28.02.2013 Views

The cohomology of the braid group B3 and of SL2(Z) - Scuola ...

The cohomology of the braid group B3 and of SL2(Z) - Scuola ...

The cohomology of the braid group B3 and of SL2(Z) - Scuola ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> <strong>B3</strong><br />

<strong>and</strong> <strong>of</strong> <strong>SL2</strong>(Z) with coefficients in a<br />

geometric representation<br />

Filippo Callegaro, Frederick R. Cohen ∗ <strong>and</strong> Mario Salvetti<br />

Abstract. This article is a short version <strong>of</strong> a paper which addresses <strong>the</strong> <strong>cohomology</strong><br />

<strong>of</strong> <strong>the</strong> third <strong>braid</strong> <strong>group</strong> <strong>and</strong> <strong>of</strong> <strong>SL2</strong>(Z) with coefficients in geometric<br />

representations. We give precise statements <strong>of</strong> <strong>the</strong> results, some tools <strong>and</strong> some<br />

pro<strong>of</strong>s, avoiding very technical computations here.<br />

1 Introduction<br />

This article is a summary <strong>of</strong> a paper which addresses <strong>the</strong> <strong>cohomology</strong><br />

<strong>of</strong> <strong>the</strong> third <strong>braid</strong> <strong>group</strong> or <strong>SL2</strong>(Z) with local coefficients in a classical<br />

geometric representation described below. <strong>The</strong>se structures are at <strong>the</strong><br />

intersection <strong>of</strong> several basic topics during <strong>the</strong> special period on “Configuration<br />

Spaces”, which took place in Pisa.<br />

<strong>The</strong> authors started to work toge<strong>the</strong>r to develop <strong>the</strong> problem considered<br />

here precisely during <strong>the</strong> special period on “Configuration Spaces” in<br />

Pisa. So we believe that <strong>the</strong> work in this paper is particularly suitable for<br />

<strong>the</strong> Conference Proceedings.<br />

This article contains precise statements <strong>of</strong> <strong>the</strong> results, some <strong>of</strong> <strong>the</strong><br />

“main tools” <strong>and</strong> “general results”, avoiding some long <strong>and</strong> delicate details.<br />

<strong>The</strong>se details, to appear elsewhere, would have made <strong>the</strong> paper too<br />

long <strong>and</strong> technical, probably losing <strong>the</strong> spirit <strong>of</strong> <strong>the</strong>se Proceedings. <strong>The</strong><br />

purpose <strong>of</strong> this paper is to provide precise knowledge <strong>of</strong> <strong>the</strong> results as<br />

well as general indications <strong>of</strong> <strong>the</strong> pro<strong>of</strong>s.<br />

<strong>The</strong> precise problem considered here is <strong>the</strong> computation <strong>of</strong> <strong>the</strong> <strong>cohomology</strong><br />

<strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> <strong>B3</strong> <strong>and</strong> <strong>of</strong> <strong>the</strong> special linear <strong>group</strong> <strong>SL2</strong>(Z) with<br />

certain non-trivial local coefficients. First consider a particularly natural<br />

geometric, classical representation. In general, let Mg,n be an orientable<br />

∗ Partially supported by DARPA.


194 Filippo Callegaro, Frederick R. Cohen <strong>and</strong> Mario Salvetti<br />

surface <strong>of</strong> genus g with n connected components in its boundary. Isotopy<br />

classes <strong>of</strong> Dehn twists around simple loops c1, . . . , c2g such that<br />

|ci ∩ ci+1| = 1 (i = 1, . . . , 2g − 1), ci ∩ c j = ∅ o<strong>the</strong>rwise<br />

represents <strong>the</strong> <strong>braid</strong> <strong>group</strong> B2g+1 in <strong>the</strong> symplectic <strong>group</strong> Aut(H1(Mg,n);<br />

) <strong>of</strong> all automorphisms preserving <strong>the</strong> intersection form. Such representations<br />

arise classically, for example in singularity <strong>the</strong>ory, as it is<br />

related to some monodromy operators (See [22] for example) as well as<br />

in number <strong>the</strong>ory in <strong>the</strong> guise <strong>of</strong> modular forms (See [20] for example.),<br />

<strong>and</strong> geometry (See [14] for example.).<br />

In this paper we restrict to <strong>the</strong> case g = 1, n = 1, where <strong>the</strong> symplectic<br />

<strong>group</strong> equals <strong>SL2</strong>(Z). We extend <strong>the</strong> above representation to <strong>the</strong><br />

symmetric power M = Z[x, y]. Notice that this representation splits into<br />

irreducibles M = ⊕n≥0 Mn, according to polynomial-degree.<br />

Our result is <strong>the</strong> complete integral computation <strong>of</strong><br />

<strong>and</strong><br />

H ∗ (<strong>B3</strong>; M) = ⊕n H ∗ (<strong>B3</strong>; Mn)<br />

H ∗ (<strong>SL2</strong>(Z); M) = ⊕n H ∗ (<strong>SL2</strong>(Z); Mn).<br />

<strong>The</strong> free part <strong>of</strong> <strong>the</strong> <strong>cohomology</strong> <strong>of</strong> <strong>SL2</strong>(Z) is a classical computation<br />

due to G. Shimura ([20], [11]) <strong>and</strong> is related to certain spaces <strong>of</strong> modular<br />

forms. A version for <strong>the</strong> “stabilized” mapping class <strong>group</strong> in characteristic<br />

zero was developed by Looijenga [14]. Here we give <strong>the</strong> complete<br />

calculation <strong>of</strong> <strong>the</strong> <strong>cohomology</strong> including <strong>the</strong> p-torsion <strong>group</strong>s.<br />

<strong>The</strong>se <strong>group</strong>s have an interesting description in terms <strong>of</strong> a variation <strong>of</strong><br />

<strong>the</strong> so called “divided polynomial algebra”. Unexpectedly, we found a<br />

strong relation between <strong>the</strong> <strong>cohomology</strong> in our case <strong>and</strong> <strong>the</strong> <strong>cohomology</strong><br />

<strong>of</strong> some interesting spaces which were constructed in a completely different<br />

framework <strong>and</strong> which are basic to <strong>the</strong> homotopy <strong>group</strong>s <strong>of</strong> spheres.<br />

An outline <strong>of</strong> <strong>the</strong> paper is as follows. In Section 2, we give <strong>the</strong> general<br />

results <strong>and</strong> <strong>the</strong> main tools which are used here. Section 3 is devoted to<br />

giving all precise statements toge<strong>the</strong>r with some additional details concerning<br />

a mod p variation <strong>of</strong> <strong>the</strong> divided polynomial algebra. Section 4<br />

provides sketches <strong>of</strong> required side results which may be <strong>of</strong> independent<br />

interest. Section 5 is a remark about potential extensions <strong>of</strong> <strong>the</strong> work here<br />

to principal congruence sub<strong>group</strong>s. Section 6 compares <strong>the</strong> <strong>cohomology</strong><br />

determined here to <strong>the</strong> <strong>cohomology</strong> <strong>of</strong> some spaces which seem quite different.<br />

We are led to ask questions about possible connections as well as<br />

questions about analogous results concerning congruence sub<strong>group</strong>s.


