><strong>at</strong>ed overwhelm<strong>in</strong>gly bya s<strong>in</strong>gle partial wave (as <strong>in</strong> the case of resonance sc<strong>at</strong>ter<strong>in</strong>g) then the equ<strong>at</strong>ions (2.53)are to be solved <strong>at</strong> N = 1, and this results <strong>in</strong> the simple expression L = l − 2δ l /πfor the shifted angular momentum, assum<strong>in</strong>g th<strong>at</strong> the lth partial wave is dom<strong>in</strong><strong>at</strong><strong>in</strong>g(δ l ∈ [− π 2 , π 2], see (2.100)). If however this is not the case, one still may try to use theapproxim<strong>at</strong>e expressions(2.91) L a = l−2δ l /πto form an approxim<strong>at</strong>e set T L . Us<strong>in</strong>g this approxim<strong>at</strong>e set T L <strong>in</strong> conjunction withequ<strong>at</strong>ions (2.51), (2.49), and (2.26), one gets the approxim<strong>at</strong>e <strong>in</strong>verse potential denotedby V L (r). Thismostradical approxim<strong>at</strong>ion, however, was applied alsowith somesuccess.3.4.4. An example: Gauss potential. For an explor<strong>at</strong>ory analysis we prescribe a potentialof the Gauss form:(2.92) V G (r) = −2exp(−5r 2 )where both distance r and energy are measured <strong>in</strong> <strong>at</strong>omic units (au). Note, th<strong>at</strong> wereturned to dimensionful quantities.Potential (2.92) provides a set of <strong>in</strong>put phase shifts δ origllisted <strong>in</strong> table 2.1 <strong>at</strong> sc<strong>at</strong>ter<strong>in</strong>genergy of E = 18 au (k = 6 au). Us<strong>in</strong>g this <strong>in</strong>put set one calcul<strong>at</strong>es the CT <strong>in</strong>versepotential V CT (r) = Eq CT (kr) which is depicted <strong>in</strong> figure 2.1. Note th<strong>at</strong> V CT is the sameas V G with<strong>in</strong> the width of l<strong>in</strong>e, therefore the plot of V G is omitted <strong>in</strong> figure 2.1.The different approxim<strong>at</strong>ions V A , V L , and V T can thus be compared to V CT whichmay be taken to be exact. In figure 2.1 one can see th<strong>at</strong>, for this particular example, thepotential V A (r) = Eq A (kr) is a good approxim<strong>at</strong>ion to the orig<strong>in</strong>al one <strong>in</strong> view of its<strong>in</strong>itial behavior (depth) and asymptotic property (range). Recall th<strong>at</strong> approxim<strong>at</strong>ion V Ais obta<strong>in</strong>ed by simply add<strong>in</strong>g <strong>in</strong>version approxim<strong>at</strong>ions V e and V o derived by <strong>in</strong>vert<strong>in</strong>gthe separ<strong>at</strong>e sets S e and S o of phase shifts belong<strong>in</strong>g, respectively, to the sets of evenand odd angular momenta l ′ s. Approxim<strong>at</strong>ion V T is obta<strong>in</strong>ed by unify<strong>in</strong>g the calcul<strong>at</strong>edsets T e and T o of shifted angular momenta, L ′ s, listed <strong>in</strong> table 2.1 under head<strong>in</strong>g (2.78)or (2.79). F<strong>in</strong>ally, the approxim<strong>at</strong>ion V L has been obta<strong>in</strong>ed by simply us<strong>in</strong>g the onetermapproxim<strong>at</strong>e values L a , equ<strong>at</strong>ion (2.91), which are also listed <strong>in</strong> table 2.1 underhead<strong>in</strong>g (2.91). It is <strong>in</strong>terest<strong>in</strong>g to see <strong>in</strong> figure 2.1 th<strong>at</strong> this (totally analytical) version,the approxim<strong>at</strong>ion V L provides a somewh<strong>at</strong> better result than th<strong>at</strong> of the more <strong>in</strong>volvedapproxim<strong>at</strong>ion V T .


3. PARITY DEPENDENT SIMPLIFICATION AND APPROXIMATIONS 230.50.0V(r) (au)-0.5-1.0-1.5-2.00.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4r (au)CTALTFigure 2.1. Inversepotentialsq(r)obta<strong>in</strong>edfrom<strong>in</strong>putphaseshiftsδ origl(see table 2.1) as a function of the radial distance r <strong>at</strong> energy E = 18(k = 6) au. Curves obta<strong>in</strong>ed by the CT, and approxim<strong>at</strong>e methods arelabeled accord<strong>in</strong>g to the procedures discussed <strong>in</strong> the text.Table 2.1. Orig<strong>in</strong>al phase shifts δ origlproduced by the Gauss potential(2.92) <strong>at</strong> sc<strong>at</strong>ter<strong>in</strong>g energy E = 18 au. Shifted angular momenta Lcorrespond<strong>in</strong>gtosolutionofequ<strong>at</strong>ions(2.53), (2.78), or(2.79), and(2.91).l δ origl(2.53) (2.78) or (2.79) (2.91)0 0.1294 −0.0893 −0.0809 −0.08241 0.0964 0.9392 0.9391 0.93862 0.0535 1.9676 1.9666 1.96593 0.0232 2.9865 2.9861 2.98524 0.0082 3.9955 3.9954 3.99485 0.0025 4.9989 4.9989 4.99846 0.0006 5.9999 5.9999 5.99967 0.0001 7.0001 7.0001 6.99998 0.0000 8.0002 8.0002 8.00009 0.0000 9.0001 9.0001 9.000010 0.0000 10.0001 10.0001 10.0000


4. CONSISTENCY INVESTIGATIONS 244. Consistency <strong>in</strong>vestig<strong>at</strong>ions4.1. General condition. Asalready<strong>in</strong>dic<strong>at</strong>ed<strong>in</strong>the<strong>in</strong>troductionthekernelg(r,r ′ )only makes sense if the <strong>in</strong>tegral equ<strong>at</strong>ion is uniquely solvable with it. As Eq. (2.25) canbe viewed as a Fredholm type <strong>in</strong>tegral equ<strong>at</strong>ion of the second k<strong>in</strong>d for <strong>fixed</strong> r, viz. ifrr ′ κ(r,r ′ ) = K(r,r ′ ) and rr ′ γ(r,r ′ ) = g(r,r ′ ) we have(2.93) κ(r,r ′ ) = γ(r,r ′ )−∫ r0γ(r ′ ,t)κ(r,t)dt.Accord<strong>in</strong>g to Fredholm’s altern<strong>at</strong>ive the Fredholm determ<strong>in</strong>ant thereof must be nonzerofor all <strong>fixed</strong> r > 0. When us<strong>in</strong>g the CT ans<strong>at</strong>z (2.45) the Fredholm determ<strong>in</strong>ant of the<strong>in</strong>tegral equ<strong>at</strong>ion becomes (to extent of a nonzero multiplic<strong>at</strong>ive term) the determ<strong>in</strong>antof the system of the algebraic equ<strong>at</strong>ions (2.51),{[uL (r)vl ′ (2.94) D(r) = det(r)−u′ L (r)v ] }l(r).l(l+1)−L(L+1)It is easy to see th<strong>at</strong> for R ∈ Ω = {R : D(R) = 0, R ∈ R + } one gets∫ r(2.95) lim tq(t)dt = ±∞,r→R 0thus the potential is not <strong>in</strong> L 1,1 = {q : ∫ ∞0t|q(t)|dt < ∞}. While for Ω = ∅ we have[14](2.96)∫ ∞0tq(t)dt = ∑ L∈TlL∏l∈S (L−l)∏L≠L ′ ∈T (L−L′ ) < ∞.One can conclude the follow<strong>in</strong>g Proposition [56], which (with some modific<strong>at</strong>ions<strong>in</strong> the def<strong>in</strong>ition of D(r)) is valid for other procedures, where a second type Fredholm<strong>in</strong>tegral equ<strong>at</strong>ion is <strong>in</strong>volved.Proposition 2. We get a unique solution of the GLM-type <strong>in</strong>tegral equ<strong>at</strong>ion <strong>in</strong>C 2 (R + × R + ) and from th<strong>at</strong> an <strong>in</strong>verse potential <strong>in</strong> L 1,1 = {q : ∫ ∞0t|q(t)|dt < ∞} ifand only if D(r) ≠ 0 on r > 0From [67] we know th<strong>at</strong> D(r) ≠ 0 on r > 0 is not the case for arbitrary choice of Sand T: it was shown there, th<strong>at</strong> if S = {0} and L = {2} then D(r) = 0 <strong>at</strong> some r > 0.With the help of Proposition 2 one can conv<strong>in</strong>ce themselves th<strong>at</strong> a particular CT<strong>in</strong>verse potential obta<strong>in</strong>ed numerically from arbitrary d<strong>at</strong>a is <strong>in</strong>tegrable or not. If it is<strong>in</strong>tegrable then th<strong>at</strong> potential will gener<strong>at</strong>e the <strong>in</strong>put phase shifts.Also, us<strong>in</strong>g Proposition 2 it is possible to determ<strong>in</strong>e the admissible set of L numbersfor given l’s. In the one-l case we get a straightforward admissible set of L’s, however <strong>in</strong>higher dimensions the formul<strong>at</strong>ion becomes extremely <strong>in</strong>volved.4.2. One dimensional case. Inthiscase(S = {l}, |S| = 1)thefunctionW(u L ,v l )(r) ≡u L (r)vl ′(r) − u′ L (r)v l(r) must be exam<strong>in</strong>ed carefully. The key idea of the proof is th<strong>at</strong>the Wronskianu L (r)vl ′ (2.97)(r)−u′ L (r)v l(r)l(l+1)−L(L+1)


4. CONSISTENCY INVESTIGATIONS 25is nonzero on R + if and only if the constituent Bessel functions (J L+1/2 (r) and Y l+1/2 (r))are <strong>in</strong>terlaced. This is deductible from the observ<strong>at</strong>ion(2.98) D(r) = u L(r)vl ′(r)−u′ L (r)v ∫ rl(r)= u L (t)v l (t)t −2 dt.l(l+1)−L(L+1)The follow<strong>in</strong>g gives the admissible set |l−L| ≤ 1.Theorem 1. W(u L ,v l )(r) has no roots on r ∈ R + , th<strong>at</strong> is <strong>at</strong> N = 1 the GLM-typeequ<strong>at</strong>ion is uniquely solvable for the CT method with S = {l} and T = {L} if and onlyif |L−l| ≤ 1. l ∈ (−0.5,∞), L ∈ (−0.5,∞) is supposed.Proof. The proof is trivial <strong>in</strong> light of Theorem 5 and Lemma 4 of Appendix B.Lemma 4 stipul<strong>at</strong>es th<strong>at</strong> W(u L ,v l )(r) has no roots on r ∈ R + iff J L+1/2 and Y l+1/2 are<strong>in</strong>terlaced. From Theorem 5 we <strong>in</strong>fer th<strong>at</strong> this is the case when 0 < |L−l| ≤ 1 which isexactly wh<strong>at</strong> we wanted to prove.□This result allows us to choose uniquely from the solutions(2.99) L = l− 2 π δ l +2n, n ∈ Z,of (2.53) <strong>at</strong> |S| = 1 as the solution for one <strong>in</strong>put phase shift as(2.100) L = l− 2 [π δ l, δ l ∈ − π 2 , π ],2elim<strong>in</strong><strong>at</strong><strong>in</strong>g the ambiguity from the phase shift as well.At low energies it may happen th<strong>at</strong> mostly only one partial wave contributes to thesc<strong>at</strong>ter<strong>in</strong>g amplitude (e.g. <strong>in</strong> case of resonances). It is worthwhile to look <strong>at</strong> the phaseshifts yielded by the CT <strong>in</strong>verse potential <strong>at</strong> the one-phase-shift level to get a sense ofthe quality of the <strong>in</strong>version procedure.From Eq. (2.52) the follow<strong>in</strong>g formula is <strong>in</strong>ferred{0, l odd(2.101) tanδ l =L(L+1)L(L+1)−l(l+1) tanδ 0, l evenwhich specifies the phases of the CT potential for S = {0}. Note th<strong>at</strong> it is a generalfe<strong>at</strong>ure th<strong>at</strong> if phase shifts associ<strong>at</strong>ed with only one k<strong>in</strong>d of parity are specified for the<strong>in</strong>version, then the phases of the CT potential with the opposite parity are exactly zero(see subsection 3.3).If e.g. the phase shift is restricted to describe an <strong>at</strong>tractive potential (i. e. δ 0 > 0)the bound{0, l odd(2.102) 0 ≤ tanδ l ≤1tanδ4l 2 0 , l evencan be found us<strong>in</strong>g equ<strong>at</strong>ion (2.101). This result assures the proper reproduction of thephase shifts by the CT potential.To illustr<strong>at</strong>e these results figure 2.2 shows synthetic test potentials correspond<strong>in</strong>gto l = 0, δ 0 = 0.2π obta<strong>in</strong>ed by the CT method. In addition to the L 1,1 potential an<strong>in</strong>consistent one is also shown where n <strong>in</strong> equ<strong>at</strong>ion (2.99) is chosen to be other than zero.As predicted we get a non-<strong>in</strong>tegrable potential.0


4. CONSISTENCY INVESTIGATIONS 26Figure 2.2. Potentials obta<strong>in</strong>ed by the CT method correspond<strong>in</strong>g tol = 0, δ 0 = 0.2π with L = −0.4 (solid l<strong>in</strong>e) and L = 1.6 (dashed l<strong>in</strong>e).108IntegrableNon-<strong>in</strong>tegrable6q(r)420-20 2 4 6 8 10r4.3. Two dimensional case. Already <strong>in</strong> this case the Fredholm determ<strong>in</strong>ant becomescomplic<strong>at</strong>ed, which is also apparent from it’s <strong>in</strong>tegral represent<strong>at</strong>ion(2.103) D(r) =∫ r ∫ r00u L1 (t)u L2 (s)(v l1 (t)v l2 (s)−v l1 (s)v l2 (t))t −2 s ′−2 dtds.Therefore <strong>in</strong>stead of the analytical tre<strong>at</strong>ment we determ<strong>in</strong>e the admissible set of L’snumerically for some choices of l’s.Our numerical method was to check the determ<strong>in</strong>ant <strong>at</strong> the po<strong>in</strong>ts of a f<strong>in</strong>e l<strong>at</strong>ticeon the L 1 –L 2 quarter plane of (−0.5,∞)×(−0.5,∞) whether it has any zeros on (0,Λ),where Λ is a large number chosen to be gre<strong>at</strong> enough for(2.104) D(r > Λ) = const.+ε(r), |ε(r)| < εwith a very small ε. This can be done s<strong>in</strong>ce every D(r) <strong>in</strong> any dimensions |S| < ∞ hasonly a f<strong>in</strong>ite number of zeros, because the constituent Wronskians all tend to constants<strong>at</strong> large r distances, viz.[(2.105) W(r) = u L (r)v l ′ (r)−u′ L (r)v l(r) = cos (l−L) π ] ( 1+O , r → ∞.2 r)In figure 2.3 the admissible sets of {L 1 ,L 2 } pairs are depicted for the particularchoices S 1 = {1,3} and S 2 = {1,2}.In the next example (figure 2.4) we calcul<strong>at</strong>ed some possible {L 1 ,L 2 } pairs for agiven {δ l1 ,δ l2 }. We note th<strong>at</strong> only one of them is <strong>in</strong>side the permitted doma<strong>in</strong> and couldonly f<strong>in</strong>d a s<strong>in</strong>gle solution of the system of non-l<strong>in</strong>ear equ<strong>at</strong>ion th<strong>at</strong> is permitted by theconsistency condition. Aga<strong>in</strong> the L 1,1 and an <strong>in</strong>consistent potential is shown.


4. CONSISTENCY INVESTIGATIONS 27Figure 2.3. The admissible sets of the T elements for (a) S 1 = {1,3}and (b) S 2 = {1,2} denoted by blank areas.(a)(b)Figure 2.4. Potentials obta<strong>in</strong>ed by the CT method correspond<strong>in</strong>g toS = {0,1}, with phase shifts calcul<strong>at</strong>ed from a Woods-Saxon potential.T = {−0.3056,0.9295} (solid l<strong>in</strong>e) and T = {1.0650,1.7016} (dashedl<strong>in</strong>e). Also, the orig<strong>in</strong>al potential, q(r) = − [ 1+e 2.5·(r−1)] −1, yield<strong>in</strong>gthe phase shifts (δ 0 = 0.4389, δ 1 = 0.1246) is depicted (dotted l<strong>in</strong>e).1,00,80,60,40,2q(r)0,0-0,2-0,4-0,6-0,8IntegrableNon-<strong>in</strong>tegrableOrig<strong>in</strong>al-1,00 2 4 6 8 10r


5. GENERALIZATION TO LONG-RANGE POTENTIALS 285. Generaliz<strong>at</strong>ion to long-range potentialsIn nuclear physics one frequently encounters charged particle sc<strong>at</strong>ter<strong>in</strong>g. Indeed itis the easiest experimental task to acceler<strong>at</strong>e and guide charged particles. In this case,because of the long-ranged n<strong>at</strong>ure of the Coulomb <strong>in</strong>teraction, the phase shifts do notdecay as fast as for short-range potentials and it would be <strong>in</strong>efficient to reconstruct along-ranged sc<strong>at</strong>ter<strong>in</strong>g potential from slowly decay<strong>in</strong>g phase shifts. However one canalways change the reference potential from V (0) (r) = 0 to e.g. the Coulomb potentialand reconstruct the difference between the two by <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong> [61].It is convenient to re<strong>in</strong>troduce dimensionful quantities to tre<strong>at</strong> the long-range extension.The reduced potential q DIM (r) = k 2 q(kr) will be used (the subscript shall besupressed) <strong>in</strong> the follow<strong>in</strong>g and the dimensionless distance will be denoted by ρ withρ = kr.Consider a spherical potential q(r) which can be written as a sum of a short-range<strong>in</strong>terior (or nuclear) part ˆq(r) and a long-ranged exterior (asymptotic or reference) partq (0) (r), i.e.,(2.106) q(r) = ˆq(r)+q (0) (r).Then the phase shift itself is also split <strong>in</strong>to two parts(2.107) δ l = ˆδ l +δ (0)lwhere δ (0)lis the phase shift due to q (0) and ˆδ l corresponds to the lth phase shift causedby ˆq <strong>in</strong> the presence of q (0) . If, for <strong>in</strong>stance, ˆq(r) ≡ 0, ˆδ l = 0 ∀l.If the short-ranged part of the potential is zero beyond a f<strong>in</strong>ite distance r a ,(2.108) ˆq(r) = 0, r ≥ r <strong>at</strong>hen, accord<strong>in</strong>gly, the radial wave function can be written <strong>in</strong> this region as()(2.109) ψ l (k,r ≥ r a ) = C l F (0)l(kr)+tanˆδ l G (0)l(kr) .In the l<strong>at</strong>ter equ<strong>at</strong>ion the functions F (0)land G (0)lare the regular and irregular solutionsof the dimensionless radial Schröd<strong>in</strong>ger equ<strong>at</strong>ion (1.4) with the dimensionless potentialk −2 q(k −1 r), respectively.Introduction of a reference potential can be carried out <strong>at</strong> two levels of the <strong>in</strong>versesc<strong>at</strong>ter<strong>in</strong>g calcul<strong>at</strong>ion: <strong>at</strong> the level of the Schröd<strong>in</strong>ger equ<strong>at</strong>ion by design<strong>in</strong>g a shortrangepotential which is <strong>in</strong> some sense equivalent to the orig<strong>in</strong>al long-ranged potential,or <strong>at</strong> the level of the <strong>in</strong>verse procedure by us<strong>in</strong>g different reference functions.5.1. Phase transform<strong>at</strong>ion method. Whenpursu<strong>in</strong>gthefirstpossibilityonegetsthe so called phase transform<strong>at</strong>ion method. In this case we <strong>in</strong>troduce ˜q(r) which isidentical to the orig<strong>in</strong>al potential (up to a constant energy shift) with<strong>in</strong> the <strong>in</strong>teriorregion 0 < r < r a and zero outside (see also Figure 2.5){q(r)−q(ra ), r ≤ r(2.110) ˜q(r) =a ,0, r ≥ r a .


5. GENERALIZATION TO LONG-RANGE POTENTIALS 29Figure 2.5. Depiction of the orig<strong>in</strong>al potential q(r) and the one whosephaseshifts arecalcul<strong>at</strong>ed by the phasetransform<strong>at</strong>ion method ˜q(r). Theregions U, A and Z refer to the unknown, the asymptotic and the zeroregions, respectively.q(r)20-2-4U-60,0 0,2 0,4 0,6 0,8 1,0r(a)Aq(r)0-2-4-6A ZU0,0 0,2 0,4 0,6 0,8 1,0r(b)If equ<strong>at</strong>ion (2.108) holds true the ˆq <strong>in</strong>terior potential can be deduced from ˜q. Theradial sc<strong>at</strong>ter<strong>in</strong>g wave function of this problem <strong>at</strong> the shifted ”energy” k 2 B = k2 −q(r a )is identical with the orig<strong>in</strong>al one <strong>in</strong> the <strong>in</strong>side region(2.111) ˜ψl (k B ,r) = ψ l (k,r), r ≤ r abut differs <strong>in</strong> the outside region(2.112) ˜ψl (k B ,r) = ˜C)l(u l (k B r)−tan˜δ l v l (k B r) , r ≥ r a .The equality of the logarithmic deriv<strong>at</strong>ives <strong>at</strong> r = r a( )∣d 1(2.113)dr log r ˜ψ∣∣∣r=ral (k B ,r) = d ( 1dr log r ψ l(k,r))∣∣∣∣r=rawith ψ l (k,r) from (2.109) gives the transformed phase shifts ˜δ l (k B ) which can be usedto (re)construct the short-ranged potential Ṽ(r) (2.110). To get the orig<strong>in</strong>al potentialone simply adds the reference potential{(2.114) ˜q (0) q(ra ), r ≤ r(r) =a ,q (0) (r), r ≥ r a .However equ<strong>at</strong>ion (2.108) cannot hold when ˆq is reconstructed by a Newton-type methods<strong>in</strong>ce the reconstructed potential <strong>in</strong> general decays as a second <strong>in</strong>verse power of thedistance. Therefore when us<strong>in</strong>g the phase transform<strong>at</strong>ion method one always <strong>in</strong>troducesa small error.The phase shift transform<strong>at</strong>ion method has been <strong>in</strong>troduced by May, Münchow andScheid [49] and was widely applied <strong>in</strong> case of the modified Newton Sab<strong>at</strong>ier method(mNS). It was also applied to the CT <strong>in</strong>verse procedure to tre<strong>at</strong> Coulomb sc<strong>at</strong>ter<strong>in</strong>g[50]. The author applied it to f<strong>in</strong>d proton–alpha effective sc<strong>at</strong>ter<strong>in</strong>g potential <strong>in</strong> [61].We shall term the CT procedure comb<strong>in</strong>ed with phase transform<strong>at</strong>ion the PCT method.


5. GENERALIZATION TO LONG-RANGE POTENTIALS 305.2. Generalized CT scheme. If one pursues the second altern<strong>at</strong>ive of the referencepotential method one can derive a generalized CT (gCT) scheme which employsthe given nuclear phase shifts {ˆδ l } for construct<strong>in</strong>g the short-range (nuclear) potentialˆq(r) but avoids use of a m<strong>at</strong>ch<strong>in</strong>g radius r a . The deriv<strong>at</strong>ion starts with the ans<strong>at</strong>z forthe <strong>in</strong>put symmetrical kernel of the Gel’fand-Levitan-type <strong>in</strong>tegral equ<strong>at</strong>ion(2.115) g(ρ,ρ ′ ) = ∑ l∈Sγ l F (0)l(m<strong>in</strong>(ρ,ρ ′ ))G (0)l(max(ρ,ρ ′ )),Then, by proceed<strong>in</strong>g through the usual steps [4, 51], one arrives <strong>at</strong> a system of nonl<strong>in</strong>earequ<strong>at</strong>ions identical <strong>in</strong> structure to (2.53)(2.116) e 2iˆδ l= 1+iK+ l1−iK − lor tan(ˆδ l ) =K + l+K − l2+i(K + l−K − l),l ∈ S,with(2.117) K ± l= ∑L∈T,l ′ ∈S[M s<strong>in</strong> ] lL [M −1[ ]cos] Ll ′e ±i (l−l ′ )π/2+δ (0)l ′ −δ (0)l, l ∈ S,and(2.118){Ms<strong>in</strong>M cos}lL=⎧1⎨L(L+1)−l(l +1) ⎩(s<strong>in</strong>cos(l−L) π 2 +δ(0) L −δ(0) l((l−L) π 2 +δ(0) L −δ(0) l))⎫⎬⎭ ,for the set T of the shifted angular momenta L where the rel<strong>at</strong>ions S ∩ T = ∅ and|T| = |S| hold. From the set T one calcul<strong>at</strong>es the nuclear potential as(2.119) ˆq(r) = k 2 ς(kr),where(2.120) ς(ρ) = − 2 ( )d K(ρ,ρ)ρdρρwith(2.121) K(ρ,ρ ′ ) = ∑ L∈TA L (ρ)F (0)L (ρ′ ).The coefficient function A L (ρ) is calcul<strong>at</strong>ed by solv<strong>in</strong>g the system of l<strong>in</strong>ear equ<strong>at</strong>ions(2.122)∑L∈TA L (ρ) W[F(0) L (ρ),G(0) l(ρ)]l(l +1)−L(L+1) = G(0) l(ρ), l ∈ S,From this gCT scheme several developments are possible as the actual form of thereference potential has not yet been specified.