195 <strong>The</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> with coefficients<br />

ACKNOWLEDGEMENTS. <strong>The</strong> authors are grateful to <strong>the</strong> Ennio de Giorgi<br />

Ma<strong>the</strong>matical Research Institute, <strong>the</strong> <strong>Scuola</strong> Normale Superiore as well<br />

as <strong>the</strong> University <strong>of</strong> Pisa for <strong>the</strong> opportunity to start this work toge<strong>the</strong>r<br />

<strong>and</strong> <strong>the</strong> wonderful setting to do some ma<strong>the</strong>matics. <strong>The</strong> second author<br />

would like to thank many friends for an interesting, wonderful time in<br />

Pisa.<br />

2 General results <strong>and</strong> main tools<br />

Let <strong>B3</strong> denote <strong>the</strong> <strong>braid</strong> <strong>group</strong> with 3 str<strong>and</strong>s. We consider <strong>the</strong> geometric<br />

representation <strong>of</strong> <strong>B3</strong> into <strong>the</strong> <strong>group</strong><br />

Aut(H1(M1,1; Z), < >) ∼ = <strong>SL2</strong>(Z)<br />

<strong>of</strong> <strong>the</strong> automorphisms which preserve <strong>the</strong> intersection form where M1,1<br />

is a genus-1 oriented surface with 1 boundary component. Explicitly, if<br />

<strong>the</strong> st<strong>and</strong>ard presentation <strong>of</strong> <strong>B3</strong> is<br />

<strong>B3</strong> = < σ1, σ2 : σ1σ2σ1 = σ2σ1σ2 >,<br />

<strong>the</strong>n one sends σ1, σ2 into <strong>the</strong> Dehn twists around one parallel <strong>and</strong> one<br />

meridian <strong>of</strong> M1,1 respectively. Taking a natural basis for <strong>the</strong> H1, <strong>the</strong><br />

previous map is explicitly given by<br />

λ : <strong>B3</strong> → <strong>SL2</strong>(Z) : σ1 →<br />

� �<br />

1 0<br />

, σ2 →<br />

−1 1<br />

� �<br />

1 1<br />

.<br />

0 1<br />

Of course, any representation <strong>of</strong> <strong>SL2</strong>(Z) will induce a representation <strong>of</strong><br />

<strong>B3</strong> by composition with λ. We will ambiguously identify σi with λ(σi)<br />

when <strong>the</strong> meaning is clear from <strong>the</strong> context.<br />

It is well known that λ is surjective <strong>and</strong> <strong>the</strong> kernel is infinite cyclic<br />

generated by <strong>the</strong> element c := (σ1σ2) 6 ([16, <strong>The</strong>orem 10.5]) so that we<br />

have a sequence <strong>of</strong> <strong>group</strong>s<br />

j<br />

1 −−−→ Z −−−→ <strong>B3</strong><br />

λ<br />

−−−→ <strong>SL2</strong>(Z) −−−→ 1. (2.1)<br />

Let V be a rank-two free Z-module <strong>and</strong> x, y a basis <strong>of</strong> V ∗ :=HomZ(V,Z).<br />

<strong>The</strong> natural action <strong>of</strong> <strong>SL2</strong>(Z) over V ∗<br />

�<br />

x → x − y<br />

σ1 :<br />

y → y<br />

�<br />

x → x<br />

, σ2 :<br />

y → x + y<br />

extends to <strong>the</strong> symmetric algebra S[V ∗ ], which we identify with <strong>the</strong> polynomial<br />

algebra M := Z[x, y]. <strong>The</strong> homogeneous component Mn <strong>of</strong> degree<br />

n is an irreducible invariant free submodule <strong>of</strong> rank n +1 so we have<br />

a decomposition M = �<br />

n Mn.


<strong>and</strong><br />

196 Filippo Callegaro, Frederick R. Cohen <strong>and</strong> Mario Salvetti<br />

In this paper we describe <strong>the</strong> <strong>cohomology</strong> <strong>group</strong>s<br />

H ∗ (<strong>B3</strong>; M) = �<br />

H ∗ (<strong>B3</strong>; Mn)<br />

n≥0<br />

H ∗ (<strong>SL2</strong>(Z); M) = �<br />

H ∗ (<strong>SL2</strong>(Z); Mn)<br />

where <strong>the</strong> action <strong>of</strong> <strong>B3</strong> over M is induced by <strong>the</strong> above map λ.<br />

<strong>The</strong> free part <strong>of</strong> <strong>the</strong> <strong>cohomology</strong> <strong>of</strong> <strong>SL2</strong>(Z) tensored with <strong>the</strong> real numbers<br />

is well-known to be isomorphic to <strong>the</strong> ring <strong>of</strong> modular forms based<br />

on <strong>the</strong> <strong>SL2</strong>(Z)-action on <strong>the</strong> upper 1/2 plane by fractional linear tranformations<br />

([11]):<br />

n≥0<br />

H 1 (<strong>SL2</strong>(Z); M2n ⊗ R) ∼ = Mod 0 2n+2 ⊕ R n ≥ 1<br />

H i (<strong>SL2</strong>(Z); Mn ⊗ R) = 0 i > 1 or i = 1, odd n<br />

where Mod 0 n is <strong>the</strong> vector space <strong>of</strong> cuspidal modular forms <strong>of</strong> weight n.<br />

In our computations, a basic first step is to rediscover <strong>the</strong> Poincaré series<br />

for <strong>the</strong> <strong>cohomology</strong> <strong>of</strong> <strong>SL2</strong>(Z) with coefficients in M.<br />

Essentially, we use two ”general” tools for <strong>the</strong> computations. <strong>The</strong> first<br />

one is <strong>the</strong> spectral sequence associated to (2.1), with<br />

E s,t<br />

2 = H s (<strong>SL2</strong>(Z); H t (Z, M)) ⇒ H s+t (<strong>B3</strong>; M) (2.2)<br />

Notice that <strong>the</strong> element c above acts trivially on M, so we have<br />

H i (Z; M) = H i �<br />

M for i = 0, 1<br />

(Z; Z) ⊗ M =<br />

0 for i > 1<br />

<strong>and</strong> <strong>the</strong> spectral sequence has a two-row E2-page<br />

E s,t<br />

2 =<br />

⎧<br />

⎨ 0 for t > 1<br />

⎩<br />

H s (<strong>SL2</strong>(Z), M) for t = 0, 1.<br />

(2.3)<br />

<strong>The</strong> second main tool which we use comes from <strong>the</strong> following wellknown<br />

presentation <strong>of</strong> <strong>SL2</strong>(Z) as an amalgamated product <strong>of</strong> torsion<br />

<strong>group</strong>s. We set for brevity Zn := Z/nZ.<br />

Proposition 2.1 ([17, 19]). <strong>The</strong> <strong>group</strong> <strong>SL2</strong>(Z) is an amalgamated free<br />

product<br />

<strong>SL2</strong>(Z) = Z4 ∗Z2 Z6


where<br />

197 <strong>The</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> with coefficients<br />

Z4 is generated by <strong>the</strong> 4-torsion element w4 :=<br />

Z6 is generated by <strong>the</strong> 6-torsion element w6 :=<br />

Z2 is generated by <strong>the</strong> 2-torsion element w2 :=<br />

� �<br />

0 1<br />

−1 0<br />

� �<br />

1 1<br />

−1 0<br />

� �<br />

−1 0<br />

.<br />

0 −1<br />

So, for every <strong>SL2</strong>(Z)-module N, we can use <strong>the</strong> associated a Mayer-<br />

Vietoris sequence<br />

→ H i (Z4;N) ⊕ H i (Z6;N)→ H i (Z2;N)→ H i+1 (<strong>SL2</strong>(Z);N)→ (2.4)<br />

We start to deduce some ”general” result on <strong>the</strong> <strong>cohomology</strong> <strong>of</strong> <strong>SL2</strong>(Z).<br />

From (2.4) <strong>and</strong> very well-known properties <strong>of</strong> <strong>cohomology</strong> <strong>group</strong>s, it<br />

immediately follows:<br />

Proposition 2.2. Assume that 2 <strong>and</strong> 3 are invertible in <strong>the</strong> module N<br />