5. GENERALIZATION TO LONG-RANGE POTENTIALS 315.3. Coulomb reference potential method (CCT). If one sets the referencepotential to be the bare Coulomb potential(2.123) q (0) (r) = 2kηr≡ 1 Z 1 Z 2 e 2 2m4πε 0 r 2 ,with η be<strong>in</strong>g the Sommerfeld parameter then one arrives <strong>at</strong> the Coulomb CT (CCT)method. In this case the regular and irregular reference functions are the regular andirregular Coulomb wave functions, the reference phase shift is the Coulomb phase(2.124) σ l = 1 2i log [ Γ(l+1+iη)Γ(l+1−iη)], l ∈ S.Here it should be mentioned th<strong>at</strong> <strong>in</strong> the course of applic<strong>at</strong>ion of CCT method itmay become necessary to know the regular and irregular Coulomb wave functions andCoulomb phases for complex orders. For example, <strong>in</strong> case of non-elastic sc<strong>at</strong>ter<strong>in</strong>g thephases are complex and therefore as noted before, the L numbers are also complexvalued. The Coulomb wave functions are well-def<strong>in</strong>ed for complex orders and similarlyto the real order case they can be given as power series (for details see Appendix B).It is <strong>in</strong>terest<strong>in</strong>g th<strong>at</strong> contrary to the fact th<strong>at</strong> the asymptotic forms of the referencefunctions conta<strong>in</strong> the well known logarithmic term −ηln2ρ <strong>in</strong> the argument, it does notappear <strong>in</strong> the gCT formulas because of cancell<strong>at</strong>ion.Us<strong>in</strong>g the known power series of the Coulomb wave functions it can be shown th<strong>at</strong>the CCT method gives a potential which is proportional to the Coulomb potential nearthe orig<strong>in</strong>. For one term, i.e. |T| = |S| = 1, we get(2.125) q(r ≈ 0) = 2kηrFor large r we get(2.126) q(r → ∞) = 2kηr− 2 ∑∑r 2L∈T l∈S[ L(1+l)l(1+L)[M −1]+O(1).( ) 1cos] Ll cos(Θ L (kr)+Θ l (kr))+Or 3 ,with the Coulomb argument Θ L (ρ) = ρ−ηln2ρ−L π 2 +σ L.We see th<strong>at</strong> the CCT method gener<strong>at</strong>es an <strong>in</strong>verse potential th<strong>at</strong> gives a Coulomblikes<strong>in</strong>gularity <strong>at</strong> the orig<strong>in</strong> and produces a damped oscill<strong>at</strong>ion around the Coulomb tail<strong>at</strong> large distances. It is free of the m<strong>at</strong>ch<strong>in</strong>g parameter r a and requires just the nuclearphase shifts ˆδ l which are derived by usual phase shift analysis procedures.5.4. Modified Coulomb reference potential method (MCT). In order toobta<strong>in</strong> an <strong>in</strong>verse potential th<strong>at</strong> is f<strong>in</strong>ite <strong>at</strong> the orig<strong>in</strong>, <strong>in</strong>stead of be<strong>in</strong>g s<strong>in</strong>gular there,we can modify the Coulomb reference potential accord<strong>in</strong>gly. This reference potential isconstant <strong>in</strong> the <strong>in</strong>terior doma<strong>in</strong> and purely Coulombic outside. This modified Coulombpotential is the same as th<strong>at</strong> employed by the phase transform<strong>at</strong>ion method for Coulombasymptotics and reads as(2.127) q (0) (r) ={2kηr a, r ≤ r a ,2kηr , r ≥ r a.


5. GENERALIZATION TO LONG-RANGE POTENTIALS 32To this reference potential there belong the follow<strong>in</strong>g regular and irregular radial wavefunction⎧ (√ )⎨F (0) u l 1− 2ηkrl(ρ) =a ·ρ , r < r a ,(2.128)⎩ α (0) FF l (ρ)+β (0)l FG l (ρ), r > r a ,l⎧ (√ )⎨G (0) v l 1− 2ηkrl(ρ) =a·ρ , r < r a ,(2.129)⎩ α (0) GF l (ρ)+β (0)l GG l (ρ), r > r a ,land reference phase shift(2.130) δ (0)l= σ l +arctan( )βF (0)l.α (0) F lThe coefficients α (0) F,β (0)l F,α (0)l G,β (0)l Gcan be calcul<strong>at</strong>ed from the equality of the <strong>in</strong>nerland outer wave functions and their deriv<strong>at</strong>ives <strong>at</strong> the m<strong>at</strong>ch<strong>in</strong>g radius r a . The twocoefficients necessary for calcul<strong>at</strong><strong>in</strong>g the reference phase shift are(2.131) α F(0)l(2.132) β F(0)l==(√ )u l 1− ρa·ρa 2ηG l (ρ a)−√1− 2ηρa u′ l(√1− 2ηρa·ρa )G ′ l (ρa)F l (ρ a)G l (ρ − F′ l (ρa) ,a) G ′ l (ρa)(√ ) √ (√ )u l 1− ρa·ρa 2η 1− 2ηρaF l (ρ a)−u′ l 1− 2ηρa·ρaF l ′(ρa)G l (ρ a)F l (ρ − G′ l (ρa) ,a) F l ′(ρa)withρ a = kr a . Theother two coefficients areobta<strong>in</strong>ed byexchang<strong>in</strong>g theregularRicc<strong>at</strong>i-Bessel functions to the irregular ones.The total phase shifts can be written <strong>in</strong> two different ways(2.133) δ l = ˆδ l +σ l = δ MCTl +δ (0)lwhere ˆδ l means the nuclear phase shifts given as d<strong>at</strong>a and δlMCT is to be used to performthe CT <strong>in</strong>verse calcul<strong>at</strong>ion outl<strong>in</strong>ed above.The potential obta<strong>in</strong>ed by the MCT method has a f<strong>in</strong>ite value <strong>at</strong> the orig<strong>in</strong>. Becausethis method employs a similar reference potential as the PCT method, the results providedby the two methods should also be very similar, although quite different functionsare employed <strong>in</strong> the calcul<strong>at</strong>ions. The advantage of the MCT over the PCT lies <strong>in</strong> thefact th<strong>at</strong> it does not <strong>in</strong>volve the small error <strong>in</strong> the phase shift reproduction <strong>in</strong>herent tothe PCT.5.5. An example. To illustr<strong>at</strong>e the applicability of the long-range CT <strong>in</strong>versionprocedures we shall now use them to reconstruct model potentials. We model the α –α sc<strong>at</strong>ter<strong>in</strong>g with two slightly different potentials: the first is f<strong>in</strong>ite <strong>at</strong> the orig<strong>in</strong> andthe second is s<strong>in</strong>gular (describ<strong>in</strong>g a possible non-locality). Let us also re<strong>in</strong>troduce thedimensional, physical potential V(r) = 22m q (DIM)(r).


5. GENERALIZATION TO LONG-RANGE POTENTIALS 33The first model potential is given by(2.134) V(r) = U(r)+V C (r),where the nuclear <strong>in</strong>teraction is described by a Woods-Saxon [84] form( ) −1,(2.135) U(r) = U 0 1+e r−Raand the Coulomb <strong>in</strong>teraction is represented by the potential of a homogeneous chargedsphere as{ ( )Z1 Z 2 e 2(2.136) V C (r) =2R C3− r2 , r ≤ RR 2 C ,CZ 1 Z 2 e 2r, r > R C .For the various parameters we choose the follow<strong>in</strong>g values: Z 1 = 2, Z 2 = 2, A 1 = 4,A 2 = 4, U 0 = −20 MeV, R = R C = 2.0636 fm, a = 0.25 fm.The nuclear phase shifts ˆδ l were calcul<strong>at</strong>ed <strong>at</strong> the center of mass energy E c.m. = 25MeV (see table 2.2). These phase shifts were then used as <strong>in</strong>put d<strong>at</strong>a for the various CTcalcul<strong>at</strong>ions. The results for the L-values are shown <strong>in</strong> table 2.2 and the correspond<strong>in</strong>gpotentials are displayed <strong>in</strong> figure 2.6.Table 2.2. Model d<strong>at</strong>a (ˆδ origlphase shifts), <strong>in</strong>version results (L shiftedangular momenta and ∆ˆδ l differences between the model phase shiftsand the ones given by the various methods‡) of the α – α sc<strong>at</strong>ter<strong>in</strong>g <strong>at</strong>E c.m. = 25 MeV. The m<strong>at</strong>ch<strong>in</strong>g parameter used <strong>in</strong> the PCT and MCTprocedureswassettor a = 10fm. Noteth<strong>at</strong>thePCTandMCTpotentialsco<strong>in</strong>cide.l L CCT L MCT LPCT ˆδorigl∆ˆδ CCTl∆ˆδ MCTl∆ˆδ PCTl0 −1.5622 −0.9225 −0.9219 1.2989 0.0085 0.0053 0.00561 0.5286 0.5841 0.5843 1.1445 0.0011 0.0009 0.00012 1.6462 1.7503 1.7502 0.8307 0.0116 0.0063 0.00623 2.9468 3.0281 3.0281 0.2300 0.0131 0.0025 0.00244 4.0456 4.1114 4.1115 0.0399 0.0176 0.0053 0.00545 5.0272 5.0983 5.0982 0.0062 0.0080 0.0019 0.00186 6.0308 6.0874 6.0875 0.0009 0.0073 0.0004 0.00057 7.0169 7.0684 7.0684 0.0001 0.0047 0.0039 0.00398 8.0177 8.0557 8.0557 0.0000 0.0001 0.0066 0.00669 9.0108 9.0428 9.0427 0.0000 0.0001 0.0108 0.0108‡ Note th<strong>at</strong> for the sake of comparison the phases given by the <strong>in</strong>verse potentials werecalcul<strong>at</strong>ed by cutt<strong>in</strong>g-off the non-physical oscill<strong>at</strong>ions beyond the m<strong>at</strong>ch<strong>in</strong>g radius r aused <strong>in</strong> the PCT procedure. Without the cut-off the MCT and CCT potentialsreproduce the phase shifts with<strong>in</strong> an error of the numerical precision.One can observe th<strong>at</strong> as expected the PCT and MCT procedures give almost thesame results and the CCT <strong>in</strong>verse potential is divergent <strong>at</strong> the orig<strong>in</strong>.


5. GENERALIZATION TO LONG-RANGE POTENTIALS 34The second model is obta<strong>in</strong>ed by add<strong>in</strong>g the s<strong>in</strong>gular potential term(2.137) V s<strong>in</strong>g (r) = e−rr 2to the previous model, i.e.,(2.138) V(r) = U(r)+V C (r)+V s<strong>in</strong>g (r).The reconstruction of phases is listed <strong>in</strong> table 2.3 and the potentials are shown <strong>in</strong> figure2.7. We see th<strong>at</strong> the CCT potential follows nicely the model potential <strong>in</strong> the s<strong>in</strong>gulardoma<strong>in</strong> near the orig<strong>in</strong> while the PCT and MCT methods are unable to reproduce thes<strong>in</strong>gularity although their phase shift reconstruction is good.Note th<strong>at</strong> the reconstructions are not perfect which can be <strong>at</strong>tributed to th<strong>at</strong> onlya f<strong>in</strong>ite number of phase shifts were employed.Figure 2.6. Model potential (2.134) and <strong>in</strong>verse potentials yielded bythe CCT, MCT and PCT methods (labeled accord<strong>in</strong>gly) <strong>at</strong> E c.m. = 25MeV center of mass energy. The model potential is non-s<strong>in</strong>gular <strong>at</strong> theorig<strong>in</strong>. (The PCT and MCT potentials co<strong>in</strong>cide aga<strong>in</strong>.)840V(r) (MeV)-4-8-12CCTMCT-16PCTModel-200 1 2 3 4 5 6r (fm)


5. GENERALIZATION TO LONG-RANGE POTENTIALS 35Table 2.3. Model d<strong>at</strong>a and <strong>in</strong>version results for the divergent modelpotential <strong>at</strong> E c.m. = 25 MeV. The m<strong>at</strong>ch<strong>in</strong>g parameter used <strong>in</strong> the PCTand MCT procedures was set to r a = 10 fm.l L CCT L MCT LPCT ˆδorigl∆ˆδ CCTl∆ˆδ MCTl∆ˆδ PCTl0 −1.5257 −0.8526 −0.8522 1.2121 0.0046 0.0038 0.00411 0.5116 0.5862 0.5862 1.1314 0.0011 0.0003 0.00072 1.6606 1.7506 1.7505 0.8245 0.0051 0.0043 0.00423 2.9505 3.0290 3.0290 0.2284 0.0061 0.0028 0.00274 4.0401 4.1108 4.1109 0.0395 0.0094 0.0060 0.00605 5.0293 5.0978 5.0977 0.0060 0.0036 0.0013 0.00136 6.0283 6.0870 6.0871 0.0008 0.0040 0.0031 0.00317 7.0179 7.0677 7.0677 0.0001 0.0030 0.0023 0.00238 8.0163 8.0553 8.0553 0.0000 0.0001 0.0008 0.00089 9.0113 9.0413 9.0413 0.0000 0.0020 0.0020 0.002010 10.0105 10.0325 10.0325 0.0000 0.0031 0.0024 0.002511 11.0077 11.0224 11.0224 0.0000 0.0018 0.0019 0.001912 12.0073 12.0155 12.0155 0.0000 0.0008 0.0014 0.001413 13.0056 13.0093 13.0093 0.0000 0.0005 0.0010 0.001014 14.0053 14.0065 14.0066 0.0000 0.0003 0.0006 0.000615 15.0043 15.0044 15.0043 0.0000 0.0002 0.0003 0.0003Figure 2.7. Model potential (2.138) and <strong>in</strong>verse potentials yielded bythe CCT, MCT and PCT methods (labeled accord<strong>in</strong>gly) <strong>at</strong> E c.m. = 25MeV center of mass energy. The model potential is s<strong>in</strong>gular <strong>at</strong> the orig<strong>in</strong>.840V(r) (MeV)-4-8-12-16CCTMCTPCTModel-200 1 2 3 4 5 6r (fm)


CHAPTER 3Transform<strong>at</strong>ional procedures1. IntroductionIn [27] it was shown th<strong>at</strong> a subset of the <strong>fixed</strong> energy phase shifts, whose <strong>in</strong>dexess<strong>at</strong>isfy the Müntz-Szász condition, determ<strong>in</strong>es the m-function and thus the spectralfunction, and thereby the potential of an auxiliary <strong>in</strong>verse spectral problem. Based onthis proof a constructive method was suggested <strong>in</strong> [28] for the solution of the <strong>in</strong>versesc<strong>at</strong>ter<strong>in</strong>g problem <strong>at</strong> <strong>fixed</strong> energy (<strong>in</strong> the follow<strong>in</strong>g referred to as Horváth-Apagyi (HA)method).In this chapter first we exam<strong>in</strong>e the possibility of f<strong>in</strong>d<strong>in</strong>g a suitable auxiliary <strong>in</strong>versespectral problem. Then, generaliz<strong>at</strong>ion of the method of Horváth and Apagyi is given[59] and a new approach is developed as well [60].It turns out th<strong>at</strong> we need to transform the <strong>fixed</strong> energy radial Schröd<strong>in</strong>ger equ<strong>at</strong>ionto the Liouville normal form, which is unique to the extent of a scale parameter (c).The constructive methods considered for the recovery of the potential from sc<strong>at</strong>ter<strong>in</strong>gd<strong>at</strong>a are the Gel’fand-Levitan and the Marchenko <strong>in</strong>versions. In both procedures onehas the freedom to choose the boundary conditions which choice can be characterizedby a further parameter (h).Themostdifficultproblemofboundst<strong>at</strong>es <strong>in</strong>theauxiliaryformalismisalsodiscussedto some extent. For the HA method an arbitrary number of boundst<strong>at</strong>es are considered.Reduction of thenumberofboundst<strong>at</strong>es isalso possiblebymak<strong>in</strong>guseoftheparameters(c and h). An approxim<strong>at</strong>ive argument is presented to assess the number of boundst<strong>at</strong>espresent <strong>in</strong> the auxiliary problem.In this chapter we shall strongly rely on the results of the <strong>in</strong>verse spectral <strong>theory</strong> ofthe the Sturm-Liouville equ<strong>at</strong>ion [38, 39, 16]. The necessary concepts and results arecollected <strong>in</strong> Appendix A.2. Liouville transform<strong>at</strong>ionFirst the <strong>fixed</strong> energy problem is transformed to an <strong>in</strong>verse eigenvalue problem wherethe value of the m-function for some arguments is determ<strong>in</strong>ed from the orig<strong>in</strong>al <strong>fixed</strong>energy phase shifts. To this end we transform the radial Schröd<strong>in</strong>ger equ<strong>at</strong>ion[ ](3.1) r 2 − d2dr 2 +q(r)−1 ψ l (r) = −l(l+1)ψ l (r)to the Liouville normal form (see e.g. [10]) by us<strong>in</strong>g a Liouville transform<strong>at</strong>ion,(3.2) r → x(r), ψ l (r) → ϕ l (x).36


[ ẍ(3.3) −ϕ ′′l (x)− (x)ẋ 2 +2f′ f(x)2. LIOUVILLE TRANSFORMATION 37Rewrit<strong>in</strong>g the differential equ<strong>at</strong>ion (3.1) <strong>in</strong> terms of the new <strong>in</strong>dependent variable x anddependent variable ϕ l (x) = f(x) −1 ψ l (r(x)) yields]ϕ ′ l (x)[ q(r(x))−1+ẋ 2− ẍ f ′ ](x)ẋ 2 f(x) − f′′ (x)f(x)l(l +1)ϕ l (x) = −r(x) 2 ẋ 2ϕ l(x)where dot denotes differenti<strong>at</strong>ion with respect to r. To get the Liouville normal form ofthe Sturm-Liouville equ<strong>at</strong>ion we need(3.4) r(x) 2 ẋ 2 = const. = c 2 ,and(3.5)[ ] ẍ (x)ẋ 2 +2f′ ≡ 0.f(x)The two conditions yield the unique solution(3.6) x(r) = clogr +c 1and(3.7) f(x) = c 2 e x 2c .If we want to use the <strong>in</strong>verse spectral <strong>theory</strong> of the Sturm-Liouville equ<strong>at</strong>ion on (0,∞)we need x(0) = +∞ and x(a) = 0 which <strong>in</strong> turn implies(3.8) sgnc = −1, c 1 = −cloga.Without the loss of generality c 2 = 1 is set and then the only rema<strong>in</strong><strong>in</strong>g parameter c canbe chosen arbitrarily ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the neg<strong>at</strong>ive sign.In summary, we have only one family of Liouville transform<strong>at</strong>ions reduc<strong>in</strong>gthe radialSchröd<strong>in</strong>ger equ<strong>at</strong>ion (3.1) to the Liouville normal form, namely(3.9) x(r) = clog r a , c < 0,(3.10)ϕ l (x) = e − x 2c ψl (ae x c ).Thereby (3.1) transforms to(3.11) −ϕ ′′l (x)+Q(x)ϕ l(x) = − 1 c 2 (l+ 1 2) 2ϕ l (x),with the auxiliary potential(3.12) Q(x) = a2c 2e2x cThe transformed equ<strong>at</strong>ion can be viewed as( )q(ae x c)−1 .(3.13) S[Q(x)]y(x,λ) = λy(x,λ), S[Q(x)] = − d2dx 2 +Q(x)given explicitly <strong>at</strong>(3.14) λ = − 1 (c 2 l+ 1 ) 22


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 38also obta<strong>in</strong><strong>in</strong>g one of the two l<strong>in</strong>early <strong>in</strong>dependent solutions of the Sturm-Liouville equ<strong>at</strong>ionas(3.15) y(x,− 1 (c 2 l+ 1 ) ) 2= ϕ l (x).2(L<strong>at</strong>er we show th<strong>at</strong> this is an L 2 solution.)2.1. m-function of the oper<strong>at</strong>or S[Q(x)]. First we show th<strong>at</strong> for the previouslydef<strong>in</strong>ed Q(x), Q(x) ∈ L 1 (0,∞) holds:(3.16)∫ ∞0|Q(x)|dx ≤ 1 c 2 ∫ a∫ a0r 2 |q(r)|dr + a22|c| < ∞by the assumption q(r) ∈ L 1,1 (0,a).0 r2 |q(r)|dr < a ∫ a0r|q(r)|dr and c < 0 was alsoused. Then S[Q(x)] with Q(x) be<strong>in</strong>g the auxiliary potential is <strong>in</strong> the limit-po<strong>in</strong>t case(see Appendix A).Next we prove th<strong>at</strong> the {ϕ l (x)} l=0,1,... functions are of the class L 2 (0,∞):(3.17)∫ ∞0|ϕ l (x)| 2 dx =∫ ∞0e −x c|ψ l (ae x c)| 2 dx = a|c|∫ a0|ψ l (r)| 2r 2 dr < ∞,where l ≥ 0 was exploited and the asymptotic formula ψ(r) = Cr l+1 (1 +o(1)), r → 0com<strong>in</strong>g from equ<strong>at</strong>ion (3.18) was used to estim<strong>at</strong>e the <strong>in</strong>tegral.S<strong>in</strong>ce ϕ l (x) ∈ L 2 (0,∞), Q(x) ∈ L 1 (0,∞) and for compactly supported potentialsq(r) the wave function of the Schröd<strong>in</strong>ger equ<strong>at</strong>ion s<strong>at</strong>isfies(3.18)(3.19)we <strong>in</strong>fer th<strong>at</strong>(3.20) mψ l (r) = C l r l+1 (1+o(1)), r → 0,ψ l (r) = A l√ r(Jl+1/2 (kr)−tanδ l Y l+1/2 (kr) ) , r ≥ a,) (− (l+1/2)2c 2 = ϕ′ l (0)ϕ l (0) = a Jl+1/2 ′ (a)−tanδ lYl+1/2 ′ (a)c J l+1/2 (a)−tanδ l Y l+1/2 (a) .Thus we have the m-function of the Sturm-Liouville oper<strong>at</strong>or S[Q(x)] with the potential(3.12) def<strong>in</strong>ed on the half-l<strong>in</strong>e.3. Us<strong>in</strong>g the Gel’fand-Levitan <strong>in</strong>version – Horváth-Apagyi methodIn this section we use the Gel’fand-Levitan (GL) <strong>in</strong>version procedure to f<strong>in</strong>d thetransformed potential Q(x). In order to complete this task we shall not use the explicitform of spectral functionas it wouldrequiretheapproxim<strong>at</strong>ion of them-function, r<strong>at</strong>her,<strong>in</strong> terms of the given m-function values, a moment problem is <strong>in</strong>troduced for the <strong>in</strong>putfunction F(x) of the GL <strong>in</strong>tegral equ<strong>at</strong>ion. Solv<strong>in</strong>g this moment problem proved to be,<strong>in</strong> this case, a numerically stable task contrary to the procedure consist<strong>in</strong>g of the stepsof approxim<strong>at</strong><strong>in</strong>g the m-function from the given d<strong>at</strong>a, calcul<strong>at</strong><strong>in</strong>g the spectral functionand then solv<strong>in</strong>g the GL <strong>in</strong>tegral equ<strong>at</strong>ion.Let us use the spectral problem ofSy = λy,whose elements are discussed <strong>in</strong> Appendix A.y(0) = 1, y ′ (0) = h < ∞


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 393.1. Deriv<strong>in</strong>g a moment problem. With referencetothedef<strong>in</strong><strong>in</strong>gformula(A.43)for F(x) we def<strong>in</strong>e a trunc<strong>at</strong>ed version ˜F(x):∫ ∞(3.21) ˜F(x) = cos( √ λx)dσ h (λ).0It turns out th<strong>at</strong> the reconstruction of the ˜F(x) function from the given m-functionvalues is an <strong>in</strong>verse moment problem. Consider∫ ∞∫ ∞(3.22) I = ˜F(x)e (l+1 2) x c dx =00(3.23)= − 1 c∫ ∞0∫ ∞0dσ h (λ)dxcos( √ λx)e (l+1 2) x c =dσ h (λ)l+ 1 2( )1c l+1 2.2 2 +λThis <strong>in</strong>tegr<strong>at</strong>ion can be performed <strong>in</strong> terms of the m-function and by consider<strong>in</strong>g th<strong>at</strong>on (−∞,0) dρ h (λ) is concentr<strong>at</strong>ed on po<strong>in</strong>ts (th<strong>at</strong> is on the bound st<strong>at</strong>e eigenvaluesλ 1 λ 2 ,...λ B supported by Q(x)):(3.24)HereI = 1 c= 1 c(l+ 1 )·2(l+ 1 )2[ ∫ ∞⎡· ⎣−∞(md(ρ h (λ)−ρ 0,0 (λ))− 1 ( )c l+1 2+2 2 −λ1− 1 c 2 (l+12) ) 2−−h(3.25) b i = ρ h (λ i +0)−ρ h (λ i −0)∫ 0−∞]dρ h (λ)) 2 +λ(1c l+12 21m 0(− 1 (c l+12 2B∑+i=1) 2)b i(1c l+12 2) 2 +λi]and m 0 (·) denotes the m-function associ<strong>at</strong>ed with Q(x) ≡ 0. The necessary values ofm(·) are known from equ<strong>at</strong>ion (3.20).Now we have the follow<strong>in</strong>g problem for ˜F(x):(3.26)∫ ∞with the moments(3.27) µ(c,h,δ l ,{λ i },{b i }) =0˜F(x)e (l+1 2) x c dx = µ(c,h,δl ,{λ i },{b i }), l = 0,1,...(l+ 1 ) (· a· J′ l+1/2 (a)−tanδ lYl+1/2 ′ (a) ) −12 J l+1/2 (a)−tanδ l Y l+1/2 (a) −c·h −1B∑ b i( )+ c l+12( )1i=1 c l+1 2.2 2 +λiNote th<strong>at</strong> if there are no bound st<strong>at</strong>es supported by Q(x) the moments do not dependon the undeterm<strong>in</strong>ed quantities {λ i } and {b i } associ<strong>at</strong>ed with the bound st<strong>at</strong>e positionsand norms (last term of (3.27))..


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 403.2. Solution method. Depend<strong>in</strong>g on the number of bound st<strong>at</strong>es present <strong>in</strong> theauxiliary problem, different solution str<strong>at</strong>egies are called for. As a consequence it isimportant to know or <strong>at</strong> least assess the number of bound st<strong>at</strong>es before solv<strong>in</strong>g the<strong>in</strong>verse problem which is discussed <strong>in</strong> the next section.3.2.1. No bound st<strong>at</strong>es. In this case we have a proper moment problem for ˜F(x) =F(x):(3.28)∫ ∞0F(x)e (l+1 2) x c dx = µ(c,h,δl ) ≡ µ l ,where the moments now do not depend on unknown quantities.To solve this moment problem we use the follow<strong>in</strong>g expansion for F(x):(3.29) F(x) =N∑c n e −nx .n=0Upon substitution <strong>in</strong>to equ<strong>at</strong>ion (3.28) and us<strong>in</strong>gN+1 <strong>fixed</strong> energy phaseshifts as <strong>in</strong>putd<strong>at</strong>a we get the follow<strong>in</strong>g system of l<strong>in</strong>ear equ<strong>at</strong>ions for the coefficients(3.30)N∑n=0c n−c−cn+l+ 1 2= µ l , l = 0,1,...,N.Solv<strong>in</strong>g this system of l<strong>in</strong>ear equ<strong>at</strong>ions yields the coefficients required to build F(x)and from th<strong>at</strong> one can calcul<strong>at</strong>e the <strong>fixed</strong> energy potential essentially by solv<strong>in</strong>g theGL <strong>in</strong>tegral equ<strong>at</strong>ion (A.41). Note th<strong>at</strong> solv<strong>in</strong>g the system of equ<strong>at</strong>ions is not a wellconditionedtask as we must deal with a Hilbert-type m<strong>at</strong>rix which is <strong>in</strong>famously badlyconditioned. Therefore, from the numerical po<strong>in</strong>t of view it is of considerable value tosee, th<strong>at</strong> this m<strong>at</strong>rix can be <strong>in</strong>verted explicitly. Our m<strong>at</strong>rix, i.e.[−c−cn+l+ 1 2]lnis <strong>in</strong> fact aCauchy m<strong>at</strong>rix. The elements of the <strong>in</strong>verse of a general Cauchy m<strong>at</strong>rix with elementsa ij = (x i +y j ) −1 are given by [74](3.31) b ij = (x j +y i ) ∏ m≠iIn our case this implies(3.32)c n = − 1 N∑cl=0x j +y m∏y m −y im≠j(µ l · l−cn+ 1 ) ∏ l −cn ′ + 1 ∏22 cn−cn ′ n ′ ≠n l ′ ≠lx m +y ix m −x j.l ′ −cn+ 1 2l ′ , n = 0,1,...,N.−lImprovements of the solution method. To further improve the solution method outl<strong>in</strong>edabove one can exploit two properties of the F(x) function, namely th<strong>at</strong>(3.33) F(0) = −hand(3.34) lim F(x) = 0.x→∞


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 41The l<strong>at</strong>ter is a simple consequence of the Riemann-Lebesgue lemma, however the formerneeds more explan<strong>at</strong>ion. Let us write up the def<strong>in</strong>ition of F(0)∫ ∞ ∫ Λ[F(0) = dσ(λ) = lim dσ(λ) = lim ρ h (Λ)−ρ h (−∞)− 2 ]√Λ =−∞ Λ→∞ −∞ Λ→∞ π2= lim Λ+ρΛ→∞[π√ h (−∞)−h+o(1)−ρ h (−∞)− 2 ]√(3.35)Λ = −hπwhere equ<strong>at</strong>ion (A.9) was used and cont<strong>in</strong>uity <strong>in</strong> Λ was supposed. This proves F(0) =−h.Because of F(∞) = 0 one can take(3.36) c 0 = 0;however, we note th<strong>at</strong> this is not always the best course of action <strong>in</strong> practical scenarios(see l<strong>at</strong>er).To <strong>in</strong>corpor<strong>at</strong>e the <strong>in</strong>form<strong>at</strong>ion F(0) = −h there are several ways to choose from.For <strong>in</strong>stance, one can prescribe the condition(3.37)N∑c n = −hn=0for the coefficients (which complic<strong>at</strong>es the solution process: the m<strong>at</strong>rix to be <strong>in</strong>vertedis no longer of the Cauchy type). On the other hand, this will be very useful <strong>in</strong> theone bound st<strong>at</strong>e case (see l<strong>at</strong>er) where it will permit the determ<strong>in</strong><strong>at</strong>ion of the nonl<strong>in</strong>earparameter λ <strong>in</strong> a l<strong>in</strong>ear way.Hausdorff moment problem. Our problem can be viewed as a Hausdorff momentproblem s<strong>in</strong>ce with z = e x c and F(z) = −cz −1/2 F(clogz) (3.28) takes the form(3.38)∫ 10z l F(z)dz = µ l , l = 0,1,2,....The Hausdorff moment problem is studied <strong>in</strong> the liter<strong>at</strong>ure <strong>in</strong> detail concern<strong>in</strong>g bothm<strong>at</strong>hem<strong>at</strong>ical properties and solution methods. For <strong>in</strong>stance, an <strong>in</strong>terest<strong>in</strong>g stabilityresult can be found <strong>in</strong> [77] whose corollary is the follow<strong>in</strong>g theorem, th<strong>at</strong> establishes anaccuracy estim<strong>at</strong>e of the <strong>in</strong>verse moment problem which is procedure <strong>in</strong>dependent.(3.39)Theorem 2. Suppose the smoothness condition∫ 10|F ′ (z)−F ′ N(z)| 2 dz ≤ E 2 < ∞.Then, if the first N +1 moments of F(z) and F N (z) co<strong>in</strong>cide, i.e.(3.40)we have(3.41)∫ 10z k F(z)dz =∫ 10∫ 10z k F N (z)dz,|F(z)−F N (z)| 2 dz ≤k = 0,1,...N,E 24(N +1) 2.


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 42Us<strong>in</strong>g Theorem 2 one can conclude th<strong>at</strong> if the moments µ l are free of error, thedifference between the approxim<strong>at</strong>ed and the true F(x) functions <strong>in</strong> L 2 norm tends to 0as the number of moments is <strong>in</strong>creased:(3.42)∫ ∞0|F(x)−F N (x)| 2 dx ≤C4(N +1) 2,with some C constant depend<strong>in</strong>g on the smoothness of F(x)−F N (x),(3.43)∫ ∞0|F ′ (x)−F ′ N (x)|2 e −2x c dx ≤ C,and F N (x) is the approxim<strong>at</strong>ion of the true F(x) us<strong>in</strong>g the first N +1 moments.It is <strong>in</strong>terest<strong>in</strong>g to consider the case when the <strong>in</strong>put d<strong>at</strong>a is noisy. Us<strong>in</strong>g Theorem 1of [77] one has the follow<strong>in</strong>g estim<strong>at</strong>e:(3.44)∫ ∞0{ ε|F(x)−F N (x)| 2 2dx ≤ m<strong>in</strong>n |c| e3.5(n+1) +}C4(n+1) 2 : n = 0,1,...N ,where ε 2 is the absolute square sum of the differences between the true and noisy moments.This result implies <strong>in</strong> particular th<strong>at</strong> even if the number of phase shifts grows to<strong>in</strong>f<strong>in</strong>ity the recovery will not be complete when the d<strong>at</strong>a rema<strong>in</strong>s erroneous.3.2.2. One bound st<strong>at</strong>e. Suppos<strong>in</strong>g (3.29) we get the system of equ<strong>at</strong>ions(3.45)N∑n=0c n−c−cn+l+ 1 2= µ l + b( l+ 1 12)c( )1c l+1 2, l = 0,1,...,N +1,2 2 +λwhere µ l denotes the lth moment without the bound st<strong>at</strong>e contributions and λ < 0 andb > 0 are the bound st<strong>at</strong>e parameters (the subscript 1 is omitted). Us<strong>in</strong>g the expansion(3.29) for ˜F(x) we have(3.46) F(x) = bcosh( √ −λx)+N∑c n e −nx .To get an explicitly solvable system of equ<strong>at</strong>ions tre<strong>at</strong><strong>in</strong>g √ −λ as a parameter we subtractthe term b 2 e−√ −λx from the expansion for ˜F(x), th<strong>at</strong> is prescribe∑N(3.47) ˜F(x) = c n e −nx − b 2 e−√ −λx , F(x) = b √2 e −λx+and obta<strong>in</strong>(3.48)n=0−c·b2( ( l+ 1 ) √ +2 +c −λ)through the elementary identity(3.49)N∑n=0c n−c−cn+l+ 1 2n=0N∑c n e −nx ,n=0= µ l , l = 0,1,...,N +1αα 2 −β 2 − 1 12(α+β) = 1 1, α,β ∈ C.2α−β


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 43Us<strong>in</strong>g the <strong>in</strong>verse of the Cauchy m<strong>at</strong>rix the explicit solution of the system of equ<strong>at</strong>ionsis given by(3.50)c n = − 1 cN+1∑l=0µ l(l −cn+ 1 )2 +cδ √n,−1 −λ× ∏ l ′ −cn+ 1 2 +cδ n,−1√−λl ′ −ll ′ ≠l× ∏ l−cn ′ + 1 2 +cδ n ,−1√ ′ −λ√ √ ,−cn ′ +cδ n ′ ,−1 −λ+cn−cδn,−1 −λn ′ ≠nwhere n = −1 is also allowed, c −1 ≡ b 2 and δ a,b is the Kronecker-delta. To determ<strong>in</strong>e√−λ we use a further result concern<strong>in</strong>g Cauchy m<strong>at</strong>rices, namely th<strong>at</strong> the sum of thecoefficients (<strong>in</strong>clud<strong>in</strong>g b/2) is l<strong>in</strong>ear <strong>in</strong> √ −λ (see e.g. [28], Lemma 5):(3.51) S =N∑n=−1c n = α √ −λ+β.Us<strong>in</strong>g this fact the l<strong>in</strong>ear solution procedure is performed as follows.(3.52)(1) Calcul<strong>at</strong>e S for two arbitrarily chosen λ values (λ 01 and λ 02 ) solv<strong>in</strong>g (3.48).Denot<strong>in</strong>g the two sums S 1 and S 2 , us<strong>in</strong>g the rel<strong>at</strong>ion S = F(0) = −h get √ −λby√−λ =(S 2 +h) √ −λ 01 −(S 1 +h) √ −λ 02S 2 −S 1.(2) Calcul<strong>at</strong>e the c n coefficients from (3.48) with the appropri<strong>at</strong>e λ parameter obta<strong>in</strong>ed<strong>in</strong> (1).(3) Calcul<strong>at</strong>e q(r) through F(x) and the GL <strong>in</strong>tegral equ<strong>at</strong>ion.3.2.3. Multiple bound st<strong>at</strong>es. For two or more bound st<strong>at</strong>es we propose a non-l<strong>in</strong>earproblem. Firstly, solve the nonl<strong>in</strong>ear system of equ<strong>at</strong>ions(3.53)(3.54)∑ B −c·b ii=1+∑ N2(l+ 1 2 +c√ −λ i ) n=0 c −cn−cn+l+ 1 2∑ Bi=1 b i + ∑ Ni=0 c n = −h= µ l , l ∈ Lwith the <strong>in</strong>dex set L = [0,1,...,N+2B−1] <strong>in</strong> the variables λ 1 ,λ 2 ,...,λ B , b 1 ,b 2 ,...,b B ,c 0 ,c 1 ,...,c N . Then calcul<strong>at</strong>e F(x) by(3.55) F(x) =B∑i=1b i2 e√ −λ i x +N∑c n e −nxand f<strong>in</strong>ally solve the GL <strong>in</strong>tegral equ<strong>at</strong>ion to obta<strong>in</strong> the potential.Numerically, it is worthwhile to <strong>in</strong>itialize the c n values for the nonl<strong>in</strong>ear solver withthe ones obta<strong>in</strong>ed for the known ka product suppos<strong>in</strong>g a q(r) ≡ 0 potential. Thisis because, roughly speak<strong>in</strong>g, q(r) is expected to <strong>in</strong>fluence only the tail of the Q(x)potential and the bound st<strong>at</strong>es shall be close to those correspond<strong>in</strong>g to q(r) ≡ 0.n=0


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 443.3. The constant potential and discussion of bound st<strong>at</strong>es. We shall makeobserv<strong>at</strong>ions based on the transform<strong>at</strong>ion formula for the potential (3.12):(3.56) Q(x) = a2 ] [q(ae − |c|)−1x,c 2 e 2x|c|q(a) = 0.At most one bound st<strong>at</strong>e is expected when q(r) > 1 on 0 ≤ r < a, th<strong>at</strong> is whenQ(x) is positive everywhere for h = 0 (Appendix A section 2.5). For <strong>in</strong>stance an explicitexample is given by the case when we have a constant <strong>fixed</strong>-energy q(r) potential <strong>in</strong> theform(3.57) q(r) ={C for r < a0 for r ≥ a , C > 1.For such a potential it can be checked th<strong>at</strong> there are no bound st<strong>at</strong>es (see l<strong>at</strong>er) forh = 0 and there is <strong>at</strong> most 1 bound st<strong>at</strong>e for h ≠ 0.Inpractical applic<strong>at</strong>ions itisan<strong>at</strong>uralassumptionth<strong>at</strong>q(r) = 0already onb < r < awith some b > 0. In this case we have( ( a 2e−2(3.58) Q(x) = −c) x|c| b, 0 ≤ x < −|c|log ,a)only the tail of Q(x) is <strong>in</strong>fluenced by the <strong>fixed</strong>-energy potential q(r), e.g. Q(0) is solelydeterm<strong>in</strong>ed by a. For this reason with given a parameter by tak<strong>in</strong>g q(r) ≡ 0 one cantry to calcul<strong>at</strong>e the approxim<strong>at</strong>e bound st<strong>at</strong>es or <strong>at</strong> least estim<strong>at</strong>e the number of them.Next we show results for the constant potential, which covers the case of zero potential.For(3.59) Q(x) = −se −2tx , with s,t > 0the Sturm Liouville equ<strong>at</strong>ion can be solved explicitly. This is an easy exercise and willnot be detailed here, only the result is given. The differential equ<strong>at</strong>ion(3.60) −ϕ ′′ (x)−se −2tx ϕ(x) = λϕ(x)is solved by(3.61) ϕ(x) = C 1 J i√λ/t(√ st e−tx )+C 2 J −i√λ/t(√ st e−tx )where Bessel functions generally of complex orders have appeared. For Im √ λ > 0 theL 2 -solution (if t > 0) is(√ )(3.62) ϕ(x) = C 2 J √ s−i λ/tt e−tx ,s<strong>in</strong>ce(3.63) J ±i√λ/t(√ st e−tx )= b(x)e ∓(Im√ λ/t)x +o(e ∓(Im√ λ/t)x ), x → ∞,where b(x) is some bounded function. Then the m-function is(3.64) m(λ) = ϕ′ (0) J ′ϕ(0) = −√ −i √ (√ s/t)λ/tsJ √−i λ/t( √ s/t) .


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 45Us<strong>in</strong>g the Stieltjes <strong>in</strong>version, equ<strong>at</strong>ion (A.17) dρ h (λ) can be found. For λ > 0 trivially(3.65) dρ h (λ) = 1 π Im [√s J ′ −i √ λ/t (√ s/t)J −i√λ/t( √ s/t) +h ] −1dλ, λ > 0.Forλ < 0themeasureisconcentr<strong>at</strong>ed topo<strong>in</strong>tswhicharetheboundst<strong>at</strong>es. Theyareloc<strong>at</strong>ed <strong>at</strong> the eigenvalues of the oper<strong>at</strong>or where ϕ ∈ L 2 (0,∞). Start<strong>in</strong>g from ϕ(0) = 1and ϕ ′ (0) = h one can calcul<strong>at</strong>e the coefficient of the divergent solution to be(3.66) C 1 = − π√ s2t[J ′ √ −λ/t( √ s/t)+ h √ sJ √ −λ/t (√ s/t)where some elementary properties of the Bessel functions were used [82]. C 1 needs tobe zero thus the bound st<strong>at</strong>es are loc<strong>at</strong>ed <strong>at</strong> λ’s which s<strong>at</strong>isfy(3.67) J ′ √ −λ/t( √ s/t)+ h √ sJ √ −λ/t (√ s/t) = 0.Then the number of boundst<strong>at</strong>es is gre<strong>at</strong>er than zero but f<strong>in</strong>ite. Note th<strong>at</strong> for s < 0 (thecase of potential (3.57)), we have the modified Bessel function (i λ I λ (x) = J λ (ix)) and itsderiv<strong>at</strong>ive <strong>in</strong> the previous equ<strong>at</strong>ion <strong>at</strong> √ |s|/t ∈ R + , which functions are monotonically<strong>in</strong>creas<strong>in</strong>g allow<strong>in</strong>g <strong>at</strong> most one solution (bound st<strong>at</strong>e), while for h = 0 allow<strong>in</strong>g none.Us<strong>in</strong>g the <strong>theory</strong> of residues the height of the step <strong>in</strong> ρ(λ) <strong>at</strong> the bound st<strong>at</strong>es canbe obta<strong>in</strong>ed to be(3.68) ρ(λ 0 +0)−ρ(λ 0 −0) = 2t √ J √ −λ−λ0 /t (√ s/t)√ (1,1) sJ √ −λ0 /t (√ s/t)+hJ √ (1,0)−λ0 /t (√ s/t) ,where the superscript (n,m) means deriv<strong>at</strong>ion with respect to order n times and deriv<strong>at</strong>ionwith respect to the variable m times.In case of h = 0 we have a particularly simple scenario <strong>at</strong> hand. For def<strong>in</strong>iteness let(3.69) κ 2 = 1−q(0),q(0)be<strong>in</strong>gthevalueoftheconstantpotential<strong>at</strong>e.g. theorig<strong>in</strong>, andsupposeforsimplicityq(0) < 1. The potential Q(x) = − (κa)2st<strong>at</strong>es λ i <strong>at</strong>c 2 e −2x(3.70) J ′ |c| √ −λ i(κa) = 0.|c|associ<strong>at</strong>ed to q(r) ≡ 0 with h = 0 has boundFrom [82] we <strong>in</strong>fer, denot<strong>in</strong>g the nth root of J µ(x) ′ by j µ,n, ′ th<strong>at</strong> j µ,n ′ < j µ+ε,n ′ n = 1,2,...holds with j 0,1 ′ = 0. Moreover, j′ µ,n is cont<strong>in</strong>uous <strong>in</strong> µ [82]; therefore, we f<strong>in</strong>d th<strong>at</strong> forκa > 0 there always exits <strong>at</strong> least one bound st<strong>at</strong>e. From the above fact it also followsth<strong>at</strong> the number of zeros of J 0 ′ (x) on 0 ≤ x < κa equals the number of bound st<strong>at</strong>esof Q(x) = − (κa)2 e −2x |c|. Altern<strong>at</strong>ively, as J ′ c 2 0 (x) = −J 1(x), the number of bound st<strong>at</strong>es<strong>in</strong>crease <strong>at</strong> the zeros of J 1 (x), i.e. <strong>at</strong> j 1,n , n = 1,2,.... Some numerical results are listed<strong>in</strong> Table 3.1. For a general potential q(r) the d<strong>at</strong>a listed <strong>in</strong> Table 3.1 can still be relevantif the potential is shallow compared to 1 and only the tail of Q(x) is <strong>in</strong>fluenced by q(r).Note th<strong>at</strong> the value of the parameter c does not affect the number of bound st<strong>at</strong>es (onlytheir positions) as it is only a scale parameter of the function J ′ |c| √ −λ (κa) of √ −λ whosezeros give the bound st<strong>at</strong>es.]


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 46Table 3.1. The first few sectors of def<strong>in</strong>ite bound st<strong>at</strong>e numbers for aconstant q(r) potential <strong>at</strong> h = 0.0 < κa < 3.8317 one bound st<strong>at</strong>e3.8318 < κa < 7.0156 two bound st<strong>at</strong>es7.0156 < κa < 10.174 three bound st<strong>at</strong>es10.174 < κa < 13.324 four bound st<strong>at</strong>esetc.Figure 3.1. J µ (κa) ′ (full l<strong>in</strong>e) and RJ µ (κa) (dashed l<strong>in</strong>e) as functionsof the order (R is a real number s<strong>at</strong>isfy<strong>in</strong>g sgn(J 0 ′(κa)) = sgn(RJ 0(κa))and |RJ 0 (κa)| > |J 0 ′ (κa)|). While <strong>at</strong> h = 0 the zeros of the deriv<strong>at</strong>ivefunctionsaretheboundst<strong>at</strong>es, <strong>at</strong> h ≠ 0the<strong>in</strong>tersection of thetwo graphsgive them.0.40.2J Μ Κa ′R J Μ Κa0.02 4 6 8 100.20.4Allow<strong>in</strong>g h ≠ 0 gives rise to the more <strong>in</strong>volved condition (3.67) with √ s = a|c|andt = |c| −1 for the bound st<strong>at</strong>es. It is possible then for some h ≠ 0 th<strong>at</strong> one has one boundst<strong>at</strong>e while for h = 0 two of them. This has the favorable consequence of reduc<strong>in</strong>ga nonl<strong>in</strong>ear problem to a l<strong>in</strong>ear one. Without giv<strong>in</strong>g an exhaustive tre<strong>at</strong>ment of thesitu<strong>at</strong>ion we show the follow<strong>in</strong>g illustr<strong>at</strong>ive result for bound st<strong>at</strong>e reduction.Lemma 1. For 3.83 ≈ j ′ 0,2 < κa < j 0,2 ≈ 5.52 the two bound st<strong>at</strong>es present <strong>at</strong> h = 0can be reduced to one by vary<strong>in</strong>g h.Proof. In figure 3.1 the two Bessel-type functions enter<strong>in</strong>g condition (3.67) aredepicted. We will show th<strong>at</strong> by vary<strong>in</strong>g h (on the figure through R), disregard<strong>in</strong>g anoverall sign, one can always get the same k<strong>in</strong>d of graphs as the ones on the figure andhave only one bound st<strong>at</strong>e.By us<strong>in</strong>g the fact th<strong>at</strong> the zeros of J 0 (x) and J 0 ′(x) <strong>in</strong>terlace we <strong>in</strong>fer th<strong>at</strong> J 0(κa) ≠ 0and J 0 ′ (κa) ≠ 0. The only th<strong>in</strong>g th<strong>at</strong> rema<strong>in</strong>s to be shown is th<strong>at</strong> the distribution of


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 47the zeros are as depicted. S<strong>in</strong>ce j 0,2 ′ < κa < j 0,2 for J µ(κa) ′ only the first two andfor J µ (κa) only the first zeros can enter <strong>in</strong>to our consider<strong>at</strong>ions. Then the <strong>in</strong>terlac<strong>in</strong>grel<strong>at</strong>ion j a,1 ′ < j a,1 < j a,2 ′ and the monotonicity of the zeros transl<strong>at</strong>e <strong>in</strong>to µ 1 < µ 2 < µ 3if j µ ′ 1 ,1 = κa, j µ 2 ,1 = κa and j µ ′ 3 ,2 = κa. This completes the proof of the lemma. □3.4. Examples.3.4.1. Constant potentials. First a potential th<strong>at</strong> gener<strong>at</strong>es no bound st<strong>at</strong>es <strong>in</strong> theauxiliary problem is reconstructed. Let us take{1.2 for r < 2(3.71) q(r) =0 for r ≥ 2with a = 2. Note th<strong>at</strong> q(0) = 1.2 > 1, therefore Q(x) > 0.Figure 3.2 1 shows how the quality of the <strong>in</strong>version <strong>in</strong>creases when the number of<strong>in</strong>put phase shifts is <strong>in</strong>creased: results are shown with 5, 10, 20 and 40 <strong>in</strong>put phaseshifts us<strong>in</strong>g the parameters c = −0.8 and h = 0. In order to preclude the possibility oferrors <strong>in</strong>troduced by <strong>in</strong>accur<strong>at</strong>e d<strong>at</strong>a and th<strong>at</strong> of round<strong>in</strong>g errors (orig<strong>in</strong><strong>at</strong><strong>in</strong>g from thefact th<strong>at</strong> we are deal<strong>in</strong>g with severely ill-conditioned m<strong>at</strong>rices th<strong>at</strong> need to be <strong>in</strong>verted)we worked with a precision of a hundred digits.Figure 3.2. Reconstructions with different number of <strong>in</strong>putphase shiftsof the constant potential q(r) = 1.2·H 2 (r). (c = −0.8, h = 0.)qr1.401.351.301.251.201.151.101.051.00 0.0 0.5 1.0 1.5 2.0 r(a) 5 phases.qr1.401.351.301.251.201.151.101.051.00 0.0 0.5 1.0 1.5 2.0 r(b) 10 phases.qr1.401.351.301.251.201.151.101.051.00 0.0 0.5 1.0 1.5 2.0 r(c) 20 phases.qr1.401.351.301.251.201.151.101.051.00 0.0 0.5 1.0 1.5 2.0 r(d) 40 phases.1 For brevity we <strong>in</strong>troduce the function Ha(x) be<strong>in</strong>g a step function: H a(x) = 1 for x ≤ a andH a(x) = 0 for x > a.


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 48Figure 3.3. Reconstructions of the constant potential q(r) = 1.2·H 2 (r)from 11 phase shifts with no bound st<strong>at</strong>es <strong>in</strong> the auxiliary problem us<strong>in</strong>gthe parameters a = 2, c = −0.8, h = 0 (a) exclud<strong>in</strong>g, (b) <strong>in</strong>clud<strong>in</strong>g theconstant term <strong>in</strong> equ<strong>at</strong>ion (3.29) .qr1.51.41.31.21.11.00.90.8 0.0 0.5 1.0 1.5 2.0 r(a) Without constant.qr1.51.41.31.21.11.00.90.8 0.0 0.5 1.0 1.5 2.0 r(b) With constant.An <strong>in</strong>terest<strong>in</strong>g fe<strong>at</strong>ure is displayed <strong>in</strong> figure 3.3: it can be beneficial to reta<strong>in</strong> theconstant term <strong>in</strong> the expansion (3.29) (while it is <strong>in</strong>comp<strong>at</strong>ible with the theoretical formof F(x)). The figure depicts the reconstruction of the previous potential with c = −0.8and h = 0. Motiv<strong>at</strong>ed by this example <strong>in</strong> the reconstructions to be shown the constantterm is reta<strong>in</strong>ed <strong>in</strong> the expansion, whose value will also serve as an overall measure ofthe quality of the <strong>in</strong>version.Figure 3.4 shows <strong>in</strong>verse potentials gener<strong>at</strong>ed from the same number N + 1 = 11of <strong>fixed</strong> energy phase shift d<strong>at</strong>a. By vary<strong>in</strong>g the parameters c and h one can achieveconsiderably better reconstructions thanwith theorig<strong>in</strong>al choices of parameters (c = −1,h = 0). In this case the optimal choice was c = −0.3 and h = −0.15.To make the choice of the parameter system<strong>at</strong>ical, we <strong>in</strong>troduce a measure of thesmoothness of the <strong>in</strong>verse potential: let∫ a(3.72) s(c,h) = |q ′ (r)|dr,r 0def<strong>in</strong>edforeachchoiceofcandhwherethelower limitr 0 is<strong>in</strong>troduced<strong>in</strong>ordertoexclude(possibly p<strong>at</strong>hological) s<strong>in</strong>gularity <strong>at</strong> the orig<strong>in</strong>. We used r 0 = 0.05 <strong>in</strong> all the examplesshown. By requir<strong>in</strong>g s to be small is equivalent to prescribe smoothness of the potential.Also, such a potential cannot conta<strong>in</strong> non-<strong>in</strong>tegrable parts, s<strong>in</strong>gularities (see Chapter 2,Section 3), which <strong>in</strong> pr<strong>in</strong>ciple could also be encountered <strong>in</strong> the HA method. Indeed, weonly have an approxim<strong>at</strong>ion of the trueF(x) <strong>in</strong>putfunction for theGL <strong>in</strong>tegral equ<strong>at</strong>ion,therefore it is possible th<strong>at</strong> the <strong>in</strong>tegral equ<strong>at</strong>ion has a vanish<strong>in</strong>g Fredholm determ<strong>in</strong>antfor some radii. In such a case the HA method becomes <strong>in</strong>consistent as well, thus suchcases should be excluded from consider<strong>at</strong>ion outright. On the other hand, requir<strong>in</strong>gsmooth potentials also means th<strong>at</strong> we have an underly<strong>in</strong>g smooth F-functions too, forwhich Theorem 2 implies better reconstruction, <strong>in</strong> pr<strong>in</strong>ciple.Next we show an example for a so called spurious bound st<strong>at</strong>e. Notice, th<strong>at</strong> reconstructionof a potential with a procedure appropri<strong>at</strong>e for more bound st<strong>at</strong>es thenare truly present <strong>in</strong> the auxiliary problem is possible and not <strong>in</strong>consistent (while <strong>in</strong> the


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 49Figure 3.4. Reconstructions of the constant potential q(r) = 1.2·H 2 (r)from 11 phase shifts with no bound st<strong>at</strong>es <strong>in</strong> the auxiliary problem withdifferent choices of the parameters c and h.qr1.30qr1.301.251.251.201.201.151.151.10 0.0 0.5 1.0 1.5 2.0 r(a) c = −1, h = 0 (orig<strong>in</strong>alchoice). s=12.1.10 0.0 0.5 1.0 1.5 2.0 r(b) c = −1, h = −0.15. s=15.qr1.30qr1.301.251.251.201.201.151.151.10 0.0 0.5 1.0 1.5 2.0 r(c) c = −0.30, h = 0. s=0.15.1.10 0.0 0.5 1.0 1.5 2.0 r(d) c = −0.30, h =−0.15. s=011.opposite case it would be). For <strong>in</strong>stance, for the test potential (3.71) allow<strong>in</strong>g one nonl<strong>in</strong>earparameter √ −λ (a spurious bound st<strong>at</strong>e), the reconstruction results <strong>in</strong> the sameprecision as before without the <strong>in</strong>clusion of a ”bound st<strong>at</strong>e”. Results for c = −0.3 andh = −0.5 are depicted <strong>in</strong> figure 3.5 (together with the <strong>in</strong>termedi<strong>at</strong>e functions F(x) andQ(x)). In addition to the reconstructed potential we list the <strong>in</strong>put phase shifts and the<strong>in</strong>termedi<strong>at</strong>e d<strong>at</strong>a (such as the moments, coefficients of the series (3.29) and the value ofthe ”bound st<strong>at</strong>e”) <strong>in</strong> Table 3.2. Typical fe<strong>at</strong>ures can be seen on the numbers appear<strong>in</strong>g:while the phase shifts decrease exponentially, the moments µ l decrease only as a powerfunction (<strong>in</strong> general as l −1 ); the expansion coefficients are alter<strong>in</strong>g <strong>in</strong> sign to produce∑cn = h; c 0 is small. It is also worth po<strong>in</strong>t<strong>in</strong>g out th<strong>at</strong> <strong>in</strong> this case the procedureyields √ −λ = −1.4447 for the ”bound st<strong>at</strong>e” parameter, a neg<strong>at</strong>ive value which clearly<strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> there is no real bound st<strong>at</strong>e <strong>in</strong> this problem. Thus, it could be a possiblecourse of action, one th<strong>at</strong> <strong>in</strong> pr<strong>in</strong>ciple can yield the true number of bound st<strong>at</strong>es <strong>in</strong> theauxiliary problem, to reconstruct the potential, or <strong>at</strong> least calcul<strong>at</strong>e the bound st<strong>at</strong>epositions with the B = 1,2,... procedures until one encounters a neg<strong>at</strong>ive bound st<strong>at</strong>eparameter. Then one can conclude, th<strong>at</strong> the true number of bound st<strong>at</strong>es is one lessthen the B-value, where the algorithm stopped.