(equivalent, 1/6 ∈ N). <strong>The</strong>n<br />

H i (<strong>SL2</strong>(Z); N) = 0 for i > 1.<br />

Corollary 2.3. If 1/6 ∈ N <strong>and</strong> N has no <strong>SL2</strong>(Z) invariants (i.e.<br />

H 0 (<strong>SL2</strong>(Z); N) = 0) <strong>the</strong>n<br />

H 1 (<strong>B3</strong>; N) = H 1 (<strong>SL2</strong>(Z); N) = H 2 (<strong>B3</strong>; N).<br />

Pro<strong>of</strong>. <strong>The</strong> corollary follows immediately from <strong>the</strong> above spectral sequence<br />

which degenerates at E2.<br />

Remark 2.4. <strong>The</strong> <strong>group</strong> <strong>B3</strong> has cohomological dimension 2 (see for example<br />

[7, 18]) so we only need to determine <strong>cohomology</strong> up to H 2 . It<br />

also follows that <strong>the</strong> differential<br />

d s,1<br />

2 : E s,1<br />

2<br />

s+2,0<br />

→ E2 is an isomorphism for all s ≥ 2, <strong>and</strong> is surjective for s = 1.<br />

For a given finitely generated Z-module L <strong>and</strong> for a prime p define <strong>the</strong><br />

p-torsion component <strong>of</strong> L as follows:<br />

L(p) = {x ∈ L | ∃k ∈ N such that p k x = 0}.


198 Filippo Callegaro, Frederick R. Cohen <strong>and</strong> Mario Salvetti<br />

Moreover write F L for <strong>the</strong> free part <strong>of</strong> L, that is F L defines <strong>the</strong> isomorphism<br />

class <strong>of</strong> a maximal free Z-submodule <strong>of</strong> L.<br />

Return to <strong>the</strong> module M defined before. <strong>The</strong> next result follows directly<br />

from <strong>the</strong> previous discussion (including Remark 2.4).<br />

Corollary 2.5.<br />

(1) For all primes p we have<br />

H 1 (<strong>B3</strong>; M)(p) = H 1 (<strong>SL2</strong>(Z); M)(p)<br />

(where H i (p) denotes <strong>the</strong> component <strong>of</strong> p-torsion <strong>of</strong> H i (−)).<br />

(2) For all primes p > 3,<br />

H 1 (<strong>B3</strong>; M)(p) = H 1 (<strong>SL2</strong>(Z); M)(p) = H 2 (<strong>B3</strong>; M)(p).<br />

(3) For <strong>the</strong> free parts for n > 0,<br />

F H 1 (<strong>B3</strong>; Mn) = F H 1 (<strong>SL2</strong>(Z); Mn) = F H 2 (<strong>B3</strong>; Mn).<br />

Notice that statement (1) <strong>of</strong> corollary 2.5 fails for <strong>the</strong> torsion-free summ<strong>and</strong>:<br />

see <strong>the</strong>orem 3.7 below for <strong>the</strong> precise statement including it.<br />

3 Main results<br />

In this section we state <strong>the</strong> main results, namely <strong>the</strong> complete description<br />

<strong>of</strong> <strong>the</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> <strong>B3</strong> <strong>and</strong> <strong>of</strong> <strong>SL2</strong>(Z) with coefficients<br />

in <strong>the</strong> module M. First, we need some definitions.<br />

Let Q[x] be <strong>the</strong> ring <strong>of</strong> rational polynomials in one variable. We define<br />

<strong>the</strong> subring<br />

Ɣ[x] := ƔZ[x] ⊂ Q[x]<br />

as <strong>the</strong> subset generated, as a Z-submodule, by <strong>the</strong> elements xn := xn<br />

n! for<br />

n ∈ N. It follows from <strong>the</strong> next formula that Ɣ[x] is a subring with<br />

xi x j =<br />

� �<br />

i + j<br />

xi+ j.<br />

i<br />

(3.1)<br />

<strong>The</strong> algebra Ɣ[x] is usually known as <strong>the</strong> divided polynomial algebra<br />

over Z (see for example chapter 3C <strong>of</strong> [13] or <strong>the</strong> Cartan seminars as<br />

an early reference [4]). In <strong>the</strong> same way, by using (3.1), one can define<br />

ƔR[x] := Ɣ[x] ⊗ R over any ring R.<br />

Let p be a prime number. Consider <strong>the</strong> p-adic valuation v := vp :<br />

N \ {0} → N such that p v(n) is <strong>the</strong> maximum power <strong>of</strong> p dividing n.<br />

Define <strong>the</strong> ideal I p <strong>of</strong> Ɣ[x] as<br />

I p := (p v(i)+1 xi, i ≥ 1)


<strong>and</strong> call <strong>the</strong> quotient<br />

199 <strong>The</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> with coefficients<br />

Ɣp[x] := Ɣ[x]/I p<br />

<strong>the</strong> p-local divided polynomial algebra (mod p).<br />

Proposition 3.1. <strong>The</strong> ring Ɣp[x] is naturally isomorphic to <strong>the</strong> quotient<br />

Z[ξ1, ξp, ξ p 2, ξ p 3, . . .]/Jp<br />

where Jp is <strong>the</strong> ideal generated by <strong>the</strong> polynomials<br />

pξ1 , ξ p<br />

p i − pξ p i+1 (i ≥ 1).<br />

<strong>The</strong> element ξ p i corresponds to <strong>the</strong> generator x p i ∈ Ɣp[x], i ≥ 0.<br />

Pro<strong>of</strong>. <strong>The</strong> ideal I p is graded <strong>and</strong> <strong>the</strong>re is a direct sum decomposition <strong>of</strong><br />

Z-modules with respect to <strong>the</strong> degree<br />

Ɣp[x] = ⊕i≥0<br />

� Z/p v(i)+1 Z � (xi).<br />

We fix in this pro<strong>of</strong> deg(x) = 1, so <strong>the</strong> i-th degree component <strong>of</strong> I p is<br />

given by <strong>the</strong> ideal pĨi ⊂ Z, where<br />

Ĩi :=<br />

�<br />

p v(1)<br />

� �<br />

i<br />

, . . . , p<br />

1<br />

v(i−1)<br />

� �<br />

i<br />

, p<br />

i − 1<br />

v(i)<br />

�<br />

.<br />

It is easy to see that actually Ĩi = (p v(i) ).<br />

Now we show that <strong>the</strong> x p i ’s are generators <strong>of</strong> Ɣp[x] as a ring. We will<br />

make use <strong>of</strong> <strong>the</strong> following well known (<strong>and</strong> easy) lemma.<br />

Lemma 3.2. Let n = �<br />

j n j p j be <strong>the</strong> p-adic expansions <strong>of</strong> n. <strong>The</strong>n<br />

v(n!) =<br />

n − �<br />

j n j<br />

p − 1<br />

= �<br />

j<br />

n j<br />

p j − 1<br />

p − 1 .<br />

Let n := � k<br />

j=0 n j p j be <strong>the</strong> p-adic expansion <strong>of</strong> n. It follows from (3.1)<br />

that<br />

k�<br />

(x p j ) n j =<br />

j=0<br />

n!<br />

(p!) n1(p 2 !) n2 . . . (p k !) nk xn. (3.2)<br />

From Lemma 3.2 <strong>the</strong> coefficient <strong>of</strong> xn in <strong>the</strong> latter expression is not divisible<br />

by p. This clearly shows that <strong>the</strong> x p i ’s are generators.