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 50Figure 3.5. (a) Reconstruction of the potential q(r) = 1.2·H 2 (r) withc = −0.3, h = −0.5 employ<strong>in</strong>g the one bound st<strong>at</strong>e procedure (see text).s = 0.0004. (b) Function F(x). (c) Potential Q(x) <strong>in</strong> the x-space.qr1.30Fx0.6Qx81.250.40.261.200.01 2 3 4 5 x41.151.10 0.0 0.5 1.0 1.5 2.0 r(a) q(r).0.20.40.6(b) F(x).20 0.0 0.5 1.0 1.5 2.0 x(c) Q(x).Table 3.2. Input phases (δ l ) and the <strong>in</strong>termedi<strong>at</strong>e quantities of the <strong>in</strong>versionprocedure: moments µ l , coefficients c n and the nonl<strong>in</strong>ear parameter(i.e. ’bound st<strong>at</strong>e’). a Nonl<strong>in</strong>ear ”bound st<strong>at</strong>e” parameter:√−λ = −1.4447.l δ l µ l n c n0 −0.9890 −0.1714 −1 −6.4667 a1 −0.2964 −0.0043 0 +0.00022 −0.0471 0.0151 1 −0.09543 −0.0037 0.0180 2 +7.20854 −0.0001 0.0176 3 −0.15105 −5.0×10 −6 0.0164 4 +0.26576 −1.1×10 −7 0.0151 5 −0.29687 −1.8×10 −9 0.0139 6 +0.20278 −2.2×10 −11 0.0129 7 −0.20229 −2.3×10 −13 0.0119 8 +0.025810 −1.9×10 −15 0.0111 9 +0.0092Now we proceed to reconstruct the potential{0.8 for r < 2 = a(3.73) q(r) =0 for r ≥ 2 = awhich possesses one bound st<strong>at</strong>e <strong>at</strong> h = 0 (s<strong>in</strong>ce q(0) = 0.8 < 1, thus Q(x) < 0). Infigure 3.6 two potentials are shown with different choices of the parameters. Note thequality: for r > 0.5 the devi<strong>at</strong>ion from the orig<strong>in</strong>al potential is <strong>in</strong> the order of 0.00010(s = 0.049) for c = −1, h = 0 and 0.00005 (s = 0.0022) for c = −0.5, h = −0.65.We cont<strong>in</strong>ue with a two bound st<strong>at</strong>e potential <strong>at</strong> h = 0,{0.8 for r < 11 = a(3.74) q(r) =0 for r ≥ 11 = a.


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 51Figure 3.6. Reconstructions of the constant potential q(r) = 0.8H 2 (r)from 11 phase shifts and one bound st<strong>at</strong>e <strong>in</strong> the auxiliary problem <strong>at</strong>h = 0 with different choices of the parameters.qr0.810qr0.8100.8050.8050.8000.8000.7950.7950.790 0.0 0.5 1.0 1.5 2.0 r(a) c = −1.0, h = 0.0.790 0.0 0.5 1.0 1.5 2.0 r(b) c = −0.5, h = −0.65.Figure 3.7. Reconstructions of the potential q(r) = 0.8 · H 11 (r) us<strong>in</strong>g(a) the two bound st<strong>at</strong>e formul<strong>at</strong>ion (h = 0) and (b) the one bound st<strong>at</strong>eone (h = 5). c = −1.5 was taken.qr0.810qr0.8100.8050.8050.8000.8000.7950.7950.7900 2 4 6 8 10(a) h = 0, two bound st<strong>at</strong>es.r0.7900 2 4 6 8 10(b) h = 5, one bound st<strong>at</strong>e.rIn figure 3.7a the reconstruction is depicted us<strong>in</strong>g two bound st<strong>at</strong>es <strong>in</strong> the <strong>in</strong>versionprocedure while <strong>in</strong> figure 3.7b reconstruction for h = 5 is shown where only one boundst<strong>at</strong>e is present <strong>in</strong> the auxiliary problem. One can check th<strong>at</strong> <strong>in</strong> this case κa ≈ 4.92 thusit is <strong>in</strong> the doma<strong>in</strong> where the number of bound st<strong>at</strong>es can be reduced (Lemma 1).3.4.2. Potentials with different shapes. To depart from constant potentials we cont<strong>in</strong>ueon to the piecewise constant potential⎧⎪⎨ 0.25 for r < 1(3.75) q(r) = 0.125 for 1 ≤ r < 2⎪⎩0 for 2 ≤ rwith a = 2. This potential is more complic<strong>at</strong>ed than the constant potentials while itsphase shifts can still be calcul<strong>at</strong>ed exactly. The <strong>in</strong>version results are shown <strong>in</strong> figure3.8. Note the rel<strong>at</strong>ively high number N + 1 = 31 of phase shifts required for the


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 52Figure 3.8. Reconstruction of the piecewise constant potential with differentchoices of theparameters. 31 phaseshifts wereusedwith awork<strong>in</strong>gprecision of 100 digits.qr0.4qr0.40.30.30.20.20.10.10.0 0.0 0.5 1.0 1.5 2.0 r(a) c = −1, h = 0.0.0 0.0 0.5 1.0 1.5 2.0 r(b) c = −1.4, h = −0.5.reasonable reconstructions shown <strong>in</strong> figure 3.8. And we still employed 100-digit d<strong>at</strong>a.This discourag<strong>in</strong>g result is probably a result of the discont<strong>in</strong>uous n<strong>at</strong>ure of the potential.We also reconstructed (figure 3.9) a Gauss and a Woods-Saxon potential given by(3.76) q G (r) = −4e −5r2 , q WS (r) = −4(1+e r−0.50.1) −1,where the dimension of the reduced potentials has been restored and for the sc<strong>at</strong>ter<strong>in</strong>gwavelength k = 1.5 was taken. In this case while the phase shifts are not known exactlyand were only calcul<strong>at</strong>ed to a few digits of precision, the reconstruction is quite acceptable.In case of the Gauss potential the phase shifts were calcul<strong>at</strong>ed to a precision offour digits (see table 3.3 also for the <strong>in</strong>termedi<strong>at</strong>e quantities) while for the Wood-Saxontype only to two (see table 3.4). For these potentials the bound st<strong>at</strong>e approxim<strong>at</strong>ionprocedure is applicable and the prediction gave one bound st<strong>at</strong>e <strong>at</strong> λ = −3.22 for theGauss and also one bound st<strong>at</strong>e for the WS <strong>at</strong> λ = −2.44. The calcul<strong>at</strong>ion resulted <strong>in</strong>λ = −3.36 and λ = −2.46, respectively, which figures are <strong>in</strong> good agreement with theones obta<strong>in</strong>ed from the approxim<strong>at</strong>ion.Table 3.3. Input phases δ l and the <strong>in</strong>termedi<strong>at</strong>e quantities (µ l , c n ) ofthe <strong>in</strong>version procedure for the Gauss potential.l δ l µ l n c n0 0.2322 −1.147 −1 +0.96501 0.0153 4.738 0 −0.62672 6.552×10 −4 0.4669 1 +2.6783 2.078×10 −5 0.2050 2 −6.4194 5.174×10 −7 0.1189 3 +5.9075 1.056×10 −8 0.0785 4 −3.0666 1.827×10 −10 0.0560 5 +0.562


3. USING THE GEL’FAND-LEVITAN INVERSION – HORVÁTH-APAGYI METHOD 53Table 3.4. Input phases δ l and the <strong>in</strong>termedi<strong>at</strong>e quantities (µ l , c n ) ofthe <strong>in</strong>version procedure for the Woods-Saxon potential.l δ l µ l n c n0 0.37 −0.9597 −1 +0.76161 0.023 −2.2973 0 −0.00822 0.00087 1.5792 1 +0.08953 0.000026 0.4633 2 −0.8429Figure 3.9. Reconstruction of the dimensionful reduced Gaussian andWSpotentials from7phaseshiftsgivenwithprecisionof4digitsandfrom4 phase shifts given with 2 digits of precision <strong>at</strong> k = 1.5. The parameterswere a = 1.5, c = −0.74, h = 0 for the Gauss while a = 2, c = −1.25and h = 0 for the Woods-Saxon potential. The orig<strong>in</strong>al potentials aredepicted with dashed while the reconstructions with solid l<strong>in</strong>e.qr0.5 1.0 1.5rqr00.5 1.0 1.5 2.0 r112234354(a) Gauss.(b) Woods-Saxon.


4. USING THE MARCHENKO INVERSION 544. Us<strong>in</strong>g the Marchenko <strong>in</strong>versionIn this section a new procedure is developed based on the Liouville transform<strong>at</strong>ionand us<strong>in</strong>g the Marchenko <strong>in</strong>version with physical boundary condition,(3.77) y(0,λ) = 0,<strong>in</strong> the auxiliary problem.The Marchenko procedure <strong>in</strong>volves the l<strong>in</strong>ear <strong>in</strong>tegral equ<strong>at</strong>ion(3.78) F(x+y)+K(x,y)+∫ ∞xK(x,t)F(t+y)dt = 0, (x ≤ y)for the transform<strong>at</strong>ion kernel K(x,y). The <strong>in</strong>put function F(x) reads(3.79) F(x) =B∑j=11e −λjx + 1 ∫ ∞ (1−e 2i∆(κ)) e iκx dκm j 2π −∞where the first term accounts for the bound st<strong>at</strong>es <strong>in</strong> the spectrum gener<strong>at</strong>ed by Q(x)(B = 0, zero bound st<strong>at</strong>e is supposed), while the second is the sc<strong>at</strong>ter<strong>in</strong>g contribution(alsodenotedbyF S (x)). Theoddfunction∆(κ)<strong>in</strong>the<strong>in</strong>tegralisthephaseshiftfunctioncorrespond<strong>in</strong>g to the transformed potential Q(x). In our <strong>in</strong>verse problem we have them-function <strong>at</strong> some po<strong>in</strong>ts on the neg<strong>at</strong>ive part of the real l<strong>in</strong>e as d<strong>at</strong>a.The method proposed here to get the potential from the m-function values consistsof(1) <strong>in</strong>terpol<strong>at</strong>ion of the m-function and determ<strong>in</strong><strong>at</strong>ion of the Jost-function from them-function,(2) use of the dispersion rel<strong>at</strong>ions for the Jost function to get the phase function∆(κ) and(3) calcul<strong>at</strong>ion of the <strong>in</strong>put function from the phase function by (3.79) from whichthe Marchenko equ<strong>at</strong>ion (3.78) readily yields the potential.4.1. Interpol<strong>at</strong>ion of the m-function. We shall use a consequence of Simon’srepresent<strong>at</strong>ion of the m-function [76, 24]: the m-function can be represented essentiallybyaLaplacetransform. ForboththeFourierandtheLaplacetransformsthereareknown<strong>in</strong>terpol<strong>at</strong>ion formulas, and the l<strong>at</strong>ter allows for the <strong>in</strong>terpol<strong>at</strong>ion of the m-function [70].We have (as a special case of Theorem 5 of Ref. [70])(3.80) m(λ) ≈ i √ l∑maxλ+ c n (−i √ λ)with ω m = m+ 1 2 andn=0n∑a nm (m(−ωm 2 )+ω m)m=012(3.81) c n (x) = (2n+1)(( −x) n12 +x) , a nm = (−n) m(n+1) m(m!) 2 .n(x) n is the Pochhammer symbol:(3.82) (x) n = x(x+1)...(x+n−1), (x) 0 = 1.


4. USING THE MARCHENKO INVERSION 55The <strong>in</strong>terpol<strong>at</strong>ion formula applies for locally absolute <strong>in</strong>tegrable potentials. Its doma<strong>in</strong>ofconvergence dependsonthespecificfe<strong>at</strong>ures ofthepotential andwesupposeit tobe valid on the whole complex λ−plane throughout the subsequent numerical examples.4.2. Construct<strong>in</strong>g the sc<strong>at</strong>ter<strong>in</strong>g d<strong>at</strong>a from the m-function. Because of theBorg-Marchenko theorem one might surmise th<strong>at</strong> the m-function ”knows” the oper<strong>at</strong>orcompletely. Thus it is expected th<strong>at</strong> the sc<strong>at</strong>ter<strong>in</strong>g d<strong>at</strong>a (phase shifts, bound st<strong>at</strong>eswith normaliz<strong>at</strong>ion – the build<strong>in</strong>g blocks of (3.79)) for any boundary condition can berecovered from it. It turns out th<strong>at</strong> the phase shifts are deductible from m(λ + i0),λ ∈ R while the bound st<strong>at</strong>es correspond to poles of m(λ). Here, the case when thereare bound st<strong>at</strong>es supported by Q(x) is left as an open problem.The m-function and the Jost function are connected by the follow<strong>in</strong>g formula (A.26)(3.83)|f + (κ)| 2κ= limε→0 + 1Im(κ 2 +iε) , κ > 0.This rel<strong>at</strong>ion, however, only gives the absolute value of the Jost function. There is aformula connect<strong>in</strong>g the argument (th<strong>at</strong> is the phase function) and modulus of the Jostfunction called the dispersion rel<strong>at</strong>ion [38]. For(3.84) f + (κ) = |f + (κ)|e i∆(κ)we have (due to analyticity)(3.85)∫Clogf + (κ ′ )dκ ′κ ′ −κand the C contour is given by {κ ′ ∈ Re iφ ,φ ∈ [0,π]}∪{κ ′ ∈ [−R,+R]}\{κ ′ ∈ [κ−ǫ,κ+ǫ]}∪{κ ′ ∈ ǫe iφ ,φ ∈ [π,0]} and R → ∞, ǫ → 0 if there are no bound st<strong>at</strong>es, th<strong>at</strong> is nozeros of the Jost function or no poles of the <strong>in</strong>tegrand. Then the follow<strong>in</strong>g holds(3.86) ∆(κ) = 1 π P ∫ ∞−∞= 0log|f + (κ ′ )|dκ ′κ ′ −κcalled the dispersion rel<strong>at</strong>ion. P denotes th<strong>at</strong> the <strong>in</strong>tegral is understood as a the Cauchypr<strong>in</strong>cipal value <strong>in</strong>tegral.4.3. Marchenko equ<strong>at</strong>ion. With the <strong>in</strong>put function <strong>at</strong> hand one needs to solveequ<strong>at</strong>ion (3.78) for K(x,y) which yields the potential(3.87) Q(x) = 2 ddx K(x,x).However, for better performance, we transform both the <strong>in</strong>put function and theMarchenko equ<strong>at</strong>ion back with the variable change r = ae −x . With the def<strong>in</strong>itions(3.88) ˜K(r,r ′ ) ≡ K(−log r r′,−loga a ),(3.89)˜F(r,r ′ ) ≡ F(−log r r′−loga a )we arrive <strong>at</strong> the <strong>in</strong>tegral equ<strong>at</strong>ion(3.90) ˜F(r,r ′ )+ ˜K(r,r ′ )+∫ r0˜K(r,r ′′ ) ˜F(r ′′ ,r ′ ) dr′′r ′′ = 0.


4. USING THE MARCHENKO INVERSION 56It is <strong>in</strong>terest<strong>in</strong>g to note th<strong>at</strong> this equ<strong>at</strong>ion is the one th<strong>at</strong> arises when study<strong>in</strong>g the <strong>fixed</strong>energy <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problem without a Liouville transform<strong>at</strong>ion (see Chapter 2,section 1). Also, our transformed <strong>in</strong>put kernel,(3.91) ˜F(r,r ′ ) = F(−log r a−logr′a)= F(−log rr′a 2 )is a function of rr ′ . However, wh<strong>at</strong> makes the present approach different is while <strong>in</strong> theframework presented <strong>at</strong> the beg<strong>in</strong>n<strong>in</strong>g of Chapter 2 the <strong>fixed</strong> energy phase shifts areneeded for l ∈ R + ∪iR + , well <strong>in</strong> a nonphysical doma<strong>in</strong>, the transform<strong>at</strong>ional approachrequires the physical phase shifts only (<strong>in</strong> agreement with the uniqueness theorem, andnecessary and (almost) sufficient condition, see Chapter 1, Section 2).For convenience we perform one further transform<strong>at</strong>ion on the <strong>in</strong>put and transform<strong>at</strong>ionkernels. Let(3.92)¯K(r,r ′ ) ≡ ˜K(r,r ′ )√ ,rr ′(3.93)¯F(r,r ′ ) ≡ ˜F(r,r ′ )√ .rr ′Then the <strong>in</strong>tegral equ<strong>at</strong>ion takes on the form(3.94) ¯F(r,r ′ )+ ¯K(r,r ′ )+∫ r0¯K(r,r ′′ ) ¯F(r ′′ ,r ′ )dr ′′ = 0,which is identical to the GL equ<strong>at</strong>ion, only now <strong>in</strong> r-space. The <strong>fixed</strong> energy potential,q(r) is obta<strong>in</strong>ed by(3.95) q(r) = 2 rAltern<strong>at</strong>ively,(3.96) q(r) = 2 rd˜K(r,r)dr+k 2 = 2 rd ( )r¯K(r,r) +k 2 .drdK(−log(r/a),−log(r/a))dr+k 2 .Tofirstorder,thesmall-r behaviourof ˜K(r,r)canbeextractedfrom ˜K(r,r) ≈ − ˜F(r,r) =−F(−2log(r/a)). Us<strong>in</strong>g asymptotic exam<strong>in</strong><strong>at</strong>ion of F(x) it can beshown, th<strong>at</strong> ˜K(r,r) ispolynomial <strong>in</strong> r as r → 0 s<strong>in</strong>ce the asymptotic series of F(x) conta<strong>in</strong> only exponentiallysmall terms. If the smallest absolute valued exponent µ <strong>in</strong> the asymptotic series of F(2x)(which could be extracted from the poles of ∆(κ), if it were known for arbitrary κ ∈ C)is µ ≥ 2, the result<strong>in</strong>g potential q(r) is f<strong>in</strong>ite <strong>at</strong> the orig<strong>in</strong>. Our analysis <strong>in</strong>dic<strong>at</strong>ed, th<strong>at</strong>µ is not universal, thus the behaviour of the <strong>in</strong>verse potential <strong>at</strong> the orig<strong>in</strong> is neither.4.4. Numerical ref<strong>in</strong>ements. The accur<strong>at</strong>e numerical calcul<strong>at</strong>ion of the phasefunction is h<strong>in</strong>dered by the fact th<strong>at</strong> the Jost function falls off <strong>at</strong> <strong>in</strong>f<strong>in</strong>ity as an <strong>in</strong>versepower. Therefore we propose to extract <strong>at</strong> least the first term <strong>in</strong> the asymptotic seriesand perform the prescribed <strong>in</strong>tegral analytically for it.Suppos<strong>in</strong>g (see Lemma 2 below)(3.97) |f + (κ)| = 1+ β ( ) 1κ 2 +o κ 2 , κ → ∞


we get(3.98) ∆(κ) ≈ 1 π P ∫ M4. USING THE MARCHENKO INVERSION 57−Mlog|f + (κ ′ )|dκ ′κ ′ −κ− β ( 2πκ M + 1 )M −κlogκ M +κFor F S a similar extraction of the asymptotics is <strong>in</strong> order. First, let us recast F S<strong>in</strong>to(3.99) F S (x) = 1 ∫ ∞(cos(κx)−cos(κx+2∆(κ)))dκ2π0by us<strong>in</strong>g the oddness of ∆(κ). S<strong>in</strong>ce the phase function is odd one can assume(3.100) ∆(κ) = α κ +O(κ−3 ), κ → ∞Then the contribution of the tail of the <strong>in</strong>tegrand is well approxim<strong>at</strong>ed byT(A,x) ≡ 1 ∫ ∞(cos(κx)−cos(κx+2∆(κ)))dκ2π A(3.101)≈ α(αx−1) (2Si(Ax)−π)+ α22π πA cos(Ax))where Si(x) is the s<strong>in</strong>e <strong>in</strong>tegral. Then F S (x) is to be calcul<strong>at</strong>ed by∫ A(3.102) F S (x) ≈ 1 (cos(κx)−cos(κx+2∆(κ)))dκ+T(A,x)2π 0where the rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tegral is performed numerically.To conclude this section we prove (3.97).Lemma 2. For real valued potentials|f + (κ)| = 1+ β κ 2 +o ( 1κ 2 ).Proof. If Q(r) is real than the kernel K(x,t) is real (see (A.22)). Then, fromequ<strong>at</strong>ion (A.21) we <strong>in</strong>fer∫ ∞( ) 1f + (κ) = 1+2 K(0,t)cos(κt)dt+Oκ 2 , κ → ∞.0Us<strong>in</strong>g the st<strong>at</strong>ionary phase approxim<strong>at</strong>ion for Fourier <strong>in</strong>tegrals [54] it is easy to see th<strong>at</strong>a cos-Fourier transform of a regular, real function (with no s<strong>in</strong>gularities on [0,∞]) is <strong>at</strong>most O ( )1κ as κ → ∞.□24.5. Examples.4.5.1. Constant potentials. To the <strong>fixed</strong> energy potential{q 0 for r ≤ a(3.103) q(r) =0 for r > abelongs the transformed potential(3.104) Q(x) = −se −2x , s = a 2 (1−q 0 ).The general solution of the Sturm-Liouville equ<strong>at</strong>ion with this Q(x) reads(3.105) ϕ(x) = C 1 J i√λ(√ se−x ) +C 2 J −i√λ(√ se−x ) .


4. USING THE MARCHENKO INVERSION 58Figure 3.10. Reconstructions of the constant potentials with q 0 = 1.2and 0.5 with a = 1 and 0.75, respectively, us<strong>in</strong>g the exact m-function(A), the exact phase shift function (B) and <strong>fixed</strong> energy phase shifts (C).qrau1.51.00.50.00.0 0.2 0.4 0.6 0.8 1.0 1.2rau(a)qrau1.51.00.50.00.0 0.2 0.4 0.6 0.8 1.0 1.2rau(b)qrau1.51.00.50.00.0 0.2 0.4 0.6 0.8 1.0 1.2rau(c)While the first fundamental solution is irregular, the second is regular <strong>at</strong> <strong>in</strong>f<strong>in</strong>ity as itcan be seen us<strong>in</strong>g the power series of the Bessel functions, therefore it follows th<strong>at</strong> them-function is(3.106) m(λ) = − √ s J′ −i √ λ (√ s)J −i√λ( √ s) .The phase shift can also be expressed prescrib<strong>in</strong>g a solution th<strong>at</strong> vanishes <strong>at</strong> the orig<strong>in</strong>.One can f<strong>in</strong>d⎛(3.107) ∆(κ) = itanh −1 1− 4i√λ s −i√λ Γ(i √ λ+1)J √i λ ( √ ⎞s)Γ(1−i √ λ)J √⎜−i λ ( √ s)⎝1+ 4i√λ s −i√λ Γ(i √ λ+1)J √i λ ( √ ⎟s) ⎠ .Γ(1−i √ λ)J √−i λ ( √ s)The constant <strong>fixed</strong> energy potential was reconstructed start<strong>in</strong>g from the exact m(λ)and ∆(κ). The quality of the reconstruction shown <strong>in</strong> figure 3.10a, b suggests th<strong>at</strong>the procedure can be carried through and its implement<strong>at</strong>ion <strong>in</strong>troduces no artificialerrors. In figure 3.10c reconstructions us<strong>in</strong>g 11 precise <strong>fixed</strong> energy phase shifts (availableexactly) <strong>in</strong> the m-function <strong>in</strong>terpol<strong>at</strong>ion procedure are depicted. They are also ofreasonable quality, however note th<strong>at</strong> reconstruction <strong>in</strong> the orig<strong>in</strong> rema<strong>in</strong>s to be elusive.For comparison curves yielded by the HA procedure are also <strong>in</strong>cluded <strong>in</strong> 3.10c calcul<strong>at</strong>edwith the orig<strong>in</strong>al parameters (c = −1, h = 0), suggest<strong>in</strong>g th<strong>at</strong> the performance of theHA method is <strong>in</strong>ferior.4.5.2. Step potentials. The step potential⎧⎪⎨ q 1 for r ≤ r 0(3.108) q(r) = q 2 for r 0 ≤ r ≤ r⎪⎩0 for r > acan also be studied exactly. Its phase shifts are known. Its transformed form is{−s 2 e −2x for x ≤ x 0(3.109) Q(x) =−s 1 e −2x for x > x 0 , s 1,2 = a 2 (1−q 1,2 )


4. USING THE MARCHENKO INVERSION 59Figure 3.11. Reconstructions of the step potentials with q 1 = 0.25,q 2 = 0.125 and r 0 = 1 with a = 2 us<strong>in</strong>g the exact m-function (A), theexact phase shift function (B) and <strong>fixed</strong> energy phase shifts (C).qrau1.41.31.21.11.00.0 0.5 1.0 1.5 2.0rau(a)qrau1.41.31.21.11.00.0 0.5 1.0 1.5 2.0rau(b)qrau1.41.31.21.11.00.0 0.5 1.0 1.5 2.0rau(c)and the general solution of the Sturm-Liouville equ<strong>at</strong>ion is{C 1 J √(√(3.110) ϕ(x) = i λ s2 e −x) +C 2 J √(√−i λs2 e −x) for x ≤ x 0D 1 J √(√i λs1 e −x) +D 2 J √(√−i λs1 e −x) for x ≤ x 0The m-function is(3.111) m(λ) = J′ i √ λ (√ s 1 )W[1 − ,2 − ]−J ′ −i √ λ (√ s 1 )W[1 + ,2 − ]J i√λ( √ s 1 )W[1 − ,2 − ]−J −i√λ( √ s 1 )W[1 + ,2 − ]where(3.112) W[1 ± ,2 ± ] = W[J s 1±i √ λ ,Js 2±i √ λ ](ex 0), Jν α (x) ≡ J ν( √ αx)with the Wronskian W[f,g](x) = f(x)g ′ (x)−f ′ (x)g(x). The s-wave phase function canbe written as (κ = √ λ)⎛ ⎞(3.113) ∆(κ) = itanh −1 ⎝ 1+ 4iκ s −iκ1 Γ(iκ+1)Γ(1−iκ)H⎠1− 4iκ s −iκ1 Γ(iκ+1)HwithΓ(1−iκ)(3.114) H = J −iκ( √ s 2 )W[1 + ,2 + ]−J iκ ( √ s 2 )W[1 + ,2 − ]J iκ ( √ s 2 )W[1 − ,2 − ]−J −iκ ( √ s 2 )W[1 − ,2 + ] .Reconstructions from the exact m(λ) and ∆(κ) and from <strong>fixed</strong> energy phase shiftsare shown <strong>in</strong> figure 3.11. One can observe th<strong>at</strong> it is hard to reconstruct this potential,probably due its discont<strong>in</strong>uity: 21 <strong>fixed</strong> energy phase shifts were used to obta<strong>in</strong> themoder<strong>at</strong>ely good reconstruction of figure 3.11c. Aga<strong>in</strong>, the performance of the HAmethod (with c = −1, h = 0) appears less s<strong>at</strong>isfactory.4.5.3. Shifted and trunc<strong>at</strong>ed Coulomb potential. As the f<strong>in</strong>al example another potentialis reconstructed, whose (<strong>fixed</strong> energy) phase shifts are exactly known. This is ashifted and trunc<strong>at</strong>ed Coulomb potential, i.e.{A(3.115) q(r) =r − A afor r ≤ a0 for r > a


4. USING THE MARCHENKO INVERSION 60Figure 3.12. Reconstruction of the dimensionful, shifted, trunc<strong>at</strong>edCoulomb potential <strong>at</strong> sc<strong>at</strong>ter<strong>in</strong>g wavenumber (A) k = 0.8, (B) 1.0 and(C) 1.2 with 2, 4 and 8 phase shifts, respectively.qrau10864200.0 0.5 1.0 1.5 2.0rau(a)qrau10864200.0 0.5 1.0 1.5 2.0rau(b)qrau10864200.0 0.5 1.0 1.5 2.0rau(c)with a = 2 and A = 1. Let us <strong>in</strong>terpret this potential as a dimensionful potential (<strong>in</strong>some arbitrary units) and reconstruct it <strong>at</strong> various sc<strong>at</strong>ter<strong>in</strong>g wave numbers k = 0.8, 1.0,1.2. Note th<strong>at</strong>thedimensionlesspotential isthenq(r) = k −2 q(r/k), forwhichthe<strong>in</strong>verseframeworks have been presented here. The <strong>fixed</strong> energy phase shifts are expressed as(3.116) δ l = tan −1 ( u′l(ka)−C l u l (ka)v ′ l (ka)−C lv l (ka)), C l = k BF ′l (k Ba,η)kF l (k B a,η) ,with k 2 B = k2 +A/a,η = A/(2k B ), and the usual u l ,v l Ricc<strong>at</strong>i-Bessel and F l Coulombwave functions.Employ<strong>in</strong>g Tuan’s <strong>in</strong>terpol<strong>at</strong>ion formula for the m-function the results of the reconstructionwith 2, 4 and 8 phase shifts (shown <strong>in</strong> table 3.5) <strong>at</strong> the different energies isdepicted <strong>in</strong> figure 3.12. (A comparison with the HA method is omitted here, becausefor c = −1 and h = 0 there is a bound st<strong>at</strong>e <strong>in</strong>volved there and the zero bound st<strong>at</strong>eformul<strong>at</strong>ion cannot be used.)Table 3.5. Input phase shifts δ l <strong>at</strong> different k sc<strong>at</strong>ter<strong>in</strong>g wavelengthsfor the dimensionful, shifted, trunc<strong>at</strong>ed Coulomb potential.k = 0.8 k = 1.0 k = 1.2l δ l l δ l l δ l0 −0.2991 0 −0.3481 0 −0.38191 −0.0317 1 −0.0538 1 −0.07912 −0.0046 2 −0.00993 −0.0002 3 −0.00074 −3.7×10 −55 −1.3×10 −66 −3.4×10 −87 −6.9×10 −10


CHAPTER 4Applic<strong>at</strong>ions to measurement d<strong>at</strong>a1. IntroductionThe<strong>in</strong>versesc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong>discussed<strong>in</strong>thisworkisapplicable<strong>in</strong>all thecaseswhenthere is an effective two-body <strong>in</strong>teraction between two non-rel<strong>at</strong>ivistic <strong>quantum</strong> systemsand this <strong>in</strong>teraction can be mapped by sc<strong>at</strong>ter<strong>in</strong>g experiments or some more <strong>in</strong>volvedmeasurement technique to extract sc<strong>at</strong>ter<strong>in</strong>g phase shifts characteristic to the two-body<strong>in</strong>teraction. Thus, the prime applic<strong>at</strong>ion field of <strong>quantum</strong> <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong> isthe construction of sc<strong>at</strong>ter<strong>in</strong>g potentials govern<strong>in</strong>g sc<strong>at</strong>ter<strong>in</strong>g processes <strong>in</strong> <strong>at</strong>omic- andnuclear physical sett<strong>in</strong>gs (concern<strong>in</strong>g the l<strong>at</strong>ter one see the review [34]). The sp<strong>in</strong>s ofthe constituents of the composite <strong>quantum</strong> system, partners <strong>in</strong> the sc<strong>at</strong>ter<strong>in</strong>g event arenot explicitly built <strong>in</strong> the formul<strong>at</strong>ion, we only aimed to reconstruct central potentials,so far. There are approxim<strong>at</strong>ive methods to take the effects of the sp<strong>in</strong> <strong>in</strong>to account,one of which we will discuss.In this chapter some illustr<strong>at</strong>ive applic<strong>at</strong>ions of the developed <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>gtechniques are shown, such as the reconstructions of electron-argon <strong>at</strong>om, nucleon-alphaparticle and pion-pion potentials. Specific fe<strong>at</strong>ures of these different systems will also beencountered. Further, note th<strong>at</strong> dimensionful quantities have been restored throughoutthis chapter.2. Electron-argon potentialsThe most simple system we consider is th<strong>at</strong> of the sc<strong>at</strong>ter<strong>in</strong>g of an electron by anargon <strong>at</strong>om. The <strong>in</strong>put experimental phase shifts derived by Williams [83] from e – Arsc<strong>at</strong>ter<strong>in</strong>g experiment <strong>at</strong> E c.m. = 12 eV are listed <strong>in</strong> Table 4.1. The mNS, CT and HAmethods were used to extract the potential from the phase shifts (the procedure basedon the Marchenko equ<strong>at</strong>ion could not be applicable due to a bound st<strong>at</strong>e <strong>in</strong> the auxiliaryproblem). The results are shown <strong>in</strong> figure 4.1. One can observe an agreement betweenthe results of the different <strong>in</strong>version techniques (except possibly th<strong>at</strong> of the CT method).The e – Ar potential has an <strong>at</strong>tractive part with a m<strong>in</strong>imum value of about −2.5 au <strong>at</strong>a distance of r ≈ 1.2 au. At smaller distances the potential is of repulsive n<strong>at</strong>ure whichcan be <strong>in</strong>terpreted as a manifest<strong>at</strong>ion of the Pauli-pr<strong>in</strong>ciple. It is perhaps this fe<strong>at</strong>ureth<strong>at</strong> makes the CT method yield different results with more unphysical properties (morepronounced asymptotic oscill<strong>at</strong>ion, which are not shown <strong>in</strong> the figure, compared to thepotentials com<strong>in</strong>g from the other methods), which can only produce potentials th<strong>at</strong> aref<strong>in</strong>ite <strong>at</strong> the orig<strong>in</strong>.For the mNS calcul<strong>at</strong>ion three arbitrary parameters r 1,2,3 were taken to be r 1 = 4.0,r 2 = 4.05, r 2 = 4.1. For the HA calcul<strong>at</strong>ion the optimal parameters proved to be61


3. NUCLEON-ALPHA POTENTIALS 62c = −3.7 and h = 1.9 with a = 3.9. To f<strong>in</strong>d these values it was required for the potentialto benearly zero <strong>at</strong> the radiusa. Theboundst<strong>at</strong>e parameter was foundto beλ = −0.44.3. Nucleon-alpha potentialsIn this section we determ<strong>in</strong>e n – α and p – α sc<strong>at</strong>ter<strong>in</strong>g potentials from measuredphase shifts. There are various sources of phase shift d<strong>at</strong>a, some take <strong>in</strong>to account thesp<strong>in</strong> degree of freedom of the system but other simplify the problem to the sc<strong>at</strong>ter<strong>in</strong>gof two sp<strong>in</strong>less particles and derive phase shifts which reproduce the cross section d<strong>at</strong>a.We choose the sp<strong>in</strong>-dependent d<strong>at</strong>a and we take <strong>in</strong>to account the sp<strong>in</strong>-orbit (not central)<strong>in</strong>teraction <strong>in</strong> an approxim<strong>at</strong>ive manner.Inasp<strong>in</strong>-dependentpicturebothsp<strong>in</strong>-upδ + landsp<strong>in</strong>-downδ − lphaseshiftscontributeto the sc<strong>at</strong>ter<strong>in</strong>g amplitude <strong>at</strong> each partial wave. In case of weak sp<strong>in</strong>-orbit coupl<strong>in</strong>gus<strong>in</strong>g a DWBA approach it turns out for a sp<strong>in</strong> 1 2particle th<strong>at</strong> the comb<strong>in</strong>ed phase shifts(4.1) ˜δl = 12l +1 [(l +1)δ+ l+lδ − l ]are characteristic of the underly<strong>in</strong>g central potential and(4.2) δ ′ l = 12l+1 [lδ+ l+(l+1)δ − l]of the sp<strong>in</strong>-orbit <strong>in</strong>teraction [37]. Actually, the set {δl ′ } is characteristic of the potentialV(r)− 1 2 V sl(r), where V(r) is the central and V sl (r) is the sp<strong>in</strong>-orbit potential. We shalluse these comb<strong>in</strong><strong>at</strong>ions as <strong>in</strong>put for the <strong>in</strong>version procedures.3.1. Neutron – α potentials. The <strong>in</strong>put d<strong>at</strong>a of [3] is displayed <strong>in</strong> Table 4.2together with the <strong>in</strong>version parameters a (which was also used <strong>in</strong> the mNS method asr 0 and r 1 = r 0 , r 2 = r 0 + 0.05, r 3 = r 0 + 0.10 was taken) and c of the HA method <strong>at</strong>center of mass energies E c.m. = 9.6,12.8, and 16.0 MeV. The result<strong>in</strong>g three HA, mNSand CT potentials are exhibited <strong>in</strong> figures 4.3, 4.4, 4.5. First of all, while the mNS andHA results agree well, the CT method produces a different k<strong>in</strong>d of potential (see thecompar<strong>at</strong>ive figure 4.2), although the ranges and depths agree.The mNS and HA results offer a similar physical <strong>in</strong>terpret<strong>at</strong>ion for the sc<strong>at</strong>ter<strong>in</strong>gprocessasbefore<strong>in</strong>thecaseofelectron-<strong>in</strong>ertgas<strong>at</strong>omcollision: theapproach<strong>in</strong>gcollid<strong>in</strong>gpartners, neutron and alpha particle are <strong>at</strong>tract<strong>in</strong>g each other when enter<strong>in</strong>g the doma<strong>in</strong>of nuclear forces. The <strong>at</strong>traction is culm<strong>in</strong><strong>at</strong><strong>in</strong>g around the α−particle surface betweenr ≈ 1.1 − 1.2 fm (which deductible from the approxim<strong>at</strong>e formula r = 1.25 × A 1/3 fmexpress<strong>in</strong>g the constant density of stable nuclei, where A is the mass number), reach<strong>in</strong>ga strength of potential energy between −50 and −52 MeV. When the collid<strong>in</strong>g partnersare merg<strong>in</strong>g the Pauli repulsion (orig<strong>in</strong><strong>at</strong><strong>in</strong>g from the fermionic exchange) takes <strong>in</strong>toeffect and this is overcome by the nucleonic soft core repulsion <strong>at</strong> very small distances<strong>at</strong> r ≈ 0.1−0.2 fm. Because the result<strong>in</strong>g <strong>in</strong>version potentials are also very similar <strong>at</strong>these different energies between 9−16 MeV, we may have found the energy-<strong>in</strong>dependentpotential responsible for the sc<strong>at</strong>ter<strong>in</strong>g d<strong>at</strong>a which is always a desirable goal of any<strong>fixed</strong> energy <strong>in</strong>version procedure. Energy-<strong>in</strong>dependence also means th<strong>at</strong> our description<strong>in</strong>volv<strong>in</strong>g central potentials and the DWBA description of the sp<strong>in</strong>-orbit contributionfor this system is approxim<strong>at</strong>ely correct. Any system<strong>at</strong>ic devi<strong>at</strong>ion from the central


3. NUCLEON-ALPHA POTENTIALS 63potential picture (non-locality, direction-dependence) is expected to be seen as energydependenceand nonphysical fe<strong>at</strong>ures for the potential.The CT method produces potentials th<strong>at</strong> are phase equivalent to those obta<strong>in</strong>ed bythe mNS/HA. The CT potential shape resembles more to a Woods-Saxon shape, whichwas first advoc<strong>at</strong>ed <strong>in</strong> the 50s [84] but still today is considered a good description of thenuclear forces and is extensively used by the nuclear physics community.3.2. Proton–α potentials. For the p−α system the d<strong>at</strong>a of [3] was used as well.The phase shifts characteristic of the central potential were extracted by the same approxim<strong>at</strong>ivemethod. Onfigure4.6acomparisonisshownbetweenthedifferentmethods.The Cox-Thompson calcul<strong>at</strong>ion was carried out by the CCT long-range extension andthe mNS and HA results were obta<strong>in</strong>ed by a phase transform<strong>at</strong>ion procedure with <strong>at</strong>ransform<strong>at</strong>ion radius of r a = 3.2 fm. The results agree well, thus <strong>in</strong> the follow<strong>in</strong>g weomit the mNS and HA results.In addition to this comparison we show d<strong>at</strong>a presented <strong>in</strong> [61] where the aim wasto assess the p-α potential by the different CT extensions. In figure 4.7 the <strong>in</strong>versepotentials yielded by three long-range CT methods <strong>at</strong> E lab = 17.45 MeV proton energy(equivalent to E c.m. = 13.96 MeV and k = 0.731 fm −1 ) are depicted. The results <strong>at</strong>this energy are represent<strong>at</strong>ive of the potentials recovered below the E lab = 22.94 MeV,α + p → d+ 3 He <strong>in</strong>elastic threshold. As one can see the MCT and PCT potentials arealmost identical and strongly resemble a Woods-Saxon form. The range and strengthof all the three potentials are similar but the CCT potential is different <strong>in</strong> shape: itpossesses a repulsive core. One can see th<strong>at</strong> this repulsion core stabilizes the <strong>in</strong>versepotential <strong>in</strong> the sense th<strong>at</strong> the amplitude of the asymptotic oscill<strong>at</strong>ions is dim<strong>in</strong>ishedcompared to the non-repulsive MCT/PCT results. This is also the reason why thephase shift reproduction with a given precision of the CCT potential is better than th<strong>at</strong>of the MCT/PCT potentials (see table 4.3). The situ<strong>at</strong>ion is the same as with the n-αresults. The repulsion <strong>at</strong> small distances may theoretically be accounted for consider<strong>in</strong>gthe Pauli pr<strong>in</strong>ciple. Note th<strong>at</strong> <strong>in</strong> case of p-α sc<strong>at</strong>ter<strong>in</strong>g Coulombic non-locality couldalso be seen as repulsion <strong>at</strong> small distances (see [6], where such potentials arose <strong>in</strong> an<strong>at</strong>omic physics). In any case, the recovered n – α and p – α potentials show goodagreement (cf. figures 4.2 and 4.6), which was expected s<strong>in</strong>ce the <strong>in</strong>teraction betweennuclei is <strong>in</strong>dependent of isosp<strong>in</strong> and the Coulomb force <strong>in</strong> case of the p – α sc<strong>at</strong>ter<strong>in</strong>g isalso negligible.In figures 4.8 numerous other CCT and PCT potentials are shown <strong>at</strong> various energyvalues <strong>in</strong>clud<strong>in</strong>g those above <strong>in</strong>elastic threshold. (The MCT potentials are not shownbecause they co<strong>in</strong>cide with<strong>in</strong> the width of l<strong>in</strong>e with the PCT results.) Apart from theCoulombic s<strong>in</strong>gularity <strong>at</strong> the orig<strong>in</strong>, the potentials have a similar range of 3−4 fm andstrength of 50−70 MeV (PCT) and 50−160 MeV (CCT). The imag<strong>in</strong>ary part is muchless compared to the real part. The reproduction of phase shifts (not shown) gets better<strong>at</strong> higher energy <strong>in</strong> case of the PCT potentials because of the <strong>fixed</strong> cut-off radius which<strong>in</strong> pr<strong>in</strong>ciple does not apply to CCT (and MCT) method. Without use of this radius theCCT (and MCT) potentials give back the <strong>in</strong>put phase shifts exactly.Our <strong>in</strong>vestig<strong>at</strong>ions suggested the existence of a repulsive core for the nucleon-α <strong>in</strong>teraction.Independent <strong>in</strong>form<strong>at</strong>ion concern<strong>in</strong>g whether it exists or not can be founde.g. <strong>in</strong> [3, 21, 73, 80, 79], and we do not discuss it anymore.


4. PION-PION QUASIPOTENTIALS 644. Pion-pion quasipotentialsThe pion-pion <strong>in</strong>teraction is an important <strong>in</strong>gredient of the low energy theoreticaldescription of the nucleon-nucleon <strong>in</strong>teraction, s<strong>in</strong>ce <strong>in</strong> effective theories of nucleonicsystems the simplest <strong>in</strong>teraction is the pion exchange. Already <strong>in</strong> the two pion exchangecase the <strong>in</strong>teraction potential between pions is <strong>in</strong>terest<strong>in</strong>g. One method to describethe <strong>in</strong>teraction between two pions is to use, <strong>in</strong> general, a non-local effective <strong>in</strong>teractionpotential. The local part of such an <strong>in</strong>teraction potential has already been calcul<strong>at</strong>edemploy<strong>in</strong>g l<strong>at</strong>tice QCD with both Wilson [19] and Kogut-Sussk<strong>in</strong>d fermions [18] and<strong>quantum</strong> <strong>in</strong>version techniques (by both a <strong>fixed</strong> angular momentum and a <strong>fixed</strong> energymethod) [72, 8]. However the two very different methods yielded different results forthe pion-pion system. Here we shall show some <strong>in</strong>verse potentials th<strong>at</strong> agree with resultsfrom the l<strong>at</strong>tice.4.1. Theoretical prelim<strong>in</strong>aries. First of all it should be discussed wh<strong>at</strong> is meantby pion-pion potential, s<strong>in</strong>ce this system is rel<strong>at</strong>ivistic and thus the potential descriptionis ill-fitted. Indeed, we only hope to extract qualit<strong>at</strong>ive properties, e.g. whether it is<strong>at</strong>tractive or repulsive. Let the effective Hamiltonian(4.3) H = H 0 +H IwhereH 0 is afree term and H I is the residual <strong>in</strong>teraction. H I is calcul<strong>at</strong>ed <strong>in</strong> l<strong>at</strong>tice field<strong>theory</strong> from a four po<strong>in</strong>t quark correl<strong>at</strong>ion function [20]. Then the potential is obta<strong>in</strong>edby tak<strong>in</strong>g coord<strong>in</strong><strong>at</strong>e m<strong>at</strong>rix elements of the residual <strong>in</strong>ter<strong>at</strong>ion oper<strong>at</strong>or whose local partis considered (V(⃗r)). In [19, 18, 20] only the s-wave local potential is calcul<strong>at</strong>ed, whichis def<strong>in</strong>ed as(4.4) V 0 (r) = 1 ∫dΩV(⃗r).4πOn the other hand another k<strong>in</strong>d of description starts with the Bethe-Salpeter equ<strong>at</strong>ion,which can describe the bound st<strong>at</strong>es and also the sc<strong>at</strong>ter<strong>in</strong>g of two rel<strong>at</strong>ivisticparticles, similarly to the Lippmann-Schw<strong>in</strong>ger equ<strong>at</strong>ion. This can be casted <strong>in</strong>to theform of a Schröd<strong>in</strong>ger equ<strong>at</strong>ion with a non-local, complex and energy dependent potential[45], the quasipotential equ<strong>at</strong>ion. Furthermore, if the particles are not very far offtheir mass shells the equ<strong>at</strong>ion(4.5)(M −√p 2 −m 2 1 − √p 2 −m 2 2) ∫ϕ(⃗p,M) =V(⃗p,⃗q,M)ϕ(⃗q,M) d3 ⃗q(2π) 3,applies [17], where where ⃗p = E 1M ⃗p 1− E 2M ⃗p 2 is the rel<strong>at</strong>ive momentum and M = E 1 +E 2is the full center of mass energy or <strong>in</strong>variant mass. Provided, th<strong>at</strong> we consider local<strong>in</strong>teraction and the pions are not too far off their mass shells, the Schröd<strong>in</strong>ger-typequasipotential equ<strong>at</strong>ions for the partial waves read [48] as(4.6)(− d2dr 2 + l(l+1) )r 2 +2µ(s)V(r,s) ϕ l (r,s) = k 2 ϕ l (r,s)with(4.7) k 2 =( s−m21 −m 2 ) 222 √ − m2 1 m2 2s s


4. PION-PION QUASIPOTENTIALS 65and s = M 2 is the square of the <strong>in</strong>variant mass or Mandelstam variable. This formulacomes from the def<strong>in</strong>ition s = ( √ k 2 +m 2 1 +√ k 2 +m 2 2 )2 . Now here the dimension of k isenergy but usually we want to measure it <strong>in</strong> fm −1 units thus a k → (c) −1 k substitutionis necessary (c = 0.1973 GeVfm). The rel<strong>at</strong>ivistic reduced mass is given as [48](4.8) µ(s) = s2 −(m 2 1 −m2 2 )24s 3/2 .For the π −π sc<strong>at</strong>ter<strong>in</strong>g m ≡ m 1 = m 2 = 139.57 MeV was used as the pion√mass. Onecan check th<strong>at</strong> the rel<strong>at</strong>ivistic formula for the sc<strong>at</strong>ter<strong>in</strong>g energy, i.e. E = s2 − 2m2 √ sgives√<strong>in</strong>deed the proper high energy behaviour ( s2, s → ∞) while the naive nonrel<strong>at</strong>ivisticformula E = s4m−m does not hold.It is assumed th<strong>at</strong> the quasipotential and the one gener<strong>at</strong>ed from the residual <strong>in</strong>teractionis the same. However V 0 (r) and V(r,s) most certa<strong>in</strong>ly differ as V 0 (r) comesonly from the local part of the residual <strong>in</strong>teraction (and it is s-wave projected – howevers-wave dom<strong>in</strong>ance is expected) whileV(r,s) is the localized version of the quasipotential.4.2. Inversion results. Us<strong>in</strong>g the <strong>in</strong>variant mass and the pion mass as the onlyparameters from the above discussion, <strong>in</strong> [64] phase shifts have been derived be<strong>in</strong>gcharacteristic to the isoscalar (isosp<strong>in</strong> zero) π − π sc<strong>at</strong>ter<strong>in</strong>g from π + p → π + π − ∆ ++cross sections, by apply<strong>in</strong>g a standard pole-extrapol<strong>at</strong>ion technique and us<strong>in</strong>g a partialwave decomposition. In addition to the d<strong>at</strong>a of [64] there were several other calcul<strong>at</strong>ions(us<strong>in</strong>g e.g. chiral perturb<strong>at</strong>ion <strong>theory</strong>) but the phase shifts agree well <strong>in</strong> all the cases[11].Because of isosp<strong>in</strong> conserv<strong>at</strong>ion only phase shifts belong<strong>in</strong>g to even partial waves areaccessible to the analysis if the isosp<strong>in</strong> is set to I = 0. The experimental phase shifts δl0and elasticities ηl 0 <strong>at</strong> several <strong>in</strong>variant masses M ππ are listed <strong>in</strong> table 4.4.Results obta<strong>in</strong>ed from <strong>in</strong>vert<strong>in</strong>g the above phase shifts by the CT method are depicted<strong>in</strong> figures 4.9 and 4.11. One can observe th<strong>at</strong> below the K ¯K production thresholdthe potentials are <strong>at</strong>tractive with a weakly repulsive tail. The range is 0.5–1 fm(which√seems to be correct consider<strong>in</strong>g the scalar radius of the pion predicted to be〈r 2 〉 s ≈ 0.78 fm [11]) and the dept ranges from 1 to 16 GeVs. Cont<strong>in</strong>u<strong>in</strong>g on, <strong>at</strong>M ππ = 965 MeV (see figure 4.11) the sc<strong>at</strong>ter<strong>in</strong>g becomes <strong>in</strong>elastic and the potentialcorrespond<strong>in</strong>g to δ0 0 = 135 deg is diverg<strong>in</strong>g <strong>at</strong> the orig<strong>in</strong>.Above the threshold the real part of the potentials (figure 4.11) describes <strong>at</strong>traction,while the imag<strong>in</strong>ary part suggests a well-localized kaon production.Figure 4.10 shows the lowest energy <strong>in</strong>version result and the l<strong>at</strong>tice QCD potentialfrom [19, 18]. One can see th<strong>at</strong> there is qualit<strong>at</strong>ive agreement <strong>in</strong> this case, wherenonlocality and rel<strong>at</strong>ivistic effects are expected to be smaller. It would be <strong>in</strong>terest<strong>in</strong>g tosee the localiz<strong>at</strong>ion of the nonlocal part of the potential correspond<strong>in</strong>g to the residual<strong>in</strong>teraction. Our <strong>fixed</strong> energy approach would be ideal for the comparison as localiz<strong>at</strong>ion[7] <strong>in</strong>troduces energy and momentum dependence to the potential, the l<strong>at</strong>ter of whichposes no problem <strong>at</strong> lower energies as there the pion-pion sc<strong>at</strong>ter<strong>in</strong>g is entirely s-wavedom<strong>in</strong><strong>at</strong>ed.