Again by (3.1) we have<br />

200 Filippo Callegaro, Frederick R. Cohen <strong>and</strong> Mario Salvetti<br />

(x p i ) p = pi+1 !<br />

(p i !) p x p i+1.<br />

By Lemma 3.2 <strong>the</strong> coefficient <strong>of</strong> x p i+1 in <strong>the</strong> latter expression is divisible<br />

by p to <strong>the</strong> first power. <strong>The</strong>refore, up to multiplying each x p i by a number<br />

which is a unit in Z p v(i)+1, we get <strong>the</strong> relations<br />

(x p i ) p = p x p i+1, i ≥ 1.<br />

Notice that <strong>the</strong>se relations, toge<strong>the</strong>r with px1 = 0, imply by induction<br />

that pv(i)+1 x pi = 0. <strong>The</strong>refore one has a well defined surjection between<br />

˜Ɣp[x] := Z[ξ1, ξp, ξp2, ξp3, . . .]/Jp <strong>and</strong> Ɣp[x].<br />

In ˜Ɣp[x] <strong>the</strong>re exist a unique normal form, which derives from <strong>the</strong><br />

unique p-adic expansion <strong>of</strong> a natural number n: each class is uniquely<br />

represented as a combination <strong>of</strong> monomials �k j=0 (ξp j )n j . Such monomials<br />

map to (3.2), an invertible multiple <strong>of</strong> xn, as we have seen before.<br />

This concludes <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> Proposition 3.1.<br />

Remark 3.3. Note that if Ɣ[x] is graded with degx = k, <strong>the</strong>n also<br />

Z[ξ1, ξp, ξ p 2, . . .]/Jp is graded, with degξ p i = kp i .<br />

Proposition 3.4. Let Z(p) be <strong>the</strong> local ring obtained by inverting numbers<br />

prime to p <strong>and</strong> let ƔZ(p) [x] be <strong>the</strong> divided polynomial algebra over<br />

Z(p). One has an isomorphism:<br />

Ɣp[x] ∼ = ƔZ(p) [x]/(px).<br />

Pro<strong>of</strong>. <strong>The</strong> ideal (px) is graded (here we also set deg(x) = 1) with degree<br />

i component given by <strong>the</strong> ideal<br />

(pi) = (p v(i)+1 ) ⊂ Z(p).<br />

This statement follows directly from <strong>the</strong> natural isomorphism<br />

Z(p)/(p k ) ∼ = Z p k.<br />

We can naturally define a divided polynomial ring in several variables as<br />

follows:<br />

Ɣ[x, x ′ , x ′′ , . . .] := Ɣ[x] ⊗Z Ɣ[x ′ ] ⊗Z Ɣ[x ′′ ] ⊗Z · · ·<br />

with <strong>the</strong> ring structure induced as subring <strong>of</strong> Q[x, x ′ , x ′′ , . . .]. In a similar<br />

way we have<br />

Ɣp[x, x ′ , x ′′ , . . .] := Ɣp[x] ⊗Z Ɣp[x ′ ] ⊗Z Ɣp[x ′′ ] ⊗Z · · · .


201 <strong>The</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> with coefficients<br />

In <strong>the</strong> following we need only to consider <strong>the</strong> torsion part <strong>of</strong> Ɣp, which<br />

is that generated in degree greater than 0. So, we define <strong>the</strong> submodule<br />

Ɣ + p [x, x ′ , x ′′ , . . .] := Ɣp[x, x ′ , x ′′ , . . .]deg>0.<br />

For every prime p <strong>and</strong> for k ≥ 1 define polynomials<br />

Set<br />

Pp := P p 1, Qp := P p 2/Pp =<br />

P p k := xy(x pk −1 − y p k −1 ).<br />

p�<br />

(x p−1 ) p−h (y p−1 ) h ∈ Z[x, y].<br />

h=0<br />

Remark 3.5. <strong>The</strong>re is a natural action <strong>of</strong> <strong>SL2</strong>(Z) on (CP ∞ ) 2 which induces<br />

on <strong>the</strong> <strong>cohomology</strong> ring<br />

H ∗ ((CP ∞ ) 2 ; Z) = Z[x, y]<br />

<strong>the</strong> same action defined in Section 2 (see [11]). For coherence with this<br />

geometrical action, from now on we fix on Z[x,y] <strong>the</strong> grading deg x =<br />

degy = 2. <strong>The</strong>n we have<br />

deg Pp = 2(p + 1), degQp = 2p(p − 1).<br />

Remark 3.6. Let Diff+T 2 <strong>the</strong> <strong>group</strong> <strong>of</strong> all orientation preserving diffeomorphisms<br />

<strong>of</strong> <strong>the</strong> 2-dimensional torus T 2 <strong>and</strong> let Diff0T 2 be <strong>the</strong> connected<br />

component <strong>of</strong> <strong>the</strong> identity. As showed in [9] <strong>the</strong> inclusion T 2 ⊂<br />

Diff0T 2 is an homotopy equivalence. We recall from [11] <strong>the</strong> exact sequence<br />

<strong>of</strong> <strong>group</strong>s<br />

1 → Diff0T 2 → Diff+T 2 → <strong>SL2</strong>(Z) → 1<br />

that induces a Serre spectral sequence<br />

i, j<br />

E2 = H i (<strong>SL2</strong>(Z); H j ((CP ∞ ) 2 ; Z) ⇒ H i+ j (BDiff+T 2 ; Z).<br />

<strong>The</strong> spectral sequence above collapses with coefficients Z[1/6]. <strong>The</strong> total<br />

space BDiff+T 2 is homotopy equivalent to <strong>the</strong> Borel construction<br />

E ×<strong>SL2</strong>(Z) (CP ∞ ) 2<br />

where E is a contractible space with free <strong>SL2</strong>(Z)-action.


202 Filippo Callegaro, Frederick R. Cohen <strong>and</strong> Mario Salvetti<br />

Let G be a sub<strong>group</strong> <strong>of</strong> <strong>SL2</strong>(Z). For any prime p, we define <strong>the</strong><br />

Poincaré series<br />

P i ∞�<br />

G,p (t) := dimFp (H i (G; Mn) ⊗ Fp)t n<br />

(3.3)<br />

n=0<br />

<strong>and</strong> for rational coefficients<br />

P i ∞�<br />

G,0 (t) := dimQ H i (G; Mn ⊗ Q)t n . (3.4)<br />

We obtain:<br />

n=0<br />

<strong>The</strong>orem 3.7. Let M = ⊕n≥0 Mn be <strong>the</strong> <strong>SL2</strong>(Z)-module defined in <strong>the</strong><br />

previous section. <strong>The</strong>n<br />

1. H 0 (<strong>B3</strong>; M) = H 0 (<strong>SL2</strong>(Z), M) = Z concentrated in degree n = 0;<br />

2. H 1 (<strong>B3</strong>; M)(p) = H 1 (<strong>SL2</strong>(Z); M)(p) = Ɣ + p [Pp, Qp];<br />

3. H 1 (<strong>SL2</strong>(Z); M0) = 0; H 1 (<strong>B3</strong>; M0) = Z;<br />

4. F H 1 (<strong>B3</strong>; Mn) = F H 1 (<strong>SL2</strong>(Z); Mn) = Z fn for n > 0<br />

where <strong>the</strong> rank fn is given by <strong>the</strong> Poincaré series<br />

P 1 <strong>B3</strong>,0 (t) =<br />

∞�<br />

n=0<br />

fnt n = t 4 (1 + t 4 − t 12 + t 16 )<br />

(1 − t 8 )(1 − t 12 . (3.5)<br />

)<br />

<strong>The</strong>orem 3.8. For i > 1 <strong>the</strong> <strong>cohomology</strong> H i (<strong>SL2</strong>(Z), M) is 2-periodic.<br />

<strong>The</strong> free part is zero <strong>and</strong> <strong>the</strong>re is no p-torsion for p �= 2, 3. <strong>The</strong>re is no<br />

2 i -torsion for i > 2 <strong>and</strong> no 3 i -torsion for i > 1.<br />

<strong>The</strong>re is a rank-1 module <strong>of</strong> 4-torsion in H 2n (<strong>SL2</strong>(Z), M8m), all <strong>the</strong><br />

o<strong>the</strong>rs modules have no 4-torsion.<br />

Finally <strong>the</strong> 2 <strong>and</strong> 3-torsion components are determined by <strong>the</strong> following<br />

Poincaré polynomials:<br />

P 2 <strong>SL2</strong>(Z),2 (t) = 1 − t 4 + 2t 6 − t 8 + t 12<br />

(1 − t 2 )(1 + t 6 )(1 − t 8 )<br />

P 3 <strong>SL2</strong>(Z),2 (t) = t 4 (2 − t 2 + t 4 + t 6 − t 8 )<br />

(1 − t 2 )(1 + t 6 )(1 − t 8 )<br />

P 2 <strong>SL2</strong>(Z),3 (t) =<br />

P 3 <strong>SL2</strong>(Z),3 (t) =<br />

(3.6)<br />

(3.7)<br />

1<br />

1 − t 12<br />

(3.8)<br />

8 t<br />

.<br />

1 − t 12<br />

(3.9)


203 <strong>The</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> with coefficients<br />

We recall (Corollary 2.3) that for any <strong>SL2</strong>(Z)-module N <strong>the</strong> free part<br />

<strong>and</strong> part <strong>of</strong> p-torsion in H 1 (<strong>SL2</strong>(Z); N) <strong>and</strong> H 2 (<strong>B3</strong>; N) are <strong>the</strong> same,<br />

with p �= 2 or 3. We obtain <strong>the</strong> following <strong>the</strong>orems.<br />

<strong>The</strong>orem 3.9. <strong>The</strong> following equalities hold:<br />

1. H 2 (<strong>B3</strong>; M)(p) = H 1 (<strong>B3</strong>; M)(p) = Ɣ + p [Pp, Qp] for p �= 2, 3;<br />

2. F H 2 (<strong>B3</strong>; Mn) = F H 1 (<strong>B3</strong>; Mn) = Z fn<br />

where <strong>the</strong> ranks fn have been defined in <strong>The</strong>orem 3.7.<br />

<strong>The</strong> last isomorphism <strong>of</strong> part 1 follows from <strong>The</strong>orem 4.4.<br />

For <strong>the</strong> 2 <strong>and</strong> 3-torsion components, we find that <strong>the</strong> second <strong>cohomology</strong><br />

<strong>group</strong> <strong>of</strong> <strong>B3</strong> differs from <strong>the</strong> first <strong>cohomology</strong> <strong>group</strong> as follows. We<br />

consider <strong>the</strong> Z-module structure, <strong>and</strong> notice that Ɣ + p [Qp] <strong>and</strong> Pp·Ɣ + p [Qp]<br />

are direct summ<strong>and</strong> submodules <strong>of</strong> Ɣ + p [Pp, Qp], for all p. In <strong>the</strong> second<br />

<strong>cohomology</strong> <strong>group</strong> we have modifications <strong>of</strong> <strong>the</strong>se submodules.<br />

<strong>The</strong>orem 3.10. For <strong>the</strong> 2 <strong>and</strong> 3-torsion components <strong>of</strong> <strong>the</strong> module<br />

H 2 (<strong>B3</strong>; M) one has <strong>the</strong> following expressions:<br />

a) H 2 (<strong>B3</strong>; M)(2) = (Ɣ +<br />

2 [P2, Q2] ⊕ Z[Q 2<br />

2 ])/ ∼<br />

Here Q2 is a new variable <strong>of</strong> <strong>the</strong> same degree (= 4) as Q2; <strong>the</strong> quotient<br />

module is defined by <strong>the</strong> relations Qn 2 ∼ 2Qn2<br />

for n even <strong>and</strong><br />

Q n 2<br />

n!<br />

∼ 0 for n odd.<br />

b) H 2 (<strong>B3</strong>; M)(3) = (Ɣ +<br />

3 [P3, Q3] ⊕ Z[Q3])/ ∼<br />

Here Q3 is a new variable <strong>of</strong> <strong>the</strong> same degree (= 12) as Q3; <strong>the</strong><br />

∼ 3Qn3<br />

<strong>and</strong> P3 ∼ 0.<br />

quotient module is defined by <strong>the</strong> relations Qn 3<br />

n!<br />

Remark 3.11. For p = 2 one has to kill all <strong>the</strong> submodules generated by<br />

for odd n. All <strong>the</strong>se submodules are isomorphic<br />

elements <strong>of</strong> <strong>the</strong> form Qn 2<br />

n!<br />

to Z/2. For n even <strong>the</strong> submodule generated by Qn 2<br />

n!<br />

n!<br />

Q n 3<br />

n!<br />

, that is isomorphic<br />

to Z/2 m+1 where m is <strong>the</strong> greatest power <strong>of</strong> 2 that divides n, must be<br />

replaced by a submodule isomorphic to Z/2 m+2 .<br />

For p = 3 one has to kill all <strong>the</strong> submodules generated by elements<br />

<strong>of</strong> <strong>the</strong> form P3 , that are isomorphic to Z/3. Moreover for all n <strong>the</strong><br />

Qn 3<br />

n!<br />

submodule generated by Qn 3<br />

n! , that is isomorphic to Z/3m+1 where m is<br />

<strong>the</strong> greatest power <strong>of</strong> 3 that divides n, must be replaced by a submodule<br />

isomorphic to Z/3m+2 .


4 Methods<br />

204 Filippo Callegaro, Frederick R. Cohen <strong>and</strong> Mario Salvetti<br />

A classical result ( [8]) characterizes <strong>the</strong> polynomials in Fp[x, y] which<br />

are invariant under <strong>the</strong> action <strong>of</strong> GLn(Fp) (or <strong>of</strong> SLn(Fp)). We state only<br />

<strong>the</strong> case n = 2, which is what we need here.<br />

<strong>The</strong>orem 4.1 ([8], [21]). For p a prime number, <strong>the</strong> algebra <strong>of</strong> <strong>SL2</strong>(Fp)<br />

-invariants in Fp[x, y] is <strong>the</strong> polynomial algebra<br />

Fp[Pp, Qp],<br />

where Pp, Qp are <strong>the</strong> polynomials defined in part 3.<br />

Of course, <strong>the</strong> algebra Fp[Pp, Qp] is graded. We keep here deg x =<br />

deg y = 2, so <strong>the</strong> degree is that induced by deg(Pp) = 2(p + 1), <strong>and</strong><br />

deg(Qp) = 2p(p − 1).<br />

As a consequence <strong>of</strong> <strong>The</strong>orem 4.1 <strong>and</strong> o<strong>the</strong>r results we have:<br />

Corollary 4.2. A polynomial P ∈ Zpr [x, y] is invariant under <strong>the</strong> action<br />

<strong>of</strong> <strong>SL2</strong>(Z) on Zpr [x, y] induced by <strong>the</strong> action on Mn, if <strong>and</strong> only if<br />

P =<br />

�r−1<br />

i=0<br />

p i Fi<br />

where Fi is a polynomial in <strong>the</strong> p r−i−1 -th powers <strong>of</strong> <strong>the</strong> elements Pp, Qp.<br />

Hence it is easy to see that<br />

Proposition 4.3. If n > 0, <strong>the</strong>re are no non-trivial invariants in Mn under<br />

<strong>the</strong> action <strong>of</strong> <strong>SL2</strong>(Z).<br />

Thus, by <strong>the</strong> Universal Coefficient <strong>The</strong>orem we can prove<br />

<strong>The</strong>orem 4.4. For all prime numbers p <strong>and</strong> all n > 0, <strong>the</strong> p-torsion<br />

component<br />

H 1 (<strong>SL2</strong>(Z); Mn)(p) ∼ = H 1 (<strong>B3</strong>; Mn)(p)<br />

is described as follows: each monomial<br />

P k pQhp , 2k(p + 1) + 2hp(p − 1) = n<br />

generates a Z p m+1-summ<strong>and</strong>, where p m is <strong>the</strong> largest power <strong>of</strong> p which<br />

divides gcd(k, h).<br />

We <strong>the</strong>n need some computations about <strong>the</strong> invariant <strong>of</strong> <strong>the</strong> sub<strong>group</strong>s<br />

Z2, Z4, Z6 ⊂ <strong>SL2</strong>(Z), acting on Z[x, y] <strong>and</strong> <strong>the</strong>ir Poincaré series. Almost<br />

all <strong>the</strong> computations are straightforward.