5. TABLES AND FIGURES 665. Tables and figuresTable 4.1. Input phase shifts δ l derived from e – Ar sc<strong>at</strong>ter<strong>in</strong>g experimentperformed <strong>at</strong> the sc<strong>at</strong>ter<strong>in</strong>g energy E c.m. = 12 eV. Also, the CTshifted angular momenta, the mNS expansion coefficients c l and the HAmoments µ l and coefficients c n are shownInput CT mNS HAl δ l L c l µ l n c n0 −1.218 −2.664 −0.629 −0.767 −1 0.0091 −0.626 0.399 5.240 −0.746 0 0.0072 1.191 1.399 96.06 0.127 1 0.2333 0.118 2.974 43.10 −0.570 2 −2.149Figure 4.1. e – Ar <strong>in</strong>verse potentials (mNS, CT, HA) calcul<strong>at</strong>ed fromthe experimental phase shifts listed <strong>in</strong> Table 4.1.321HAmNSCTVrau01230 1 2 3 4rau


5. TABLES AND FIGURES 67Table 4.2. Input phase shifts ˜δ l derived from n – α sc<strong>at</strong>ter<strong>in</strong>g experimentsperformed <strong>at</strong> three centre of mass energies. Inversion parametersfor the HA method c and a are also shown.E c.m. (MeV) ˜δ0 ˜δ1 ˜δ2 a c9.6 1.763 1.553 0.028 3.9 −4.2512.8 1.676 1.466 0.066 3.4 −2.9616.0 1.588 1.396 0.117 3.3 −2.37Figure 4.2. HA, mNS and CT <strong>in</strong>verse potentials for n – α sc<strong>at</strong>ter<strong>in</strong>g <strong>at</strong>c.m. energy 9.6 MeV.100HAVrMeV500mNSCT500 1 2 3 4rfmTable 4.3. Inversion results of the experimental p−α d<strong>at</strong>a <strong>at</strong> E c.m. =13.96 MeV. The m<strong>at</strong>ch<strong>in</strong>g parameter used <strong>in</strong> the PCT and MCT procedureswas set to r a = 7 fm from which distance also the MCT and CCTpotentials have been replaced by the pure Coulombic tail.l L CCT L MCT LPCT ˜ˆδorigl∆˜ˆδCCT l∆˜ˆδMCT l∆˜ˆδPCT l0 −1.7204 −1.6703 −1.6705 1.7240 0.0139 0.0219 0.01981 0.5252 0.4537 0.4534 1.4839 0.0249 0.0589 0.05972 2.0328 2.0210 2.0211 0.0760 0.0206 0.0107 0.01083 3.0475 3.0881 3.0882 0.0229 0.0250 0.0762 0.0765


5. TABLES AND FIGURES 68Figure 4.3. HA <strong>in</strong>verse potentials for n – α sc<strong>at</strong>ter<strong>in</strong>g <strong>at</strong> three c.m.energies 9.6, 12.8, and 16.0 MeV. Experimental phase shifts are listed <strong>in</strong>Table 4.2100E⩵9.6 MeVVrMeV500E⩵12.8 MeVE⩵16.0 MeV500 1 2 3 4rfmFigure 4.4. mNS <strong>in</strong>verse potentials for n – α sc<strong>at</strong>ter<strong>in</strong>g <strong>at</strong> three c.m.energies 9.6, 12.8, and 16.0 MeV.100E⩵9.6 MeVVrMeV500E⩵12.8 MeVE⩵16.0 MeV500 1 2 3 4rfm


5. TABLES AND FIGURES 69Figure 4.5. CT <strong>in</strong>verse potentials for n – α sc<strong>at</strong>ter<strong>in</strong>g <strong>at</strong> three c.m.energies 9.6, 12.8, and 16.0 MeV.10010VrMeV20304050E⩵9.6 MeVE⩵12.8 MeVE⩵16.0 MeV600 1 2 3 4rfmFigure 4.6. HA, mNS and C(oulomb)CT <strong>in</strong>verse potentials for p – αsc<strong>at</strong>ter<strong>in</strong>g <strong>at</strong> c.m. energy 9.6 MeV.VrMeV604020020HAmNSCCT40600.0 0.5 1.0 1.5 2.0 2.5 3.0rfm


5. TABLES AND FIGURES 70Figure 4.7. Inverse p − α potentials V(r) obta<strong>in</strong>ed from <strong>in</strong>put phaseshifts ˜ˆδorig l(given <strong>in</strong>table4.3)<strong>at</strong> protonenergyE lab = 17.45 MeV. Curvesobta<strong>in</strong>ed by the PCT, MCT and CCT method are labelled accord<strong>in</strong>gly.5040E lab= 17.45 MeV3020V(r) (MeV)100-10-20-30-40-50CCTMCTPCT0 1 2 3 4 5 6 7r (fm)Table 4.4. s- and d-wave <strong>in</strong>put phase shift d<strong>at</strong>a (<strong>in</strong> degrees) for theisoscalar pion-pion sc<strong>at</strong>ter<strong>in</strong>g both below and above the kaon productionthreshold, M = 987 MeV. The <strong>in</strong>variant masses are shown <strong>in</strong> GeVs.M ππ δ 0 0 δ 0 2 η 0 0 η 0 20.550 43 0.0 1.00 1.000.625 56 0.0 1.00 1.000.795 81 0.0 1.00 1.000.850 88 1.6 1.00 1.000.910 99 4.4 1.00 1.000.965 134 8.9 1.00 0.991.000 194 12.0 0.39 0.941.075 215 27.0 0.48 0.781.150 208 44.0 0.57 0.94


5. TABLES AND FIGURES 71Figure 4.8. Complex-valued<strong>in</strong>versep−αpotentials yieldedbytheCCT(A, B) and PCT (C, D) methods <strong>at</strong> various E lab proton energies belowand above the <strong>in</strong>elastic threshold us<strong>in</strong>g the experimental phase shifts of[3].200-20Re V(r) (MeV)-40-60-80-100E lab= 17.45 MeVE lab= 19.94 MeVE lab= 23.48 MeVE lab= 30.43 MeVE lab= 39.80 MeVE lab= 48.80 MeV-1200 1 2 3 4 5 6 7r (fm)(a) Real part of the CCT potential.201510Im V(r) (MeV)50-5-10-15E lab= 23.48 MeVE lab= 30.43 MeVE lab= 39.80 MeVE lab= 48.80 MeV-200 1 2 3 4 5 6 7r (fm)(b) Imag<strong>in</strong>ary part of the CCT potential.


5. TABLES AND FIGURES 72Figure 4.8. Complex-valued<strong>in</strong>versep−αpotentials yieldedbytheCCT(A, B) and PCT (C, D) methods <strong>at</strong> various E lab proton energies belowand above the <strong>in</strong>elastic threshold us<strong>in</strong>g the experimental phase shifts of[3] (cont.).200-20Re V(r) (MeV)-40-60-80-100E lab= 17.45 MeVE lab= 19.94 MeVE lab= 23.48 MeVE lab= 30.43 MeVE lab= 39.80 MeVE lab= 48.80 MeV-1200 1 2 3 4 5 6 7r (fm)(c) Real part of the PCT potential.201510Im V(r) (MeV)50-5-10-15E lab= 23.48 MeVE lab= 30.43 MeVE lab= 39.80 MeVE lab= 48.80 MeV-200 1 2 3 4 5 6 7r (fm)(d) Imag<strong>in</strong>ary part of the PCT potential.


5. TABLES AND FIGURES 73Figure 4.9. Inverse potentials below the threshold <strong>at</strong> various E c.m. =M ππ <strong>in</strong>variant masses.20-2-4V(r) (GeV)-6-8-10-12-14-16-180,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4r (fm)M = 550 MeVM = 625 MeVM = 795 MeVM = 850 MeVM = 910 MeVFigure 4.10. Inversepotential andl<strong>at</strong>tice result<strong>at</strong>thesc<strong>at</strong>ter<strong>in</strong>genergyM ππ = 550 MeV.0,20,0-0,2V(r) (GeV)-0,4-0,6-0,8<strong>in</strong>versel<strong>at</strong>tice-1,00,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6r (fm)


5. TABLES AND FIGURES 74Figure 4.11. Real and imag<strong>in</strong>ary parts of the <strong>in</strong>verse potentials abovethe K ¯K production threshold <strong>at</strong> various E c.m. = M ππ <strong>in</strong>variant massesand <strong>at</strong> E c.m. = M ππ = 965 MeV.2,01,51,0Re V(r) (GeV)0,50,0-0,5-1,0-1,5M = 965 MeVM = 1000 MeVM = 1075 MeVM = 1150 MeV-2,00,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0r (fm)(a)2,01,51,0Im V(r) (GeV)0,50,0-0,5-1,0-1,5M = 965 MeVM = 1000 MeVM = 1075 MeVM = 1150 MeV-2,00,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0r (fm)(b)


APPENDIX ASpectral <strong>theory</strong> of the one dimensional Schröd<strong>in</strong>geroper<strong>at</strong>or1. IntroductionIn this appendix the underly<strong>in</strong>g m<strong>at</strong>hem<strong>at</strong>ical framework of the Schröd<strong>in</strong>ger andclosely rel<strong>at</strong>ed equ<strong>at</strong>ions, the Sturm-Liouville <strong>theory</strong> is exposed (<strong>in</strong> addition to [38, 39]see also [78]). One can start from the Sturm-Liouville oper<strong>at</strong>or1r(x)(− ddx p(x) ddx +q(x) )with some p(x), q(x) and r(x) functions understood on some <strong>in</strong>terval I ⊂ R, a somewh<strong>at</strong>more general oper<strong>at</strong>or compared to the Schröd<strong>in</strong>ger one(A.1)− d2dx 2 +q(x).The relevant Hilbert space for the problem is L 2 (I,r(x)dx). We further require for p −1 ,q and r to be locally L 1 (I) and for q to be real-valued, while the others positive.Concern<strong>in</strong>g the eigenvalue equ<strong>at</strong>ion[ 1r(x)with the <strong>in</strong>itial conditions(− ddx p(x) ddx +q(x) )−z]f = g, z ∈ C,f(c) = α, (pf ′ )(c) = β, α, β ∈ C, c ∈ I.we have the follow<strong>in</strong>g well-known result from the <strong>theory</strong> of ODE’s. For rg locally L 1 onI there is a unique, locally absolutely cont<strong>in</strong>uous solution f of the differential equ<strong>at</strong>ion.Also, f is entire with respect to z.Because of the Liouville transform<strong>at</strong>ion it is enough to deal with the Schröd<strong>in</strong>gercase. To see this let us <strong>in</strong>troduce the Liouville normal form (r ≡ p ≡ 1) of a Sturm-Liouville equ<strong>at</strong>ion [10], which can beobta<strong>in</strong>ed fromthegeneral Sturm-Liouvilleequ<strong>at</strong>ionwith the help of an <strong>in</strong>tegr<strong>at</strong><strong>in</strong>g factor. If I = (a,b) then the transform<strong>at</strong>ionU : L 2 ((a,b),r(x)dx) → L 2 r(t)((0,c),dx) with c =a p(t) dt∫√xu(x) ↦→ v(y(x)) = [r(x(y))p(x(y))] 1 r(t)4 u(x(y)), y(x) =p(t) dtfor p,r,p ′ ,r ′ is absolutely cont<strong>in</strong>uous on I and transforms−(pu ′ ) ′ +qu = rλu75∫ ba


<strong>in</strong>towith the transformed potentialQ = q − (pr)1 4r2. DEFINITIONS 76−v ′′ +Qv = λv( ( ) ′ ′p (pr) 4) −1 .In wh<strong>at</strong> follows we review some elements of the oper<strong>at</strong>or (A.1).2. Def<strong>in</strong>itionsConsider the Sturm-Liouville equ<strong>at</strong>ion (<strong>in</strong> the normal form) on the half-l<strong>in</strong>e(A.2) −y ′′ α (x,λ)+Q(x)y α(x,λ)) = λy α (x,λ), x ∈ [0,∞)with the <strong>in</strong>itial conditions(A.3) y α (0,λ) = s<strong>in</strong>α ≠ 0, y α ′ (0,λ) = −cosα.Altern<strong>at</strong>ively, considery h (x,λ), asolutionof theSturm-Liouvilleequ<strong>at</strong>ion correspond<strong>in</strong>gto the <strong>in</strong>itial conditions(A.4) y h (0,λ) = 1, y h ′ (0,λ) = h < ∞.Note th<strong>at</strong> the physical case (h = ∞ or y(0,λ) = 0) is excluded now.2.1. Spectral function. Thereexists [38, 39] (a st<strong>at</strong>ement orig<strong>in</strong><strong>at</strong><strong>in</strong>g from Weyl)a monotone <strong>in</strong>creas<strong>in</strong>g function ρ α (λ), the spectral function, such th<strong>at</strong>, for every f(x) ∈L 2 (0,∞) there exists <strong>in</strong> the L 2 (−∞,∞,ρ α (λ)) norm sense(A.5)∫ nF α (λ) = l.i.m. n→∞ f(x)y α (x,λ)dxor equivalently∫ ∞ ∫ n(A.6) lim |F α (λ)− f(x)y α (x,λ)dx| 2 dρ α (λ) = 0,n→∞−∞ 0and this is a unitary transform<strong>at</strong>ion, i.e. the Parseval formula(A.7)∫ ∞0|f(x)| 2 dx =0∫ ∞−∞|F α (λ)| 2 dρ α (λ)holds. It is worthwhile to note th<strong>at</strong> the Parseval formula implies completeness of they α (x,λ) solutions,(A.8)∫ ∞−∞y α (x,λ)y α (y,λ)dρ α (λ) = δ(x−y).A property of the spectral function is the asymptotic formula [38, 39]2(A.9) ρ α (λ) =πs<strong>in</strong> 2 α λ1/2 +ρ α (−∞)+ cosαs<strong>in</strong> 3 +o(1), λ → ∞.αThe spectral function correspond<strong>in</strong>g to the other k<strong>in</strong>d of <strong>in</strong>itial condition (A.4)can be obta<strong>in</strong>ed as follows. Prescribe h = −cotα. Then one has [s<strong>in</strong>αy h ](0,λ) =s<strong>in</strong>α and [s<strong>in</strong>αy h ] ′ (0,λ) = −cosα thus s<strong>in</strong>αy h (x,λ) = y α (x,λ). Then F α (λ) =


2. DEFINITIONS 77s<strong>in</strong>α ∫ ∞0f(x)y h (x,λ)dx = s<strong>in</strong>αF h (λ) for f(x) ∈ L 2 (0,∞) <strong>in</strong> the norm sense. TheParseval formula (A.7) yields(A.10) ρ h (λ) = ρ α (λ)s<strong>in</strong> 2 α for h = −cotα.It can be proved th<strong>at</strong> the spectral function determ<strong>in</strong>es the potential Q(x) and theparameter h of the <strong>in</strong>itial condition uniquely.It is <strong>in</strong>terest<strong>in</strong>g to see th<strong>at</strong> <strong>in</strong> case of a vanish<strong>in</strong>g potential, i.e. q ≡ 0 and h = 0 thespectral function takes the form{2√(A.11) ρ 0,0 (λ) =π λ, λ ≥ 00, λ < 0and the transform<strong>at</strong>ion (A.5) simplifies to the cos-Fourier transform<strong>at</strong>ion.2.2. m-function. A remarkable choice of boundary conditions isW[u,u ∗ ](x) = 0, x ∈ I,where W[f,g] = fg ′ −f ′ g is the Wronskian. Let φ λ and χ λ two fundamental solutionsof (A.2) s<strong>at</strong>isfy<strong>in</strong>g(A.12) φ λ (c) = 1, φ ′ λ (c) = 0,(A.13)χ λ (c) = 0, χ ′ λ (c) = 1.Then Green’s formula shows th<strong>at</strong> u = φ + µχ is a solution s<strong>at</strong>isfy<strong>in</strong>g the boundarycondition <strong>in</strong> terms of the Wronskian if2Iλ·∫ xc|φ+µχ| 2 = −Iµ,th<strong>at</strong> is if µ lies on a circle <strong>in</strong> the complex plane. Now if x → a or x → b the circle eithertends to a circle or a po<strong>in</strong>t. In the first case the oper<strong>at</strong>or is said to be limit circle and<strong>in</strong> the second case limit po<strong>in</strong>t <strong>at</strong> a or b. This classific<strong>at</strong>ion is <strong>in</strong>dependent of c and λ. Ifµ is the limit po<strong>in</strong>t or on the limit circle then the solution φ + µχ is of L 2 near a (orb). If the oper<strong>at</strong>or is limit circle on both ends of the <strong>in</strong>terval I, the spectrum conta<strong>in</strong>sonly eigenvalues and the eigenfunctions form an orthonormal basis set (i.e. there areno sc<strong>at</strong>ter<strong>in</strong>g st<strong>at</strong>es), e.g. this is the case for Q(x) → ∞, x → ±∞ (e.g. the harmonicoscill<strong>at</strong>or).In the case a = 0, b = ∞ the oper<strong>at</strong>or is almost always limit po<strong>in</strong>t <strong>at</strong> ∞. For<strong>in</strong>stance∫it is enough for the potential Q to be bounded from below or to be Q ≥ −cx 2a+1or sup a amax(−Q,0) < ∞. Therefore we shall only tre<strong>at</strong> this case here.Let us def<strong>in</strong>e a quantity very similar to µ by(A.14)m(λ) = y′ (0,λ)y(0,λ)with y ∈ L 2 (0,∞).m(λ) is called the Weyl-Titchmarsh m-function and is unique if the oper<strong>at</strong>or is limitpo<strong>in</strong>t <strong>at</strong> ∞. Note th<strong>at</strong> m(λ) is meromorphic s<strong>in</strong>ce y(0,λ) is entire.There are a number of nice properties of the m-function. First of all the Borg-Marchenko theorem st<strong>at</strong>es th<strong>at</strong> it determ<strong>in</strong>es the potential uniquely. m(λ) is also a


2. DEFINITIONS 78Herglotz function, th<strong>at</strong> is m : C + → C + thus s<strong>at</strong>isfies the Herglotz represent<strong>at</strong>iontheorem,∫ ∞( 1m(λ) = c+−∞ t−λ − t )1+t 2 dρ 0 (t),where c = Rm(i) and the <strong>in</strong>tegr<strong>at</strong>ion measure ρ 0 (t) is the spectral function associ<strong>at</strong>edwith α = 0. For α ≠ 0 the connection between the m-function and the spectral functiontakes the form [38](A.15)and for ρ h (λ)(A.16)∫s<strong>in</strong>α−m(λ)cosα ∞cosα+m(λ)s<strong>in</strong>α = −cotα+∫1 ∞m(λ)−h =−∞dρ h (t)λ−t−∞dρ α (t)λ−twhich formula can be <strong>in</strong>verted by the Stieltjes <strong>in</strong>version (see e.g. XIV. §3. of [39]):(A.17)ρ h (λ 2 )−ρ h (λ 1 ) = − 1 ∫ λ2π lim 1Imε→0 + λ 1m(λ+iε)−h dλ.The m-function can also be represented as essentially a Laplace transform. Simonestablishedm(−κ 2 ) = −κ−∫ ∞0A(α)e −2ακ dα(for κ such th<strong>at</strong> the <strong>in</strong>tegral converges) with A(α) ≡ A(α,α) determ<strong>in</strong>ed by a partial<strong>in</strong>tegro-differential equ<strong>at</strong>ion (see [76, 24]) and for real potentials s<strong>at</strong>isfy<strong>in</strong>g(A.18)can also be calcul<strong>at</strong>ed from [5](A.19)supx≥0A(x,y) = Q(x)−∫ x+1x∫ y0|Q(x)|dx < ∞(∫ xv)A(u,v)du Q(x−v)dv.Note, th<strong>at</strong> for the zero potential the m-function reads{+i √ λ I √ λ > 0,(A.20) m(λ) =−i √ λ I √ λ < 0.2.3. Sc<strong>at</strong>ter<strong>in</strong>g quantities. If Q ∈ L 1,1 (0,∞) (consequently the oper<strong>at</strong>or is limitpo<strong>in</strong>t <strong>at</strong> <strong>in</strong>f<strong>in</strong>ity) then we have the special k<strong>in</strong>d of solutions(A.21) y ± (x,k) = e ±ikx +called the Jost solutions, k = √ λ, with(A.22)∫ ∞xK(x,t)e ±ikt dt,∂ 2∂2∂x2K(x,t)−Q(x)K(x,t) =∂t 2K(x,t), K(x,t) = 1 2∫ ∞xQ(y)dy


2. DEFINITIONS 79The Jost solutions can be analytically cont<strong>in</strong>ued <strong>in</strong> k to the upper half-plane, wheref + (x,k) ∈ L 2 (0,∞). Consider<strong>in</strong>g then the Wronskian(A.23)W[y + ,y − ](k,x) = −2ik,it is easy to see th<strong>at</strong> the m-function and the Jost solutions are connected by(A.24)y + (0,k)y − (0,k)2ik= |y+ (0,k)| 22ikLet us def<strong>in</strong>e the Jost functions as(A.25)= |y− (0,k)| 22ik{[m(k 2 +i0)−m(k 2 −i0) ] −1=[m(k 2 −i0)−m(k 2 +i0) ] −1f ± (k) = y ± (0,k),if k > 0,if k < 0.then us<strong>in</strong>g the symmetry pr<strong>in</strong>ciple s<strong>at</strong>isfied by the m-function ((m(z)) ∗ = m(z ∗ )) wehave|f + (κ)| 2 1(A.26)= limκ ε→0 + Im(κ 2 +iε) , κ > 0.There are several <strong>in</strong>terest<strong>in</strong>g properties of the Jost functions [38], firstly(A.27)Putf − (k) = (f + (k)) ∗ = f + (−k).(A.28) f + (k) = |f + (k)|e −iδ(k) ,then it is easy to see th<strong>at</strong> δ(k) is odd and is the phase shift of the physical solutions<strong>at</strong>isfy<strong>in</strong>g ψ(0,k) = 0. Also,( ( 1 1(A.29) f ± (k) = 1+O or S(k) ≡ ek)2iδ(k) = 1+O , k → ∞.k)2.4. Bound st<strong>at</strong>es. Bound st<strong>at</strong>es are the eigenfunctions (along with their eigenvalues)def<strong>in</strong>ed as L 2 (0,∞) solutions of (A.2). It is well known th<strong>at</strong> if the oper<strong>at</strong>or is <strong>in</strong>the limit po<strong>in</strong>t case (unrigorously: ones with decay<strong>in</strong>g potentials) we have only a f<strong>in</strong>itenumber of neg<strong>at</strong>ive eigenvalues. There is a theorem which establishes a bound on theirnumber N − [9]. Suppose the potential is cont<strong>in</strong>uous and bounded from below. Then(A.30)(A.31)N D − ≤∫ ∞0xm<strong>in</strong>(Q(x),0)dx, N D − : s<strong>in</strong>α = 0N D − ≤ NN − ≤ 1+ND − , NN − : s<strong>in</strong>α = 1applies for the number of bound st<strong>at</strong>es for the respective boundary conditions (Dirichletand Neumann).Lev<strong>in</strong>son’s theorem connects the sc<strong>at</strong>ter<strong>in</strong>g d<strong>at</strong>a with the bound st<strong>at</strong>e d<strong>at</strong>a. It st<strong>at</strong>esth<strong>at</strong> by sett<strong>in</strong>g δ(±∞) = 0 (thus elim<strong>in</strong><strong>at</strong><strong>in</strong>g the ambiguity from the phase shift) wehave(A.32) δ(−0) ={N − π f + (0) ≠ 0(N− + 2) 1 π f + (0) = 0 .


3. INVERSE PROBLEMS 803. Inverse problems3.1. Transform<strong>at</strong>ion oper<strong>at</strong>ors. As a prelim<strong>in</strong>ary to the discussion of the <strong>in</strong>verseproblems for the one dimensional Schröd<strong>in</strong>ger equ<strong>at</strong>ion we <strong>in</strong>troduce some transform<strong>at</strong>ionoper<strong>at</strong>orsbasedon[38]. Let E = C 1 ([0,∞)), thespaceoftwicecont<strong>in</strong>uous, complexvalued functions. Also, def<strong>in</strong>e two subspaces E 1 , E 2 consist<strong>in</strong>g of functions s<strong>at</strong>isfy<strong>in</strong>gf ′ (0) = h 1 f(0) and f ′ (0) = h 2 f(0), respectively. Let(A.33) A = − d2dx 2 +Q(x), B = − d2dx 2.Def<strong>in</strong>eX tobe<strong>at</strong>ransform<strong>at</strong>ionoper<strong>at</strong>or, requir<strong>in</strong>gforX andits<strong>in</strong>versetobecont<strong>in</strong>uousand for X to s<strong>at</strong>isfy AX = XB. Then if Bφ λ = λφ λ , then A(Xφ λ ) = λ(Xφ λ ), which isexactly the property of an oper<strong>at</strong>or th<strong>at</strong> transforms the solutions of the free Schröd<strong>in</strong>gerequ<strong>at</strong>ion <strong>in</strong>to the <strong>in</strong>teract<strong>in</strong>g one. It can be proved th<strong>at</strong> such an oper<strong>at</strong>ion can berepresented by a Volterra oper<strong>at</strong>or, i.e.(A.34)Xf(x) = f(x)+The kernel of this oper<strong>at</strong>ion s<strong>at</strong>isfies(A.35)(A.36)(A.37)(A.38)∂ 2 K(x,t)∂x 2∫ x0K(x,t)f(t)dt.−Q(x)K(x,t) = ∂2 K(x,t)∂t 2 ,∫ xK(x,x) = h 2 −h 1 + 1 Q(t)dt2 0[ ∂K(x,t) ∣∣∣t=0−h 1 K(x,t)]∣= 0.∂tAnother k<strong>in</strong>d of represent<strong>at</strong>ion of the oper<strong>at</strong>ion X is realized byXf(x,λ) = f(x,λ)+∫ ∞xK(x,t)f(t,λ)dt.In this case one lets E = E 1 = E 2 and has the follow<strong>in</strong>g properties of the kernel(A.39)∂ 2 K(x,t)∂x 2−Q(x)K(x,t) = ∂2 K(x,t)∂t 2 ,∫ ∞(A.40)K(x,x) = 1 Q(t)dt.2 xNote, th<strong>at</strong> we have already def<strong>in</strong>ed K when discuss<strong>in</strong>g the Jost solutions.3.2. Gel’fand-Levitan <strong>theory</strong>. Supposethespectralfunctionisknown. Thenonecan pose the question whether the potential can be reconstructed from th<strong>at</strong> and how.The fundamental theorem of Marchenko st<strong>at</strong>es th<strong>at</strong> the spectral function determ<strong>in</strong>es thepotential and the boundary condition parameter h uniquely. A constructive approach isgiven by the Gel’fand-Levitan <strong>theory</strong> which is shown below.From the existence of the transform<strong>at</strong>ion oper<strong>at</strong>or with the kernel K(x,y) and thecompleteness rel<strong>at</strong>ion (A.8) the Gel’fand-Levitan (GL) <strong>in</strong>tegral equ<strong>at</strong>ion can be deduced[38]:(A.41)0 = F(x,y)+K(x,y)+∫ x0K(x,t)F(t,y)dt(0 ≤ y ≤ x),


where the <strong>in</strong>put symmetrical kernel is(A.42) F(x,y) =(A.43) F(x) =∫ ∞−∞∫ ∞−∞3. INVERSE PROBLEMS 81cos( √ λx)cos( √ λy)dσ(λ) = 1 2 (F(x+y)+F(|x−y|)),cos( √ λx)dσ(λ),σ(λ) = ρ h (λ)−ρ 0,0 (λ).ρ h (λ) and ρ 0,0 (λ) were def<strong>in</strong>ed before. To see this let us take (A.8) and substitute(A.44)then we gety α (x,λ) = X x y α (x,λ) = cos( √ λx)+(A.45) X y{F(x,y)+K(x,y)+∫ x0∫ x0K(x,t)cos( √ λt)dt}K(x,t)F(t,y)dt = 0,which implies the GL equ<strong>at</strong>ion s<strong>in</strong>ce Volterra oper<strong>at</strong>ors form a group (for boundedkernels) and thus there exists an <strong>in</strong>verse of X t .In the GL equ<strong>at</strong>ion K(x,y) is the kernel of the Volterra transform<strong>at</strong>ion oper<strong>at</strong>orwith h 1 = 0 and h 2 = h and Q(x) = 2 ddxK(x,x) from (A.36).3.3. Marchenko <strong>theory</strong>. The Marchenko <strong>theory</strong> is closer to the physically aris<strong>in</strong>gquestions, as it gives a construction of the potential from sc<strong>at</strong>ter<strong>in</strong>g and bound st<strong>at</strong>ed<strong>at</strong>a (<strong>in</strong>deed, the sc<strong>at</strong>ter<strong>in</strong>g d<strong>at</strong>a <strong>in</strong> itself is <strong>in</strong>sufficient).The Marchenko equ<strong>at</strong>ion (another l<strong>in</strong>ear <strong>in</strong>tegral equ<strong>at</strong>ion, very similar to the GL)consists of(A.46)0 = F(x+y)+K(x,y)+∫ ∞xK(x,t)F(t+y)dt,0 < x < ywhere the <strong>in</strong>tegral kernel K(x,y) is the same as the one appear<strong>in</strong>g <strong>in</strong> the Jost solutions.The <strong>in</strong>put function reads(A.47) F(x) = ∑ 1e −√ −λ j x + 1 ∫ ∞(1−S(τ))e iτx dτ.mj j 2π −∞The potential is determ<strong>in</strong>ed through (A.22) and is given by(A.48)Q(x) = 2 ddx K(x,x).