205 <strong>The</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> with coefficients<br />

Proposition 4.5. <strong>The</strong> module <strong>of</strong> invariants H 0 (Z2; M) is isomorphic to<br />

<strong>the</strong> polynomial ring<br />

Z[a2, b2, c2]/(a 2 2 b2 2 = c2 2 )<br />

under <strong>the</strong> correspondence a2 = x 2 , b2 = y 2 , c2 = xy.<br />

<strong>The</strong> module M ⊗ Z2 is Z2-invariant.<br />

Proposition 4.6. <strong>The</strong> Poincaré series for H i (Z2, M) are given by<br />

P 0 Z2,p (t) = (1 + t 4 )<br />

(1 − t 4 ) 2<br />

P 2i<br />

Z2,2 (t) = (1 + t 4 )<br />

(1 − t 4 ) 2<br />

P 2i+1<br />

Z2,2 (t) =<br />

2t 2<br />

(1 − t 4 ) 2<br />

Proposition 4.7. <strong>The</strong> module <strong>of</strong> invariants H 0 (Z4, M) is isomorphic to<br />

<strong>the</strong> polynomial ring<br />

Z[d2, e4, f4]/( f 2 4 = (d2 2 − 4e4)e4) (4.1)<br />

under <strong>the</strong> correspondence d2 = x 2 + y 2 , e4 = x 2 y 2 , f4 = x 3 y − xy 3 .<br />

<strong>The</strong> module <strong>of</strong> mod 2-invariants H 0 (Z4, M ⊗ Z2) is isomorphic to<br />

<strong>the</strong> polynomial ring<br />

Z[σ1, σ2] (4.2)<br />

under <strong>the</strong> correspondence σ1 = x + y, σ2 = xy.<br />

Proposition 4.8. With respect to <strong>the</strong> grading <strong>of</strong> M <strong>the</strong> Poincaré series<br />

for H i (Z4, M) are given by<br />

P 2i<br />

Z4,p (t) =<br />

1 + t 8<br />

(1 − t 4 )(1 − t 8 for p = 2 or i = 0<br />

)<br />

P 2i+1<br />

Z4,2 (t) = t 2 + t 4 + t 6 − t 8<br />

(1 − t 4 )(1 − t 8 )<br />

Proposition 4.9. <strong>The</strong> module <strong>of</strong> invariants H 0 (Z6, M) is isomorphic to<br />

<strong>the</strong> polynomial ring<br />

Z[p2, q6, r6]/(r 2 6 = q6(p 3 2 − 13q6 − 5r6)) (4.3)<br />

via <strong>the</strong> correspondence p2 = x 2 + xy + y 2 , q6 = x 2 y 2 (x + y) 2 , r6 =<br />

x 5 y − 5x 3 y 3 − 5x 2 y 4 − xy 5 .


206 Filippo Callegaro, Frederick R. Cohen <strong>and</strong> Mario Salvetti<br />

<strong>The</strong> module <strong>of</strong> mod 2-invariants H 0 (Z6, M ⊗ Z2) is isomorphic to<br />

<strong>the</strong> polynomial ring<br />

Z2[s2, t3, u3]/(u 2 3 = s3 2 + t 2 3 + t3u3) (4.4)<br />

with <strong>the</strong> correspondence s2 = x 2 + xy + y 2 , t3 = xy(x + y), u3 =<br />

x 3 + x 2 y + y 3 .<br />

<strong>The</strong> module <strong>of</strong> mod 3-invariants H 0 (Z6, M ⊗ Z3) is isomorphic to<br />

<strong>the</strong> polynomial ring<br />

Z3[v2, w4, z6]/(w 2 4 = v2z6) (4.5)<br />

with <strong>the</strong> correspondence v2 = (x − y) 2 , w4 = xy(x + y)(x − y), z6 =<br />

x 2 y 2 (x + y) 2 .<br />

Proposition 4.10. With respect to <strong>the</strong> grading <strong>of</strong> M <strong>the</strong> Poincaré series<br />

for H i (Z6, M) are given by<br />

P 2i<br />

Z6,p (t) =<br />

P 2i<br />

Z6,3 (t) =<br />

P 2i+1<br />

Z6,2 (t) =<br />

P 2i+1<br />

Z6,3 (t) =<br />

1 + t 12<br />

(1 − t 4 )(1 − t 12 )<br />

for p = 2 or i = 0, any p<br />

1<br />

1 − t 12<br />

for i > 0<br />

2t 6<br />

(1 − t 4 )(1 − t 12 )<br />

8 t<br />

1 − t 12<br />

We use <strong>the</strong> previous results to compute <strong>the</strong> modules H i (<strong>SL2</strong>(Z); M⊗Zp)<br />

<strong>and</strong> <strong>the</strong> module <strong>of</strong> p-torsion H i (<strong>SL2</strong>(Z); M)(p) for any prime p.<br />

In dimension 0 we have that H 0 (<strong>SL2</strong>(Z); M) is isomorphic to Z concentrated<br />

in degree 0. <strong>The</strong> module H 0 (<strong>SL2</strong>(Z); M ⊗ Zp) has already<br />

been described (<strong>The</strong>orem 4.1), as well as H 1 (<strong>SL2</strong>(Z); M)(p) (<strong>The</strong>orem<br />

4.4).<br />

We can underst<strong>and</strong> <strong>the</strong> p-torsion in H 1 (<strong>SL2</strong>(Z); M) by means <strong>of</strong> <strong>the</strong><br />

results cited in Section 4.1 for Dickson invariants. In fact <strong>the</strong> Universal<br />

Coefficients <strong>The</strong>orem gives us <strong>the</strong> following isomorphism <strong>of</strong> Z modules:<br />

H 1 (<strong>SL2</strong>(Z); M)(p) = Ɣ + p [Pp, Qp]. (4.6)<br />

<strong>The</strong> Poincaré series for <strong>the</strong> previous module is:<br />

P 1 <strong>SL2</strong>(Z),p (t) = t 2(p+1) + t 2p(p−1) − t 2(p2 +1)<br />

(1 − t 2(p+1) )(1 − t 2p(p−1) ) .<br />

Since H i (Z4; M)(p) = H i (Z2; M)(p) = 0 for a prime p �= 2 <strong>and</strong> i ≥ 1<br />

we have


207 <strong>The</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> with coefficients<br />

Lemma 4.11. For i ≥ 2, H i (<strong>SL2</strong>(Z; M ⊗ Z3) = H i (Z6; M ⊗ Z3) <strong>and</strong><br />

we have <strong>the</strong> isomorphism<br />

H i (<strong>SL2</strong>(Z); M)(3) = H i (Z6; M)(3) i ≥ 2. (4.7)<br />

For any prime p �= 2, 3 <strong>and</strong> for i ≥ 2 we have H i (<strong>SL2</strong>(Z; M ⊗ Zp) = 0<br />

<strong>and</strong> H i (<strong>SL2</strong>(Z); M)(p) = 0.<br />

For p = 2 we need to compute in detail <strong>the</strong> maps appearing in <strong>the</strong><br />

Mayer-Vietoris long exact sequence <strong>and</strong> we get a detailed desctiption <strong>of</strong><br />

<strong>the</strong> module H j (<strong>SL2</strong>(Z); Mi)(2) (that we omit here).<br />

Finally, in order to compute <strong>the</strong> <strong>cohomology</strong> <strong>of</strong> <strong>B3</strong> we use <strong>the</strong> Serre<br />

spectral sequence already described in Section 2 for <strong>the</strong> extension<br />

0 → Z → <strong>B3</strong> → <strong>SL2</strong>(Z) → 1.<br />

We recall (equation (2.3)) that <strong>the</strong> E2-page is represented in <strong>the</strong> following<br />

diagram:<br />

H 0 (<strong>SL2</strong>(Z), M) ���� H<br />

�������������<br />

d2 ������<br />

1 (<strong>SL2</strong>(Z), M) ������������� d2 ����������<br />

H 2 (<strong>SL2</strong>(Z), M) · · ·<br />

H 0 (<strong>SL2</strong>(Z), M) H 1 (<strong>SL2</strong>(Z), M) H 2 (<strong>SL2</strong>(Z), M) · · ·<br />

where all <strong>the</strong> o<strong>the</strong>r rows are zero. Recall that H i (<strong>SL2</strong>(Z), M) is 2periodic<br />

<strong>and</strong> with no free part for i ≥ 2.<br />

A detailed analysis <strong>of</strong> this spectral sequence <strong>and</strong> <strong>of</strong> <strong>the</strong> analogous with<br />

coefficients in <strong>the</strong> module M ⊗ Z p k for p = 2 <strong>and</strong> p = 3 gives <strong>the</strong> result<br />

stated in <strong>The</strong>orem 3.10.<br />

Since <strong>the</strong> <strong>cohomology</strong> <strong>group</strong> H i (<strong>SL2</strong>(Z), M) has only 2 <strong>and</strong> 3-torsion<br />

for i ≥ 2, <strong>the</strong> same argument implies that for <strong>the</strong> p-torsion with p > 3<br />

<strong>the</strong> spectral sequence collapses at E2. Hence for p > 3 we have <strong>the</strong><br />

isomorphism<br />

H 1 (<strong>B3</strong>; M)(p) = H 2 (<strong>B3</strong>; M)(p) = H 1 (<strong>SL2</strong>(Z); M)(p) = Ɣ + p [Pp, Qp]<br />

where degPp = 2(p + 1) <strong>and</strong> degQp = 2p(p − 1) as in Section 3.<br />

5 Principal congruence sub<strong>group</strong>s<br />

Recall that <strong>the</strong> principal congruence sub<strong>group</strong>s <strong>of</strong> level N in <strong>SL2</strong>(Z) is<br />

given by <strong>the</strong> kernel <strong>of</strong> <strong>the</strong> mod-N reduction map<br />

<strong>SL2</strong>(Z) → <strong>SL2</strong>(Z/N Z)<br />

denoted Ɣ2(N). <strong>The</strong>se kernels are ei<strong>the</strong>r finitely generated free <strong>group</strong>s<br />

or a product <strong>of</strong> a finitely generated free <strong>group</strong> with Z/2Z. Analogous<br />

computations apply in many <strong>of</strong> <strong>the</strong>se cases, <strong>and</strong> will be addressed in <strong>the</strong><br />

more detailed sequel to this paper.


208 Filippo Callegaro, Frederick R. Cohen <strong>and</strong> Mario Salvetti<br />

6 Topological comparisons <strong>and</strong> speculations<br />

<strong>The</strong> purpose <strong>of</strong> this section is to describe a topological space with <strong>the</strong><br />

features that <strong>the</strong> reduced integral <strong>cohomology</strong> is precisely <strong>the</strong> torsion in<br />

H ∗ (<strong>SL2</strong>(Z); M ⊗ Z[1/6]).<br />

In particular, <strong>the</strong>re are spaces Tp(2n + 1) which are total spaces <strong>of</strong><br />

p-local fibrations, p > 3, <strong>of</strong> <strong>the</strong> form<br />

S 2n−1 → Tp(2n + 1) → �(S 2n+1 )<br />

for which <strong>the</strong> integral <strong>cohomology</strong> is recalled next where it is assumed<br />

that p > 3 throughout this section ([1], [12]).<br />

<strong>The</strong> integral <strong>cohomology</strong> ring <strong>of</strong> �(S 2n+1 ) is <strong>the</strong> divided power algebra<br />

Ɣ[x(2n)] where <strong>the</strong> degree <strong>of</strong> x(2n) is 2n. <strong>The</strong> mod-p homology ring<br />

(as a coalgebra) <strong>of</strong> Tp(2n + 1) is<br />

E[v] ⊗ Fp[w]<br />

where <strong>the</strong> exterior algebra E[v] is generated by an element v <strong>of</strong> degree<br />

2n −1, <strong>and</strong> <strong>the</strong> mod-p polynomial ring Fp[w] is generated by an element<br />

w <strong>of</strong> degree 2n. Fur<strong>the</strong>rmore, <strong>the</strong> r-th higher order Bockstein defined by<br />

br is given as follows:<br />

br(w ps ) =<br />

�<br />

0 if r < s<br />

vw −1+ps<br />

if r = s.<br />

(6.1)<br />

This information specifies <strong>the</strong> integral homology <strong>group</strong>s <strong>of</strong> Tp(2n + 1)<br />

(<strong>and</strong> thus <strong>the</strong> integral <strong>cohomology</strong> <strong>group</strong>s) listed in <strong>the</strong> following <strong>the</strong>orem.<br />

Recall <strong>the</strong> algebra Ɣp[x] <strong>of</strong> Proposition 3.1 In addition fix a positive<br />

even 2n, <strong>and</strong> consider <strong>the</strong> graded ring Ɣp[x(2n)] where x(2n) has degree<br />

2n > 0.<br />

<strong>The</strong>orem 6.1. Assume that p is prime with p > 3.<br />

1. <strong>The</strong> reduced integral homology <strong>group</strong>s <strong>of</strong> Tp(2n + 1) are given as<br />

follows:<br />

⎧<br />

⎪⎨<br />

Z/p<br />

H i(Tp(2n + 1)) =<br />

⎪⎩<br />

rZ if i = 2npr−1k − 1<br />

where k is not divisible by p,<br />

{0} o<strong>the</strong>rwise<br />

(6.2)


209 <strong>The</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> with coefficients<br />

2. <strong>The</strong> additive structure for <strong>the</strong> <strong>cohomology</strong> ring <strong>of</strong> Tp(2n+1) with Z(p)<br />

coefficients is given as follows:<br />

H i ⎧<br />

⎪⎨<br />

Z/p<br />

(Tp(2n + 1)) =<br />

⎪⎩<br />

rZ if i = 2npr−1k where k is not divisible by p,<br />

{0} o<strong>the</strong>rwise<br />

(6.3)<br />

3. <strong>The</strong> <strong>cohomology</strong> ring <strong>of</strong> Tp(2n+1) with Z(p) coefficients is isomorphic<br />

to Ɣp[x(2n)] in degrees strictly greater than 0.<br />

<strong>The</strong> next step is to compare <strong>the</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> spaces Tp(2n + 1) to<br />