APPENDIX BSpecial functions1. IntroductionInitially, we shall take a unified tre<strong>at</strong>ment of all the special function we wish todiscuss. In order to do this, we def<strong>in</strong>e the generalized hypergeometric function as∞∑ (a 1 ) n ...(a p ) n z npF q (a 1 ,a 2 ,...,a p ;b 1 ,...,b q ;z) =(b 1 ) n ...(b q ) n n! ,<strong>in</strong> a doma<strong>in</strong> of the complex plane where the series converges, while outside this doma<strong>in</strong>we def<strong>in</strong>e it as the analytical cont<strong>in</strong>u<strong>at</strong>ion of the above. (a) n denotes the Pochhammersymbol,(a) n = a(a+1)...(a+n−1), (a) 0 = 1.Many special functions are special cases of these very general functions. We shallonly need the (Gauss) hypergeometric functions, th<strong>at</strong> of 2 F 1 (a,b;c;z). These functionss<strong>at</strong>isfy the second order differential equ<strong>at</strong>ionn=0z(1−z) df2dz 2 +[c−(a+b+1)z]df −abf = 0.dzIt is also true, th<strong>at</strong> every second order ODE (for def<strong>in</strong>iteness: f (2) (z) +p 1 (z)f (1) (z) +p 0 (z)f(z) = 0) with three regular s<strong>in</strong>gular po<strong>in</strong>ts (such th<strong>at</strong> p 1 (z) has a pole of <strong>at</strong> mostfirst order and p 0 (z) of second order – otherwise a s<strong>in</strong>gular po<strong>in</strong>t is termed irregular) canbe transformed to this form. There is a gre<strong>at</strong> amount of <strong>in</strong>form<strong>at</strong>ion on this function <strong>in</strong>the liter<strong>at</strong>ure some of which can be found <strong>in</strong> [2] or [53].Wespecifythisfunctionfurther,bytak<strong>in</strong>gb → ∞, andthus<strong>in</strong>troduc<strong>in</strong>gtheconfluenthypergeometric function. In this case two of the regular s<strong>in</strong>gular po<strong>in</strong>ts merge <strong>in</strong>to anirregular one, hence the adjective ”confluent”. The function we ga<strong>in</strong> is the solution ofthe ODEz d2 fdz 2 +(b−z)df −af = 0,dzand is given byM(a,b,z) ≡ 1 F 1 (a;b;z) = lim 2F 1 (a,b;c;z/b)b→∞which is the Kummer function. A l<strong>in</strong>early <strong>in</strong>dependent solution isU(a,b,z) = Γ(1−b) Γ(b−1)M(a,b,z)+ z 1−b M(a−b+1,2−b,z).Γ(a−b+1) Γ(a)In section 2 the Coulomb functions are discussed as special cases of the confluenthypergeometric functions. In section 3 the Bessel functions are tre<strong>at</strong>ed (be<strong>in</strong>g specialcases of the Coulomb functions) and some now results are proved concern<strong>in</strong>g <strong>in</strong>terlac<strong>in</strong>g82


2. COULOMB WAVE FUNCTIONS 83of Bessel zeros. Here we succeed <strong>in</strong> unify<strong>in</strong>g three dist<strong>in</strong>ct <strong>in</strong>equality sequences [2] <strong>in</strong>toone.2. Coulomb wave functionsTheCoulomb wave functions areessentially confluent hypergeometric functions, connectedto the M and U functions by(B.1)(B.2)F L (η,x) = 2 L e −πη/2|Γ(L+1+iη)| x L+1 e −ix M(L+1−iη,2L+2,2ix)Γ(2L+2)G L (η,x) = 1 [e iΘL(η,x) (2ix) L+1+iη U(L+1+iη,2L+2,−2ix)2]+e −iΘL(η,x) (−2ix) L+1−iη U(L+1−iη,2L+2,2ix)and solve the equ<strong>at</strong>ion(B.3)( d2dx 2 +1− 2η x − L(L+1) )x 2 f(x) = 0and Θ L (η,x) = x−ηlog(2x)−[ 1 2]Lπ+σ L(η) is the Coulomb argument (with the Coulombphase σ L (η) = 1 2i log Γ(L+1+iη)Γ(L+1−iη)) also appear<strong>in</strong>g <strong>in</strong> asymptotic forms of these functions,(B.4)(B.5)F L (η,x) = s<strong>in</strong>Θ L (η,x),G L (η,x) = cosΘ L (η,x),x → ∞x → ∞Physically the dimensionless equ<strong>at</strong>ion (B.3) is th<strong>at</strong> of the Lth partial wave of a s<strong>in</strong>glenonrel<strong>at</strong>ivistic, <strong>quantum</strong> <strong>mechanical</strong> particle <strong>in</strong> a three dimensional Coulomb potential.In terms of dimensionful parameters the Sommerfeld parameter η is expressed asη = k Ee 28πε 0Z 1 Z 2 ,where k is the wavenumber, E is the sc<strong>at</strong>ter<strong>in</strong>g energy,e 24πε 0is the electrost<strong>at</strong>ic factorand Z 1,2 e are the charges of the particles.Follow<strong>in</strong>g [81, 15] the evalu<strong>at</strong>ion of the Coulomb wave functions for complex Lorders is accomplished by the follow<strong>in</strong>g power series:(B.6)F L (x) = 2L e −πη 2 [Γ(L+1+iη)Γ(L+1−iη)] 1 2Γ(2L+2)where the C L j constants are def<strong>in</strong>ed by a recursion:·x L+1 ∞ ∑j=L+1C L j (η)xj−L−1 ,(B.7)(B.8)CL+1 L = 1,CL+2 L = ηL+1 ,(B.9)C L j = 2ηCL j−1 −CL j−2(j +L)(j −L−1)j > L+2.This production of the F L (x) is a simple analytic cont<strong>in</strong>u<strong>at</strong>ion of the formulae <strong>in</strong> [2].


3. BESSEL FUNCTIONS 84In the course of our applic<strong>at</strong>ions the irregular Coulomb wave function is usuallyneeded for <strong>in</strong>teger orders, which case is covered <strong>in</strong> [2] (the complic<strong>at</strong>ed power seriesis not reproduced here). However for the MCT generaliz<strong>at</strong>ion of the Cox-Thompsonmethod we require G L (x) for complex L’s as well, <strong>in</strong> which case analytic cont<strong>in</strong>u<strong>at</strong>ionof the power series <strong>in</strong> [2] is not possible. Instead, (B.2) was used, s<strong>in</strong>ce the series of theKummer functions are well known for complex arguments. Note, th<strong>at</strong> one can also usethe Whittaker functions <strong>in</strong>stead of the Kummer functions (see [2], Chapter 13).Our series rely on the Gamma function, which needs to be calcul<strong>at</strong>ed for complexarguments. To obta<strong>in</strong> the Gamma function we used an efficient Lanczos series represent<strong>at</strong>ion[35] implemented <strong>in</strong> M<strong>at</strong>lab by [25].3. Bessel functions3.1. Def<strong>in</strong>ition, series represent<strong>at</strong>ion. Bessel functions are obta<strong>in</strong>ed from theCoulomb wave functions by sett<strong>in</strong>g η = 0 and perform<strong>in</strong>g a transform<strong>at</strong>ion, th<strong>at</strong> is√ √ πxπxF ν (0,x) =2 J ν+1/2(x), G ν (0,x) =2 Y ν+1/2(x).J and Y are the Bessel and the Neumann functions, s<strong>at</strong>isfy<strong>in</strong>g the ODEx 2d2 ydx 2 +xdy dx +(x2 −ν 2 )y = 0.The Bessel functions can be obta<strong>in</strong>ed for arbitrary order (even complex) from the powerseries∞∑ (−1) m ( x) 2m+νJ ν (x) =m!Γ(m+ν +1) 2andm=0Y ν (x) = J ν(x)cos(νπ)−J −ν (x).s<strong>in</strong>(νπ)In wh<strong>at</strong> follows we shall also use the concept of general cyl<strong>in</strong>der function, which is al<strong>in</strong>ear comb<strong>in</strong><strong>at</strong>ion of a Bessel and a Neumann function.3.2. Interlac<strong>in</strong>g results. In this section new <strong>in</strong>terlac<strong>in</strong>g results of the Bessel functionsare derived.Consider<strong>in</strong>g the Bessel differential equ<strong>at</strong>ion, a second order l<strong>in</strong>ear homogeneousODE, s<strong>at</strong>isfied by the Bessel functions it is easy to see th<strong>at</strong> J ν (x), Y ν (x) and J ν(x),′Y ν(x) ′ each has an <strong>in</strong>f<strong>in</strong>ity of real zeros, for any given real value of ν. Furthermore, thesezeros are all simple with the possible exception of x = 0. I will use the term <strong>in</strong>terlacefor two functions if between each consecutive pair of zeros of one function there is oneand only one zero of the other. Denote the sth zero of the functions J ν (x), Y ν (x), J ν ′(x),Y ν ′(x),C ν(x) and C ν ′(x) by j ν,s, y ν,s , j ν,s ′ , y′ ν,s , c ν,s and c ′ ν,s , respectively, except th<strong>at</strong>x = 0 is counted as the first zero of J 0 ′ (x) [82].The follow<strong>in</strong>g theorem summarizes some known relevant <strong>in</strong>terlac<strong>in</strong>g results.


3. BESSEL FUNCTIONS 85Theorem 3 ([82, 75, 42, 43, 56, 57]). For ν ≥ 0 the follow<strong>in</strong>g holds true. For0 < a ≤ 2 the positive real zeros of C ν (x) and C ν+a (x) are <strong>in</strong>terlaced. Similarly, J ν(x),′Jν+b ′ (x) and Y′ν(x), Yν+b ′ (x) are also <strong>in</strong>terlaced if 0 < b ≤ 1, respectively. Furthermore,(B.10) j ν,1 < j ν+1,1 < j ν,2 < j ν+1,2 < j ν,3 < ...(B.11)(B.12)(B.13)y ν,1 < y ν+1,1 < y ν,2 < y ν+1,2 < y ν,3 < ...ν ≤j ′ ν,1 < y ν,1 < y ′ ν,1 < j ν,1 < j ′ ν,2 < y ν,2 < y ′ ν,2 < j ν,2 < j ′ ν,3 < ...W<strong>at</strong>son’s formula [82, p. 508 Eq. (3)] saysdc ν,jdν = 2c ν,j∫ ∞0K 0 (2c ν,j s<strong>in</strong>ht)e −2νt dt, j = 0,1,...An easy, nevertheless important consequence is the follow<strong>in</strong>g theorem.Theorem 4. c ν,s and c ′ ν,s are cont<strong>in</strong>uous <strong>in</strong>creas<strong>in</strong>g functions of the order ν > 0 forall s = 1,2,....The next theorem can be proven [57, 55]Theorem 5. The positive zeros of the Bessel functions J ν (x), J ′ ν(x), Y ν (x), Y ′ν(x),J ν+ε (x), Y ν+ε (x) for nonneg<strong>at</strong>ive orders, ν ≥ 0 are <strong>in</strong>terlaced accord<strong>in</strong>g to the <strong>in</strong>equalities(B.14) ν ≤ j ′ ν,1 < y ν,1 < y ν+ε,1 < y ′ ν,1 < j ν,1 < j ν+ε,1 < j ′ ν,s+1 < ...if and only if 0 < ε ≤ 1 (otherwise y ν+ε,s > j ν,s for some s and y ν,s ′ +1 > j ν+ε,s ′ for somes ′ ).Furthermore, if ν and µ are positive, the positive real zeros ofC ν (x), C µ (x); J ′ ν (x), J′ µ (x); Y ′ν (x), Y ′ µ (x)are <strong>in</strong>terlaced, respectively, if and only if |ν−µ| ≤ 2, where C ν (x) is the general cyl<strong>in</strong>derfunction of νth order.Remarks. In general, if <strong>at</strong> least one of ν and µ is neg<strong>at</strong>ive C ν (x) and C µ (x) are not<strong>in</strong>terlaced on (0,∞), i.e. not all the positive real zeros are <strong>in</strong>terlaced, unless the zerosare def<strong>in</strong>ed as cont<strong>in</strong>uous <strong>in</strong>creas<strong>in</strong>g functions of the order (see Ref. [82], pp. 508-510on how the zeros disappear when the order is decreased). However, <strong>in</strong> the particularcase of δ = 0 the <strong>in</strong>terlac<strong>in</strong>g of C ν (x) and C µ (x) is preserved for ν,µ > −1.Additional <strong>in</strong>terlac<strong>in</strong>g rel<strong>at</strong>ions can be proved with the aid of the tools <strong>in</strong>troducedbelow, e.g. between J ν+2 (x) and J ′ ν(x), but only for specific differences between theorders (which is 2 <strong>in</strong> this particular example), and thus not <strong>in</strong> the form of Theorem 5.In order to prove Theorem 5 two tools are utilized. The first is the conditionaltransitivity of <strong>in</strong>terlac<strong>in</strong>g rel<strong>at</strong>ions.Lemma 3. Let f, g and h be cont<strong>in</strong>uous functions on some common <strong>in</strong>terval I.Suppose f is <strong>in</strong>terlaced with g and g is <strong>in</strong>terlaced with h on I, where(B.15) a(x)f(x)+b(x)g(x)+c(x)h(x) = 0with some functions a, b, c s<strong>at</strong>isfy<strong>in</strong>g sgna(x) = const. ≠ 0, sgnb(x) = const. ≠ 0 andsgnc(x) = const. ≠ 0. Then f is <strong>in</strong>terlaced with h on I.The second tool is a result connect<strong>in</strong>g Wronskians and <strong>in</strong>terlac<strong>in</strong>g.


3. BESSEL FUNCTIONS 86Lemma 4. The Wronskian W (√ xC ν (x), √ x¯C µ (x) ) has no roots on the <strong>in</strong>terval x ∈(m<strong>in</strong>(c ν,1 ,¯c µ,1 ),∞) if and only if the positive zeros of the functions C ν (x) and ¯C µ (x) are<strong>in</strong>terlaced.3.3. Proofs: Three term recurrence rel<strong>at</strong>ions.Proof of Lemma 3. Let {x i } and {y i } denote the sets of zeros of f and h on I,respectively. Then the functional equ<strong>at</strong>ion (B.15) yields sgng(x i ) = −sgn(bc)sgnh(x i )and sgnf(y i ) = −sgn(ab) sgng(y i ). S<strong>in</strong>ce f and g are <strong>in</strong>terlaced we have sgng(x i ) =−sgng(x i+1 ), similarly sgng(y i ) = −sgng(y i+1 ). Then h (f) must have an odd numberof zeros between each consecutive pair of zeros of f (h) imply<strong>in</strong>g the two are <strong>in</strong>terlacedon the <strong>in</strong>terval I.□We prove two <strong>in</strong>terlac<strong>in</strong>g rel<strong>at</strong>ions us<strong>in</strong>g Lemma 3.Corollary 1. For ν > 0 the positive zeros of C ν (x) and C ν+2 (x) are <strong>in</strong>terlaced.Proof. Indeed, Lemma 3 yields the st<strong>at</strong>ement, s<strong>in</strong>ce with I = (0,∞), f = C ν ,g = C ν+1 and h = C ν+2 Eq. (B.15) can be turned <strong>in</strong>to2ν +2(B.16) C ν (x)− C ν+1 (x)+C ν+2 (x) = 0,xwhich is a known three term recurrence rel<strong>at</strong>ion.□Corollary 2. The positive zeros of C ν+1 (x) and C ′ ν(x) are <strong>in</strong>terlaced for ν > 0.Proof. With I = (0,∞), f = C ν+1 , g = C ′ ν and h = C ν Lemma 3 yields thest<strong>at</strong>ement s<strong>in</strong>ce(B.17)C ′ ν(x) = −C ν+1 (x)+ ν x C ν(x)For the deriv<strong>at</strong>ive functions a suitable three term recurrence rel<strong>at</strong>ions can be foundus<strong>in</strong>g the well-known ones. From (B.17) and(B.18)(B.19)C ′ ν+1(x) = C ν (x)−C ν+2 (x),C ′ ν+1(x) = C ν (x)− ν +1x C ν+1(x),(B.20) C ν+2 ′ (x) = C ν+1(x)− ν +2x C ν+2(x)we <strong>in</strong>fer th<strong>at</strong>(B.21) [x 2 −(ν+1)(ν+2)]C ν(x)+[x ′ 2 −ν(ν+1)]C ν+2(x) ′ 2(ν +1)= [x 2 −ν(ν+2)]C ′xν+1(x)holds.The first zero of C ν(x) ′ can be <strong>at</strong> any po<strong>in</strong>t of the half l<strong>in</strong>e (0,∞) depend<strong>in</strong>g on νand δ. Eq. (B.21) implies th<strong>at</strong> the first few zeros of C ν(x) ′ and C ν+2 ′ (x) may not be<strong>in</strong>terlaced even if C ν ′(x) and C′ ν+1 (x) are <strong>in</strong>terlaced. For x > √ (ν +1)(ν +2) C ν ′ (x) andC ν+2 ′ (x) are <strong>in</strong>terlaced if C′ ν(x) and C ν+1 ′ (x) are <strong>in</strong>terlaced. However, the first few zerosof C ν ′(x) and C′ ν+1 (x) might still not be <strong>in</strong>terlaced. One can only guarantee <strong>in</strong>terlac<strong>in</strong>gof the deriv<strong>at</strong>ive functions C ν(x), ′ C ν+1 ′ (x) and C′ ν+2 (x) if δ = 0 or δ = π 2 .□


Y ′ν+2Corollary 3. The positive zeros of J ν(x) ′ and J ν+2 ′(x) are <strong>in</strong>terlaced if ν > 0.3. BESSEL FUNCTIONS 87(x) and those of Y′ν(x) andProof. The multiply<strong>in</strong>g terms <strong>in</strong> Eq. (B.21) are all positive for x > j ν+2,1 ′ thusLemma 3 yields th<strong>at</strong> J ν ′ and J ν+2 ′ are <strong>in</strong>terlaced on (j′ ν+2,1 ,∞) s<strong>in</strong>ce J′ ν, J ν+1 ′ and J′ ν+1 ,J ν+2 ′ are <strong>in</strong>terlaced (Theorem 3). It rema<strong>in</strong>s to show th<strong>at</strong> J′ ν has only one zero (j ν,1 ′ )before j ν+2,1 ′ . We have j′ ν,1 < j′ ν+1,1 < j′ ν+2,1 from Theorem 4, while Theorem 3 impliesone further zero (j ν,2 ′ ) on (j′ ν+1,1 ,j′ ν+1,2 ). Analyz<strong>in</strong>g the signs <strong>in</strong> Eq. (B.21) yields th<strong>at</strong>this zero must be after j ν+2,1 ′ .The same reason<strong>in</strong>g holds for the second order deriv<strong>at</strong>ive functions. □The follow<strong>in</strong>g is a simple corollary of Theorem 4.Corollary 4. If ν > 0 then the previous <strong>in</strong>terlac<strong>in</strong>g rel<strong>at</strong>ions rema<strong>in</strong> to be true ifthe difference between the orders is ε <strong>in</strong>stead of 2 or 1 with 0 < ε ≤ 2 or 0 < ε ≤ 1,respectively.3.4. Proofs: Wronskians. To prove the neg<strong>at</strong>ive parts of Theorem 5 I analyzeWronskians as <strong>in</strong> [56]. Let(B.22)(B.23)ξ ν = √ xC ν (x) = √ x[cosδJ ν (x)−s<strong>in</strong>δY ν (x)],¯ξ µ = √ x¯C µ (x) = √ x[cos¯δJ µ (x)−s<strong>in</strong>¯δY µ (x)],which functions give rise to the Wronskian(B.24)W (√ xC ν (x), √ x¯C µ (x) ) ≡ W ξν,¯ξ µ(x) = ξ ν (x)¯ξ ′ µ(x)−ξ ′ ν(x)¯ξ µ (x).Differenti<strong>at</strong><strong>in</strong>g with respect to x one obta<strong>in</strong>s(B.25) W ′ ξ ν,¯ξ µ(x) = µ2 −ν 2ξ ν (x)¯ξ µ (x),which holds because of the differential equ<strong>at</strong>ion[ ] d(B.26) x 2 2dx 2 +1 ξ ν (x) =x 2(ν 2 − 1 4)ξ ν (x),<strong>in</strong>ferred from the Bessel equ<strong>at</strong>ion.From Eq. (B.25) follows th<strong>at</strong> the set of local extrema of W ξν,¯ξ µ(x) is {w νµ,s } ∞ s=1 ={c ν,s } ∞ s=1 ∪{¯c µ,s} ∞ s=1 . At these positions the Wronskian takes{−ξ ′(B.27) extr s W ξν,¯ξ µ(x) ≡ W ξν,¯ξ µ(w νµ,s ) =ν(c ν,t )¯ξ µ (c ν,t )+ξ ν (¯c µ,t )¯ξ µ ′ (¯c µ,t),where the exact value of t depends on the <strong>in</strong>terlac<strong>in</strong>g of C ν (x) and ¯C µ (x).Now we are ready to prove Lemma 4.Proof of Lemma 4. Let ¯c µ,1 < c ν,1 . Without lossof generality supposesgnC ν (0+)= sgnC µ (0+) = 1(otherwisetos<strong>at</strong>isfytheequ<strong>at</strong>ionwetaketheoppositeoftherespectivefunctions, whose zeros co<strong>in</strong>cide with the orig<strong>in</strong>al ones). Please note th<strong>at</strong> sgnC ′ ν(c ν,n ) =(−1) n .Supposethe zeros of C ν (x) and C µ (x) are <strong>in</strong>terlaced imply<strong>in</strong>g sgnC ν (¯c µ,n ) = (−1) n+1and sgn¯C µ (c ν,n ) = (−1) n . Then every odd (even) numbered extremum is <strong>at</strong> a zero of


3. BESSEL FUNCTIONS 88¯C µ (x) (C ν (x)). From Eq. (B.27) and the signs of the constituent functions it followsth<strong>at</strong>(B.28)sgnextr n W ξν,¯ξ µ(x) = −1<strong>in</strong>dependent of n imply<strong>in</strong>g for W ξν,¯ξ µ(x) no zeros on (m<strong>in</strong>(c ν,1 ,¯c µ,1 ),∞).S<strong>in</strong>ce {w νµ,s } ∞ s=1 = {c ν,s} ∞ s=1 ∪ {¯c µ,s} ∞ s=1 it is apparent th<strong>at</strong> the converse of thest<strong>at</strong>ement is true as well.□This lemma will now be used to derive the break<strong>in</strong>g conditions (neg<strong>at</strong>ive parts) forTheorem 5.In wh<strong>at</strong> follows I will use some asymptotic properties of the Bessel functions. Fromthe def<strong>in</strong>itions of J ν (x) and Y ν (x), i.e.∞∑ (−1) m ( x) 2m+ν(B.29) J ν (x) =, Yν (x) = J ν(x)cos(νπ)−J −ν (x)m! Γ(m+ν +1) 2s<strong>in</strong>(νπ)m=0it is <strong>in</strong>ferred th<strong>at</strong> for ν > 0( Γ(ν)2ν(B.30) C ν (x) = s<strong>in</strong>δπ)+o(1) x −ν , x → 0.The asymptotics of the Wronskian can be derived from the asymptotics of the Besselfunctions, namely√2J ν (x) =(x−πx cos νπ 2 − π )(B.31)+o(1), x → ∞,4√2Y ν (x) =(x−πx s<strong>in</strong> νπ 2 − π )(B.32)+o(1), x → ∞,4therefore(B.33)W ξν,¯ξ µ(x) = 2 ( ) µ−νπ s<strong>in</strong> π +δ −2¯δ +o(1),mean<strong>in</strong>g th<strong>at</strong> the Wronskian converges to a constant <strong>at</strong> <strong>in</strong>f<strong>in</strong>ity.x → ∞Lemma 5. Let ν, µ > 0. Then the <strong>in</strong>terlac<strong>in</strong>g of C ν (x) and ¯C µ (x) breaks down <strong>in</strong>the follow<strong>in</strong>g cases:a)¯C µ (x) ≡ C µ (x) with |ν −µ| > 2;b) C ν (x) ≡ J ν (x) and ¯C µ (x) ≡ Y µ (x) with |ν −µ| > 1 provided th<strong>at</strong> y µ,1 < j ν,1 .Proof. a. Theproofiselementary <strong>in</strong>viewofLemma4. Oneonlyneedstoshowth<strong>at</strong>the Wronskian associ<strong>at</strong>ed to the given cyl<strong>in</strong>der functions has <strong>at</strong> least one zero betweenits first extremum and <strong>in</strong>f<strong>in</strong>ity.From Eq. (B.30) it follows, th<strong>at</strong> <strong>in</strong>dependently of ν sgnC ν (0+) = sgns<strong>in</strong>δ. Letµ < ν. S<strong>in</strong>ce sgnC ν (0+) = sgnC µ (0+) and c µ,1 < c ν,1 the first extremum of W ξν,¯ξ µ(x) ispositive. (For s<strong>in</strong>δ = 0 we have two Bessel functions of the first k<strong>in</strong>d and sgnJ ν (0+) =sgnJ µ (0+) still holds.) In Eq. (B.33) we have δ − ¯δ = 0, thus if 4k < ν −µ < 2+4k(k ∈ Z + ) the Wronskian is positive <strong>at</strong> the first extremum and neg<strong>at</strong>ive <strong>at</strong> <strong>in</strong>f<strong>in</strong>ity, whichassumes an odd number of zeros on this <strong>in</strong>terval. By Lemma 4 <strong>in</strong> this case C ν (x) andC µ (x) are not <strong>in</strong>terlaced.


3. BESSEL FUNCTIONS 89It is easy to see now th<strong>at</strong> by <strong>in</strong>creas<strong>in</strong>g ν (to reach the uncovered regions of theprevious argument<strong>at</strong>ion) the <strong>in</strong>terlac<strong>in</strong>g is not recovered. Let S > 0 be such th<strong>at</strong> forn < S c µ,n < c ν,n < c µ,n+1 but c µ,S < c ν,S < c µ,S+1 < c µ,S+2 < c ν,S+1 , i.e. only the firstS zeros of C ν (x) and C µ (x) are <strong>in</strong>terlaced. Because of Theorem 4 <strong>in</strong>terlac<strong>in</strong>g cannot berecovered by <strong>in</strong>creas<strong>in</strong>g ν (c µ,S+2 < c ν,S+1 < c ν+ε,S+1 , ∀ε > 0).b. Let µ < ν. In this case the first extremum is neg<strong>at</strong>ive s<strong>in</strong>ce sgnJ ν (0+) =−sgnY µ (0+), while δ − ¯δ = − π 2<strong>in</strong> Eq. (B.33) implies for 1 + 4k < ν − µ < 3 + 4k(k ∈ Z + ) th<strong>at</strong> the Wronskian converges to a positive number. Therefore the Wronskianhas <strong>at</strong> least one zero. For the uncovered regions of |µ−ν| > 1 the same k<strong>in</strong>d of reason<strong>in</strong>gworks as the one we used <strong>in</strong> case a.□From the proof one can see th<strong>at</strong> ”shifted <strong>in</strong>terlac<strong>in</strong>g” occurs on every (a,b) <strong>in</strong>tervalswhere W ξν,ξ µ(x) has no zeros. By ”shifted <strong>in</strong>terlac<strong>in</strong>g” we mean c µ,s < c ν,s+d < c µ,sfor s = s 1 ,s 2 ,...,s n with some <strong>fixed</strong> d ≠ 0 shift (ord<strong>in</strong>ary <strong>in</strong>terlac<strong>in</strong>g is def<strong>in</strong>ed byd = 0). Especially important is the <strong>in</strong>terval (z,∞) with z be<strong>in</strong>g the gre<strong>at</strong>est zero of theWronskian.Lemma 6. Let ν, µ > 0. Then the <strong>in</strong>terlac<strong>in</strong>g of C ′ ν(x) and C ′ µ(x) breaks down for|ν −µ| > 2, either C ≡ J or C ≡ Y.(B.34)Proof. Let µ < ν. Us<strong>in</strong>g Lemma 5a and the recurrence rel<strong>at</strong>ionI will show th<strong>at</strong> the <strong>in</strong>terlac<strong>in</strong>gC ′ ν(x) = −C ν+1 (x)+ ν x C ν(x)(B.35) c ′ µ,1 < c′ ν,1 < c′ µ,2 < ...is certa<strong>in</strong>ly broken for |ν −µ| > 2.From the recurrence rel<strong>at</strong>ion (B.34) we <strong>in</strong>fer th<strong>at</strong> the zeros of C ν(x) ′ converge tothose of C ν+1 (x), moreover they can be identified with one another s<strong>in</strong>ce C ν(x) ′ andC ν+1 (x) are <strong>in</strong>terlaced (Theorem 3) and also the zeros of both functions are well separ<strong>at</strong>edasymptotically (see Eq. (B.31)). Th<strong>at</strong> is either c ν+1,s ≈ c ′ ν,s or c ν+1,s ≈ c ′ ν,s+1 forbig s’s.Let now ν = µ+2+K with some 4k < K < 2+4k (k ∈ Z + ). Then the WronskianW ξν+1 ,ξ µ+1(x) has an odd number of zeros imply<strong>in</strong>g for the zeros of C ν+1 (x) and C µ+1 (x)shifted <strong>in</strong>terlac<strong>in</strong>g on (z,∞). Because of the asymptotic identific<strong>at</strong>ion between C ν ′(x)and C ν+1 (x) the shifted <strong>in</strong>terlac<strong>in</strong>g, th<strong>at</strong> is a broken <strong>in</strong>terlac<strong>in</strong>g, also holds for the zerosof C ν(x) ′ (with perhaps a different threshold <strong>in</strong>dex).For the uncovered regions of 2 + 4k < K < 4 + 4k (k ∈ Z + ) the same k<strong>in</strong>d ofargument works th<strong>at</strong> was used <strong>in</strong> Lemma 5.□In summary, the comb<strong>in</strong><strong>at</strong>ion of Lemma 5b and Corollary 4 yields the first part ofTheorem 5 while Lemma 5a, Lemma 6 and Corollary 4 gives the second part.


Bibliography[1] MJ Ablowitz and H. Segur. Solitons, Nonl<strong>in</strong>ear Evolution Equ<strong>at</strong>ions and Inverse Sc<strong>at</strong>ter<strong>in</strong>g. J. FluidMech, 244:721–725, 1992.[2] M. Abramowitz and I. A. Stegun. Handbook of M<strong>at</strong>hem<strong>at</strong>ical Functions. Dover Public<strong>at</strong>ions, NewYork, 1972.[3] S. Ali, AAZ Ahmad, and N. Ferdous. A survey of the alpha-nucleon <strong>in</strong>teraction. Reviews of ModernPhysics, 57(4):923, 1985.[4] B. Apagyi, Z. Harman, and W. Scheid. Solution of the Cox–Thompson <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problemus<strong>in</strong>g f<strong>in</strong>ite set of phase shifts. Journal of Physics A: M<strong>at</strong>hem<strong>at</strong>ical and General, 36:4815, 2003.[5] S.Avdon<strong>in</strong>,V.Mikhaylov, andA.Rybk<strong>in</strong>.TheBoundaryControlApproachtotheTitchmarsh-Weylm–Function. I. The Response Oper<strong>at</strong>or and the A–Amplitude. Communic<strong>at</strong>ions <strong>in</strong> M<strong>at</strong>hem<strong>at</strong>icalPhysics, 275(3):791–803, 2007.[6] GB Bachelet, DR Hamann, and M. Schlüter. Pseudopotentials th<strong>at</strong> work: From H to Pu. PhysicalReview B, 26(8):4199, 1982.[7] IF Barna, B. Apagyi, and W. Scheid. Localiz<strong>at</strong>ion of nonlocal potentials by a Taylor expansionmethod. Journal of Physics G: Nuclear and Particle Physics, 26:323, 2000.[8] B. Báthory, Z. Harman, and B. Apagyi. Pion-Pion Potentials by Inversion of Phase Shifts <strong>at</strong> FixedEnergy. In Hadrons, nuclei, and applic<strong>at</strong>ions: proceed<strong>in</strong>gs of the conference, Bologna 2000, structureof the nucleus <strong>at</strong> the dawn of the century: Bologna, Italy, 29 May-3 June 2000, volume 3, page 140.World Scientific Pub Co Inc, 2001.[9] F.A. Berez<strong>in</strong> and M.A. Shub<strong>in</strong>. The Schröd<strong>in</strong>ger Equ<strong>at</strong>ion, volume 66. Spr<strong>in</strong>ger, 1991.[10] G. Birkhoff and GC Rota. Ord<strong>in</strong>ary Differential Equ<strong>at</strong>ions. Wiley, New York, 1989.[11] I. Capr<strong>in</strong>i, G. Colangelo, J. Gasser, and H. Leutwyler. On the precision of the theoretical predictionsfor ππ sc<strong>at</strong>ter<strong>in</strong>g. Physical Review D, 68(7):074006, 2003.[12] K. Chadan and P.C. Sab<strong>at</strong>ier. Inverse problems <strong>in</strong> <strong>quantum</strong> sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong>. Spr<strong>in</strong>ger-Verlag, NewYork, NY, 1977.[13] J.R. Cox and K.W. Thompson. Note on the uniqueness of the solution of an equ<strong>at</strong>ion of <strong>in</strong>terest <strong>in</strong>the <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problem. Journal of M<strong>at</strong>hem<strong>at</strong>ical Physics, 11:815, 1970.[14] J.R. Cox and K.W. Thompson. On the <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problem <strong>at</strong> <strong>fixed</strong> energy for potentialshav<strong>in</strong>g nonvanish<strong>in</strong>g first moments. Journal of M<strong>at</strong>hem<strong>at</strong>ical Physics, 11:805, 1970.[15] A.Dzieciol, S.Yngve, andP.O. Fröman.Coulomb wave functions withcomplex valuesofthevariableand the parameters. Journal of M<strong>at</strong>hem<strong>at</strong>ical Physics, 40:6145, 1999.[16] L.D. Faddeyev and B. Seckler. The <strong>in</strong>verse problem <strong>in</strong> the <strong>quantum</strong> <strong>theory</strong> of sc<strong>at</strong>ter<strong>in</strong>g. Journalof M<strong>at</strong>hem<strong>at</strong>ical Physics, 4:72, 1963.[17] RN Faustov. Rel<strong>at</strong>ivistic wavefunction and form factors of the bound system. Annals of Physics,78(1):176–189, 1973.[18] HR Fiebig, H. Markum, A. Mihály, K. Rabitsch, M. Sander, and HV von Geramb. Meson-MesonPotentials from L<strong>at</strong>tice QCD and Inverse Sc<strong>at</strong>ter<strong>in</strong>g. Acta Physica Hungarica A) Heavy Ion Physics,22(1):37–59, 2005.[19] HR Fiebig, H. Markum, A. Mihaly, K. Rabitsch, and RM Woloshyn. Two-body spectra of pseudoscalarmesons with an O (a2)-improved l<strong>at</strong>tice action us<strong>in</strong>g Wilson fermions. Nuclear PhysicsB-Proceed<strong>in</strong>gs Supplements, 63(1-3):188–190, 1998.[20] HR Fiebig, K. Rabitsch, H. Markum, and A. Mihaly. Explor<strong>in</strong>g the π + -π + Interaction <strong>in</strong> L<strong>at</strong>ticeQCD. Few-Body Systems, 29(1):95–120, 2000.90


BIBLIOGRAPHY 91[21] JL Gammel and RM Thaler. Phase Shifts for p-α Sc<strong>at</strong>ter<strong>in</strong>g and Polariz<strong>at</strong>ion <strong>in</strong> p-α Sc<strong>at</strong>ter<strong>in</strong>g forProton Labor<strong>at</strong>ory Energies from 0 to 40 Mev. Physical Review, 109(6):2041, 1958.[22] CS Gardner, JM Greene, MD Kruskal, and RM Miura. Method for solv<strong>in</strong>g the Korteweg-deVriesequ<strong>at</strong>ion. Physical Review Letters, 19(19):1095–1097, 1967.[23] I.M. Gel’fand and B.M. Levitan. On the determ<strong>in</strong><strong>at</strong>ion of a differential equ<strong>at</strong>ion from its spectralfunction. Izvestiya Rossiiskoi Akademii Nauk. Seriya M<strong>at</strong>em<strong>at</strong>icheskaya, 15(4):309–360, 1951.English transl<strong>at</strong>ion: Am. M<strong>at</strong>h. Soc., Transl., II. Ser. 1 (1955) 253–304.[24] F. Gesztesy and B. Simon. A new approach to <strong>in</strong>verse spectral <strong>theory</strong> II. General real potentialsand the connection to the spectral measure. Annals of M<strong>at</strong>hem<strong>at</strong>ics, 152(2):593–643, 2000.[25] P. Godfrey. http://my.fit.edu/~gabdo/gamma.m, 2001.[26] J. Hadamard. Lectures on Cauchy’s problem <strong>in</strong> l<strong>in</strong>ear partial differential equ<strong>at</strong>ions. Dover Pubns,2003.[27] M. Horváth. Inverse sc<strong>at</strong>ter<strong>in</strong>g with <strong>fixed</strong> energy and an <strong>in</strong>verse eigenvalue problem on the half-l<strong>in</strong>e.Transactions of the American M<strong>at</strong>hem<strong>at</strong>ical Society, 358(11):5161–5177, 2006.[28] M. Horváth and B. Apagyi. Solution of the <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problem <strong>at</strong> <strong>fixed</strong> energy for potentialsbe<strong>in</strong>g zero beyond a <strong>fixed</strong> radius. Modern Physics Letters B, 22(23):2137–2149, 2008.[29] M. Horváth and M. Kiss. The stability of <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g with <strong>fixed</strong> energy. Inverse Problems,25:015011, 2009.[30] C.J. Joacha<strong>in</strong>. Quantum collision <strong>theory</strong>. North-Holland Publish<strong>in</strong>g Company, Amsterdam, 1975.[31] M. Kac. Can one hear the shape of a drum? American M<strong>at</strong>hem<strong>at</strong>ical Monthly, pages 1–23, 1966.[32] VE Korep<strong>in</strong>, NM Bogoliubov, and AG Izerg<strong>in</strong>. Quantum <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g method and correl<strong>at</strong>ionfunctions. Cambridge Univ Pr, 1997.[33] MG Kre<strong>in</strong>. On determ<strong>in</strong><strong>at</strong>ion of the potential of a particle from its S-function. Dokl. Akad. NaukSSSR, 105(3):433–436, 1955.[34] VI Kukul<strong>in</strong> and RS Mack<strong>in</strong>tosh. The applic<strong>at</strong>ion of <strong>in</strong>version to nuclear sc<strong>at</strong>ter<strong>in</strong>g. Journal ofPhysics G: Nuclear and Particle Physics, 30:R1, 2004.[35] C. Lanczos. A precision approxim<strong>at</strong>ion of the gamma function. Journal of the Society for Industrialand Applied M<strong>at</strong>hem<strong>at</strong>ics: Series B, Numerical Analysis, 1:86–96, 1964.[36] M. Lassaut, SY Larsen, SA Sofianos, and JC Wallet. Construction of potentials us<strong>in</strong>g mixed sc<strong>at</strong>ter<strong>in</strong>gd<strong>at</strong>a. Inverse Problems, 24:055014, 2008.[37] H. Leeb, H. Huber, and H. Fiedeldey. Extraction of sp<strong>in</strong>-orbit potentials from sc<strong>at</strong>ter<strong>in</strong>g d<strong>at</strong>a via<strong>in</strong>version. Physics Letters B, 344(1-4):18–22, 1995.[38] B.M. Levitan. Inverse Sturm-Liouville Problems. VNUSciencePress, Utrech, theNetherlands, 1987.[39] B.M. Levitan and I.S. Sargsian. Introduction to spectral <strong>theory</strong>: selfadjo<strong>in</strong>t ord<strong>in</strong>ary differentialoper<strong>at</strong>ors, volume 39. Amer M<strong>at</strong>hem<strong>at</strong>ical Society, 1975.[40] R. Lipperheide and H. Fiedeldey. Inverse problem for potential sc<strong>at</strong>ter<strong>in</strong>g <strong>at</strong> <strong>fixed</strong> energy. Zeitschriftfür Physik A Hadrons and Nuclei, 286(1):45–56, 1978.[41] R. Lipperheide and H. Fiedeldey. Inverse problem for potential sc<strong>at</strong>ter<strong>in</strong>g <strong>at</strong> <strong>fixed</strong> energy. II.Zeitschrift für Physik A Hadrons and Nuclei, 301(1):81–89, 1981.[42] H. Y. Liu and J. Zou. Zeros of the Bessel and spherical Bessel functions and their applic<strong>at</strong>ions foruniqueness <strong>in</strong> <strong>in</strong>verse acoustic obstacle sc<strong>at</strong>ter<strong>in</strong>g. IMA J. Appl. M<strong>at</strong>h., 72:817–831, 2007.[43] H. Y. Liu and J. Zou. Zeros of the Bessel and spherical Bessel functions and their applic<strong>at</strong>ions foruniqueness <strong>in</strong> <strong>in</strong>verse acoustic obstacle sc<strong>at</strong>ter<strong>in</strong>g problems. Technical Report CUHK-2007-02 (342),The Ch<strong>in</strong>ese University of Hong Kong, Hong Kong, 2007.[44] J. Loeffel. On an <strong>in</strong>verse problem <strong>in</strong> potential sc<strong>at</strong>ter<strong>in</strong>g <strong>theory</strong>. In Annales de l’Institut HenriPo<strong>in</strong>caré: Physique théorique, volume 8, page 339. Gauthier-Villars, 1968.[45] A.A. Logunov and AN Tavkhelidze. Quasi-optical approach <strong>in</strong> <strong>quantum</strong> field <strong>theory</strong>. Il NuovoCimento (1955-1965), 29(2):380–399, 1963.[46] RS Mack<strong>in</strong>tosh and AM Kobos. Potential model represent<strong>at</strong>ion of 6Li break-up through a simple<strong>in</strong>version procedure. Physics Letters B, 116(2):95–98, 1982.[47] VA Marchenko. On reconstruction of the potential energy from phases of the sc<strong>at</strong>tered waves. Dokl.Akad. Nauk SSSR, 104(5):695–698, 1955.


BIBLIOGRAPHY 92[48] AP Martynenko and R.N. Faustov. Rel<strong>at</strong>ivistic reduced mass and quasipotential equ<strong>at</strong>ion. Theoreticaland M<strong>at</strong>hem<strong>at</strong>ical Physics, 64(2):765–770, 1985.[49] K.E. May, M. Münchow, and W. Scheild. The modified Newton method for the solution of the<strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problem with charged particles <strong>at</strong> <strong>fixed</strong> energy. Physics Letters B, 141(1):1–4,1984.[50] O. Melchert. Das Inverse Streuproblem bei fester Energie mit der Methode von Cox und Thompson.Master’s thesis, Universität Giessen, 2005.[51] O. Melchert, W. Scheid, and B. Apagyi. Inversion of real and complex phase shifts to potentials bythe generalized Cox–Thompson <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g method <strong>at</strong> <strong>fixed</strong> energy. Journal of Physics G:Nuclear and Particle Physics, 32:849, 2006.[52] M. Münchow and W. Scheid. Modific<strong>at</strong>ion of the Newton method for the <strong>in</strong>verse-sc<strong>at</strong>ter<strong>in</strong>g problem<strong>at</strong> <strong>fixed</strong> energy. Physical Review Letters, 44(20):1299–1302, 1980.[53] F.W.J. Olver. NIST Digital Library of M<strong>at</strong>hem<strong>at</strong>ical Functions. http://dlmf.nist.gov/.[54] F.W.J. Olver. Error Bounds for St<strong>at</strong>ionary Phase Approxim<strong>at</strong>ions. SIAM J. M<strong>at</strong>h. Anal., 5:19–29,1974.[55] T. Palmai. On the zeros of the cyl<strong>in</strong>der functions. M<strong>at</strong>hem<strong>at</strong>ical Inequalities and Applic<strong>at</strong>ions, pageaccepted, 2012.[56] T. Pálmai and B. Apagyi. On nons<strong>in</strong>gular potentials of Cox–Thompson <strong>in</strong>version scheme. Journalof M<strong>at</strong>hem<strong>at</strong>ical Physics, 51:022114, 2010.[57] T. Pálmai and B. Apagyi. Interlac<strong>in</strong>g of positive real zeros of Bessel functions. Journal of M<strong>at</strong>hem<strong>at</strong>icalAnalysis and Applic<strong>at</strong>ions, 375(1):320–322, 2011.[58] T. Pálmai and B. Apagyi. Quantum Mechanical Inverse Sc<strong>at</strong>ter<strong>in</strong>g Problem <strong>at</strong> Fixed Energy: AConstructive Method. <strong>Methods</strong> and applic<strong>at</strong>ions of analysis, 18(1):93–104, 2011.[59] T. Palmai and B. Apagyi. Fixed energy potentials through an auxiliary <strong>in</strong>verse eigenvalue problem.submitted, arXiv:1202.1931 [m<strong>at</strong>h-ph], 2012.[60] T. Pálmai and B. Apagyi. The <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problem <strong>at</strong> <strong>fixed</strong> energy based on the marchenkoequ<strong>at</strong>ion for an auxiliary sturm-liouville oper<strong>at</strong>or. submitted, arXiv:1205.0460 [m<strong>at</strong>h-ph], 2012.[61] T. Pálmai, B. Apagyi, and W. Scheid. Development of a Cox–Thompson <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g methodto charged particles. Journal of Physics G: Nuclear and Particle Physics, 37:025101, 2010.[62] T. Pálmai, M. Horváth, and B. Apagyi. SEMI-ANALYTIC EQUATIONS TO THE COX–THOMPSON INVERSE SCATTERING METHOD AT FIXED ENERGY FOR SPECIAL CASES.Modern Physics Letters B, 22(23):2191–2199, 2008.[63] T. Pálmai, M. Horváth, and B. Apagyi. Simplified solutions of the Cox–Thompson <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>gmethod <strong>at</strong> <strong>fixed</strong> energy. Journal of Physics A: M<strong>at</strong>hem<strong>at</strong>ical and Theoretical, 41:235305, 2008.[64] SDProtopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S.M. Fl<strong>at</strong>te, JHFriedman, TALas<strong>in</strong>ski,GRLynch, MS Rab<strong>in</strong>, andFTSolmitz. ππ Partial-Wave Analysis from Reactions π + p → π + π − ∆ ++and π + p → K + K − ∆ ++ <strong>at</strong> 7.1 GeV/c. Physical Review D, 7(5):1279, 1973.[65] AG Ramm. Stability estim<strong>at</strong>es <strong>in</strong> <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g. Acta Applicandae M<strong>at</strong>hem<strong>at</strong>icae, 28(1):1–42,1992.[66] AG Ramm. An <strong>in</strong>verse sc<strong>at</strong>ter<strong>in</strong>g problem with part of the <strong>fixed</strong>-energy phase shifts. Communic<strong>at</strong>ions<strong>in</strong> m<strong>at</strong>hem<strong>at</strong>ical physics, 207(1):231–247, 1999.[67] A.G. Ramm. A counterexample to a uniqueness result. Applicable Analysis, 81(4):833–836, 2002.[68] A.G. Ramm. Analysis of the Newton-Sab<strong>at</strong>ier scheme for <strong>in</strong>vert<strong>in</strong>g <strong>fixed</strong>-energy phase shifts. ApplicableAnalysis, 81(4):965–975, 2002.[69] M. Reed and B. Simon. <strong>Methods</strong> of modern m<strong>at</strong>hem<strong>at</strong>ical physics: Sc<strong>at</strong>ter<strong>in</strong>g Theory. Volume 3.Academic Press, 1979.[70] A. Rybk<strong>in</strong> and V.K. Tuan. A new <strong>in</strong>terpol<strong>at</strong>ion formula for the Titchmarsh-Weyl m-function. InProc. Amer. M<strong>at</strong>h. Soc, volume 137, pages 4177–4185, 2009.[71] P.C. Sab<strong>at</strong>ier. Asymptotic Properties of the Potentials <strong>in</strong> the Inverse-Sc<strong>at</strong>ter<strong>in</strong>g Problem <strong>at</strong> FixedEnergy. Journal of M<strong>at</strong>hem<strong>at</strong>ical Physics, 7:1515, 1966.[72] M. Sander and HV Von Geramb. ππ, Kπ, and πN potential sc<strong>at</strong>ter<strong>in</strong>g and a prediction of a narrowσ meson resonance. Physical Review C, 56(3):1218, 1997.


BIBLIOGRAPHY 93[73] GR S<strong>at</strong>chler, LW Owen, AJ Elwyn, GL Morgan, and RL Walter. An optical model for the sc<strong>at</strong>ter<strong>in</strong>gof nucleons from 4He <strong>at</strong> energies below 20 MeV. Nuclear Physics A, 112(1):1–31, 1968.[74] S. Schechter. On the <strong>in</strong>version of certa<strong>in</strong> m<strong>at</strong>rices. M<strong>at</strong>hem<strong>at</strong>ical Tables and Other Aids to Comput<strong>at</strong>ion,13(66):73–77, 1959.[75] J. Segura. Interlac<strong>in</strong>g of the zeros of contiguous hypergeometric functions. Numer. Algor., 49:387–407, 2008.[76] B. Simon. A new approach to <strong>in</strong>verse spectral <strong>theory</strong>, I. Fundamental formalism. Annals ofM<strong>at</strong>hem<strong>at</strong>ics-Second Series, 150(3):1029–1058, 1999.[77] G. Talenti. Recover<strong>in</strong>g a function from a f<strong>in</strong>ite number of moments. Inverse Problems, 3:501, 1987.[78] G. Teschl. M<strong>at</strong>hem<strong>at</strong>ical <strong>Methods</strong> <strong>in</strong> Quantum Mechanics. AMS, Providence, RI, 2009.[79] DR Thompson, I. Reichste<strong>in</strong>, W. McClure, and YC Tang. Effective α+ α and α+ N Potentials fromReson<strong>at</strong><strong>in</strong>g-Group Calcul<strong>at</strong>ions. Physical Review, 185(4):1351, 1969.[80] GE Thompson, MB Epste<strong>in</strong>, and T. Sawada. Optical-model analysis of the sc<strong>at</strong>ter<strong>in</strong>g of protonsfrom 4He <strong>at</strong> 31, 40, 46 and 55 MeV. Nuclear Physics A, 142(3):571–576, 1970.[81] IJ Thompson and AR Barnett. Coulomb and Bessel functions of complex arguments and order.Journal of Comput<strong>at</strong>ional Physics, 64(2):490–509, 1986.[82] G. N. W<strong>at</strong>son. A tre<strong>at</strong>ise on the <strong>theory</strong> of Bessel functions. Cambridge University Press, 1944.[83] JF Williams. A phaseshift analysis of experimental angular distributions of electrons elasticallysc<strong>at</strong>tered from He, Ne and Ar over the range 0.5 to 20 eV. Journal of Physics B: Atomic andMolecular Physics, 12:265, 1979.[84] R.D. Woods and D.S. Saxon. Diffuse surface optical model for nucleon-nuclei sc<strong>at</strong>ter<strong>in</strong>g. PhysicalReview, 95(2):577, 1954.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!