<strong>the</strong> earlier computations.<br />

<strong>The</strong>orem 6.2. Assume that p is prime with p > 3. <strong>The</strong> p-torsion in <strong>the</strong><br />

<strong>cohomology</strong> <strong>of</strong><br />

E <strong>B3</strong> ×<strong>B3</strong> (CP∞ ) 2<br />

is <strong>the</strong> p-torsion <strong>of</strong> <strong>the</strong> reduced <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> following space<br />

� 2 (Tp(2p+3)×Tp(2p 2 −2p+1))∨�(Tp(2p+3)∨Tp(2p 2 −2p+1)).<br />

References<br />

[1] D. ANICK, Differential algebras in topology, Research Notes in<br />

Ma<strong>the</strong>matics, Vol. 3, A K Peters Ltd., Wellesley, MA, 1993.<br />

MR1213682 (94h:55020)<br />

[2] E. BRIESKORN, Sur les <strong>group</strong>es de tresses [d’après V. I. Arnol ′ d],<br />

Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401,<br />

Springer, Berlin, 1973, pp. 21–44. Lecture Notes in Math., Vol. 317.<br />

MR0422674 (54 #10660)<br />

[3] K. S. BROWN, Cohomology <strong>of</strong> <strong>group</strong>s, Graduate Texts in Ma<strong>the</strong>matics,<br />

vol. 87, Springer-Verlag, New York, 1994, Corrected reprint<br />

<strong>of</strong> <strong>the</strong> 1982 original. MR1324339 (96a:20072)<br />

[4] H. CARTAN, Puissances dividées, Séminaire Henri Cartan; 7e<br />

année: 1954/55. Algébre d’Eilenberg-Maclane et homotopie, Exposé<br />

no. 7, Secrétariat mathématique, Paris, 1956, p. 11.<br />

[5] F. R. COHEN, On genus one mapping class <strong>group</strong>s, function spaces,<br />

<strong>and</strong> modular forms, Topology, geometry, <strong>and</strong> algebra: interactions<br />

<strong>and</strong> new directions (Stanford, CA, 1999), Contemp. Math., vol. 279,<br />

Amer. Math. Soc., Providence, RI, 2001, pp. 103–128. MR1850743<br />

(2002f:55037)


210 Filippo Callegaro, Frederick R. Cohen <strong>and</strong> Mario Salvetti<br />

[6] C. DE CONCINI <strong>and</strong> C. PROCESI, Wonderful models <strong>of</strong> subspace<br />

arrangements, Selecta Math. (N.S.) 1 (1995), no. 3, 459–494.<br />

MR1366622 (97k:14013)<br />

[7] C. DE CONCINI <strong>and</strong> M. SALVETTI, Cohomology <strong>of</strong> Artin <strong>group</strong>s:<br />

Addendum: “<strong>The</strong> homotopy type <strong>of</strong> Artin <strong>group</strong>s” [Math. Res. Lett.<br />

1 (1994), no. 5, 565–577; MR1295551 (95j:52026)] by Salvetti,<br />

Math. Res. Lett. 3 (1996), no. 2, 293–297. MR1386847 (97b:52015)<br />

[8] L. EU. DICKSON, A fundamental system <strong>of</strong> invariants <strong>of</strong> <strong>the</strong> general<br />

modular linear <strong>group</strong> with a solution <strong>of</strong> <strong>the</strong> form problem, Trans.<br />

Amer. Math. Soc. 12 (1911), no. 1, 75–98. MR1500882<br />

[9] C. J. EARLE <strong>and</strong> J. EELLS, A fibre bundle description <strong>of</strong><br />

Teichmüller <strong>the</strong>ory, J. Differential Geometry 3 (1969), 19–43.<br />

MR0276999 (43 #2737a)<br />

[10] M. EICHLER, Eine Verallgemeinerung der Abelschen Integrale,<br />

Math. Z. 67 (1957), 267–298. MR0089928 (19,740a)<br />

[11] M. FURUSAWA, M. TEZUKA <strong>and</strong> N. YAGITA, On <strong>the</strong> <strong>cohomology</strong><br />

<strong>of</strong> classifying spaces <strong>of</strong> torus bundles <strong>and</strong> automorphic forms,<br />

J. London Math. Soc. (2) 37 (1988), no. 3, 520–534. MR939127<br />

(89f:57060)<br />

[12] B. GRAY <strong>and</strong> S. THERIAULT, An elementary construction <strong>of</strong><br />

Anick’s fibration, Geom. Topol. 14 (2010), no. 1, 243–275.<br />

MR2578305 (2011a:55013)<br />

[13] A. HATCHER, Algebraic topology, Cambridge University Press,<br />

Cambridge, 2002. MR1867354 (2002k:55001)<br />

[14] E. LOOIJENGA, <strong>The</strong> complement <strong>of</strong> <strong>the</strong> bifurcation variety <strong>of</strong> a simple<br />

singularity, Invent. Math. 23 (1974), 105–116. MR0422675 (54<br />

#10661)<br />

[15] E. LOOIJENGA, Stable <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> mapping class <strong>group</strong> with<br />

symplectic coefficients <strong>and</strong> <strong>the</strong> universal Abel-Jacobi map, J. Algebraic<br />

Geom. 5 (1996), no. 1, 135–150. MR1358038 (97g:14026)<br />

[16] J. MILNOR, Introduction to algebraic K -<strong>the</strong>ory, Princeton University<br />

Press, Princeton, N.J., 1971, Annals <strong>of</strong> Ma<strong>the</strong>matics Studies,<br />

No. 72. MR0349811 (50 #2304)<br />

[17] W. MAGNUS, A. KARRASS <strong>and</strong> D. SOLITAR, Combinatorial<br />

<strong>group</strong> <strong>the</strong>ory: Presentations <strong>of</strong> <strong>group</strong>s in terms <strong>of</strong> generators <strong>and</strong><br />

relations, Interscience Publishers [John Wiley & Sons, Inc.], New<br />

York-London-Sydney, 1966. MR0207802 (34 #7617)<br />

[18] M. SALVETTI, <strong>The</strong> homotopy type <strong>of</strong> Artin <strong>group</strong>s, Math. Res. Lett.<br />

1 (1994), no. 5, 565–577. MR1295551 (95j:52026)<br />

[19] J.-P. SERRE, Trees, Springer Monographs in Ma<strong>the</strong>matics,<br />

Springer-Verlag, Berlin, 2003, Translated from <strong>the</strong> French original


211 <strong>The</strong> <strong>cohomology</strong> <strong>of</strong> <strong>the</strong> <strong>braid</strong> <strong>group</strong> with coefficients<br />

by John Stillwell, Corrected 2nd printing <strong>of</strong> <strong>the</strong> 1980 English translation.<br />

MR1954121 (2003m:20032)<br />

[20] G. SHIMURA, Introduction to <strong>the</strong> arithmetic <strong>the</strong>ory <strong>of</strong> automorphic<br />

functions, Publications <strong>of</strong> <strong>the</strong> Ma<strong>the</strong>matical Society <strong>of</strong> Japan, No.<br />

11. Iwanami Shoten, Publishers, Tokyo, 1971, Kanô Memorial Lectures,<br />

No. 1. MR0314766 (47 #3318)<br />

[21] R. STEINBERG, On Dickson’s <strong>the</strong>orem on invariants, J. Fac. Sci.<br />

Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 699–707. MR927606<br />

(89c:11177)<br />

[22] B. WAJNRYB, On <strong>the</strong> monodromy <strong>group</strong> <strong>of</strong> plane curve singularities,<br />

Math. Ann. 246 (1979/80), no. 2, 141–154. MR564684<br />

(81d:14016)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!